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2 GETTING STARTED:



CHAPTER
ONE

1.1

RELEASE NOTES

2.7.3

Release date: January 18, 2023

1.2

Added support for the model version set feature.
Added --job-info option to ads opctl run CLI to save job run information to a YAML file.

Added the AuthContext class. It supports API key configuration, resource principal, and instance principal
authentication. In addition, predefined signers, callable signers, or API keys configurations from specified loca-
tions.

Added restart_deployment() method to the framework-specific classes. Update model deployment associated
with the model.

Added activate() and deactivate() method to the model deployment classes.

Fixed a bug in to_sql(). The string length for the column created in Oracle Database table was counting
characters, not bytes.

Fixed a bug where any exception that occurred in a notebook cell printed “ADS Exception” even if the ADS code
was not responsible for the error.

2.7.2

Release date: December 20, 2022

1.3

Fixed a bug in ADS jobs. The job_run.watch() method sometimes threw an exception due to an unexpected
logging parameter.

2.71

Release date: December 14, 2022

* Fixed a bug with ads.set_auth(‘resource_principal’) - https://github.com/oracle/accelerated-data-science/issues/

38



./ads.common.html#ads.common.auth.OCIAuthContext
./ads.model.html#ads.model.generic_model.GenericModel.restart_deployment
./ads.catalog.html#ads.catalog.model.Model.activate
./ads.catalog.html#ads.catalog.model.Model.deactivate
./ads.model_deployment.html#ads.model.deployment.model_deployment.ModelDeployment
https://github.com/oracle/accelerated-data-science/issues/38
https://github.com/oracle/accelerated-data-science/issues/38
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1.4

2.7.0

Release date: December 7, 2022

1.5

Fixed a bug in GenericModel .prepare. The .model-ignore file was not included in the Manifest.in.

2.6.9

Release date: December 7, 2022

Added compatibility with Python 3. 10.

Added update_deployment() method to the framework-specific classes. Update model deployment associated
with the model.

Added from_id() method to the framework-specific classes. Load existing model by OCID directly from the OCI
Models and OCI Model Deployment.

Added upload_artifact() to the framework-specific classes. Upload model artifacts to Object Storage.
Added update() method to the framework-specific classes. Update the model metadata for the registered model.
Added config, signer, signer_callable attributes to the ads.set_auth() to support additional signers.

Added support for Instance Principals authentication for the ads opctl conda publish and ads
opctl conda install commands.

Added an option for PyTorchModel framework allowing to serialize model in a TorchScript format.

Added an option to import framework-specific classes directly from the ads.model package. Example: from
ads.model import LightGBMModel, GenericModel.

Fixed a bug in ADSDataset get_recommendations when imbalanced correction depends on classes alpha
order.

Fixed a bug in ADS jobs. The shape configuration details were incorrectly extracted from a notebook session.

Fixed a bug to replace the use of a deprecated API with latest API in the Model Evaluation module.

Following modules are marked as deprecated:

1.6

ads.catalog.model.py.
ads.catalog.notebook.py
ads.catalog.project.py

ads.catalog.summary.py

2.6.8

Release date: October 29, 2022

Fixed a bug in ads.dataset.helper to support Python 3.8 and Python 3.9.
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1.7

2.6.7

Release date: October 27, 2022

Fixed a bug in PyTorchModel. The score.py failed when torch.Tensor was used as input data.
Fixed a bug in ads opctl conda publish command.
Added support for flexible shapes for Data Flow Jobs.

Loading a model from Model Catalog (GenericModel. from_model_catalog()) and Model Deployment
(GenericModel. from_model_deployment()) no longer requires a model file name.

Switched from using cx_Oracle interface to the oracledb driver to connect to Oracle Databases.

Added support for image attribute for the PyTorchModel.predict() and TensorFlowModel.predict()
methods. Images can now be directly passed to the model Deployment predict.

The following APIs are deprecated:

1.8

OracleAutoMLProvider

2.6.6

Release date: October 7, 2022

Added SparkPipelineModel model serialization class for fast and easy model deployment.
Added support for flexible shapes for Jobs and Model Deployments.
Added support for freeform_tags and defined_tags for Model Deployments.

Added the populate_schema() method to the GenericModel class. Populate input and output schemas for
model artifacts.

The ADSString was added to the Feature types system. Use the enhanced string class functionalities such as
regular expression (RegEx) matching and natural language parsing within Pandas dataframes and series.

Saving model does not require iPython dependencies

Following APIs are deprecated:

1.9

DatasetFactory.open
ADSModel.prepare

ads.common.model_export_util.prepare_generic_model

2.6.5

Release date: September 16, 2022

OCI SDK updated from version 2.59.0 to version 2.82.0.
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1.10 2.6.4

Release date: September 14, 2022

* Added support for large models with artifact size between 2 and 6 GB. The large models can be saved to the
Model Catalog, downloaded from the Model Catalog, and deployed as a Model Deployment resource.

e Added delete() method to the GenericlModel class. Deletes models and associated model deployments.
* The Model Input Schema is improved to return features sorted by the order attribute.

* Added user-friendly default names for created Jobs, Model Deployments, and Models.

1.11 2.6.3

Release date: August 4, 2022
* Deprecated the ads.dataflow.DataFlow class. It has been superseded by the ads. jobs.DataFlow class.

¢ Added prepare_save_deploy () method to the GenericModel class. Prepare model artifacts and deploy the
model with one command.

» Added support for binary payloads in model deployment.

e Updated AutoMLModel, GenericModel, LightgbmModel, PyTorchModel, SklearnModel,
TensorflowlModel, and XgboostModel classes to support binary payloads in model deployment.

¢ The maximum runtime for a Job can be limited with the with_maximum_runtime_in_minutes()
method in the CondaRuntime, DataFlowNotebookRuntime, DataFlowRuntime, GitPythonRuntime,
NotebookRuntime, and ScriptRuntime classes.

* The ads. jobs.DataFlow class supports Published conda environments.

1.12 2.6.2

Release date: June 21, 2022

e Added from_model_deployment () method to the GenericModel class. Now you can load a model directly
from an existing model deployment.

* Moved dependencies from being default into optional installation groups:

all-optional
— bds

— boosted

- data

- geo

— notebook

— onnx

- opctl

— optuna

— tensorflow
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- text
— torch
- viz

Use python3 -m pip install "oracle-ads[XXX]" where XXX are the group names.

1.13 2.6.1

Release date: June 1, 2022
* Added support for running a container as jobs using ads. jobs.ContainerRuntime.

* The ModelArtifact class is deprecated. Use the model serialization classes (GenericModel, PyTorchModel,
SklearnlModel, etc.).

1.14 2.5.10

Release date: May 6, 2022
* Added BDSSecretKeeper to store and save configuration parameters to connect to Big Data service to the vault.

* Added the krbcontext and refresh_ticket functions to configure Kerberos authentication for the Big Data
service.

* Added authentication options to logging APIs to allow you to pass in the OCI API key configuration or signer.

* Added the configuration file path option in the set_auth method. This allows you to change the path of the OCI
configuration.

* Fixed a bug in AutoML for Text datasets.
* Fixed bug in import ads. jobs to notify users installing ADS optional dependencies.

* Fixed a bug in the generated score. py file, where Pandas dataframe’s dtypes changed when deserializing. Now
you can recover it from the input schema.

¢ Updated requirements to oci>=2.59.0.

1.15 2.5.9

Release date: April 4, 2022
» Added framework-specific model serialization to add more inputs to the generated score.py file.
* Added the following framework-specific classes for fast and easy model deployment:

AutolMLModel

SKlearnModel

XGBoostModel

LightGBMModel

PyTorchModel

TensorFlowModel

1.13. 2.6.1 7
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* Added the GenericModel class for frameworks not included in the preceding list:

* You can now prepare, verify, save and deploy your models using the methods in these new classes:

.prepare(): Creates score.py, runtime.yaml, and schema files for model deployment purpose, and adds
the model artifacts to the model catalog.

— .verify(): Helps test your model locally, before deploying it from the model catalog to an endpoint.
— .save(): Saves the model and model artifacts to the model catalog.
— .deploy(): Deploys a model from the model catalog to a REST endpoint.
— .predict(): Calls the endpoint and creates inferences from the deployed model.
* Added support to create jobs with managed egress.

* Fixed bug in jobs, where log entries were being dropped when there were a large number of logs in a short period
of time. Now you can list all logs with jobwatch().

1.16 2.5.8

Release date: March 3, 2022
* Fixed bug in automatic extraction of taxonomy metadata for Sklearn models.
* Fixed bug in jobs NotebookRuntime when using non-ASCII encoding.
* Added compatibility with Python 3.8 and 3.9.

* Added an enhanced string class, called ADSString. It adds functionality such as regular expression (RegEx)
matching, and natural language processing (NLP) parsing. The class can be expanded by registering custom
plugins to perform custom string processing actions.

1.17 2.5.7

Release date: February 4, 2022
* Fixed bug in DataFlow Job creation.
* Fixed bug in ADSDataset get_recommendations raising HTML is not defined exception.

* Fixed bug in jobs ScriptRuntime causing the parent artifact folder to be zipped and uploaded instead of the
specified folder.

¢ Fixed bug in ModelDeployment raising TypeError exception when updating an existing model deployment.

1.18 2.5.6

Release date: January 21, 2022
* Added support for the storage_options parameter in ADSDataset .to_hdf().

* Fixed error message to specify overwrite_script or overwrite_archive option in data_flow.
create_app().

* Fixed output of multiclass evaluation plots when ADSEvaluatior () class uses a non-default legend_labels
option.
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* Added support to connect to an Oracle Database that does not require a wallet file.

* Added support to read and write from MySQL using ADS DataFrame APIs.

1.19 255

Release date: December 9, 2021

e Fixed bug in model artifact prepare(), reload(), and prepare_generic_model() raising
ONNXRuntimeError caused by the mismatched version of skl2onnx.

1.20 2.5.4

Release date: December 3, 2021
The following features were added:

¢ Added support to read exported dataset from the consolidated export file for the Data Labeling service.
Following fixes were added:

* The DaskSeries class was marked as deprecated.

* The DaskSeriesAccessor class was marked as deprecated.

e The MLRuntime class was marked as deprecated.

e The ADSDataset.ddf attribute was marked as deprecated.

1.21 2.5.3

Release date: November 29, 2021
The following features were added:
* Moved fastavro, pandavro and openpyx1 to an optional dependency.

* Added the ability to specify the output annotation format to be spacy for the Entity Extraction dataset or yolo
for the Object Detection dataset in the Data Labeling service.

* Added support to load labeled datasets from OCI Data Labeling, and return the Pandas dataframe or generator
formats in the Data Labeling service.

* Added support to load labeled datasets by chunks in the Data Labeling service.

1.22 2.5.2

Release Notes: November 17, 2021
The following features were added:
¢ Added support to manage credentials with the OCI Vault service for ADB and Access Tokens.

* Improved model introspection functionality. The INFERENCE_ENV_TYPE and INFERENCE_ENV_SLUG parame-
ters are no longer required.
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» Updated ADS dependency requirements. Relaxed the versions for the scikit-learn, scipy and onnx depen-
dencies.

* Moved dask, ipywidget and wordcloud to an optional dependency.

* The Boston Housing dataset was replaced with an alternative one.

» Migrated ADSDataset to use Pandas instead of Dask.

* Deprecated MLRuntime.

* Deprecated resource_analyze method.

* Added support for magic commands in notebooks when they run in a Job.

* Added support to download notebook and output after running it in a Job.

1.23 2.5.0

Release notes: October 20, 2021

The following features related to the Data Labeling service were added:
* Integrating with the Oracle Cloud Infrastructure Data Labeling service.
* Listing labeled datasets in the Data Labeling service.
» Exporting labeled datasets into Object Storage.
* Loading labeled datasets in the Pandas dataframe or generator formats.
* Visualizing the labeled entity extraction and object detection data.

» Converting the labeled entity extraction and object detection data to the Spacy and YOLO formats respectively.

1.24 2.4.2

The following improvements were effected:
* Improve ads import time.
* Fix the version of the jsonschema package.
» Update numpy deps to >= 1.19.2 for compatibility with TensorFlow 2.6.
* Added progress bar when creating a Data Flow application.
* Fixed the file upload path in Data Flow.
* Added supporting tags when saving model artifacts to the model catalog.
» Updated Model Deployment authentication.
 Specify spark version in prepare_app () now works.
* Run a Job from a ZIP or folder.
This release has the following bug fixes:
* Fixed the default runtime.yaml template generated outside of a notebook session.
e Oracle DB mixin the batch size parameter is now passed downstream.

¢ ADSModel .prepare() and prepare_generic_model () force_overwrite deletes user-created folders.
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* prepare_generic_model fails to create a successful artifact when taxonomy is extracted.

1.25 2.4.1

Release notes: September 27, 2021
The following dependencies were removed:
* pyarrow

¢ python-snappy

1.26 2.4.0

Release notes: September 22, 2021
The Data Science jobs feature is introduced and includes the following:
» Data Science jobs allow data scientists to run customized tasks outside of a notebook session.

* Running Data Science jobs and Data Flow applications through unified APIs by configuring job infrastructure
and runtime parameters.

» Configuring various runtime configurations for running code from Python/Bash script, packages including mul-
tiple modules, Jupyter notebook, or a Git repository.

* Monitoring job runs and streaming log messages using the Logging service.

1.27 2.3.4

Release notes: September 20, 2021
This release has the following bug fixes:
e prepare_generic_model fails when used outside the Data Science notebook session

e TextDatasetFactory fails when used outside the Data Science notebook session

1.28 2.3.3

Release notes: September 17, 2021
* Removed dependency on plotly.

e print_user_message replaced with logger.
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1.29 2.3.1

Release notes: August 3, 2021

This release of the model catalog includes these enhancements:

Automatic extraction of model taxonomy metadata that lets data scientists document the use case, framework,
and hyperparameters of their models.

Improvement to the model provenance metadata, including a reference to the model training resource (notebook
sessions) by passing in the training_id to the .save() method.

Support for custom metadata which lets data scientists document the context around their models, automatic
extraction references to the conda environment used to train the model, the training and validation datasets, and
SO on.

Automatcal extraction of the model input feature vector and prediction schemas.

Model introspection tests that are run on the model artifact before the model is saved to the model catalog.
Model introspection validates the artifact against a series of common issues and errors found with artifacts.
These introspection tests are part of the model artifact code template that is included.

Feature type is an additional added module which includes the following functionality:

Support for Exploratory Data Analysis including feature count, feature plot, feature statistics, correlation, and
correlation plot.

Support for the feature type manager that provides the tools to manage the handlers used to drive the feature type
system.

Support for the feature type validators that are a way of performing data validation and also allow a feature type
to be dynamically extended so that the data validation process can be reproducible and shared across projects.

Support for feature type warnings that allow you to automate the process of checking for data quality issues.

1.30 2.2.1

Release notes: May 7, 2021

Improvements include:

Requires Pandas >- 1.2 and Python == 3.7.
Upgraded the scikit-learn dependency to 0.23.2.
Added the ADSTextDataset and the ADS Text Extraction Framework.

Updated the ADSTuner method .tune() to allow asynchronous tuning, including the ability to halt, resume,
and terminate tuning operations from the main process.

Added the ability to load and save ADSTuner tuned trials to Object Storage. The tuning progress can now be
saved and loaded in a different ADSTuner object.

Added the ability to update the ADSTuner tuning search space. Hyperparameters can be changed and distribution
ranges modified during tuning.

Updated plotting functions to plot in real-time while ADSTuner asynchronous tuning operations proceed.

Added methods to report on the remaining budget for running ADSTuner asynchronous tuner (trials and time-
based budgets).

12
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e Added a method to report the difference between the optimal and current best score for ADSTuner tuning pro-
cesses with score-based stopping criteria.

* Added caching for model loading method to avoid model deserialization each time the predict method is called.
* Made the list of supported formats in DatasetFactory.open() more explicit.
* Moved the ADSEvaluator caption to above the table.
* Added a warning message in the get_recommendations () method when no recommendations can be made.
* Added a parameter in print_summary () to display the ranking table only.
» list_apps in the DataFlow class supports the optional parameter compartment_id.
* An exception occurs when using SVC or KNN on large datasets in OracleAutoMLProvider.
» Speed improvements in correlation calculations.
* Improved the name of the y-axis label in feature_selection_trials().
* Automatically chooses the y-label based on the score_metric set in train if you don’t set it.
* Increased the default timeout for uploading models to the model catalog.
* Improved the module documentation.
* Speed improvements in get_recommendations() on wide datasets.
* Speed improvements in DatasetFactory.open().
* Deprecated the frac keyword from DatasetFactory.open().
* Disabled writing requirements.txt when function_artifacts = False.
e Pretty printing of specific labels in ADSEvaluator.metrics.
* Removed the global setting as the only mechanism for choosing the authentication in OCIClientFactory.
* Added the ability to have defaults and to provide authentication information while instantiating a Provider Class.
* Added a larger time buffer for the plot_param_importance method.
* Migrated the DatasetFactory reading engine from Dask to Pandas.
» Enabling Pandas to read lists and glob of files.
* DatasetFactory now supports reading from Object Storage using ocifs.
* The DatasetFactory URI pattern now supports namespaces and follows the HDFS Connector format.
e The url () method can generate PARs for Object Storage objects.
* DatasetFactory now has caching for Object Storage operations.
The following issues were fixed:
* Issue with multipart upload and download in DatasetFactory.
¢ Issues with log level in OracleAutoMLProvider.
* Issue with £i11l_value when running get_recommendations().
¢ Issue with an invalid training path when saving model provenance.
* Issue with errors during model deletion.
* Issues with deep copying ADSData.

» Evaluation plot KeyError.
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Dataset show_in_notebook issue.

Inconsistency in preparing ADSModels and generic models.

Issue with force_overwrite in prepare_generic_model not being properly triggered.
Issue with OracleAutoMLProvider failing to visualize_tuning_trials.

Issues with model_prepare trying to do feature transforms on keras and pytorch models.
Erroneous creation of __pychache__.

The AttributeError message when an ApplicationSummary or RunSummary object is being displayed in a
notebook.

Issues with newer versions of Dask breaking DatasetFactory.

AutoML is upgraded to AutoML v1.0 and the changes include:

Switched to using Pandas Dataframes internally. AutoML now uses Pandas dataframes internally instead of
Numpy dataframes, avoiding needless conversions.

Pytorch is now an optional dependency. If Pytorch is installed, AutoML automatically considers multilayer
perceptrons in its search. If Pytorch is not found, deep learning models are ignored.

Updated the Pipeline interface to include train(), which runs all the pipeline stages though doesn’t do the final
fitting of the model ( £it() API should be used if the final fit is needed).

Updated the Pipeline interface to include refit () to allow you to refit the pipeline to an updated dataset without
re-running the full pipeline again. We recommend this for advanced users only. For best results, we recommended
that you rerun the full pipeline when the dataset changes.

AutoML now reports memory usage for each trial as a part of its trial attributes. This information relies on the
maximum resident size metric reported by Linux, and can sometimes be unreliable.

holidays is now an optional dependency. If holidays is installed, AutoML automatically uses it to add
holidays as a feature for engineering datetime columns.

Added support for Anomaly Detection and Forecasting tasks (experimental).
Downcast dataset to reduce pipeline training memory consumption.
Set numpy BLAS parallelism to 1 to avoid CPU over subscription.

Created interactive example notebooks for all supported tasks (classification, regression, anomaly detection, and
forecasting), see http://automl.oraclecorp.com/.

Other general bug fixes.

MLX is upgraded to MLX v1.1.1 the changes include:

Upgrading to Python 3.7

Upgrading to support Numpy >= 1.19.4
Upgrading to support Pandas >=1.1.5

Upgrading to support Scikit-learn >= 0.23.2
Upgrading to support Statsmodel >= 0.12.1
Upgrading to support Dask >=2.30.0

Upgrading to support Distributed >= 2.30.1
Upgrading to support Xgboost >=1.2.1
Upgrading to support Category_encoders >=2.2.2

14
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1.3

Auto

Upgrading to support Tqdm >= 4.36.1
Fixed imputation issue when columns are all NaN.
Fixed WhatlF internal index-reference issue.

Fixed rare floating point problem in FD/ALE explainers.

1 January 13, 2021

A full distribution of this release of ADS is found in the General Machine Learning for CPU and GPU environ-
ments. The Classic environments include the previous release of ADS.

A distribution of ADS without AutoML and MLX is found in the remaining environments.

DatasetFactory can now download files first before opening them in memory using the . download () method.
Added support to archive files in creating Data Flow applications and runs.

Support was added for loading Avro format data into ADS.

Changed model serialization to use ONNX by default when possible on supported models.

Added ADSTuner, which is a framework and model agnostic hyperparmater optimizer, use the adstuner. ipynb
notebook for examples of how to use this feature.

Corrected the up_sample () method in get_recommendations () so that it does not fail when all features are
categorical. Up-sampling is possible for datasets containing continuous and categorical features.

Resolved issues with serializing ndarray objects into JSON.

A table of all of the ADS notebook examples can be found in our service documentation: Oracle Cloud Infras-
tructure Data Science

Changed set_documentation_mode to false by default.
Added unit-tests related to the dataset helper.
Fixed the _check_object_exists to handle situations where the object storage bucket has more than 1000 objects.
Added option overwrite_script in the create_app() method to allow a user to override a pre-existing file.
Added support for newer fsspec versions.
Added support for the C library Snappy.
Fixed issue with uploading model provenance data due to inconsistency with OCI interface.
Resolved issue with multiple versions of Cryptography being installed when installing fbprophet.
ML is upgraded to AutoML v0.5.2 and the changes include:
AutoML is now distributed in the General Machine Learning and Data Exploration conda environments.

Support for ONNX. AutoML models can now be serialized using ONNX by calling the to_onnx () API on the
AutoML estimator.

Pre-processing has been overhauled to use sklearn pipelines to allow serialization using ONNX. Numerical,
categorical, and text columns are supported for ONNX serialization. Datetime and time series columns are not
supported.

Torch-based deep learning models, TorchMLPClassifier and TorchMLPRegressor, have been added.

1.31
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GPU support for XGBoost and torch-based models have been added. This is disabled by default and can be
enabled by passing in ‘gpu_id’: ‘auto’ in engine_opts in the constructor. ONNX serialization for GPUs
has not been tested.

Adaptive sampling’s learning curve has been smoothened. This allows adaptive sampling to converge faster on
some datasets.

Improvements to ranking performance in feature selection were added. Feature selection is now much faster on
large datasets.

The default execution engine for AutoML has been switched to Dask. You can still use the Python multiprocess-
ing by passing engine="local', engine_opts={'n_jobs' : -1} toinit(Q)

GuassianNB has been enabled in the interface by default.

The AdaBoostClassifier has been disabled in the pipeline-interface by default. The ONNX converter for
AdaBoost should not be used.

The issue ValueError: Found unknown categories during transform has been fixed.

You can manually specify a hyperparameter search space to AutoML. A new parameter was added to the pipeline.
This allows you to freeze some hyperparameters or to expose further ones for tuning.

New API: Refit an AutoML pipeline to another dataset. This is primarily used to handle updated training data,
where you train the pipeline once, and refit in on newer data.

AutoML no longer closes a user-specified Dask cluster.

AutoML properly cleans up any existing futures on the Dask cluster at the end of fit.

MLX is upgraded to MLX v1.0.16 the changes include:

MLX is now distributed in the General Machine Learning conda environments.

Updated the explanation descriptions to use a base64 representation of the static plots. This obviates the need
for creating a mlx_static directory.

Replaced the boolean indexing in slicing Pandas dataFrame with integer indexing. After updating to Pandas >=
1.1.0 the boolean indexing caused some issues. Integer indexing addresses these issues.

Fixed MLX-related import warnings.
Corrected an issue with ALE when the target values are strings.
Removed the dependency on Paramiko.

Addresses an issue with ALE when the target values are not of type list.

1.32 August 11, 2020

Support was added to use resource principles as an authentication mechanism for ADS.

Support was added to MLX for an additional model explanation diagnostic, Accumulated Local Effects (ALEs).
Support was added to MLX for “What-if”’ scenarios in model explainability.

Improvements were made to the correlation heatmap calculations in show_in_notebook ().

Improvements were made to the model artifact.

The following bugs were fixed:

Data Flow applications inherit the compartment assignment of the client. Runs inherit from applications by
default. Compartment OCIDs can also be specified independently at the client, application, and run levels.

16
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The Data Flow log link for logs pulled from an application loaded into the notebook session is fixed.
Progress bars now complete fully (in ADSModel . prepare() and prepare_generic_model()).

BaselineModel is now significantly faster and can be opted out of.

MLX upgraded to MLX v1.0.10 the changes include:

1.3

Num

Added support to specify the mlx_static root path (used for ALE summary).
Added support for making mlx_static directory hidden (for example, <path>/.mlx_static/).

Fixed issue with the boolean features in ALE.

3 June 9, 2020

erous bug fixes including:

Support for Data Flow applications and runs outside of a notebook session compartment. Support for specific
object storage logs and script buckets at the application and run levels.

ADS detects small shapes and gives warnings for AutoML execution.

Removal of triggers in the Oracle Cloud Infrastructure Functions func.yamnl file.
DatasetFactory.open() incorrectly yielding a classification dataset for a continuous target was fixed.
LabelEncoder producing the wrong results for category and object columns was fixed.

An untrusted notebook issue when running model explanation visualizations were fixed.

A warning about adaptive sampling requiring at least 1000 data points was added.

A dtype cast float to integer into DatasetFactory.open("csv") was added.

An option to specify the bucket of Data Flow logs when you create the application was added.

AutoML upgraded to 0.4.2 the changes include:

Reduced parallelization on low compute hardware.
Support for passing in a custom logger object in automl.init(logger=).

Support for datetime columns. AutoML should automatically infer datetime columns based on the Pandas
dataframe, and perform feature engineering on them. This can also be forced by using the col_types argument
in pipeline.fit(). The supported types are: ['categorical', 'numerical', 'datetime']

MLX upgraded to MLX 1.0.7 the changes include:

Updated the feature distributions in the PDP/ICE plots (performance improvement).

All distributions are now shown as PMFs. Categorical features show the category frequency and continuous
features are computed using a NumPy histogram (with ‘auto’). They are also separate sub-plots, which are
interactive.

Classification PDP: The y-axis for continuous features is now auto-scaled (not fixed to 0-1).

1-feature PDP/ICE: The x-axis for continuous features now shows the entire feature distribution, whereas the plot
may show a subset depending on the partial_range parameter (for example, partial_range=[0.2, 0.8]
computes the PDP between the 20th and 80th percentile. The plot now shows the full distribution on the x-axis,
but the line charts are only drawn between the specified percentile ranges).

2-feature PDP: The plot x and y axes are now auto-set to match the partial_range specified by the user. This
ensures that the heatmap fills the entire plot by default. However, the entire feature distribution can be viewed
by zooming out or clicking Autoscale in plotly.

1.33
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* Support for plotting scatter plots using WebGL (show_in_notebook(. .., use_webgl=True)) was added.

* The side issues that were causing the MLX Visualization Omitted warnings in JupyterLab were fixed.

1.34 April 30, 2020

* ADS integration with the Oracle Cloud Infrastructure Data Flow service provides a more efficient and convenient
to launch a Spark application and run Spark jobs

* show_in_notebook () has had “head” removed from accordion and is replaced with dataset “warnings”.

* get_recommendations() is deprecated and replaced with suggest_recommendations(), which returns a
Pandas dataframe with all the recommendations and suggested code to implement each action.

¢ A progress indication of Autonomous Data Warehouse reads has been added.
AutoML updated to version 0.4.1 from 0.3.1:

* More consistent handling of stratification and random state.

* Bug-fix for LightGBM and XGBoost crashing on AMD shapes was implemented.

* Unified Proxy Models across all stages of the AutoML Pipeline, ensuring leaderboard rankings are consistent
was implemented.

* Remove visual option from the interface.
* The default tuning metric for both binary and multi-class classification has been changed to neg_log_loss.
* Bug-fix in AutoML XGBoost, where the predicted probabilities were sometimes NaN, was implemented.
* Fixed several corner case issues in Hyperparameter Optimization.
MLX updated to version 1.0.3 from 1.0.0:

¢ Added support for specifying the ‘average’ parameter in sklearn metrics by <metric>_<average>, for exam-
Iple F1_avg.

* Fixed an issue with the detailed scatter plot visualizations and cutoff feature/axis names.
* Fixed an issue with the balanced sampling in the Global Feature Permutation Importance explainer.

» Updated the supported scoring metrics in MLX. The PermutationImportance explainer now supports a large
number of classification and regression metrics. Also, many of the metrics’ names were changed.

» Updated LIME and PermutationImportance explainer descriptions.
¢ Fixed an issue where sklearn.pipeline wasn’t imported.

* Fixed deprecated asscalar warnings.

1.35 March 18, 2020

Access to ADW performance has been improved significantly

Major improvements were made to the performance of the ADW dataset loader. Your data is now loaded much
faster, depending on your environment.

Change to DatasetFactory.open() with ADW
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DatasetFactory.open() with format="sql' no longer requires the index_col to be specified. This was confus-
ing, since “index” means something very different in databases. Additionally, the table parameter may now be either
a table or a sql expression.

ds = DatasetFactory.open(
connection_string,
format = 'sql',
table = """
SELECT *
FROM sh.times
WHERE rownum <= 30

No longer automatically starts an H2O cluster

ADS no longer instantiates an H2O cluster on behalf of the user. Instead, you need to import h2o on your own and
then start your own cluster.

Profiling Dask APIs

With support for Bokeh extension, you can now profile Dask operations and visualize profiler output. For more details,
see Dask ResourceProfiler.

You can use the ads . common.analyzer.resource_analyze decorator to visualize the CPU and memory utilization
of operations.

During execution, it records the following information for each timestep:
* Time in seconds since the epoch
* Memory usage in MB
* % CPU usage

Example:

from ads.common.analyzer import resource_analyze
from ads.dataset.dataset_browser import DatasetBrowser
@resource_analyze
def fetch_data(Q):
sklearn = DatasetBrowser.sklearn()
wine_ds = sklearn.open('wine').set_target("target')
return wine_ds
fetch_data()

The output shows two lines, one for the total CPU percentage used by all the workers, and one for total memory used.

Dask Upgrade

Dask is updated to version 2.10.1 with support for Oracle Cloud Infrastructure Object Storage. The 2.10.1 version
provides better performance than the older version.
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CHAPTER
TWO

QUICK START

Install

Read and Write to Object Storage, Databases and other OCI Resources
OClI serverless Spark - Data Flow

Evaluate Trained Models

Register and Deploy Models

Store and Retrieve your data source credentials

Conect to existing OCI Big Data Service
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CHAPTER
THREE

INSTALLATION AND SETUP

3.1 Install ADS CLI

Prerequisites
¢ Linux/Mac (Intel CPU)
* For Mac on M series - Experimental.
* For Windows: Use Windows Subsystem for Linux (WSL)
* python >=3.7, <3.10

ads cli provides a command line interface to Jobs API related features. Set up your development environment, build
docker images compliant with Notebook session and Data Science Jobs, build and publish conda pack locally, start
distributed training, etc.

Installation

Install ADS and enable CLI:

python3 -m pip install "oracle-ads[opctl]"

Tip
ads opctl subcommand lets us setup your local development envrionment for Data Science Jobs. More information
can be found by running ads opctl -h

3.2 Install oracle-ads SDK

3.2.1 Data Science Conda Environments

ADS is installed in the data science conda environments. Upgrade your existing oracle-ads package by running -

$ python3 -m pip install oracle-ads --upgrade
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3.2.2 Install in Local Environments

You have various options when installing ADS.

3.2.2.1 Installing the oracle-ads base package

$ python3 -m pip install oracle-ads

3.2.2.2 Installing extras libraries

The all-optional module will install all optional dependencies.

$ python3 -m pip install oracle-ads[all-optionall]

To work with gradient boosting models, install the boosted module. This module includes XGBoost and LightGBM
model classes.

$ python3 -m pip install oracle-ads[boosted]

For big data use cases using Oracle Big Data Service (BDS), install the bds module. It includes the following libraries:
ibis-framework[impala], hdfs[kerberos] and sqlalchemy.

$ python3 -m pip install oracle-ads[bds]

To work with a broad set of data formats (for example, Excel, Avro, etc.) install the data module. It includes the
following libraries: fastavro, openpyxl, pandavro, asteval, datefinder, htmllistparse, and sqlalchemy.

$ python3 -m pip install oracle-ads[data]

To work with geospatial data install the geo module. It includes the geopandas and libraries from the viz module.

$ python3 -m pip install oracle-ads[geo]

Install the notebook module to use ADS within the Oracle Cloud Infrastructure Data Science service Notebook Ses-
sion. This module installs ipywidgets and ipython libraries.

$ python3 -m pip install oracle-ads[notebook]

To work with ONNX-compatible run times and libraries designed to maximize performance and model portability, in-
stall the onnx module. It includes the following libraries, onnx, onnxruntime, onnxmlitools, ski2onnx, xgboost, lightgbm
and libraries from the viz module.

$ python3 -m pip install oracle-ads[onnx]

For infrastructure tasks, install the opctl module. It includes the following libraries, oci-cli, docker, conda-pack,
nbconvert, nbformat, and inflection.

$ python3 -m pip install oracle-ads[opctl]

For hyperparameter optimization tasks install the optuna module. It includes the optuna and libraries from the viz
module.
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$ python3 -m pip install oracle-ads[optunal

For Spark tasks install the spark module.

$ python3 -m pip install oracle-ads[spark]

Install the tensorflow module to include tensorflow and libraries from the viz module.

$ python3 -m pip install oracle-ads[tensorflow]

For text related tasks, install the text module. This will include the wordcloud, spacy libraries.

$ python3 -m pip install oracle-ads[text]

Install the torch module to include pyforch and libraries from the viz module.

$ python3 -m pip install oracle-ads[torch]

Install the viz module to include libraries for visualization tasks. Some of the key packages are bokeh, folium, seaborn

and related packages.

$ python3 -m pip install oracle-ads[viz]

Note

Multiple extra dependencies can be installed together. For example:

$ python3 -m pip install oracle-ads[notebook,viz,text]

3.2. Install oracle-ads SDK
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CHAPTER
FOUR

AUTHENTICATION

When you are working within a notebook session, you are operating as the datascience Linux user. This user does
not have an OCI Identity and Access Management (IAM) identity, so it has no access to the Oracle Cloud Infrastructure
API. Oracle Cloud Infrastructure resources include Data Science projects, models, jobs, model deployment, and the
resources of other OCI services, such as Object Storage, Functions, Vault, Data Flow, and so on. To access these
resources, you must use one of the two provided authentication approaches:

4.1 1. Authenticating Using Resource Principals

Prerequisite
* You are operating within a OCI service that has resource principal based authentication configured

* You have setup the required policies allowing the resourcetype within which you are operating to use/manage
the target OCI resources.

This is the generally preferred way to authenticate with an OCI service. A resource principal is a feature of IAM that
enables resources to be authorized principal actors that can perform actions on service resources. Each resource has its
own identity, and it authenticates using the certificates that are added to it. These certificates are automatically created,
assigned to resources, and rotated avoiding the need for you to upload credentials to your notebook session.

Data Science enables you to authenticate using your notebook session’s resource principal to access other OCI re-
sources. When compared to using the OCI configuration and key files approach, using resource principals provides a
more secure and easy way to authenticate to the OCI APIs.

You can choose to use the resource principal to authenticate while using the Accelerated Data Science (ADS) SDK by
running ads.set_auth(auth="'resource_principal') in a notebook cell. For example:

import ads

ads.set_auth(auth="'resource_principal")

compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
pc.list_projects(Q)
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4.2 2. Authenticating Using API Keys

Prerequisite
* You have setup api keys as per the instruction here

Use API Key setup when you are working from a local workstation or on platform which does not support resource
principals.

This is the default method of authentication. You can also authenticate as your own personal IAM user by creating
or uploading OCI configuration and API key files inside your notebook session environment. The OCI configuration
file contains the necessary credentials to authenticate your user against the model catalog and other OCI services like
Object Storage. The example notebook, api_keys.ipynb demonstrates how to create these files.

You can follow the steps in api_keys.ipynb for step by step instruction on setting up API Keys.

Note: If you already have an OCI configuration file (config) and associated keys, you can upload them directly to
the /home/datascience/.oci directory using the JupyterLab Upload Files or the drag-and-drop option.

4.3 3. Authenticating Using Instance Principals

Prerequisite
* You are operating within an OCI compute instance

* You have created a Dynamic Group with Matching Rules to include your compute instances, and you have au-
thored policies allowing this Dynamic Group to perform actions within your tenancy

For more information on Instance Principals, see Calling Services from an Instance.

You can choose to use the instance principal to authenticate while using the Accelerated Data Science (ADS) SDK by
running ads.set_auth(auth="'instance_principal'). For example:

import ads

ads.set_auth(auth="instance_principal")

mc = ModelCatalog(compartment_id="<compartment_id>")
mc.list_models()

4.4 4. Overriding Defaults

The default authentication that is used by ADS is set with the set_auth() method. However, each relevant ADS
method has an optional parameter to specify the authentication method to use. The most common use case for this is
when you have different permissions in different API keys or there are differences between the permissions granted in
the resource principals and your API keys.

By default, ADS uses API keys to sign requests to OCI resources. The set_auth() method is used to explicitly

set a default signing method. This method accepts one of three strings "api_key", "resource_principal”, or
instance_principal.

The ~/.oci/config configuration allow for multiple configurations to be stored in the same file. The set_auth()
method takes is oci_config_location parameter that specifies the location of the configuration, and the default
is "~/.oci/config". Each configuration is called a profile, and the default profile is DEFAULT. The set_auth()
method takes in a parameter profile. It specifies which profile in the ~/.0oci/config configuration file to use. In
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this context, the profile parameter is only used when API keys are being used. If no value for profile is specified,
then the DEFAULT profile section is used.

import ads
import oci

ads.set_auth("api_key") # default signer is set to API Keys

ads.set_auth("api_key", profile = "TEST") # default signer is set to API Keys and to use.
—TEST profile

ads.set_auth("api_key", oci_config_location = "~/.test_oci/config") # default signer is.
—set to API Keys and to use non-default oci_config_location
ads.set_auth("resource_principal") # default signer is set to resource principal.,
—,authentication

ads.set_auth("instance_principal") # default signer is set to instance principal.,
—sauthentication

singer = oci.auth.signers.ResourcePrincipalsFederationSigner()
ads.set_auth(config={}, singer=signer) # default signer is set to.
—ResourcePrincipalsFederationSigner

signer_callable = oci.auth.signers.ResourcePrincipalsFederationSigner
ads.set_auth(signer_callable=signer_callable) # default signer is set.
—ResourcePrincipalsFederationSigner callable

The auth module has helper functions that return a signer which is used for authentication. The api_keys () method
returns a signer that uses the API keys in the .oci configuration directory. There are optional parameters to specify
the location of the API keys and the profile section. The resource_principal () method returns a signer that uses
resource principals. The method default_signer () returns either a signer for API Keys or resource principals
depending on the defaults that have been set. The set_auth() method determines which signer type is the default. If
nothing is set then API keys are the default.

Additional signers may be provided by running set_auth() with signer or signer_callable with optional
signer_kwargs parameters. You can find the list of additional signers here.

from ads.common import auth as authutil
from ads.common import oci_client as oc

# Example 1: Create Object Storage client with the default signer.
auth = authutil.default_signer()
oc.0CIClientFactory(**auth).object_storage

# Example 2: Create Object Storage client with timeout set to 6000 using resource.
—principal authentication.

auth = authutil.resource_principal ({"timeout": 6000})
oc.0CIClientFactory(**auth).object_storage

# Example 3: Create Object Storage client with timeout set to 6000 using API Key.
—authentication.

auth = authutil.api_keys(oci_config="/home/datascience/.oci/config", profile="TEST",.
—kwargs={"timeout": 6000})

oc.0CIClientFactory(**auth).object_storage

In the this example, the default authentication uses API keys specified with the set_auth method. However, since the
os_auth is specified to use resource principals, the notebook session uses the resource principal to access OCI Object
Store.
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set_auth("api_key") # default signer is set to api_key
os_auth = authutil.resource_principal() # use resource principal to as the preferred way.
—to access object store

More signers can be created using the create_signer() method. With the auth_type parameter set to
instance_principal, the method will return a signer that uses instance principals. For other signers there are signer
or signer_callable parameters. Here are examples:

import ads
import oci

# Example 1. Create signer that uses instance principals
auth = ads.auth.create_signer("instance_principal")

# Example 2. Provide a ResourcePrincipalsFederationSigner object
singer = oci.auth.signers.ResourcePrincipalsFederationSigner()
auth = ads.auth.create_signer(config={}, singer=signer)

# Example 3. Create signer that uses instance principals with log requests enabled
signer_callable = oci.auth.signers.InstancePrincipalsSecurityTokenSigner
signer_kwargs = dict(log_requests=True) # will log the request url and response data.
—when retrieving

auth = ads.auth.create_signer(signer_callable=signer_callable, signer_kwargs=signer_
—kwargs)
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CHAPTER
FIVE

CLI CONFIGURATION

Prerequisite
* You have completed ADS CLI installation

Setup default values for different options while running OCI Data Sciecne Jobs or OCI DataFlow. By setting
defaults, you can avoid inputing compartment ocid, project ocid, etc.

To setup configuration run -

ads opctl configure

This will prompt you to setup default ADS CLI configurations for each OCI profile defined in your OCI config. By
default, all the files are generated in the ~/.ads_ops folder.

~/ .ads_ops/config.ini will contain OCI profile defaults and conda pack related information. For example:

[0CI]
oci_config = ~/.oci/config
oci_profile = ANOTHERPROF

[CONDA]
conda_pack_folder = </local/path/for/saving/condapack>
conda_pack_os_prefix = oci://my-bucket@mynamespace/conda_environments/

~/ .ads_ops/ml_job_config.ini will contain defaults for running Data Science IJob. Defaults are set for each
profile listed in your oci config file. Here is a sample -

[DEFAULT]

compartment_id = oci.xxxx.<compartment_ocid>
project_id = oci.xxxx.<project_ocid>
subnet_id = oci.xxxx.<subnet-ocid>
log_group_id = oci.xxxx.<log_group_ocid>
log_id = oci.xxxx.<log_ocid>

shape_name = VM.Standard2.2
block_storage_size_in_GBs = 100

[ANOTHERPROF]

compartment_id = oci.xxxx.<compartment_ocid>
project_id = oci.xxxx.<project_ocid>
subnet_id = oci.xxxx.<subnet-ocid>
shape_name = VM.Standard2.1

log_group_id =ocidl.loggroup.ocl.XxXX.XXXXX

(continues on next page)
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(continued from previous page)

log_id = oci.xxxx.<log_ocid>
block_storage_size_in_GBs = 50

~/.ads_ops/dataflow_config.ini will contain defaults for running Data Science Job. Defaults are set for
each profile listed in your oci config file. Here is a sample -

[MYTENANCYPROF]

compartment_id = oci.xxxx.<compartment_ocid>

driver_shape = VM.Standard2.1

executor_shape = VM.Standard2.1

logs_bucket_uri = oci://mybucket@mytenancy/dataflow/logs
script_bucket = oci://mybucket@mytenancy/dataflow/mycode/
num_executors = 3

spark_version = 3.0.2

archive_bucket = oci://mybucket@mytenancy/dataflow/archive
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CHAPTER
SIX

LOCAL DEVELOPMENT ENVIRONMENT SETUP

Prerequisite
* You have completed ADS CLI installation
* You have completed Configuaration

Setup up your workstation for development and testing your code locally before you submit it as a OCI Data Science
Job. This section will guide you on how to setup environment for -

¢ Building an OCI Data Science compatible conda environments on your workstation or CICD pipeline and pub-
lishing to object storage

* Developing and testing code with a conda environment that is compatible with OCI Data Science Notebooks and
OCI Data Science Jobs

* Developing and testing code for running Bring Your Own Container (BYOC) jobs.
Note

* In this version you cannot directly access the Service provided conda environments from ADS CLI, but you can
publish a service provided conda pack from an OCI Data Science Notebook session to your object storage bucket
and then use the CLI to access the published version.

6.1 Build Development Container Image

To setup an environment that matches OCI Data Science, a container image must be built. With a Data Science com-
patible container image you can do the following -

* Build and Publish custom conda packs that can be used within Data Science environment. Enable building conda
packs in your CICD pipeline.

* Install an existing conda pack that was published from an OCI Data Science Notebook.
* Develop code locally against the same conda pack that will be used within an OCID Data Science image.
Prerequisites
1. Install docker on your workstation
2. Internet connection to pull dependencies
3. If the access is restricted through proxy -
* Setup proxy environment variables https_proxy, https_proxy and no_proxy
 For Linux Workstation - update proxy variables in docker. service file and restart docker

» For mac - update proxy setting in the docker desktop
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4. ADS cli is installed. Check CLI Installation section /ere

Build a container image with name m1-job

ads opctl build-image job-local

6.2 Setting up Visual Studio Code

Visual Studio Code can automatically run the code that you are developing inside a preconfigured container. An OCI
Data Science compatible container on your workstation can be used as a development environment. Visual Studio
Code can automatically launch the container using the information from devcontainer. json, which is created in the
code directory. Automatically generate this file and further customize it with plugins. For more details see

Prerequisites
1. ADS CLI is configured
2. Install Visual Studio Code
3. Build Development Container Image

4. Install Visual Studio Code extension for Remote Development

ads opctl init-vscode -s <source-folder>

source-folder is a directory on your workstation where the code will reside.

env-var - Use this option to setup the environment variables required when the container used for development is
started.

If you have to setup a proxy, you can use the following command -

ads opctl init-vscode -s <source-folder> --env-var http_proxy=$http_proxy https_proxy=
—$https_proxy no_proxy=$no_proxy
The generated .devcontainer. json includes the python extension for Visual Studio Code by default.

Open the source_folder using Visual Studio Code. More details on running the workspace within the container can
be found here

6.3 Working with Conda packs

Conda packs provide runtime dependencies and a python runtime for your code. The conda packs can be built inside
an OCI Data Science Notebook session or you can build it locally on your workstation. ads opctl cli provides
a way to setup a development environment to build and use the conda packs. You can push the conda packs that you
build locally to Object Storage and use them in Jobs, Notebooks, Pipelines, or in Model Deployments.

Prerequisites
1. Build alocal OCI Data Science Job compatible docker image
2. Connect to Object Storage through the Internet

3. Setup conda pack bucket, namespace, and authentication information using ads opctl configure. Refer to
configuration instructions.

Note
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¢ In this version you cannot directly access the Service provided conda environments from ADS CLI, but you can
publish a service provided conda pack from an OCI Data Science Notebook session to your object storage bucket
and then use the CLI to access the published version.

6.3.1 create

ads opctl conda create -n <name> -f <path-to-environment-yaml>

Build conda packs from your workstation using ads opctl conda create subcommand.

Tip
To publish a conda pack that is natively installed on a oracle linux host (compute or laptop), use NO_CONTAINER
environment variable to remove dependency on the ml-job container image:

NO_CONTAINER=1 ads opctl conda publish -s <slug> --auth <api_key/instance_principal/
-.resource_principal>

6.3.2 publish

ads opctl conda publish -s <slug>

Publish conda pack to the object storage bucket from your laptop or workstation. You can use this conda pack inside
OCI Data Science Service or Data Flow service.

6.3.3 install

Install conda pack using its URI. The conda pack can be used inside the docker image that you built. Use Visual Studio
Code that is configured with the conda pack to help you test your code locally before submitting to OCI.

ads opctl conda install -u "oci://mybucket@amespace/conda_environment/path/to/my/conda"

6.4 Build Your Own Container (BYOC)

6.4.1 Test Container image

OCI Data Science Jobs allows you to use custom container images. ads cli can help you test a container image locally,
publish it, and run it in OCI with a uniform interface.

Running an image locally can be conveniently achieved with “docker run” directly. “ads opct]” commands are provided
here only to be symmetric to remote runs on OCI ML Job. The command looks like

ads opctl run -i <image-name> -e <docker entrypoint> -c "docker cmd" --env-var ENV_
. NAME=value -b <backend>

-b option can take either 1local - runs the container locally or job - runs the container on OCIL.
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6.4.2 Setup VS Code to use container as development environment

During the course of development, it is more productive to work within the container environment to iterate over the
code. You can setup your VS Code environment to use the container as your development environment as shown here

ads opctl init-vscode -i ubuntu --env-var TEST=test -v /Users/<username>/.oci:/root/.oci

A devcontainer.json is created with following contents -

{
"image": "ubuntu",
"mounts": [
"source=/Users/<username>/.oci,target=/root/.oci, type=bind"
1,
"extensions": [
"ms-python.python"
]

ontainerEnv": {
"TEST": "test"

6.4.3 Publish image to registry

To run a container image with OCI Data Science Job, the image needs to be in a registry accessible by OCI Data Science
Job. “ads opctl publish-image” is a thin wrapper on “docker push”. The command looks like

ads opctl publish-image <image-name>

The image will be pushed to the docker registry specified in ml_job_config.ini. Check confiuration for de-
faults. To overwrite the registry, use -r <registry>.

6.4.4 Run container image on OCI Data Science

To run a container on OCI Data Science, provide m1_job for -b option. Here is an example -

ads opctl run -i <region>.ocir.io/<tenancy>/ubuntu -e bash -c '-c "echo $TEST"' -b job -
—-env-var TEST=test
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CHAPTER
SEVEN

LOAD DATA

7.1 Connecting to Data Sources

You can load data into ADS in several different ways from Oracle Cloud Infrastructure Object Storage, cx_Oracle, or
S3. Following are some examples.

Begin by loading the required libraries and modules:

import ads

import numpy as np

import pandas as pd

from ads.common.auth import default_signer

7.1.1 Object Storage

To load a dataframe from Object Storage using the API keys, you can use the following example, replacing the angle
bracketed content with the location and name of your file:

ads.set_auth(auth="api_key", oci_config_location="~/.oci/config", profile="DEFAULT")
bucket_name = <bucket-name>

file_name = <file-name>

namespace = <namespace>

df = pd.read_csv(f"oci://{bucket_name @/namespace}/{file_name
—signer())

, storage_options=default_

For a list of pandas functions to read different file format, please refer to the Pandas documentation.

To load a dataframe from Object Storage using the resource principal method, you can use the following example,
replacing the angle bracketed content with the location and name of your file:

ads.set_auth(auth="resource_principal")

bucket_name = <bucket-name>

file_name = <file-name>

namespace = <namespace>

df = pd.read_csv(f"oci://{bucket_name@{namespace}/{file_name
—.signer())

, storage_options=default_

To write a pandas dataframe to object storage, provide the file name in the following format - oci://
<mybucket>@<mynamespace>/<path/to/flle/name>
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ads.set_auth(auth="resource_principal"')

bucket_name = <bucket-name>

file_name = <file-name>

namespace = <namespace>

df = pd.to_csv(f"oci://{bucket_name@/namespace}/{file_name}", index=False, storage_
—.options=default_signer())

# To setup the content type while writing to object storage, set “oci_additional_
—kwargs'® attribute with ‘storage_options " to the desired content type

storage_optons = default_signer()
storage_options['oci_additional_kwargs'] = {"content_type":"application/octet-stream"}

df = pd.to_csv(f"oci://{bucket_name}@{namespace}/{file_name}", index=False, storage_
—.options=storage_options)

7.1.2 Local Storage

To load a dataframe from a local source, use functions from pandas directly:

df = pd.read_csv("/path/to/data.data")

7.1.3 Oracle Database

Python

ex_Oracle

Oracle Cliant Rbrarias

Users Programs  Python process Orztle Met Oracie Datzbase

When using the Oracle ADB with Python the most common representation of tabular data is a Pandas dataframe.
When you’re in a dataframe, you can perform many operations from visualization to persisting in a variety of formats.

7.1.3.1 Oracle ADB to Pandas
The Pandas read_sql (. . .) function is a general, database independent approach that uses the SQLAlchemy - Object
Relational Mapper to arbitrate between specific database types and Pandas.

Read SQL query or database table into a dataframe.

This function is a convenience wrapper around read_sql_table and read_sql_query (for backward com-
patibility). It delegates to the specific function depending on the provided input. A SQL query is routed
to read_sql_query, while a database table name is routed to read_sql_table.

Use the Pandas ADS accessor drop-in replacement, pd.DataFrame.ads.read_sql(...), instead of using pd.
read_sql.

See how to save and retrieve credentials from OCI Vault
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Example using Wallet File

# If you are using Wallet file, provide the zip file path for ‘wallet_location’
connection_parameters = {

"user_name": '<username>",
"password": "<password>",
"service_name": "<service_name_{high|med|low}>",
"wallet_location": "/full/path/to/my_wallet.zip",
}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
"SELECT * FROM SH.SALES",
connection_parameters=connection_parameters,

)

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

i

SELECT

FROM
SH.SALES
WHERE
ROWNUM <= :max_rows

i
’

bind_variables={
"max_rows" : 100

}

3

connection_parameters:connection_parameters y

Example using TLS

connection_parameters = {
"user_name": '<username>",
"password": "<password>",
"dsn": "<connection string copied from console>",
}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
"SELECT * FROM SH.SALES",
connection_parameters=connection_parameters,

# read of a SQL query into a dataframe with a bind variable. Use bind variables

# rather than string substitution to avoid the SQL injection attack vector.
(continues on next page)
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df = pd.DataFrame.ads.read_sql(

i

SIFILISCI

FROM
SH. SALES
WHERE
ROWNUM <= :max_rows

i
’

bind_variables={
"max_rows" : 100

}

connection_parameters=connection_parameters,

7.1.3.2 Oracle Database to Pandas - No Wallet

New in version 2.5.6..

If your database connection doesn’t require a wallet file, you can connect to the database by specifying host/port/
sid/service name.

See how to save and retrieve credentials from OCI Vault

Example

connection_parameters = {
"user_name": '"<username>",
"password": "<password>",
"service_name": "<service_name>",
"host": '"<database hostname>",
"port": "<database port number>

}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
"SELECT * FROM SH.SALES",
connection_parameters=connection_parameters,

)

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

e

SELECT

FROM
SH.SALES
WHERE

(continues on next page)
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ROWNUM <= :max_rows

e
’

bind_variables={
max_rows : 100

}

connection_parameters:cormection_parameters f

7.1.3.3 Performance

The performance is limited by three things:

* Generational latency: How long the database takes to return rows, use of indexes and writing efficient SQL
mitigates this performance bottleneck.

¢ Network saturation: Once the network is saturated, data can’t be delivered between the database and notebook
environment any faster. OCI networking is very fast and this isn’t usually a concern. One exception is when the
network path goes over VPN or other more complex routing topologies.

* CPU latency in the notebook: Python has to collect the byte stream delivered by the database into Python data
types before being promoted to Numpy objects for Pandas. Additionally, there is a cryptographic CPU overhead
because the data in transit is secured with public key infrastructure (PKI).

7.1.3.4 Large Result Set

If a database query returns more rows than the memory of the client permits, you have a couple of options. The simplest
is to use a larger client shape, along with increased compute performance because larger shapes come with more RAM.
If that’s not an option, then you can use the pd.DataFrame.ads.read_sql mixin in chunk mode, where the result is
no longer a Pandas dataframe it is an iterator over a sequence of dataframes. You could use this read a large data set
and write it to Object storage or a local file system with the following example:

for i, df in enumerate(pd.DataFrame.ads.read_sql(
"SELECT * FROM SH.SALES",
chunksize=100000 # rows per chunk,
connection_parameters=connection_parameters,
)
# each df will contain up to 100000 rows (chunksize)
# to write the data to object storage use oci://bucket@amespace/part_{i}.
—csv"
df.to_csv(f"part_{i}.csv'")
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7.1.3.5 Very Large Result Set

If the data exceeds what’s practical in a notebook, then the next step is to use the Data Flow service to partition the data
across multiple nodes and handle data of any size up to the size of the cluster.

7.1.3.6 Pandas to Oracle Database

Typically, you would do this using df. to_sql. However, this uses Oracle Resource Manager to collect data and is less
efficient than code that has been optimized for a specific database.

Instead, use the Pandas ADS accessor mixin.

With a df dataframe, writing this to the database is as simple as:

df.ads.to_sql(

"MY_TABLE",

connection_parameters=connection_parameters, # Should contain wallet location if you.,
—.are connecting to ADB

if exists="replace"

)

The resulting data types (if the table was created by ADS as opposed to inserting into an existing table), are governed
by the following:

Pandas Oracle

bool NUMBER(1)

intl6 INTEGER

int32 INTEGER

int64 INTEGER

floatl6 FLOAT

float32 FLOAT

float64 FLOAT

datetime64 | TIMESTAMP

string VARCHAR?2 (Maximum length of the actual data.)

When a table is created, the length of any VARCHAR2 column is computed from the longest string in the column. The
ORM defaults to CLOB data, which is not correct or efficient. CLOBS are stored efficiently by the database, but the ¢
API to query them works differently. The non-LOB columns are returned to the client through a cursor, but LOBs are
handled differently resulting in an additional network fetch per row, per LOB column. ADS deals with this by creating
the correct data type, and setting the correct VARCHAR2 length.

7.1.4 MySQL

New in version 2.5.6..
To load a dataframe from a MySQL database, you must set engine=mysql in pd.DataFrame.ads.read_sql.
See how to save and retrieve credentials from OCI Vault

Example

connection_parameters = {
"user_name": "<username>",
"password": "<password>",

(continues on next page)
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(continued from previous page)

"host": "<database hostname>",
"port": "<database port number>",
"database": "<database name>"

}

import pandas as pd

import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
"SELECT * FROM EMPLOYEE",
connection_parameters=connection_parameters,
engine="mysql"

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

i

SIFLIECIH

FROM
EMPLOYEE
WHERE
emp_no <= 7

i

bind_variables=(1000,)

connection_parameters=connection_parameters,
engine="mysql"

To save the dataframe df to MySQL, use df.ads.to_sql API with engine=mysql

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters,
if_exists="replace",
engine="mysqgl"

The resulting data types (if the table was created by ADS as opposed to inserting into an existing table), are governed
by the following:
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Pandas MySQL

bool NUMBER(1)

intl6 INTEGER

int32 INTEGER

int64 INTEGER

float16 FLOAT

float32 FLOAT

float64 FLOAT

datetime64 | DATETIME (Format: %Y-%m-%d %H:%M.:%S)
string VARCHAR (Maximum length of the actual data.)

7.1.5 BDS Hive

New in version 2.6.1..
To load a dataframe from BDS Hive, set engine="hive" in pd.DataFrame.ads.read_sql.

See how to save and retrieve credentials from OCI Vault

7.1.5.1 Connection Parameters

Work with BDS with Kerberos authentication

If you are working with BDS that requires Kerberos authentication, you can follow /ere to get connection parameters
required to connect with BDS, and then follow /ere to save the connection parameters as well as the files needed to
configure the kerberos authentication into vault. The connection_parameters can be set as:

connection_parameters = {

"host": "<hive hostname>",
"port": "<hive port number>",
}
Work with unsecure BDS

If you are working with unsecure BDS, you can set connection_parameters as:

connection_parameters = {

"host": "<hive hostname>",

"port": "<hive port number>",

"auth_mechanism": "PLAIN" # for connection with unsecure BDS
3
Example

connection_parameters = {

"host": "<database hostname>",
"port": "<database port number>",
}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(

(continues on next page)
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"SELECT * FROM EMPLOYEE",
connection_parameters=connection_parameters,
engine="hive"

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

o

SELECT

FROM
EMPLOYEE
WHERE
‘emp_no® <= ?

o

bind_variables=(1000,)
connection_parameters=connection_parameters,
engine="hive"

To save the dataframe df to BDS Hive, use df.ads.to_sql API with engine="hive".

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters,
if_exists="replace",
engine="hive"

7.1.5.2 Partition

You can create table with partition, and then use df.ads.to_sql API with engine="hive", if_exists="append"
to insert data into the table.

create_table_sql = f'"'
CREATE TABLE {table_name} (coll_name datatype, ...)
partitioned by (col_name datatype, ...)

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters,
if exists="append",
engine="hive"
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7.1.5.3 Large Dataframe

If the dataframe waiting to be uploaded has many rows, and the .to_sql () method is slow, you have other options.
The simplest is to use a larger client shape, along with increased compute performance because larger shapes come
with more RAM. If that’s not an option, then you can follow these steps:

# Stepl: Save your df as csv
df.to_csv(f"my_data.csv'")

# Step2: Upload the csv to hdfs
hdfs_host = "<hdfs hostname>"
hdfs_port = "<hdfs port number>"
hdfs_config = {"host": hdfs_host, "port": hdfs_port, "protocol": "webhdfs"}
fs = fsspec.filesystem(**hdfs_config)
fs.upload(
lpath="./my_data.csv",
rpath="/user/hive/iris.csv"

)

# Step3: Create table

Sql - fllllll

CREATE TABLE IF NOT EXISTS {table_name} (coll_name datatype, ...)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE

cursor.execute(sql)
# Step4: Load data into Hive table from hdfs
hdfs_path = "./my_data.csv"

sql = f"LOAD DATA INPATH '/hdfs_path}' INTO TABLE {table_name}"
cursor.execute(sql)

7.1.6 HTTP(S) Sources

To load a dataframe from a remote web server source, use pandas directly and specify the URL of the data:

df = pd.read_csv('https://example.com/path/to/data.csv"')

7.1.7 Convert Pandas DataFrame to ADSDataset

To convert a Pandas dataframe to ADSDataset, pass the pandas.DataFrame object directly into the ADS
DatasetFactory.open method:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.read_csv('/path/some_data.csv) # load data with Pandas
# use open. ..

(continues on next page)
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ds = DatasetFactory.open(df) # construct **ADS** Dataset from DataFrame
# alternative form...
ds = DatasetFactory.from_dataframe(df)

# an example using Pandas to parse data on the clipboard as a CSV and construct an ADS.
—Dataset object

# this allows easily transfering data from an application like Microsoft Excel, Apple.
—Numbers, etc.

ds = DatasetFactory. from_dataframe(pd.read_clipboard())
# use Pandas to query a SQL database:

from sqglalchemy import create_engine

engine = create_engine('dialect://user:pass@host:port/schema', echo=False)
df = pd.read_sql_query('SELECT * FROM mytable', engine, index_col = 'ID')
ds = DatasetFactory. from_dataframe(df)

7.1.8 Using PyArrow

ADS supports reading files into PyArrow dataset directly via ocifs. ocifs is installed as ADS dependencies.

import ocifs

import pyarrow.dataset as ds

bucket_name = <bucket_name>

namespace = <namespace>

path = <path>

fs = ocifs.0CIFileSystem(**default_signer())

ds = ds.dataset(f"{bucket_name }@{namespace//{path}//", filesystem=£fs)

7.2 DataSetFactory

7.2.1 Connect with DatasetFactory

Deprecation Note
* DataSetFactory.open is deprecated in favor of Pandas to read from file systems.
e Pandas(>1.2.1) can connect to object storage using uri format - oci://bucket@namepace/path/to/data.
* To read from Oracle database or MySQL, see DataBase sections under Connecting to Datasources
* DataSetFactory. from_dataframe is supported to create ADSDataset class from pandas dataframe

See Connecting to Datasources for examples.

You can load data into ADS in several different ways from Oracle Cloud Infrastructure Object Storage, cx_Oracle, or
S3. Following are some examples.
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Begin by loading the required libraries and modules:

import ads
import numpy as np
import pandas as pd

from ads.dataset.dataset_browser import DatasetBrowser
from ads.dataset.factory import DatasetFactory

7.2.1.1 Object Storage

To open a dataset from Object Storage using the resource principal method, you can use the following example, replac-
ing the angle bracketed content with the location and name of your file:

import ads
import os

from ads.dataset.factory import DatasetFactory

ads.set_auth(auth="resource_principal"')

bucket_name = <bucket-name>

file_name = <file-name>

namespace = <namespace>

storage_options = {'config':{}, 'tenancy': os.environ['TENANCY_OCID'], 'region': os.
—environ[ 'NB_REGION']}

ds = DatasetFactory.open(f"oci://{bucket_name}@{namespace//{file_name}", storage_
—.options=storage_options)

To open a dataset from Object Storage using the Oracle Cloud Infrastructure configuration file method, include the
location of the file using this format oci://<bucket_name>@<namespace>/<file_name> and modify the optional
parameter storage_options. Insert:

* The path to your Oracle Cloud Infrastructure configuration file,
* The profile name you want to use.

For example:
ds = DatasetFactory.open("oci://<bucket_name>@<namespace>/<file_name>", storage_options.
—= {
"config": "~/.oci/config",
"profile": "DEFAULT"
D

7.2.1.2 Local Storage

To open a dataset from a local source, use DatasetFactory.open and specify the path of the data file:

ds = DatasetFactory.open("/path/to/data.data", format='csv', delimiter=" ")
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7.2.1.2.1 Oracle Database

Python

Mo

ex_Oracle
e e 2D Oracle Client ibrarles !

Users Frograms  Python process Oracle Het Oracle Catabase

To connect to Oracle Databases from Python, you use the cx_Oracle package that conforms to the Python database
API specification.

You must have the client credentials and connection information to connect to the database. The client credentials
include the wallet, which is required for all types of connections. Use these steps to work with ADB and wallet files:

1. From the Console, go to the Oracle Cloud Infrastructure ADW or ATP instance page that you want to load the
dataset from, and then click DB Connection.

2. Click Download Wallet.

3. You have to enter a password. This password is used for some ADB connections, but not the ones that are used
in the notebook.

4. Create a folder for your wallet in the notebook environment (<path_to_wallet_folder>).
5. Upload your wallet files into <path_to_wallet_folder> folder using the Jupyterlab Upload Files button.

6. Open the sqlnet.ora file from the wallet files, and then configure the METHOD_DATA to be: METHOD_DATA
= (DIRECTORY="<path_to_wallet_folder>")

7. Set the env variable, TNS_ADMIN. TNS_ADMIN, to point to the wallet you want to use.

In this example a Python dictionary, creds is used to store the creditionals. However, it is poor security practice to
store this information in a notebook. The notebook ads-examples/ADB_working_with.ipynb gives an example of
how to store them in Block Storage.

creds = {}

creds['tns_admin'] = <path_to_wallet_folder>
creds['sid'] = <your SID>

creds['user'] = <database username>
creds['password'] = <database password>

Once your Oracle client is setup, you can use cx_Oracle directly with Pandas as in this example:

import pandas as pd
import cx_Oracle
import os

os.environ[ 'TNS_ADMIN'] = creds['tns_admin']
with cx_Oracle.connect(creds['user'], creds['password'], creds['sid']) as ora_conn:
df = pd.read_sql('"'
SELECT ename, dname, job, empno, hiredate, loc
FROM emp, dept
WHERE emp.deptno = dept.deptno

(continues on next page)
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ORDER BY ename
""" con=ora_conn)

You can also use cx_Oracle within ADS by creating a connection string:

os.environ['TNS_ADMIN'] = creds['tns_admin']
from ads.dataset.factory import DatasetFactory
uri = 'oracle+cx_oracle://' + creds['user'] +
']

ds = DatasetFactory.open(uri, format="sqgl", table=table, index_col=index_col)

+ creds['password'] + '@' + creds['sid

7.2.1.3 Autonomous Database

Oracle has two configurations of Autonomous Databases. They are the Autonomous Data Warehouse (ADW) and
the Autonomous Transaction Processing (ATP) database. Both are fully autonomous databases that scale elastically,
deliver fast query performance, and require minimal database administration.

Note: To access ADW, review the Autonomous Database configuration section. It shows you how to get the client
credentials (wallet) and set up the proper environment variable.

7.2.1.3.1 Load from ADB

After you have stored the ADB username, password, and database name (SID) as variables, you can build the URI as
your connection source.

uri = 'oracle+cx_oracle://' + creds['user'] +

1]

+ creds['password'] + '@' + creds['sid

You can use ADS to query a table from your database, and then load that table as an ADSDataset object through
DatasetFactory. When you open DatasetFactory, specify the name of the table you want to pull using the table
variable for a given table. For SQL expressions, use the table parameter also. For example, ( table="SELECT * FROM
sh.times WHERE rownum <= 30""").

os.environ[ 'TNS_ADMIN'] = creds['tns_admin']
ds = DatasetFactory.open(uri, format="sqgl", table=table, target='label')
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7.2.1.3.2 Query ADB

¢ Query using Pandas

This example shows you how to query data using Pandas and sqlalchemy to read data from ADB:

from sqlalchemy import create_engine
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']

engine = create_engine(uri)
df = pd.read_sql('SELECT * from <TABLENAME>', con=engine)

You can convert the pd.DataFrame into ADSDataset using the DatasetFactory.from_dataframe() function.

ds = DatasetFactory. from_dataframe(df)

These two examples run a simple query on ADW data. With read_sql_query you can use SQL expressions not just
for tables, but also to limit the number of rows and to apply conditions with filters, such as (where).

ds = pd.read_sql_query('SELECT * from <TABLENAME>', uri)

ds

pd.read_sql_query('SELECT * FROM emp WHERE ROWNUM <= 5', uri)

¢ Query using cx_Oracle

You can also query data from ADW using cx_Oracle. Use the cx_Oracle 7.0.0 version with ADS. Ensure that you
change the dummy <TABLENAME> placeholder to the actual table name you want to query data from, and the dummy
<COLNAME> placeholder to the column name that you want to select:

import

import pandas as pd
import numpy as np
import os

os.environ[ 'TNS_ADMIN'] = creds['tns_admin']

connection = cx_Oracle.connect(creds['user'], creds['password'], creds['sid'])
cursor = connection.cursor()

results = cursor.execute("SELECT * from <TABLENAME>")

data = results.fetchall()
df = pd.DataFrame(np.array(data))

ds = DatasetFactory. from_dataframe(df)

results = cursor.execute('SELECT <COLNAME> from <TABLENAME>').fetchall()

Close the cursor and connection using the . close () method:

cursor.close()
connection.close()
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7.2.1.4 Train a Models with ADB

After you load your data from ADB, the ADSDataset object is created, which allows you to build models using Au-
toML.

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutolMLProvider

train, test = ds.train_test_split()
model, baseline = AutoML(train, provider= OracleAutoMLProvider()).train(model_list=[
—"LGBMClassifier"])

7.2.1.5 Update ADB Tables

To add predictions to a table, you can either update an existing table, or create a new table with the added predictions.
There are many ways to do this. One way is to use the model to update a CSV file, and then use Oracle SQL*Loader
or SQL*Plus.

This example adds predictions programmatically using cx_Oracle. It uses executemany to insert rows as tuples created
using the model’s predict method:

ds = DatasetFactory.open("iris.csv")

create_table = '''CREATE TABLE IRIS_PREDICTED (,
sepal_length number,
sepal_width number,
petal_length number,
petal_width number,
SPECIES VARCHAR2(20),
yhat VARCHAR2(20),
yre

connection = cx_Oracle.connect(creds['user'], creds['password'], creds['sid'])
cursor = connection.cursor()
cursor.execute(create_table)

ds_res.to_sql('predicted_iris', con=engine, index=False, if_exists="append")\

rows = [tuple(x) for x in ds_res.values]
cursor.executemany ("""
insert into IRIS_PREDICTED

(sepal_length, sepal_width, petal_length, petal_width, SPECIES, yhat)
values (:1, :2, :3, :4, :5, :6)""",
rows

)
connection.commit ()
cursor.close()

connection.close()

For some models, you could also use predict_proba to get an array of predictions and their confidence probability.
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7.2.1.6 Amazon S3

You can open Amazon S3 public or private files in ADS. For private files, you must pass the right credentials through
the ADS storage_options dictionary.If you have large S3 files, then you benefit from an increased blocksize.

ds = DatasetFactory.open('s3://bucket_name/iris.csv", storage_options = {
'key': 'aws key',
'secret': 'aws secret,
'blocksize': 1000000,
'client_kwargs': {
"endpoint_url": "https://s3-us-west-1.amazonaws.com"
}
19)

7.2.1.7 HTTP(S) Sources

To open a dataset from a remote web server source, use DatasetFactory.open() and specify the URL of the data:

ds = DatasetFactory.open('https://example.com/path/to/data.csv', target='label')

7.2.1.8 DatasetBrowser

DatasetBrower allows easy access to datasets from reference libraries and index websites, such as scikit-learn. To
see the supported libraries, use the 1ist () function:

DatasetBrowser.list()
['web', 'sklearn', 'seaborn', 'R']

To see which dataset is available from scikit-learn, use:

sklearn = DatasetBrowser.sklearn()
sklearn.list()

['boston', 'breast_cancer', 'diabetes', 'iris', 'wine', 'digits']

Datasets are provided as a convenience. Datasets are considered Third Party Content and are not considered Materials
under Your agreement with Oracle applicable to the Services. Review the dataset license.

To explore one of the datasets, use open() specifying the name of the dataset:

ds = sklearn.open('wine')
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CHAPTER
EIGHT

LABEL DATA

The Oracle Cloud Infrastructure (OCI) Data Labeling service allows you to create and browse datasets, view data
records (text, images) and apply labels for the purposes of building Al/machine learning (ML) models. The service
also provides interactive user interfaces that enable the labeling process. After you label records, you can export the
dataset as line-delimited JSON Lines (JSONL) for use in model development.

Datasets are the core resource available within the Data Labeling service. They contain records and their associated
labels. A record represents a single image or text document. Records are stored by reference to their original source
such as path on Object Storage. You can also upload records from local storage. Labels are annotations that describe
a data record. There are three different dataset formats, each having its respective annotation classes:

» Images: Single label, multiple label, and object detection. Supported image types are .png, . jpeg, and . jpg.
» Text: Single label, multiple label, and entity extraction. Plain text, . txt, files are supported.

e Document: Single label and multiple label. Supported document types are .pdf and .tiff.

8.1 Overview

The Oracle Cloud Infrastructure (OCI) Data Labeling service allows you to create and browse datasets, view data
records (text, images) and apply labels for the purposes of building Al/machine learning (ML) models. The service
also provides interactive user interfaces that enable the labeling process. After you label records, you can export the
dataset as line-delimited JSON Lines (JSONL) for use in model development.

Datasets are the core resource available within the Data Labeling service. They contain records and their associated
labels. A record represents a single image or text document. Records are stored by reference to their original source
such as path on Object Storage. You can also upload records from local storage. Labels are annotations that describe
a data record. There are three different dataset formats, each having its respective annotation classes:

* Images: Single label, multiple label, and object detection. Supported image types are .png, . jpeg, and . jpg.
» Text: Single label, multiple label, and entity extraction. Plain text, . txt, files are supported.

* Document: Single label and multiple label. Supported document types are .pdf and . tiff.
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8.2 Quick Start

The following examples provide an overview of how to use ADS to work with the Data Labeling service.

List all the datasets in the compartment:

from ads.data_labeling import Datalabeling
dls = DatalLabeling()
dls.list_dataset()

With a labeled data set, the details of the labeling is called the export. To generate the export and get the path to the
metadata JSONL file, you can use export () with these parameters:

* dataset_id: The OCID of the Data Labeling dataset to take a snapshot of.

» path: The Object Storage path to store the generated snapshot.

metadata_path = dls.export(
dataset_id="<dataset_id>",
path="oci://<bucket_name>@<namespace>/<prefix>"

)

To load the labeled data into a Pandas dataframe, you can use LabeledDatasetReader object that has these parame-
ters:

* materialize: Load the contents of the dataset. This can be quite large. The default is False.

» path: The metadata file path that can be local or object storage path.

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_export(
path="<metadata_path>",
materialize=True
)
df = ds_reader.read()

You can also read labeled datasets from the OCI Data Labeling Service into a Pandas dataframe using
LabeledDatasetReader object by specifying dataset_id:

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader. from_DLS(
dataset_id="<dataset_ocid>",
materialize=True
)
df = ds_reader.read()

Alternatively, you can use the .read_labeled_data() method by either specifying path or dataset_id.

This example loads a labeled dataset and returns a Pandas dataframe containing the content and the annotations:

df = pd.DataFrame.ads.read_labeled_data(
path="<metadata_path>",
materialize=True

The following example loads a labeled dataset from the OCI Data Labeling, and returns a Pandas dataframe containing
the content and the annotations:
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df = pd.DataFrame.ads.read_labeled_data(
dataset_id="<dataset_ocid>",
materialize=True

8.3 Export Metadata

To obtain a handle to a DataLabeling object, you call the DataLabeling() constructor. The default compartment is
the same compartment as the notebook session, but the compartment_id parameter can be used to select a different
compartment.

To work with the labeled data, you need a snapshot of the dataset. The export () method copies the labeled data from
the Data Labeling service into a bucket in Object Storage. The . export () method has the following parameters:

e dataset_id: The OCID of the Data Labeling dataset to take a snapshot of.
» path: The Object Storage path to store the generated snapshot.

The export process creates a JSONL file that contains metadata about the labeled dataset in the specified bucket. There
is also a record JSONL file that stores the image, text, or document file path of each record and its label.

The export () method returns the path to the metadata file that was created in the export operation.

from ads.data_labeling import DatalLabeling

dls = DatalLabeling()

metadata_path = dls.export(
dataset_id="<dataset_id>",
path="oci://<bucket_name>@<namespace>/<prefix>"

8.4 List

The .1list_dataset () method generates a list of the available labeled datasets in the compartment. The compartment
is set when you call DataLabeling(). The .1ist_dataset() method returns a Pandas dataframe where each row
is a dataset.

from ads.data_labeling import Datalabeling
dls = Datalabeling(compartment_id="<compartment_id>")
dls.list_dataset()

8.5 Load

The returned value from the . export () method is used to load a dataset. You can load a dataset into a Pandas dataframe
using LabeledDatasetReader or a Pandas accessor. The LabeledDatasetReader creates an object that allows you
to perform operations, such as getting information about the dataset without having to load the entire dataset. It also
allows you to read the data directly into a Pandas dataframe or to use an iterator to process the records one at a time.
The Pandas accessor approach provides a convenient method to load the data in a single command.
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8.5.1 LabeledDatasetReader

Call the . from_export () method on LabeledDatasetReader to construct an object that allows you to read the data.
You need the metadata path that was generated by the .export() method. Optionally, you can set materialize to
True to load the contents of the dataset. It’s set to False by default.

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_export(
path-metadata_path,

materialize=True

)

You can explore the metadata information of the dataset by calling info() on the LabeledDatasetReader object.
You can also convert the metadata object to a dictionary using to_dict:

metadata = ds_reader.info()
metadata.labels
metadata.to_dict()

On the LabeledDatasetReader object, you call read () to load the labeled dataset. By default, it’s read into a Pandas
dataframe. You can specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the
Object Detection dataset.

An Entity Extraction dataset is a dataset type that supports natural language processing named entity recognition (NLP
NER). Here is an example of spacy format. A Object Detection dataset is a dataset type that contains data from detecting
instances of objects of a certain class within an image. Here is an example of yolo format.

df ds_reader.read()
df ds_reader.read(format="spacy")
df = ds_reader.read(format="yolo")

When a dataset is too large, you can read it in small portions. The result is presented as a generator.

for df in ds_reader.read(chunksize=10):
df.head()

Alternatively, you can call read (i terator=True) to return a generator of the loaded dataset, and loop all the records
in the ds_generator by running:

ds_generator = ds_reader.read(iterator=True)
for item in ds_generator:
print(item)

The iterator parameter can be combined with the chunksize parameter. When you use the two parameters, the
result is also presented as a generator. Every item in the generator is a list of dataset records.

for items in ds_reader.read(iterator=True, chunksize=10):
print(items)
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8.5.2 Pandas Accessor

The Pandas accessor approach allows you to to read a labeled dataset into a Pandas dataframe using a single command.

Use the .read_labeled_data() method to read the metadata file, record file, and all the corpus documents. To
do this, you must know the metadata path that was created from the .export() method. Optionally you can set
materialize to True to load content of the dataset. It’s set to False by default. The read_labeled_data() method
returns a dataframe that is easy to work with.

This example loads a labeled dataset and returns a Pandas dataframe containing the content and the annotations:

import pandas as pd

df = pd.DataFrame.ads.read_labeled_data(
path="<metadata_path>",
materialize=True

If you’d like to load a labeled dataset from the OCI Data Labeling, you can specify the dataset_id, which is dataset
OCID that you’d like to read.

The following example loads a labeled dataset from the OCI Data Labeling and returns a Pandas dataframe containing
the content and the annotations:

import pandas as pd

df = pd.DataFrame.ads.read_labeled_data(
dataset_id="<dataset_ocid>",
materialize=True

You can specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the Object
Detection dataset.

import pandas as pd

df = pd.DataFrame.ads.read_labeled_data(
dataset_id="<dataset_ocid>",
materialize=True,
format="spacy"

An example of a dataframe loaded with the labeled dataset is:

Path Content Annotations
0 ocifhosted-ds-datasets@bigdatadatasciencelar... From: luriem@alleg.edu(Michael Lurie) The Libe... 0
1 oci;//hosted-ds-datasets@bigdatadatasciencelar... From: nsmca@aurora.alaska.edu\nSubject: 30826\... 1
2 oci:/fhosted-ds-datasets@bigdatadatasciencelar... From: aws@iti.org (Allen W. Sherzer)\nSubject:... 1
3 oci:/fhosted-ds-datasets@bigdatadatasciencelar... Subject: Re: quick way to tell if your local b... Q
4 oci:fhosted-ds-datasets@bigdatadatasciencelar... Subject: Best Sportwriters.. \nFrom: csc2imd@c... Q

8.5. Load 59



ADS Documentation, Release 2.7.3

8.6 Visualize

After the labeled dataset is loaded in a Pandas dataframe, you can be visualize it using ADS. The visualization func-
tionality only works if there are no transformations made to the Annotations column.

8.6.1 Image

An image dataset, with an Object Detection annotation class, can have selected image records visualized by calling
the .render_bounding_box () method. You can provide customized colors for each label. If the path parameter is
specified, the annotated image file is saved to that path. Otherwise, the image is displayed in the notebook session. The
maximum number of records to display is set to 50 by default. This setting can be changed with the 1imit parameter:

df.head(l) .ads.render_bounding_box() # without user defined colors

df.iloc[1:3,:].ads.render_bounding_box(
options={"default_color": "white",
"colors": {"flower":"orange", "temple":"
path="test.png"

green"}},

)

An example of a single labeled image record is similar to:

Optionally, you can convert the bounding box to YOLO format by calling to_yolo() on bounding box. The labels are
mapped to the index value of each label in the metadata.labels list.

df["Annotations"] = df.Annotations.apply(
lambda items: [item.to_yolo(metadata.labels) for item in items] if items else None

)
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8.6.2 Text

For a text dataset, with an entity extraction annotation class, you can also visualize selected text records by calling
.render_ner (), and optionally providing customized colors for each label. By default, a maximum of 50 records are
displayed. However, you can adjust this using the 1imit parameter:

df.head(1l) .ads.render_ner() # without user defined colors

df.iloc[1:3,:].ads.render_ner(options={"default_color":"#DDEECC",
"colors": {"company":"#DDEECC",
"person":"#FFAAAA",
"city":"#CCC"}})

This is an example output for a single labeled text record:

COFFEE, SUGAR AND COCOA EXCHANGE NAMES CHAIRMAN The New York city Coffee, Sugar and Cocoa Exchange ( CSCE COMPANY ) elected
former first vice chairman Gerald PERSON Clancy to a two-year term as chairman of the board of managers, replacing previous chairman 'Howard
Katz PERSON . Katz PERSON , chairman since 1985, will remain a board member. 'Clancy PERSON currently serves on the Exchange board of
managers as chairman of its appeals, executive, pension and political action committees. The CSCE coMPANY also elected Charles Nastro PERSON ,
executive vice president of Shearson Lehman Bros COMPANY |, as first vice chairman. 'Anthony Maccia PERSON , vice president of

Woodhouse coMPANY , Drake PERSON and Carey PERSON , was named second vice chairman, and ' Clifford Evans PERSON , president of

Demico Futures PERSON , was elected treasurer.

Optionally, you can convert the entities by calling to_spacy():

df["Annotations"] = df.Annotations.apply(
lambda items: [item.to_spacy() for item in items] if items else None

8.7 Examples

8.7.1 Binary Text Classification

This example will demonstrate how to do binary text classification. It will demonstrate a typical data science workflow
using a single label dataset from the Data Labeling Service (DLS).

Start by loading in the required libraries:

import ads

import oci

import os

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.tree import DecisionTreeClassifier
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8.7.1.1 Dataset

A subset of the 20 Newsgroups dataset is used in this example. The complete dataset is a collection of approximately
20,000 newsgroup documents partitioned across 20 different newsgroups. The dataset is popular for experiments where
the machine learning application predicts which newsgroup a record belongs to.

Since this example is a binary classification, only the rec.sport.baseball and sci.space newsgroups are used.
The dataset was previously labeled in the Data Labeling service. The metadata was exported and saved in a publicly
accessible Object Storage bucket.

The data was previously labeled in the Data Labeling service. The metadata was exported and was saved in a publicly
accessible Object Storage bucket. The metadata JSONL file is used to import the data and labels.

8.7.1.2 Load

You use the .read_labeled_data() method to read in the metadata file, record file, and the entire corpus of docu-
ments. Only the metadata file has to be specified because it contains references to the record and corpus documents.
The .read_labeled_data() method returns a dataframe that is easy to work with.

The next example loads a labeled dataset, and returns the text from each email and the labeled annotation:

df = pd.DataFrame.ads.read_labeled_data(
"oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_single_label_20news/
—metadata. jsonl",
materialize=True

)

8.7.1.3 Preprocess

The data needs to be standardized. The next example performs the following operations:
* Converts the text to lower case.

 Uses a regular expression (RegEx) command to remove any character that is not alphanumeric, underscore, or
whitespace.

* Replace the sequence of characters \n with a space.

The binary classifier model you train is a decision tree where the features are based on n-grams of the words. You use
n-grams that are one, two, and three words long (unigrams, bigrams, and trigrams). The vectorizer removes English
stop words because they provide little value to the model being built. A weight is assigned to these features using the
term frequency-inverse document frequency (TF*IDF) approach .

df['text_clean'] = df['Content'].str.lower().str.replace(r'[A\w\s]+', '').str.replace('\n
:_>l , | l)

vectorizer = TfidfVectorizer(stop_words='english', analyzer='word', ngram_range=(1,3))

62 Chapter 8. Label Data


https://en.wikipedia.org/wiki/Tf\T1\textendash {}idf

ADS Documentation, Release 2.7.3

8.7.1.4 Train

In this example, you skip splitting the dataset into the training and test sets since the goal is to build a toy model. You
assign O for the rec.sport.baseball label and 1 for the sci.space label:

classifier = DecisionTreeClassifier()
feature = vectorizer.fit_transform(df['text_clean'])
model = classifier.fit(feature, df['Annotations'])

8.7.1.5 Predict

Use the following to predict the category for a given text data using the trained binary classifier:

classifier.predict(vectorizer.transform(["reggie jackson played right field"]))

8.7.2 Image Classification

This example demonstrates how to read image files and labels, normalize the size of the image, train a SVC model, and
make predictions. The SVC model is used to try and determine what class a model belongs to.

To start, import the required libraries:

import ads

import matplotlib.pyplot as plt
import oci

import os

import pandas as pd

from ads.data_labeling import LabeledDatasetReader
from PIL import Image

from sklearn import svm, metrics

from sklearn.model_selection import train_test_split

8.7.2.1 Data Source

The data for this example was taken from a set of x-rays that were previously labeled in the Data Labeling service
whether they have pneumonia or not. The metadata was exported and saved in a publicly accessible Object Storage
bucket. The following commands define the parameters needed to access the metadata JSONL file:

metadata_path = f"'oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/image_single_
—label_xray/metadata.jsonl'"
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8.7.2.2 Load

This example loads and materializes the data in the dataframe. That is the dataframe to contain a copy of the image
file. You do this with the .ads.read_labeled_data() method:

df = pd.DataFrame.ads.read_labeled_data(path=-metadata_path,
materialize=True)

8.7.2.3 Visualize

The next example extracts images from the dataframe, and plots them along with their labels:

_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))

for ax, image, label in zip(axes, df.Content, df.Annotations):
ax.set_axis_off()
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title(f'Training: {label}")

8.7.2.4 Preprocess

The image files are mixture of RGB and grayscale. Convert all the images to single channel grayscale so that the input
to the SVC model is consistent:

df.Content = df.Content.apply(lambda x: x.convert("L"))

The images are different sizes and you can normalize the size with:

basewidth, hsize = min(df.Content.apply(lambda x: x.size))
df.Content = df.Content.apply(lambda x: x.resize((basewidth, hsize), Image.NEAREST))

Convert the image to a numpy array as that is what the SVC is expecting. Each pixel in the image is now a dimension
in hyperspace.

from numpy import asarray
import numpy as np

data = np.stack([np.array(image).reshape(-1) for image in df.Content], axis=0)
labels = df.Annotations

The model needs to be trained on one set of data, and then its performance would be assessed on a set of data that it
has not seen before. Therefore, this splits the data into a training and testing sets:

X_train, X_test, y_train, y_test = train_test_split(
data, labels, test_size=0.1, shuffle=True)
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8.7.2.5 Train

The following obtains an SVC classifier object, and trains it on the training set:

clf = svm.SVC(gamma=0.001)
clf.fit(X_train, y_train)

8.7.2.6 Predict

With the trained SVC model, you can now make predictions using the testing dataset:

predicted = clf.predict(X_test)
predicted

8.7.3 Multinomial Text Classification

Building a multinomial text classifier is a similar to creating a binary text classifier except that you make a classifier for
each class. You use a one-vs-the-rest (OvR) multinomial strategy. That is, you create one classifier for each class where
one class is the class your are trying to predict, and the other class is all the other classes. You treat the other classes as
if they were one class. The classifier predicts whether the observation is in the class or not. If there are m classes, then
there will be m classifiers. Classification is based on which classifier has the more confidence that an observation is in
the class.

Start by loading in the required libraries:

import ads

import nltk

import oci

import os

import pandas as pd

from nltk.corpus import stopwords

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import cross_val_score

from sklearn.multiclass import OneVsRestClassifier

from sklearn.preprocessing import MultilabelBinarizer

from sklearn.svm import LinearSVC

8.7.3.1 Dataset

A subset of the Reuters Corpus dataset is used in this example. You use scikit-learn and nltk packages to build a
multinomial classifier. The Reuters data is a benchmark dataset for document classification. More precisely, it is a data
set where where the target variable it multinomial. It has 90 categories, 7,769 training documents, and 3,019 testing
documents.

The data was previously labeled in the Data Labeling service. The metadata was exported and was saved in a publicly
accessible Object Storage bucket. The metadata JSONL file is used to import the data and labels.
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8.7.3.2 Load

This example loads a dataset with a target variable that is multinomial. It returns the text and the class annotation in a
dataframe:

df = pd.DataFrame.ads.read_labeled_data(
"oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_multi_label_nltk_reuters/
—metadata.jsonl",
materialize=True

)

8.7.3.3 Preprocess

You can use the MultilLabelBinarizer () method to convert the labels into the scikit-learn classification format
during the dataset preprocessing. This transformer converts a list of sets or tuples into the supported multilabel format,
a binary matrix of samples*classes.

The next step is to vectorize the input text to feed it into a supervised machine learning system. In this example, TF*IDF
vectorization is used.

For performance reasons, the TfidfVectorizer is limited to 10,000 words.

nltk.download('stopwords')

stop_words = stopwords.words("english") ## See scikit-learn documentation for what these.
—words are

vectorizer = TfidfVectorizer(stop_words=stop_words, max_features = 10000)

mlb = MultilLabelBinarizer()

X_train = vectorizer.fit_transform(df["Content"]) ## Vectorize the inputs with tf-idf
y_train = mlb.fit_transform(df["Annotations"]) ## Vectorize the labels

8.7.3.4 Train

You train a Linear Support Vector, LinearSVC, classifier using the text data to generate features and annotations to
represent the response variable.

The data from the study class is treated as positive, and the data from all the other classes is treated as negative.

This example uses the scalable Linear Support Vector Machine, LinearSVC, for classification. It’s quick to train and
empirically adequate on NLP problems:

clf = OneVsRestClassifier(LinearSVC(class_weight = "balanced"), n_jobs = -1)
clf.fit(X_train, y_train)
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8.7.3.5 Predict

The next example applies cross-validation to estimate the prediction error. The K fold cross-validation works by parti-
tioning a dataset into K splits. For the k ™ part, it fits the model to the other K-1 splits of the data and calculates the
prediction error. It uses the k " part to do this prediction. For more details about this process, see here and specifically
this image.

By performing cross-validation, there are five separate models trained on different train and test splits to get an es-
timate of the error that is expected when the model is generalized to an independent dataset. This example uses the
cross_val_score method to estimate the mean and standard deviation of errors:

cross_val_score(clf, X_train, y_train, cv=5)

8.7.4 Named Entity Recognition

This example shows you how to use a labeled dataset to create a named entity recognition model. The dataset is labeled
using the Oracle Cloud Infrastructure (OCI) Data Labeling Service (DLS).

To start, load the required libraries

import ads

import os

import pandas as pd
import spacy

from spacy.tokens import DocBin
from tqdm import tqdm

8.7.4.1 Dataset

The Reuters Corpus is a benchmark dataset that is used in the evaluation of document classification models. It is based
on Reuters’ financial newswire service articles from 1987. It contains the title and text of the article in addition to a
list of people, places and organizations that are referenced in the article. It is this information that is used to label the
dataset. A subset of the news articles were labeled using the DLS.

8.7.4.2 Load

This labeled dataset has been exported from the DLS and the metadata has been stored in a publically accessible Object
Storage bucket. The .read_labeled_data() method is used to load the data. The materialize parameter causes
the original data to be also be returned with the dataframe.

path = 'oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_entity_extraction_nltk_
—reuters/metadata.jsonl’
df = pd.DataFrame.ads.read_labeled_data(

path,

materialize=True
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8.7.4.3 Preprocess

Covert the annotations data to the SpaCy format This will give you the start and end position of each entity and then
the type of entity, such as person, place, organization.

df.Annotations = df.Annotations.apply(lambda items: [x.to_spacy() for x in items])

The resulting dataframe will look like the following:

Path Content Annotations

0 oci://hosted-ds- (CORRECTED) - MOBIL &It;MOB> TO [(56, 66, company), (149, 157, city),
datasets@bigdatadatasciencelar... UPGRADE REFINE... (161, 16...

1 oci://hosted-ds- COFFEE, SUGAR AND COCOA EXCHANGE [(54, 62, city), (99, 103, company),
datasets@bigdatadatasciencelar... NAMES CHAIRMA... (140, 146...

2 oci://hosted-ds- N.Z. TRADING BANK DEPOSIT GROWTH RISES [(50, 61, country), (189, 201,
datasets@bigdatadatasciencelar... SLIGHTL... company)]

3 oci://hosted-ds- CANADA OIL EXPORTS RISE 20 PCT IN 1986\n [(O, 6, country), (41, 49, country),
datasets@bigdatadatasciencelar... Cana... (210, 216...

4 oci://hosted-ds- U.K. GROWING IMPATIENT WITH JAPAN - [(62, 79, person), (128, 133,
datasets@bigdatadatasciencelar... THATCHER\n... country), (509, ...

In this example, you will not be evaluating the performance of the model. Therefore, the data will not be split into train
and test sets. Instead, you use all the data as training data. The following code snippet will create a list of tuples that
contain the original article text and the annotation data.

train_data = []
for i, row in df.iterrows():
train_data.append((row['Content'], {'entities': row['Annotations']}))

The training data will look similar to the following:

[(" (CORRECTED) - MOBIL &1t;MOB> TO UPGRADE REFINERY UNIT
Mobil Corp said it will spend over 30
mln dlrs to upgrade a gasoline-producing unit at its Beaumont,

(Correcting unit's output to barrels/day from barrels/year)",

{'entities': [(56, 66, 'company'), (149, 157, 'city'), (161, 166, 'city')1}),
('COFFEE, SUGAR AND COCOA EXCHANGE NAMES CHAIRMAN

The New York Coffee, Sugar and Cocoa

of Demico Futures, was elected treasurer.',
{'entities': [(54, 62, 'city'),

(99, 103, 'company'),

(140, 146, 'person'),

(243, 254, 'person'),

.(%iB, 732, 'person')]}),

The DocBin format will be used as it provides faster serialization and efficient storage. The following code snippet
does the conversion and writes the resulting DocBin object to a file.
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nlp = spacy.blank("en") # load a new spacy model
db = DocBin() # create a DocBin object
i=0
for text, annot in tqgdm(train_data): # data in previous format

doc = nlp.make_doc(text) # create doc object from text

ents = []

for start, end, label in annot["entities"]: # add character indexes

span = doc.char_span(start, end, label=label, alignment_mode="contract")

if span is not None:
ents.append(span)
doc.ents = ents # label the text with the ents
db.add(doc)

db.to_disk(os.path.join(os.path.expanduser('~"), "train.spacy") # save the docbin object

8.7.4.4 Train

The model will be trained using spaCy. Since this is done through the command line a configuration file is needed. In
spaCly, this is a two-step process. You will create a base_config. cfg file that will contain the non-default settings for
the model. Then the init fill-config argument on the spaCy module will be used to auto-fill a partial config.
cfg file with the default values for the parameters that are not given in the base_config.cfg file. The config.
cfg file contains all the settings and hyperparameters that will be needed to train the model. See the spaCy training
documentation for more details.

The following code snippet will write the base_config.cfg configuration file and contains all the non-default pa-
rameter values.

config =
[paths]
train = null
dev = null

[system]
gpu_allocator = null

[nlp]

lang = "en"

pipeline = ["tok2vec",'"ner"]
batch_size = 1000

[components]

[components.tok2vec]
factory = "tok2vec"

[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"

[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = ${components.tok2vec.model.encode.width}

(continues on next page)

8.7. Examples 69


https://spacy.io/usage/training
https://spacy.io/usage/training

ADS Documentation, Release 2.7.3

(continued from previous page)

attrs = ["ORTH", "SHAPE"]
rows = [5000, 2500]
include_static_vectors = false

[components.tok2vec.model.encode]

@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 96
depth = 4

window_size = 1
maxout_pieces = 3

[components.ner]
factory = "ner"

[components.ner.model]

@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"

extra_state_tokens = false

hidden_width = 64

maxout_pieces = 2

use_upper = true

n0 = null

[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components. tok2vec.model.encode.width}

[corporal

[corpora.train]

@readers = "spacy.Corpus.vl"
path = ${paths.train}
max_length = 0

[corpora.dev]

@readers = "spacy.Corpus.vl"
path = ${paths.dev}
max_length = 0

[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"

[training.optimizer]
@optimizers = "Adam.v1"

[training.batcher]

@batchers = "spacy.batch_by_words.v1"
discard_oversize = false

tolerance = 0.2

[training.batcher.size]

(continues on next page)
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@schedules = "compounding.v1"
start = 100
stop = 1000

compound = 1.001

[initialize]
vectors = $

with open(os.path.join(os.path.expanduser("~"), "base_config.cfg"), 'w') as f:
f.write(config)

The following code snippet calls a new Python interpretrer that runs the spaCy module. It loads the base_config.cfg
file and writes out the configuration file config. cfg that has all of the training parameters that will be used. It contains
the default values plus the ones that were specified in the base_config.cfg file.

1 $CONDA_PREFIX/bin/python -m spacy init fill-config ~/base_config.cfg ~/config.cfg

To train the model, you will call a new Python interpreter to run the spaCy module using the train command-line
argument and other arguments that point to the training files that you have created.

1 $CONDA_PREFIX/bin/python -m spacy train ~/config.cfg --output ~/output --paths.train ~/
—train.spacy --paths.dev ~/train.spacy

8.7.4.5 Predict

The spaCy training procedure creates a number of models. The best model is stored in model-best under the output
directory that was specified. The following code snippet loads that model and creates a sample document. The model
is run and the output has the new document plus and entities that were detected are highlighted.

nlp = spacy.load(os.path.join(os.path.expanduser('~), "output", "model-best")) #load the.
—best model

doc = nlp("The Japanese minister for post and telecommunications was reported as saying.,
—that he opposed Cable and Wireless having a managerial role in the new company.") #.
—Iinput sample text

spacy.displacy.render(doc, style="ent", jupyter=True) # display in Jupyter

The Japanese minister for post and telecommunications was reported as saying that he opposed Cable and Wireless company having a managerial role in the new

company.
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NINE

TRANSFORM DATA

When datasets are loaded with DatasetFactory, they can be transformed and manipulated easily with the built-in func-
tions. Underlying, an ADSDataset object is a Pandas dataframe. Any operation that can be performed to a Pandas
dataframe can also be applied to an ADS Dataset.

9.1 Loading the Dataset

You can load a pandas dataframe into an ADSDataset by calling.

from ads.dataset.factory import DatasetFactory

ds = DatasetFactory. from_dataframe(df)

9.2 Automated Transformations

ADS has built in automatic transform tools for datasets. When the get_recommendations() tool is applied to an
ADSDataset object, it shows the user detected issues with the data and recommends changes to apply to the dataset.
You can accept the changes is as easy as clicking a button in the drop down menu. After all the changes are applied,
the transformed dataset can be retrieved by calling get_transformed_dataset().

wine_ds.get_recommendations ()

Alternatively, you can use auto_transform() to apply all the recommended transformations at once.
auto_transform() returns a transformed dataset with several optimizations applied automatically. The optimiza-
tions include:

* Dropping constant and primary key columns, which has no predictive quality.
 Imputation to fill in missing values in noisy data.

* Dropping strongly co-correlated columns that tend to produce less generalizable models.
* Balancing a dataset using up or down sampling.

One optional argument to auto_transform() is fix_imbalance, which is set to True by default. When True,
auto_transform() corrects any imbalance between the classes. ADS downsamples the dominant class first unless
there are too few data points. In that case, ADS upsamples the minority class.

ds = wine_ds.auto_transform()
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You can visualize the transformation that has been performed on a dataset by calling visualize_transforms().

Note: visualize_transforms() is only applied to the automated transformations and does not capture any custom
transformations that you may have applied to the dataset.

ds.visualize_transforms()

- partition(s):

- rows: 178 prepare
- columns: 14

fix column_names

Itype_discovery

convert_columns

No recommendations suggested

RecommendationTransformer

No feature engineering transformations

FeatureEngineeringTransformer

T

9.3 Row Operations

The operations that can be applied to a Pandas dataframe can be applied to an ADSDataset object.

Examples of some of the most common row operations you can apply on an ADSDataset object follow.
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9.3.1 Delete Rows

Rows within a dataset can be filtered out by row numbers. The index of the new dataset can be reset accordingly.

#Filter out rows by row number and reset index of new data
ds_subset = ds.loc[10:100]
ds_subset = ds_subset.reset_index()

Do not try to insert index into dataset columns.

9.3.2 Reset Index

Reset the index to the default index. When you reset index, the old index is added as a column index and a new
sequential index is used. You can use the drop parameter to avoid the old index being added as a column:

ds_subset = ds.loc[10:100]
ds_subset = ds_subset.reset_index(drop=True)
ds_subset.head()

The index restarts at zero for each partition. This is due to the inability to statically know the full length of the index.

9.3.3 Append Rows

New rows can be added to an existing dataset:

#Create new row to be added
row_to_add = ds.loc[0]
row_to_add[ 'target'] = 'class_0'

#Add in new row to existing dataset
new_addition_ds = ds.merge(row_to_add, how = 'outer')

Alternatively, you can use the append () method of a Pandas dataframe to achieve a similar result:

ds2 = wine_ds.df.append(ds)

The ds2 is created as a Pandas DataFrame object.

9.3.4 Row Filtering

Columns can be filtered out by the values:

ds_filtered = ds[(ds['alcohol'] > 13.0) & (ds['malic_acid'] < 2.5)]
ds_filtered.head()
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9.3.5 Removing Duplicated Rows

Duplicate rows can removed using the drop_duplicates function:

ds_without_dup = ds.drop_duplicates()

9.4 Column Operations

The column operations that can be applied to a Pandas dataframe can be applied to an ADS dataset as in the following
examples.

9.4.1 Delete a Column

To delete specific columns from the dataset, the drop_columns function can be used along with names of the columns
to be deleted from the dataset. The ravel Pandas command returns the flattened underlying data as an ndarray. The
name_of_df.columns[:].ravel () command returns the name of all the columns in a dataframe as an array.

ds_subset_columns = ds.drop_columns(['alcohol', 'malic_acid'])
ds_subset_columns.columns[:].ravel ()

array(['ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols',
'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins',
'color_intensity', 'hue', 'o0d280/0d315_of_diluted_wines',
'proline', 'target'], dtype=object)

9.4.2 Rename a Column

Columns can be renamed with the rename_columns () method:

ds_columns_rename = ds.rename_columns({'alcohol': 'alcohol_amount',
'malic_acid': 'malic_acid_amount'})
ds_columns_rename.columns[:].ravel )

array(['alcohol_amount', 'malic_acid_amount', 'ash', 'alcalinity_of_ash',
'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols',
'proanthocyanins', 'color_intensity', 'hue',

'0d280/0d315_of_diluted_wines', 'proline', 'target'], dtype=object)

9.4.3 Counts of Unique Values

The count per unique value can be obtained with the value_counts () method:

ds['target'].value_counts()

class_1 71
class_0 59
class_2 48
Name: target, dtype: int64
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9.4.4 Normalize a Column

You can apply a variety of normalization techniques to numerical columns (both continuous and discrete). You can
leverage the built in max () and min() methods to perform a minmax normalization:

max_alcohol = wine_ds['alcohol'].max()

min_alcohol = wine_ds['alcohol'].min()

alcohol_range = max_alcohol - min_alcohol

wine_ds.df[ 'norm_alcohol'] = (wine_ds['alcohol'] / alcohol_range)

9.4.5 Combine Columns

This example creates a new column by performing operations to combine two or more columns together:

new_feature_col = ((0.4)*wine_ds['total_phenols'] + (0.6)*wine_ds['flavanoids'])
ds_new_feature = wine_ds.assign_column('new_feature', new_feature_col)
ds_new_feature.head()

Alternatively, you can create a new column directly in the Pandas dataframe attribute:

new_feature_col = ((0.4)*wine_ds['total_phenols'] + (0.6)*wine_ds['flavanoids'])
wine_ds.df[ 'new_feature'] = new_feature_col
wine_ds.head()

To add new column, use a new name for it. You can add anew column and change it by combining with existing column:

noise = np.random.normal(®,.1,wine_ds.shape[0])
ds_noise = wine_ds.assign_column('noise', noise)

ds_ash = ds_noise.assign_column('noise', ds_noise['noise'] + ds_noise['ash'])

ds_ash = ds_ash.rename(columns={'noise':'ash_with_noise'})
ds_ash.head()

The resulting column is renamed with dict-like mapper.

9.4.6 Apply a Function to a Column

You can apply functions to update column values in existing column. This example updates the column in place using
lambda expression:

wine_ds.assign_column('proline', lambda x: x is None or x > 1000)
wine_ds.head()
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9.4.7 Change Data Type

You can change the data type columns with the astype() method. ADS uses the Pandas method, astype(), on
dataframe objects. For specifics, see astype for a Pandas Dataframe, using numpy.dtype, or Pandas dtypes.

When you change the type of a column, ADS updates its semantic type to categorical, continuous, datetime, or ordinal.
For example, if you update a column type to integer, its semantic type updates to ordinal. For data type details, see
ref:loading-data-specify-dtype.

This example converts a dataframe column from float, to the low-level integer type and ADS updates its semantic type
to ordinal:

wine_ds = wine_ds.astype(types={'proline': 'int64'})
print(wine_ds. feature_types['proline']J['low_level_type'])
print (wine_ds. feature_types['proline']['type'])

# Note: When you cast a float column to integer, you lose precision.
wine_ds['proline'].head()

To convert a column of type float to categorical, you convert it to integer first. This example converts a column data
type from float to integer, then to categorical, and then the number of categories in the column is reduced:

# create a new dataset with a renamed column for binned data and update the values
ds = wine_ds.rename_columns({'color_intensity': 'color_intensity_bin'})
ds = ds.assign_column('color_intensity_bin', lambda x: x/3)

# convert the column from float to categorical:

ds = ds.astype(types={'color_intensity_bin': 'int64'})

ds = ds.astype(types={'color_intensity_bin': 'categorical'})

You can use feature_types to see if the semantic data type of the converted column is categorical:
wine_ds.feature_types['color_intensity_bin']['type']

'categorical’

The low-level type of the converted column is category:

ds['color_intensity_bin'].head()

A wNn R,
i i

Name: color_intensity_bin, dtype: category
Categories (5, int64): [0, 1, 2, 3, 4]
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9.5 Dataset Manipulation

ADS has built in functions that support categorical encoding, null values and imputation.

9.5.1 Categorical Encoding

ADS has a built in categorical encoder that can be accessed by calling from ads.dataset.label_encoder import
DataFrameLabelEncoder. This example encodes the three classes of wine that make up the dataset:

from ads.dataset.label_encoder import DataFramelLabelEncoder
ds_encoded = DataFrameLabelEncoder().fit_transform(ds.to_pandas())
ds_encoded['target'].value_counts()

1 71
0 59
2 48

9.5.2 One-Hot Encoding

One-hot encoding transforms one categorical column with n categories into n or n-1 columns with indicator variables.
You can prepare one of the columns to be categorical with categories low, medium, and high:

def convert_to_level(value):
if value < 12:
return 'low'
elif value > 13:
return 'high'
else:
return 'medium'’

ds = wine_ds
ds ds.assign_column('alcohol', convert_to_level)

You can use the Pandas method get_dummies () to perform one-hot encoding on a column. Use the prefix parameter
to assign a prefix to the new columns that contain the indicator variables. This example creates n columns with one-hot
encoding:

data = ds.to_pandas()['alcohol'] # data of which to get dummy indicators
onehot = pd.get_dummies(data, prefix='alcohol")

To create n-1 columns, use drop_first=True when converting the categorical column. You can add a one-hot column
to the initial dataset with the merge () method:

data = ds.to_pandas()['alcohol'] # data of which to get dummy indicators
onehot = pd.get_dummies(data, prefix="alcohol', drop_first=False)
ds_onehot = ds.merge(onehot)

Encoding for all categorical columns can be accomplished with the fit_transform() method:

from ads.dataset.label_encoder import DataFrameLabelEncoder

(continues on next page)
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ds_encoded = DataFrameLabelEncoder().fit_transform(ds_onehot.to_pandas())
ds_encoded[ 'alcohol'].value_counts()

0 92
67
1 19

To drop the initial categorical column that you transformed into one-hot, use one of these examples:

ds_onehot = ds_onehot.drop_columns('alcohol') # before “‘fit_transform()' method
# or
ds_encoded = ds_encoded.drop(columns="alcohol') # after “fit_transform()  method

9.5.3 Extract Null Values

To detect all nulls in a dataset, use the isnull function to return a boolean dataset matching the dimension of our
input:

ds_null = ds.isnull()
np.any(ds_null)

alcohol False
malic_acid False
ash False
alcalinity_of_ash False
magnesium False
total_phenols False
flavanoids False
nonflavanoid_phenols False
proanthocyanins False
color_intensity False
hue False
0d280/0d315_of_diluted_wines False
proline False
target False

9.5.4 Imputation

The £illna function ia used to replace null values with specific values. Generate a null value by replacing the entry
below a certain value with null, and then imputing it with a value:

ds_with_null = ds.assign_column("malic_acid", lambda x: None if x < 2 else x)
ds_with_null['malic_acid'].head()

NaN
NaN
2.36
NaN

w N~

(continues on next page)
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4 2.59
Name: malic_acid, dtype: float64

ds_impute = ds_with_null.fillna(method="bfill")
ds_impute[ 'malic_acid'].head()

.36
.36
.36
.59
.59
Name: malic_acid, dtype: float64

B wWwNh ek
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9.5.5 Combine Datasets

ADS datasets can be merged and combined together to form a new dataset.

9.5.5.1 Join Datasets
You can merge two datasets together with a database-styled join on columns or indexes by specifying the type of join
left, right, outer, or inner. These type are defined by:

» left: Use only keys from the left dataset, similar to SQL left outer join.

* right: Use only keys from the right dataset, similar to SQL right outer join.

 inner: Intersection of keys from both datasets, similar to SQL inner join.

* outer: Union of keys from both datasets, similar to SQL outer join.

This is an example of performing an outer join on two datasets. The datasets are subsets of the wine dataset, and each
dataset contains only one class of wine.

ds_classl = ds[ds['target']=="class_1"]
ds_class2 = ds[ds['target']=='class_2"]
ds_merged_outer = ds_classl.merge(ds_class2, how='outer')
ds_merged_outer['target'].value_counts()

class_1 71
class_2 48
class_0 0
Name: target, dtype: int64
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9.5.5.2 Concatenate Datasets

Two datasets can be concatenated along a particular axis (vertical or horizontal) with the option of performing set logic
(union or intersection) of the indexes on the other axes. You can stack two datasets vertically with:

ds_concat = pd.concat([ds_classl, ds_class2], axis = 0)
ds_concat['target'].value_counts()

class_1 71
class_2 48
class_0 0
Name: target, dtype: int64

9.6 Train/Test Datasets

After all data transformations are complete, you can split the data into a train and test or train, test, and validation set.
To split data into a train and test set with a train size of 80% and test size of 20%:

from ads.dataset.dataset_browser import DatasetBrowser
sklearn = DatasetBrowser.sklearn()

wine_ds = sklearn.open('wine')

ds = wine_ds.auto_transform()

train, test = ds.train_test_split(test_size=0.2)

For a train, test, and validation set, the defaults are set to 80% of the data for training, 10% for testing, and 10% for
validation. This example sets split to 70%, 15%, and 15%:

data_split = wine_ds.train_validation_test_split(
test_size=0.15,
validation_size=0.15
)
train, validation, test = data_split
print(data_split) # print out shape of train, validation, test sets in split

The resulting three data subsets each have separate data (X) and labels (y).

print(train.X) # print out all features in train dataset
print(train.y) # print out labels in train dataset

You can split the dataset right after the DatasetFactory.open() statement:

ds = DatasetFactory.open('path/data.csv").set_target('target')
train, test = ds.train_test_split(test_size=0.25)
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9.7 Text Data

9.7.1 TextStrings

9.7.1.1 Overview

Text analytics uses a set of powerful tools to understand the content of unstructured data, such as text. It’s becoming an
increasingly more important tool in feature engineering as product reviews, media content, research papers, and more
are being mined for their content. In many data science areas, such as marketing analytics, the use of unstructured
text is becoming as popular as structured data. This is largely due to the relatively low cost of collection of the data.
However, the downside is the complexity of working with the data. To work with unstructured that you need to clean,
summarize, and create features from it before you create a model. The ADSString class provides tools that allow you
to quickly do this work. More importantly, you can expand the tool to meet your specific needs.

Data scientists need to be able to quickly and easily manipulate strings. ADS SDK provides an enhanced string class,
called ADSString. It adds functionality like regular expression (RegEx) matching and natural language processing
(NLP) parsing. The class can be expanded by registering custom plugins so that you can process a string in a way that
it fits your specific needs. For example, you can register the OCI Language service plugin to bind functionalities from
the OCI Language service to ADSString.

9.7.1.2 Quick Start

9.7.1.2.1 NLP Parse

The following example parses a text corpus using the NTLK and spaCy engines.

from ads.feature_engineering.adsstring.string import ADSString

s = ADSString("""
Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.
" ostrip(Q))

# NLTK
ADSString.nlp_backend("nltk")
noun = s.noun

adj = s.adjective

pos = s.pos # Parts of Speech

# spaCy
ADSString.nlp_backend("spacy")
noun = s.noun

adj = adjective

pos = s.pos # Parts of Speech
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9.7.1.2.2 Plugin
Custom Plugin

This example demonstrates how to create a custom plugin that will take a string, detect the credit card numbers, and
return a list of the last four digits of the credit card number.

from ads.feature_engineering.adsstring.string import ADSString

class CreditCardLast4:
@property
def credit_card_last_4(self):
return [x[len(x)-4:len(x)] for x in ADSString(self.string).credit_card]

ADSString.plugin_register(CreditCardLast4)

creditcard_numbers = "I purchased the gift on this card 4532640527811543 and the dinner.,
—on 340984902710890"

s = ADSString(creditcard_numbers)

s.credit_card_last_4

OCI Language Services Plugin

This example uses the OCI Language service to perform an aspect-based sentiment analysis, language detection, key
phrase extraction, and a named entity recognition.

from ads.feature_engineering.adsstring.oci_language import OCILanguage
from ads.feature_engineering.adsstring.string import ADSString

ADSString.plugin_register (0CILanguage)

s = ADSString("""
Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.
" ostrip())

# Aspect-Based Sentiment Analysis
df_sentiment = s.absa

# Key Phrase Extraction
key_phrase = s.key_phrase

# Language Detection
language = s.language_dominant

(continues on next page)
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# Named Entity Recognition
named_entity = s.ner

# Text Classification
classification = s.text_classification

9.7.1.2.3 RegEx Match

In this example, the dates and prices are extracted from the text using regular expression matching.

from ads.feature_engineering.adsstring.string import ADSString

s = ADSString("""

Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.

.stripQ))

dates = s.date
prices = s.price

9.7.1.3 NLP Parse

ADSString also supports NLP parsing and is backed by Natural Language Toolkit (NLTK) or spaCy. Unless otherwise
specified, NLTK is used by default. You can extract properties, such as nouns, adjectives, word counts, parts of speech
tags, and so on from text with NLP.

The ADSString class can have one backend enabled at a time. What properties are available depends on the backend,
as do the results of calling the property. The following examples provide an overview of the available parsers, and how
to use them. Generally, the parser supports the adjective, adverb, bigram, noun, pos, sentence, trigram, verb,
word, and word_count base properties. Parsers can support additional parsers.

9.7.1.3.1 NLTK

The Natural Language Toolkit (NLTK) is a powerful platform for processing human language data. It supports all
the base properties and in addition stem and token. The stem property returns a list of all the stemmed tokens. It
reduces a token to its word stem that affixes to suffixes and prefixes, or to the roots of words that is the lemma. The
token property is similar to the word property, except it returns non-alphanumeric tokens and doesn’t force tokens to
be lowercase.

The following example use a sample of text about Larry Ellison to demonstrate the use of the NLTK properties.

test_text =
Lawrence Joseph Ellison (born August 17, 1944) is an American business.
—.magnate,

(continues on next page)

9.7. Text Data 85


https://www.nltk.org/
https://spacy.io/
https://www.nltk.org/

ADS Documentation, Release 2.7.3

(continued from previous page)

investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he,
—was
listed by Forbes magazine as the fourth-wealthiest person in the United.
—States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.
.stripQ)
ADSString.nlp_backend("nltk™)
s = ADSString(test_text)

s.noun[1:5]

['Joseph', 'Ellison', 'August', 'business']

s.adjective

['American', 'chief', 'fourth-wealthiest', 'largest', 'Hawaiian']
s.word[1:5]
['joseph', 'ellison', 'born', 'august']

By taking the difference between token and word, the token set contains non-alphanumeric tokes, and also the upper-
case version of words.

list(set(s.token) - set(s.word))[1:5]

['Oracle', '1944', '41st', 'fourth-wealthiest']

The stem property takes the list of words and stems them. It produces morphological variations of a word’s root form.
The following example stems some words, and shows some of the stemmed words that were changed.

list(set(s.stem) - set(s.word))[1:5]

['fortun', 'technolog', 'increas', 'popul'l]

Part of Speech Tags

Part of speech (POS) is a category in which a word is assigned based on its syntactic function. POS depends on
the language. For English, the most common POS are adjective, adverb, conjunction, determiner, interjection, noun,
preposition, pronoun, and verb. However, each POS system has its own set of POS tags that vary based on their
respective training set. The NLTK parsers produce the following POS tags:
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Table 1: Parts of Speech Tags

CC: coordinating conjunction

CD: cardinal digit

DT: determiner

99, <.

EX: existential there; like “there is”’; “there exists”

FW: foreign word

IN: preposition/subordinating conjunction

J3: adjective; “big”

JJR: adjective, comparative; “bigger”

J3S: adjective, superlative; “biggest”

LS: list marker 1)

MD: modal could, will

NN: noun, singular; “desk”

NNS: noun plural; “desks”

NNP: proper noun, singular; “Harrison”

NNPS: proper noun, plural; “Americans”

PDT: predeterminer; “all the kids”

T

POS: possessive ending; “parent’s

PRP: personal pronoun; I, he, she

PRP$: possessive pronoun; my, his, hers

RB: adverb; very, silently

RBR: adverb; comparative better

RBS: adverb; superlative best

RP: particle; give up

TO: to go; “to” the store.

UH: interjection; errrrrrrrm

VB: verb, base form; take

VBD: verb, past tense; took

VBG: verb, gerund/present participle; taking

VBN: verb, past participle; taken

VBP: verb, singular present; non-3d take

VBZ: verb, 3rd person singular present; takes

WDT: wh-determiner; which

WP: wh-pronoun; who, what

WP$: possessive wh-pronoun; whose

WRB: wh-adverb; where, when

s.pos[1:5]
Word Label
1 Joseph  NNP
2 Ellison NNP
3 ( (
4 born VBN

9.7.1.3.2 spaCy

spaCy is in an advanced NLP toolkit. It helps you understand what the words mean in context, and who is doing what
to whom. It helps you determine what companies and products are mentioned in a document. The spaCy backend is
used to parses the adjective, adverb, bigram, noun, pos, sentence, trigram, verb, word, and word_count base
properties. It also supports the following additional properties:

e entity: All entities in the text.

entity_person: Fictional and real people.

entity_product: Product names and so on.

entity_artwork: The titles of books, songs, and so on.
entity_location: Locations, facilities, and geopolitical entities, such as countries, cities, and states.

entity_organization: Companies, agencies, and institutions.

lemmas: A rule-based estimation of the roots of a word.
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* tokens: The base tokens of the tokenization process. This is similar to word, but it includes non-alphanumeric
values and the word case is preserved.

If the spacy module is installed ,you can change the NLP backend using the ADSString.nlp_backend('spacy')
command.

ADSString.nlp_backend("spacy")
s = ADSString(test_text)

s.nounf[1:5]

['magnate', 'investor', 'philanthropist', 'co'l]
s.adjective
['American', 'executive', 'chief', 'fourth', 'wealthiest', 'largest']

s.word[1:5]
['Joseph', 'Ellison', 'born', 'August']

You can identify all the locations that are mentioned in the text.

s.entity_location

['the United States', 'the Hawaiian Islands']

Also, the organizations that were mentioned.

s.entity_organization

['CTO', 'Oracle Corporation', 'Forbes', 'Lanai'l]

Part of Speech Tags

The POS tagger in spaCy uses a smaller number of categories. For example, spaCy has the ADJ POS for all adjectives,
while NLTK has JJ to mean an adjective. JJRrefers to a comparative adjective, and JJS refers to a superlative adjective.
For fine grain analysis of different parts of speech, NLTK is the preferred backend. However, spaCy’s reduced category
set tends to produce fewer errors,at the cost of not being as specific.

The spaCy parsers produce the following POS tags:
* ADJ: adjective; big, old, green, incomprehensible, first
* ADP: adposition; in, to, during
* ADV: adverb; very, tomorrow, down, where, there
e AUX: auxiliary; is, has (done), will (do), should (do)
* CONJ: conjunction; and, or, but
* CCONJ: coordinating conjunction; and, or, but

¢ DET: determiner; a, an, the
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» INTJ: interjection; psst, ouch, bravo, hello

» NOUN: noun; girl, cat, tree, air, beauty

e NUM: numeral; 1, 2017, one, seventy-seven, IV, MMXIV
* PART: particle; ’s, not,

* PRON: pronoun; I, you, he, she, myself, themselves, somebody
* PROPN: proper noun; Mary, John, London, NATO, HBO
* PUNCT: punctuation; ., (, ), ?

* SCONJ: subordinating conjunction; if, while, that

e SYM: symbol; $, %, §, ©, +, , x, +, =, 1),

* VERB: verb; run, runs, running, eat, ate, eating

* X: other; sfpksdpsxmsa

* SPACE: space

s.pos[1:5]

Word Label

1 Joseph PROPN

%]

Ellison PROPN
3 { PUNCT

4 born VERB

9.7.1.4 Plugin

One of the most powerful features of ADSString is that you can expand and customize it. The .plugin_register()
method allows you to add properties to the ADSString class. These plugins can be provided by third-party providers
or developed by you. This section demonstrates how to connect the to the OCI Language service, and how to create a
custom plugin.

9.7.1.4.1 Custom Plugin

You can bind additional properties to ADSString using custom plugins. This allows you to create custom text pro-
cessing extensions. A plugin has access to the self. string property in ADSString class. You can define functions
that perform a transformation on the text in the object. All functions defined in a plugin are bound to ADSString and
accessible across all objects of that class.

Assume that your text is "I purchased the gift on this card 4532640527811543 and the dinner on
340984902710890" and you want to know what credit cards were used. The .credit_card property returns the
entire credit card number. However, for privacy reasons you don’t what the entire credit card number, but the last four
digits.

To solve this problem, you can create the class CreditCardLast4 and use the self.string property in ADSString
to access the text associated with the object. It then calls the .credit_card method to get the credit card numbers.
Then it parses this to return the last four characters in each credit card.
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The first step is to define the class that you want to bind to ADSString. Use the @property decorator and define a
property function. This function only takes self. The self.string is accessible with the text that is defined for a
given object. The property returns a list.

class CreditCardLast4:
@property
def credit_card_last_4(self):
return [x[len(x)-4:1len(x)] for x in ADSString(self.string).credit_card]

After the class is defined, it must be registered with ADSString using the .register_plugin() method.

ADSString.plugin_register(CreditCardLast4)

Take the text and make it an ADSString object, and call the .credit_card_last_4 property to obtain the last four
digits of the credit cards that were used.

creditcard_numbers = "I purchased the gift on this card 4532640527811543 and the dinner.,
—on 340984902710890"

s = ADSString(creditcard_numbers)

s.credit_card_last_4

['1543', '0890']

9.7.1.4.2 OCI Language Services

The OCI Language service provides pretrained models that provide sophisticated text analysis at scale.
The Language service contains these pretrained language processing capabilities:

e Aspect-Based Sentiment Analysis: Identifies aspects from the given text and classifies each into positive,
negative, or neutral polarity.

e Key Phrase Extraction: Extracts an important set of phrases from a block of text.

* Language Detection: Detects languages based on the given text, and includes a confidence score.

* Named Entity Recognition: Identifies common entities, people, places, locations, email, and so on.
» Text Classification: Identifies the document category and subcategory that the text belongs to.

Those are accessible in ADS using the OCILanguage plugin.

ADSString.plugin_register (0OCILanguage)

Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis can be used to gauge the mood or the tone of the text.

The aspect-based sentiment analysis (ABSA) supports fine-grained sentiment analysis by extracting the individual
aspects in the input document. For example, a restaurant review “The driver was really friendly, but the taxi was falling
apart.” contains positive sentiment toward the taxi driver aspect. Also, it has a strong negative sentiment toward the
service mechanical aspect of the taxi. Classifying the overall sentiment as negative would neglect the fact that the taxi
driver was nice.

ABSA classifies each of the aspects into one of the three polarity classes, positive, negative, mixed, and neutral. With the
predicted sentiment for each aspect. It also provides a confidence score for each of the classes and their corresponding
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offsets in the input. The range of the confidence score for each class is between 0 and 1, and the cumulative scores of
all the three classes sum to 1.

In the next example, the sample sentence is analyzed. The two aspects, taxi cab and driver, have their sentiments
determined. It defines the location of the aspect by giving its offset position in the text, and the length of the aspect
in characters. It also gives the text that defines the aspect along with the sentiment scores and which sentiment is
dominant.

t = ADSString("The driver was really friendly, but the taxi was falling apart.")
t.absa

Length Offset Sentiment Text MNegative MNeutral Positive
0 6 4 Positive driver 0.0 3.484637e-09 1.000000e+00
1 4 40 Negative taxi 1.0 0.000000e+00  5.187591e-10

Key Phrase Extraction

Key phrase (KP) extraction is the process of extracting the words with the most relevance, and expressions from the
input text. It helps summarize the content and recognizes the main topics. The KP extraction finds insights related to
the main points of the text. It understands the unstructured input text, and returns keywords and KPs. The KPs consist
of subjects and objects that are being talked about in the document. Any modifiers, like adjectives associated with these
subjects and objects, are also included in the output. Confidence scores for each key phrase that signify how confident
the algorithm is that the identified phrase is a KP. Confidence scores are a value from O to 1.

The following example determines the key phrases and the importance of these phrases in the text (which is the value
of test_text):

Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.

s = ADSString(test_text)
s.key_phrase
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Score Text

0 1000000 united states
1 0.99981 lawrence joseph ellison
2 099981 august 17
3 0999811 american business magnate
4 099981 executive chairman
5 0.9998NM chief technology officer
6 0.9998NM oracle corporation
7 0.9998NM october 2019
8 099981 forbes magazine
9 099981 fourth-wealthiest person
10 0.9998NM fortune of $69.1 billion
11 0.9998N1 41st largest island
12 0.9998M hawaiian islands
13 0.999239 philanthropist
14 0.999239 co-founder
15 0.999239 cto
16 0.999239 sixth-wealthiest
17 0.999239 lanai
18 0.999239 population
19 0.997934 investor
20 0.973272 owner
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Language Detection

The language detection tool identifies which natural language the input text is in. If the document contains more
than one language, the results may not be what you expect. Language detection can help make customer support
interactions more personable and quicker. Customer service chatbots can interact with customers based on the language
of their input text and respond accordingly. If a customer needs help with a product, the chatbot server can field the
corresponding language product manual, or transfer it to a call center for the specific language.

The following is a list of some of the supported languages:

Table 2: Supported Languages

Afrikaans | Albanian Arabic Armenian Azerbaijani Basque
Belaru- Bengali Bosnian Bulgarian Burmese Cantonese
sian
Catalan Cebuano Chinese Croatian Czech Danish
Dutch Eastern Pun- | Egyptian English Esperanto Estonian

jabi Arabic
Finnish French Georgian German Greek Hebrew
Hindi Hungarian Icelandic Indonesian Irish Italian
Japanese Javanese Kannada Kazakh Korean Kurdish  (So-

rani)
Latin Latvian Lithuanian Macedonian Malay Malayalam
Marathi Minangkabau Nepali Norwegian  (Bok- | Norwegian Persian
mal) (Nynorsk)

Polish Portuguese Romanian Russian Serbian Serbo-Croatian
Slovak Slovene Spanish Swabhili Swedish Tagalog
Tamil Telugu Thai Turkish Ukrainian Urdu
Uzbek Vietnamese Welsh

The next example determines the language of the text, the ISO 639-1 language code, and a probability score.

s.language_dominant

Code Language Score

0 en English 0.999678

Named Entity Recognition

Named entity recognition (NER) detects named entities in text. The NER model uses NLP, which uses machine learning
to find predefined named entities. This model also provides a confidence score for each entity and is a value from 0O to
1. The returned data is the text of the entity, its position in the document, and its length. It also identifies the type of
entity, a probability score that it is an entity of the stated type.

The following are the supported entity types:
* DATE: Absolute or relative dates, periods, and date range.
e EMAIL: Email address.
e EVENT: Named hurricanes, sports events, and so on.

» FAC: Facilities; Buildings, airports, highways, bridges, and so on.
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* GPE: Geopolitical entity; Countries, cities, and states.

TIPADDRESS: IP address according to IPv4 and IPv6 standards.

LANGUAGE: Any named language.

LOCATION: Non-GPE locations, mountain ranges, and bodies of water.

MONEY: Monetary values, including the unit.

NORP: Nationalities, religious, and political groups.

* ORG: Organization; Companies, agencies, institutions, and so on.

PERCENT: Percentage.

PERSON: People, including fictional characters.

PHONE_NUMBER: Supported phone numbers.

- (“GB”) - United Kingdom

- (“AU”) - Australia

— (“NZ”) - New Zealand

- (“SG”) - Singapore

— (“IN”) - India

— (“US”) - United States
e PRODUCT: Vehicles, tools, foods, and so on (not services).
e QUANTITY: Measurements, as weight or distance.
e TIME: Anything less than 24 hours (time, duration, and so on).
* URL: URL

The following example lists the named entities:

sS.ner

The output gives the named entity, its location, and offset position in the text. It also gives a probability and score that
this text is actually a named entity along with the type.
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Pll Length Offset Score Entity Type

0 True 23 0 1.0 Lawrence Joseph Ellison PERSON
1 False 15 30 1.0 August 17, 1944 DATE
2 False 18 215 1.0 Oracle Corporation ORG
3 False 12 241 1.0 October 2019 DATE
4 False 6 284 1.0 Forbes ORG
5 False 13 339 1.0 United States GPE
& False 13 425 1.0 $69.1 billion MOMNEY
7 False 13 467 1.0 $54.5 billion MOMNEY
8 False 8 484 1.0 2018.[4] DATE
9 False 13 560 1.0 United States GPE
10 False 5 575 1.0 Lanai GPE
1 False 16 588 1.0 Hawaiian Islands LOCATION
12 False 4 648 1.0 3000 CARDINAL

Text Classification

Text classification analyses the text and identifies categories for the content with a confidence score. Text classification
uses NLP techniques to find insights from textual data. It returns a category from a set of predefined categories. This
text classification uses NLP and relies on the main objective lies on zero-shot learning. It classifies text with no or
minimal data to train. The content of a collection of documents is analyzed to determine common themes.

The next example classifies the text and gives a probability score that the text is in that category.

s.text_classification

Label Score

0 Finance/investing 0.369175
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9.7.1.5 RegEx Match

Text documents are often parsed looking for specific patterns to extract information like emails, dates, times, web links,
and so on. This pattern matching is often done using RegEx, which is hard to write, modify, and understand. Custom
written RegEx often misses the edge cases. ADSString provides a number of common RegEx patterns so that your
work is simplified. You can use the following patterns:

* credit_card: Credit card number.

» dates: Dates in a variety of standard formats.

* email: Email address.

e ip: IP addresses, versions IPV4 and IPV6.

» link: Text that appears to be a link to a website.

¢ phone_number_US: USA phone numbers including those with extensions.
 price: Text that appears to be a price.

* ssn: USA social security number.

* street_address: Street address.

e time: Text that appears to be a time and less than 24 hours.
e zip_code: USA zip code.

The preceding ADSString properties return an array with each pattern that in matches. The following examples demon-
strate how to extract email addresses, dates ,and links from the text. Note that the text is extracted as is. For example,
the dates aren’t converted to a standard format. The returned value is the text as it is represented in the input text. Use
the datetime.strptime() method to convert the date to a date time stamp.

s = ADSString("Get in touch with my associates john.smith@example.com and jane.
- johnson@example.com to schedule™)
s.email

['john.smith@example.com', 'jane.johnson@example.com']

s = ADSString("She is born on Jan. 19th, 2014 and died 2021-09-10")
s.date

['Jan. 19th, 2014', '2021-09-10']

s = ADSString("Follow the link www.oracle.com to Oracle's homepage.")
s.link

['www.oracle.com']
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9.7.1.6 Still a String

While ADSString expands your feature engineering capabilities, it can still be treated as a str object. Any standard
operation on str is preserved in ADSString. For instance, you can convert it to lowercase:

hello_world = "HELLO WORLD"
s = ADSString(hello_world)
s.lower()

'hello world'

You could split a text string.

s.split()

['"HELLO', 'WORLD']

You can use all the str methods, such as the .replace() method, to replace text.
s.replace("L", "N")

"HENNO WORND'

You can perform a number of str manipulation operations, such as .lower() and .upper() to get an ADSString
object back.

isinstance(s.lower() .upper(), ADSString)

True

While a new ADSString object is created with str manipulation operations, the equality operation holds.

s.lower() .upper() == s

True

The equality operation even holds between ADSString objects (s) and str objects (hello_world).

s == hello_world

True

9.7.2 Text Extraction

Convert files such as PDF, and Microsoft Word files into plain text. The data is stored in Pandas dataframes and therefore
it can easily be manipulated and saved. The text extraction module allows you to read files of various file formats, and
convert them into different formats that can be used for text manipulation. The most common DataLoader commands
are demonstrated, and some advanced features, such as defining custom backend and file processor.

import ads
import fsspec

(continues on next page)
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(continued from previous page)
import oci
import os
import pandas as pd
import shutil
import time
import tempfile

from ads.text_dataset.backends import Base

from ads.text_dataset.dataset import TextDatasetFactory as textfactory
from ads.text_dataset.extractor import FileProcessor, FileProcessorFactory
from ads.text_dataset.options import Options

from sklearn import metrics

from sklearn.linear_model import LogisticRegression

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

ads.set_debug_mode()
ads.set_auth("resource_principal™)

9.7.2.1 Introduction

Text extraction is the process of extracting text from one document and converting it into another form, typically plain
text. For example, you can extract the body of text from a PDF document that has figures, tables, images, and text.
The process can also be used to extract metadata about the document. Generally, text extraction takes a corpus of
documents and returns the extracted text in a structured format. In the ADS text extraction module, that format is a
Pandas dataframe.

The Pandas dataframe has a record in each row. That record can be an entire document, a sentence, a line of text, or
some other unit of text. In the examples, you explore using a row to indicate a line of text and an entire document.

The ADS text extraction module supports:
¢ Input formats: text, pdf and docx or doc.
* Output formats: Use pandas for Pandas dataframe, or cudf for a cuDF dataframe.
* Backends: Apache Tika (default) and pdfplumber (for PDF).

* Source location: local block volume, and in cloud storage such as the Oracle Cloud Infrastructure (OCI) Object
Storage.

* Options to extract metadata.
You can manipulate files through the DataLoader object. Some of the most common commands are:
e .convert_to_text(): Convert document to text and then save them as plain text files.
e .metadata_all() and .metadata_schema(): Extract metadata from each file.
e .read_line(): Read files line-by-line. Each line corresponds to a record in the corpus.

e .read_text(): Read files where each file corresponds to a record in the corpus.
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9.7.2.1.1 Configure the Data Source

The OCI Data Science service has a corpus of text documents that are used in the examples. This corpus is stored in a
publicly accessible OCI Object Storage bucket. The following variables define the Object Storage namespace and the
bucket name. You can update these variables to point at your Object Storage bucket, but you might also have to change
some of the code in the examples so that the keys are correct.

namespace = 'bigdatadatasciencelarge'
bucket = 'hosted-ds-datasets'

9.7.2.2 Load

The TextDatasetFactory, which is aliased to textfactory in this notebook, provides access to the DataLoader,
and FileProcessor objects. The DataLoader is a file format-specific object for reading in documents such as PDF
and Word documents. Internally, a data loader binds together a file system interface (in this case fsspec) for opening
files. The FileProcessor object is used to convert these files into plain text. It also has an engine object to control
the output format. For a given DataLoader object, you can customize both the FileProcessor and engine.

Generally, the first step in reading a corpus of documents is to obtain a DatalLoader object. For example,
TextDatasetFactory.format('pdf') returns a DataLoader for PDFs. Likewise, you can get a Word document
loaders by passing in docx or doc. You can choose an engine that controls how the data is returned. The default
engine is a Python generator. If you want to use the data as a dataframe, then use the .engine() method. A call to
.engine('pandas"') returns the data as a Pandas dataframe. On a GPU machine, you can use cuDF dataframes with
acall to .engine('cudf').

The . format () method controls the backend with Apache Tika and pdfplumber being builtin. In addition, you can
write your own backend and plug it into the system. This allows you complete control over the backend. The file
processor is used to actually process a specific file format.

To obtain a DataLoader object, call the use the . format () method on textfactory. This returns a DataLoader
object that can then be configured with the .backend(), .engine(), and .options() methods. The .backend()
method is used to define which backend is to manage the process of parsing the corpus. If this is not specified then a
sensible default backend is chosen based on the file format that is being processed. The .engine() method is used
to control the output format of the data. If it is not specified, then an iterator is returned. The .options() method is
used to add extra fields to each record. These would be things such as the filename, or metadata about the file. There
are more details about this and the other configuration methods in the examples.

9.7.2.2.1 Read a Dataset

In this example you create a DataLoader object by calling textfactory.format('pdf'). This DataLoader
object is configured to read PDF documents. You then change the backend to use pdfplumber with the method
.backend('pdfplumber'). It’s easier to work with the results if they are in a dataframe. So, the method .
engine('pandas"') returns a Pandas dataframe.

After you have the DataLoader object configured, you process the corpus. In this example, the corpus is a single PDF
file. It is read from a publicly accessible OCI Object Storage bucket. The .read_line() method is used to read in
the corpus where each line of the document is treated as a record. Thus, each row in the returned dataframe is a line of
text from the corpus.

dl = textfactory.format('pdf').backend('pdfplumber').engine('pandas')

df = dl.read_line(
f'oci://{bucket}@{namespace}/pdf_sample/paper-0.pdf',
storage_options={"config": {}},

(continues on next page)
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(continued from previous page)

)
df.head()

0

0 PREVENTING CHRONIC DISEASE\n
1 PUBLICHEALTHRESEARCH, ..
Volume 15, E97 ...

\n

ORIGINAL RESEARCH\n

B W N

9.7.2.2.2 Read Options

Typically, you want to treat each line of a document or each document as a record. The method .read_line()
processes a corpus, and return each line in the documents as a text string. The method .read_text() treats each
document in the corpus as a record.

Both the .read_line() and .read_text () methods parse the corpus, convert it to text ,and reads it into memory.
The . convert_to_text() method does the same processing as .read_text (), but it outputs the plain text to files.
This allows you to post-process the data without having to again convert the raw documents into plain text documents,
which can be an expensive process.

Each document can have a custom set of metadata that describes the document. The .metadata_all() and .
metadata_schema() methods allow you to access this metadata. Metadata is represented as a key-value pair. The
.metadata_all () returns a set of key-value pairs for each document. The .metadata_schema() returns what keys
are used in defining the metadata. This can vary from document to document and this method creates a list of all
observed keys. You use this to understand what metadata is available in the corpus.

““.read_line()™

The .read_line() method allows you to read a corpus line-by-line. In other words, each line in a file corresponds to
one record. The only required argument to this method is path. It sets the path to the corpus, and it can contain a glob
pattern. For example, oci://{bucket}@{namespace}/pdf_sample/**.pdf, 'oci://{bucket}@{namespace}/
20news-small/**/[1-9]*', or /home/datascience/<path-to-folder>/[A-Za-z]*.docx are all valid paths
that contain a glob pattern for selecting multiple files. The path parameter can also be a list of paths. This allows for
reading files from different file paths.

The optional parameter udf stands for a user-defined function. This parameter can be a callable Python object, or a
regular expression (RegEx). If it is a callable Python object, then the function must accept a string as an argument and
returns a tuple. If the parameter is a RegEx, then the returned values are the captured RegEx patterns. If there is no
match, then the record is ignored. This is a convenient method to selectively capture text from a corpus. In either case,
the udf is applied on the record level, and is a powerful tool for data transformation and filtering.

The .read_line() method has the following arguments:
» df_args: Arguments to pass to the engine. It only applies to Pandas and cuDF dataframes.
* n_lines_per_file: Maximal number of lines to read from a single file.
 path: The path to the corpus.
* storage_options: Options that are necessary for connecting to OCI Object Storage.

e total_lines: Maximal number of lines to read from all files.
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* udf: User-defined function for data transformation and filtering.

Examples
Python Callable udf

In the next example, a lambda function is used to create a Python callable object that is passed to the udf parameter.
The lambda function takes a line and splits it based on white space to tokens. It then counts the number of tokens ,and
returns a tuple where the first element is the token count and the second element is the line itself.

The df_args parameter is used to change the column names into user-friendly values.

dl = textfactory.format('docx').engine('pandas')

df = dl.read_line(
path=f'oci://{bucket @/namespace}/docx_sample/*.docx"',
udf=lambda x: (len(x.strip().split()), x),
storage_options={"config": {}},
df_args={'columns': ['token count', 'text']},
)
df.head()
token count text
0 1 notes
1 0
2 2 Geography Proper
3 94 Generally, geographers before the 70s were con...
4 100 A great example of this is Cuba - think of it ...

Regular Expression udf

In this example, the corpus is a collection of log files. A RegEx is used to parse the standard Apache log format. If a
line does not match the pattern, it is discarded. If it does match the pattern, then a tuple is returned where each element
is a value in the RegEx capture group.

This example uses the default engine, which returns an iterator. The next() method is used to iterate through the
values.

APACHE_LOG_PATTERN = r'A\[(\S+)\s(\S+)\s(\d+)\s(\d+\:\d+\:\d+)\s(\d+) ]\s(\S+)\s(\S+)\s(\
< SHI\s(\S+) '
dl = textfactory.format('txt')
df = dl.read_line(
f'oci://{bucket@{namespace}/log_sample/*.log",
udf=APACHE_LOG_PATTERN,
storage_options={"config": {}},
)
next(df)
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['Sun',
'Dec’,
'04"',
'04:47:44",
'2005',
'[notice]"’,
'workerEnv.init(Q)"',
'ok',
'/etc/httpd/conf/workers2.properties']

““.read_text()™"

It you want to treat each document in a corpus as a record, use the .read_text () method. The path parameter is the
only required parameter as it defines the location of the corpus.

The optional udf parameter stands for a user-defined function. This parameter can be a callable Python object or a
RegEx.

The .read_text() method has the following arguments:
e df_args: Arguments to pass to the engine. It only applies to Pandas and cuDF dataframes.
e path: The path to the corpus.
* storage_options: Options that are necessary for connecting to OCI Object Storage.
* total_files: The maximum number of files that should be processed.

» udf: User-defined function for data transformation and filtering.

Examples
total_files

In this example, the are six files in the corpus. However, the total_files parameter is set to 4 so only the first four
files are processed. There is no guarantee which four will actually be processed. However, this parameter is commonly
used to limit the size of the data when you are developing the code for the model. Later on, it is often removed so the
entire corpus is processed.

This example also demonstrates the use of a list, plus globbing, to define the corpus. Notice that the path parameter is
a list with two file paths. The output shows the dataframe has four rows and so only four files were processed.

dl = textfactory.format('docx').engine('pandas')
df = dl.read_text(

path=[f'oci://{bucket @{namespace}/docx_sample/*.docx"', f'oci://{bucket @{namespace}/
—docx_sample/*.doc'],

total_files=4,

storage_options={"config": {}},

)
df.shape
(4, D
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.convert_to_text()

Converting a set of raw documents can be an expensive process. The .convert_to_text () method allows you to
convert a corpus of source document,s and write them out as plain text files. Each document input document is written
to a separate file that has the same name as the source file. However, the file extension is changed to . txt. Converting
the raw documents allows you to post-process the raw text multiple times while only have to convert it once.

The src_path parameter defines the location of the corpus. The dst_path parameter gives the location where the
plain text files are to be written. It can be an Object Storage bucket or the local block storage. If the directory does not
exist, it is created. It overwrites any files in the directory.

The .convert_to_text () method has the following arguments:
» dst_path: Object Storage or local block storage path where plain text files are written.
* encoding: Encoding for files. The default is ut£-8.
» src_path: The path to the corpus.
* storage_options: Options that are necessary for connecting to Object Storage.

The following example converts a corpus ,and writes it to a temporary directory. It then lists all the plain text files that
were created in the conversion process.

dst_path = tempfile.mkdtemp()

dl = textfactory.format('pdf')

dl.convert_to_text(
src_path=f'oci://{bucket }@{namespace//pdf_sample/*.pdf",
dst_path=dst_path,
storage_options={"config": {}},

)

print(os.listdir(dst_path))

shutil.rmtree(dst_path)

['paper-2.txt', 'paper-0.txt', 'Emerging Infectious Diseases copyright info.txt',
—'Preventing Chronic Disease Copyright License.txt', 'Budapest Open Access Initiative _.,
—Budapest Open Access Initiative.txt', 'paper-1.txt']

Each document can contain metadata. The purpose of the .metadata_all () method is to capture this information
for each document in the corpus. There is no standard set of metadata across all documents so each document could
return different set of values.

The path parameter is the only required parameter as it defines the location of the corpus.
The .metadata_all() method has the following arguments:

* encoding: Encoding for files. The default is ut£-8.

» path: The path to the corpus.

* storage_options: Options that are necessary for connecting to Object Storage.

The next example processes a corpus of PDF documents using pdfplumber, and prints the metadata for the first
document.

dl = textfactory.format('pdf').backend('pdfplumber').option(Options.FILE_NAME)
metadata = dl.metadata_all(

path=f'oci://{bucket }@{namespace}/pdf_sample/Emerging Infectious Diseases copyright..
—info.pdf",

(continues on next page)
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(continued from previous page)

storage_options={"config": {}}

)

next(metadata)

{'Creator': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML,.
—1ike Gecko) Chrome/91.0.4472.114 Safari/537.36"',

'Producer': 'Skia/PDF m91',

'CreationDate': "D:20210802234012+00'00'",

'ModDate': "D:20210802234012+00'00'"}

The backend that is used can affect what metadata is returned. For example, the Tika backend returns more metadata
than pdfplumber, and also the names of the metadata elements are also different. The following example processes
the same PDF document as previously used, but you can see that there is a difference in the metadata.

dl = textfactory.format('pdf').backend('default')
metadata = dl.metadata_all(
path=f'oci://{bucket }@{namespace}/pdf_sample/Emerging Infectious Diseases copyright..
—info.pdf',
storage_options={"config": {}}
)

next(metadata)

{'Content-Type': 'application/pdf',
'Creation-Date': '2021-08-02T23:40:12Z",
'Last-Modified': '2021-08-02T23:40:12Z',
'Last-Save-Date': '2021-08-02T23:40:12Z"',
'X-Parsed-By': ['org.apache.tika.parser.DefaultParser',
'org.apache.tika.parser.pdf.PDFParser'],

'access_permission:assemble_document': 'true',
'access_permission:can_modify': 'true',
'access_permission:can_print': 'true',
'access_permission:can_print_degraded': 'true',
'access_permission:extract_content': 'true',
'access_permission:extract_for_accessibility': 'true',
'access_permission:fill_in_form': 'true',
'access_permission:modify_annotations': 'true',

'created': '2021-08-02T23:40:12Z',

'date': '2021-08-02T23:40:12Z"',

'dc: format': 'application/pdf; version=1.4",

'dcterms:created': '2021-08-02T23:40:12Z"',

'dcterms:modified': '2021-08-02T23:40:12Z"',

'meta:creation-date': '2021-08-02T23:40:12Z',

'meta:save-date': '2021-08-02T23:40:12Z"',

'modified': '2021-08-02T23:40:12Z"',

'pdf:PDFVersion': '1.4'",

'pdf:charsPerPage': '2660',

'pdf:docinfo:created': '2021-08-02T23:40:12Z"',

'pdf:docinfo:creator_tool': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7).
—AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
'pdf:docinfo:modified': '2021-08-02T23:40:12Z",

'pdf:docinfo:producer': 'Skia/PDF m91',

'pdf:encrypted': 'false',

(continues on next page)
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(continued from previous page)

'pdf:hasMarkedContent': 'true',

'pdf:hasXFA': 'false',

'pdf:hasXMP': 'false',

'pdf:unmappedUnicodeCharsPerPage': '0',

'producer': 'Skia/PDF m91',

'xmp:CreatorTool': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36.
— (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36"',

'xmpTPg:NPages': '"1'}

“.metadata_schema()™

As briefly discussed in the .metadata_all() method section, there is no standard set of metadata across all doc-
uments. The .metadata_schema() method is a convenience method that returns what metadata is available in the
corpus. It returns a list of all observed metadata fields in the corpus. Since each document can have a different set of
metadata, all the values returned may not exist in all documents. It should also be noted that the engine used can return
different metadata for the same document.

The path parameter is the only required parameter as it defines the location of the corpus.

Often, you don’t want to process an entire corpus of documents to get a sense of what metadata is available. Generally,
the engine returns a fairly consistent set of metadata. The n_files option is handy because it limits the number of
files that are processed.

The .metadata_schema() method has the following arguments:
* encoding: Encoding for files. The default is ut£-8.
e n_files: Maximum number of files to process. The default is 1.
» path: The path to the corpus.
* storage_options: Options that are necessary for connecting to Object Storage.

The following example uses the .metadata_schema() method to collect the metadata fields on the first two files in
the corpus. The n_files=2 parameter is used to control the number of files that are processed.

dl = textfactory.format('pdf').backend('pdfplumber')
schema =dl.metadata_schema(
f'oci://{bucket @/namespace}/pdf_sample/*.pdf",
storage_options={"config": {}},
n_files=2
)

print (schema)

['ModDate', 'Producer', 'CreationDate', 'Creator']

9.7.2.3 Augment Records

The text_dataset module has the ability to augment the returned records with additional information using the .
option() method. This method takes an enum from the Options class. The .option() method can be used multiple
times on the same DatalLoader to select a set of additional information that is returned. The Options.FILE_NAME
enum returns the filename that is associated with the record. The Options.FILE_METADATA enum allows you to
extract individual values from the document’s metadata. Notice that the engine used can return different metadata for
the same document.
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9.7.2.3.1 Examples

“Options.FILE_NAME™

The following example uses .option(Options.FILE_NAME) to augment to add the filename of each record that is
returned. The example uses the txt for the FileProcessor, and Tika for the backend. The engine is Pandas so a
dataframe is returned. The df_args option is used to rename the columns of the dataframe. Notice that the returned
dataframe has a column named path. This is the information that was added to the record from the .option(Options.
FILE_NAME) method.

dl
df

textfactory.format('txt').backend('tika').engine('pandas').option(Options.FILE_NAME)
dl.read_text(

path=f'oci://{bucket '@/namespace}/20news-small/**/[1-9]*",

storage_options={"config": {}},

df_args={'columns': ['path', 'text']}

()ilf.head()
path text
0 hosted-ds-datasets@bigdatadatasciencelarge/20n... \tThe Orioles' pitching staff again is having ...
1 hosted-ds-datasets@bigdatadatasciencelarge/20n... Subject: Re: Eck vs Rickey (was Re: Rickey's w...
2 hosted-ds-datasets@bigdatadatasciencelarge/20n... Hell, the Orioles' Opening Day game could easi...
3 hosted-ds-datasets@bigdatadatasciencelarge/20n... There's a lot of whining about how much player...
4 hosted-ds-datasets@bigdatadatasciencelarge/20n... In article <1993Apr5.173500.26383@ra.msstate.e...

“Options.FILE_METADATA™

You can add metadata about a document to a record using .option(Options.FILE_METADATA, {'extract':
['<keyl>, '<key2>']1}). When using Options.FILE_METADATA, there is a required second parameter. It takes a
dictionary where the key is the action to be taken. In the next example, the extract key provides a list of metadata
that can be extracted. When a list is used, the returned value is also a list of the metadata values. The example uses
repeated calls to .option() where different metadata values are extracted. In this case, a list is not returned, but each
value is in a separate Pandas column.

dl = textfactory.format('docx').engine('pandas') \
.option(Options.FILE_METADATA, {'extract': ['Character Count']}) \
.option(Options.FILE_METADATA, {'extract': ['Paragraph-Count']}) \
.option(Options.FILE_METADATA, {'extract': ['Author']l})

df = dl.read_text(
path=f'oci://{bucket @/namespace}/docx_sample/*.docx"',
storage_options={"config": {}},
df_args={'columns': ['character count', 'paragraph count', 'author', 'content']},

df.head()
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character count paragraph count author content
0 [444461] [1042] [miked_000] notes\n\nGeography Proper\nGenerally, geograph...
1 [444461] [1042] [miked_000] notes\n\nGeography Proper\nGenerally, geograph...
2 [119218] [279] [Miranda, Team 2012] ***The Gift K¥**\nNotes\n\nRelation to Colonia...

9.7.2.4 Custom File Processor and Backend

The text_dataset module supports a number of file processors and backends. However, it isn’t practical to provide
these for all possible documents. So, the text_dataset allows you to create your own.

When creating a custom file processor, you must register it with ADS using the FileProcessorFactory.
register() method. The first parameter is the name that you want to associate with the file processor. The second
parameter is the class that is to be registered. There is no need to register the backend class.

9.7.2.4.1 Custom Backend

To create a backend, you need to develop a class that inherits from the ads.text_dataset.backends.Base class.
In your class, you need to overload any of the following methods that you want to use with: .read_line(), .
read_text(), .convert_to_text(), and .get_metadata(). The .get_metadata() method must be overload if
you want to use the .metadata_all() and .metadata_schema() methods in your backend.

The .convert_to_text() method takes a file handler, destination path, filename, and storage options as parameters.
This method must write the plain text file to the destination path, and return the path of the file.

The .get_metadata() method takes a file handler as an input parameter, and returns a dictionary of the meta-
data. The .metadata_all() and .metadata_schema() methods don’t need to be overload because they use the
.get_metadata() method to return their results.

The .read_line() method must take a file handle, and have a yield statement that returns a plain text line from the
document.

The .read_text () method has the same requirements as the .read_line () method, except it must yield the entire
document as plain text.

The following are the method signatures:

convert_to_text(self, fhandler, dst_path, fname, storage_options)
get_metadata(self, fhandler)

read_line(self, fhandler)

read_text(self, fhandler)

9.7.2.4.2 Custom File Processor

To create a custom file processor you must develop a class that inherits from ads.text_dataset.extractor.
FileProcessor. Generally, there are no methods that need to be overloaded. However, the backend_map class
variable has to be defined. This is a dictionary where the key is the name of the format that it support,s and the value
is the file processor class. There must be a key called default that is used when no file processor is defined for the
DataLoader. An example of the backend_map is:

backend_map = {'default': MyCustomBackend, 'tika': Tika, 'custom': MyCustomBackend}
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9.7.2.4.3 Example

In the next example, you create a custom backend class called ReverseBackend. It overloads the .read_line() and
.read_text () methods. This toy backend returns the records in reverse order.

The TextReverseFileProcessor class is used to create a new file processor for use with the backend. This class
has the backend_map class variable that maps the backend label to the backend object. In this case, the only format
that is provided is the default class.

Having defined the backend (TextReverseBackend) and file processor (TextReverseFileProcessor) classes,
the format must be registered. You register it with the FileProcessorFactory.register('text_reverse',
TextReverseFileProcessor) command where the first parameter is the format and the second parameter is the
file processor class.

class TextReverseBackend(Base):
def read_line(self, fhandler):
with fhandler as f:
for line in f:
yield line.decode()[::-1]

def read_text(self, fhandler):
with fhandler as f:
yield f.read().decode()[::-1]

class TextReverseFileProcessor(FileProcessor):
backend_map = {'default': TextReverseBackend}

FileProcessorFactory.register('text_reverse', TextReverseFileProcessor)

Having created the custom backend and file processor, you use the .read_line() method to read in one record and
print it.

dl = textfactory.format('text_reverse')

reverse_text = dl.read_line(
f'oci://{bucket}@{namespace}/20news-small/rec.sport.baseball/100521",
total_lines=1,
storage_options={"config": {}},

)
text = next(reverse_text)[0]
print (text)

Juil C evetS( ude.uhj.fch.xinuhj@larimda :morF

The .read_line() method in the TextReverseBackend class reversed the characters in each line of text that is
processed. You can confirm this by reversing it back.

text[::-1]

'From: admiral@jhunix.hcf.jhu.edu (Steve C Liu)n'
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CHAPTER
TEN

VISUALIZE DATA

Data visualization is an important aspect of data exploration, analysis, and communication. Generally, visualization of
the data is one of the first steps in any analysis. It allows the analysts to efficiently gain an understanding of the data
and guides the exploratory data analysis (EDA) and the modeling process.

An efficient and flexible data visualization tool can provide a lot of insight into the data. ADS provides a smart visual-
ization tool. It automatically detects the data type and renders plots that optimally represent the characteristics of the
data. Within ADS, custom visualizations can be created using any plotting library.

10.1 Automatic

The ADS show_in_notebook () method creates a comprehensive preview of all the basic information about a dataset
including:

» The predictive data type (for example, regression, binary classification, or multinomial classification).
* The number of columns and rows.

¢ Feature type information.

* Summary visualization of each feature.

* The correlation map.

¢ Any warnings about data conditions that you should be aware of.

To improve plotting performance, the ADS show_in_notebook () method uses an optimized subset of the data. This
smart sample is selected so that it is statistically representative of the full dataset. The correlation map is only displayed
when the data only has numerical (continuous or oridinal) columns.

ds.show_in_notebook ()

To visualize the correlation, call the show_corr () method. If the correlation matrices have not been cached, this call
triggers the corr () function which calculates the correlation matrices.

corr () uses the following methods to calculate the correlation based on the data types:

 Continuous-Continuous: "Pearson  method  <https://en.wikipedia.org/wiki/Pearson_correlation_
coefficient>"__. The correlations range from -1 to 1.

» Categorical-Categorical: "~Cramer's V method <https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V>"_.
The correlations range from 0O to 1.

* Continuous-Categorical: “Correlation Ratio method <https://en.wikipedia.org/wiki/Correlation_
ratio>"__. The correlations range from O to 1.
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~ Summary

Name: DataFrame from oracle_classification_dataset1_150K.csv
Type: BinaryClassificationDataset
150,000 Rows, 49 Columns

Column Types:

« continuous: 39 features

+ categorical: 10 features

Note: Visualizations use a sampled subset of the dataset, this is to improve plotting performance. The sample size is tobe

has 10,000 rows

* The confidence level refers to the long-term success rate of the method, that is, how often this type of interval will capture the parameter of interest.

* A specific confidence interval gives a range of plausible values for the parameter of interest

» Features (49)
» Correlations

» Warnings (3)

- Features (49)

« Note these are computed on the entire dataset.

count mean  std min  25% 50% 75% max missing skew
class 150000 053 05 0 0 1 1 1 0 -0.11541953
col01 150000 001 368 -1622 -247 001 247 1648 0 -0.001944536
col02 150000101 03 10 10 0 10 n 0 2670402
col03 150000 0 221 052 -148 0 15 994 0 0.0021300788
col04 150000 079  200.6 -889.09 -134.85 0.22 136.36 1124.37 0 0.0021092156
col05 150000 -0 012 -068 -005 -0 005 07 0 -0.022465346
col06 150000 -0.01 301 -1508 -201 -001 201 149 0 -0.0033007577
col07 150000 -9.3 046 -10 -10 -9 -9 -9 0 -0.87149529
col08 1500001009 03 100 10 101 101 101 0 26545245
col09 150000 -9.3 046 -10 -10 -9 -9 -9 0 -0.87139146
€0l010 150000 -0 04 165 -027 -0 027 183 0 0.00080830709
col011 150000 1000.99 1.4 1000 1000 1000 10031 10031 0 0.77117106
col012 150000 10.2 04 10 10 0 10 n 0 14987655

within the

level: 95 and i interval: 1.0. The sampled data
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Feature Visualizations...

class

- type: categorical (int64)

- missing_percentage: 0.0%

- categorical statistics:
- unique percentage: 0.020%
- mode: 1
- count: 10,000
- unique: 2
- top: 1 . - -
. freq 5249 0 1000 2000 3000 4000 5000

col0l

- type: continuous (float64)
- missing_percentage: 0.0%
- continuous statistics: | m __:I:'_—.

- mode: -12.888

- median: 0.049

- kurtosis: 0.064

variance: 13.632

- skewness: 0.051 - - = - o T

- outlier_percentage: 0.220% ’ ! N ’

- count: 10,000

- mean: 0.050

- std: 3.692

- min: -12.888

- 25%: -2.440

- 50%: 0.049

- 75%: 2.454

- max: 13.991

col02

- type: categorical (float64)

- missing_percentage: 0.0%

- categorical statistics:
- unique percentage: 0.020%
- mode: 10
- count: 10,000
- unique: 2
-top: 10 i . -
. freq 9043 0 2000 4000 ©o00 8000
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Correlations are displayed independently because the correlations are calculated using different methodologies and the
ranges are not the same. Consolidating them into one matrix could be confusing and inconsistent.

Note:  Continuous features consist of continuous and ordinal types. Categorical features consist of
categorical and zipcode types.

ds.show_corr(nan_threshold=0.8, correlation_methods='all")
G BokehJS 1.4.0 successfully loaded.

Continuous vs Continuous ~ Category vs Category  Category vs Continuous

Continuous vs Continuous
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By default, nan_threshold is set to 0.8. This means that if more than 80% of the values in a column are missing,
that column is dropped from the correlation calculation. nan_threshold should be between 0 and 1. Other options
includes:

* correlation_methods: Methods to calculate the correlation. By default, only pearson correlation is calcu-
lated and shown. Can select one or more from pearson, cramers v, and correlation ratio. Orsetto all
to show all correlation charts.

e correlation_target: Defaults to None. It can be any columns of type continuous, ordinal, categorical
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'} BokahJS 1.4.0 succassfully loaded.
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O Bokehds 1.4.0 successfully loaded.

Continuous vs Continuous  Category vs Category  Category vs Continuous
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or zipcode. When correlation_target is set, only pairs that contain correlation_target display.

correlation_threshold: Apply afilter to the correlation matrices and only exhibit the pairs whose correlation
values are greater than or equal to the correlation_threshold.

force_recompute: Defaults to False. Correlation matrices are cached. Set force_recompute to True
to recalculate the correlation. Note that both corr() and show_corr() method can trigger calculation of
correlation matrices if run with force_recompute set to be True, or when there is no cached value exists.
show_in_notebook () calculates the correlation only when there are only numerical columns in the dataset.

frac: Defaults to 1. The portion of the original data to calculate the correlation on. frac must be between 0
and 1.

plot_type: Defaults to heatmap. Valid values are heatmap and bar. If bar is chosen, correlation_target
also has to be set and the bar chart will only show the correlation values of the pairs which have the target in
them.

ds.show_corr(correlation_target="'col®1', plot_type="bar")

,:'} BokehJS 1.4.0 successfully loaded.

Th

& correlation matrix has been cached. Please make sure overwrite=True if you want to recalculate the correlation.

Continuous vs Continuous ~ Category vs Category  Category vs Continuous

Continuous vs Continuous (col01)

|col020
|col018
jcol0iB ue
col017
Jcolo16
Jcol015
| colo11 wae
col010
Jj col06
col05
col04 an

Jcolo3

To explore features, use the smart plot () method. It accepts one or two feature names. The show_in_notebook ()
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method automatically determines the best type of plot based on the type of features that are to be plotted.

Three different examples are described. They use a binary classification dataset with 1,500 rows and 21 columns. 13
of the columns have a continuous data type, and 8 are categorical. There are three different examples.

* A single categorical feature: The plot() method detects that the feature is categorical because it only has the
values of 0 and 1. It then automatically renders a plot of the count of each category.

ds.plot("col02").show_in_notebook(figsize=(4,4))

NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)
Set yscaletoone of 'linear', 'log', 'symlog' , 'logit’ toapply scale toy axis

_SINGLE_COLUMN_COUNT_PLOT, "col02" (categorical)

6000

count

1.0

col02

 Categorical and continuous feature pair: ADS chooses the best plotting method, which is a violin plot.

ds.plot("col02", y="col®1").show_in_notebook(figsize=(4,4))

* A pair of continuous features: ADS chooses a Gaussian heatmap as the best visualization. It generates a scatter
plot and assigns a color to each data point based on the local density (Gaussian kernel).

ds.plot("col0®1", y="col03").show_in_notebook()
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NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)

_VIOLIN_PLOT, "col02" (categorical) vs "col01" (continuous)

o

col01
(=]

NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)

_GAUSSIAN_HEATMAP, "col01" (continuous) vs "col03" (continuous)
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10.2 Customized

ADS provides intelligent default options for your plots. However, the visualization API is flexible enough to let you
customize your charts or choose your own plotting library. You can use the ADS call () method to select your own
plotting routine.

10.2.1 Seaborn

In this example, a dataframe is passed directly to the Seaborn pair plot function. It does a faceted, pairwise plot between
all the features in the dataset. The function creates a grid of axises such that each variable in the data is shared in the y-
axis across a row and in the x-axis across a column. The diagonal axises are treated differently by drawing a histogram
of each feature.

import seaborn as sns

from sklearn.datasets import load_iris

import pandas as pd

data = load_iris(Q)

df = pd.DataFrame(data.data, columns=data.feature_names)
sns.set(style="ticks", color_codes=True)

sns.pairplot (df.dropna())

10.2.2 Matplotlib

» Using Matplotlib:

import matplotlib.pyplot as plt
from numpy.random import randn

df = pd.DataFrame(randn(1000, 4), columns=1list('ABCD'))

def ts_plot(df, figsize):
ts = pd.Series(randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df.set_index(ts)
df = df.cumsum()
plt.figure()
df.plot(figsize=figsize)
plt.legend(loc="hest")

ts_plot(df, figsize=(7,7))

* Using a Pie Chart:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data = {'data': [1109, 696, 353, 192, 168, 86, 74, 65, 53]}
df = pd.DataFrame(data, index = ['20-50 km', '50-75 km', '10-20 km', '75-100 km',
~'3-5 km', '7-10 km', '5-7 km', '>100 km', '2-3 km'])

explode = (0, 0, 0, 0.1, 0.1, 0.2, 0.3, 0.4, 0.6)

(continues on next page)
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I Using entire dataset for graphing (150 rows)

Use set_target() totype the dataset for a particular learning task

<seaborn.axisgrid.PairGrid at 0x1153adcB88>
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I Using entire dataset for graphing (1000 rows)

TIP:
+ Use show_in notebook() to visualize the dataset.

+ Use get_ recommendations() toview and apply recommendations for dataset optimization.

<Figure size 432x288 with 0 Axes>

0 200 400 600 800 1000

colors = ['#191970', '#001CFO', '#0038E2', '#0055D4',

v
=g

"#00C69C', '#OOE28E', '#OOFF80', ]

def bar_plot(df, figsize):

(continued from previous page)

'#0071C6', '#008DB8', '#O0O0AAAA

df["data"].plot(kind="pie', fontsize=17, colors=colors, explode=explode)

plt.axis('equal")
plt.ylabel('")

plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

plt.show()

bar_plot(df, figsize=(7,7))

I Using entire dataset for graphing (9 rows)

Use set_target() totype the dataset for a particular learning task
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10.2.3 Geographic Information System (GIS)

This example uses the California earthquake data retrieved from United States Geological Survey (USGS) earthquake
catalog. It visualizes the location of major earthquakes.

earthquake.plot_gis_scatter(lon="longitude", lat="latitude")
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CHAPTER
ELEVEN

TRAIN MODELS

In this section you will learn about model training on the Data Science cloud service using a variety of popular frame-
works. This section covers the popular sklearn framework, along with gradient boosted tree estimators like LightGBM
and XGBoost, Oracle AutoML and deep learning packages likes TensorFlow and PyTorch.

The section covers how to serialize models and make use of the OCI Model Catalog to store model artifacts and meta
data all using ADS to prepare the upload.

In the distributed training section you will see examples of how to work with Dask, Horovod, TensorFlow and PyTorch
to do multinode training.

TensorBoard provides the visualization and the tooling that is needed to watch and record model training progress
throughout the tuning stages.

11.1 ADSTuner

In addition to the other services for training models, ADS includes a hyperparameter tuning framework called
ADSTuner.

ADSTuner supports using several hyperparameter search strategies that plug into common model architectures like
sklearn.

ADSTuner further supports users defining their own search spaces and strategies. This makes ADSTuner functional
and useful with any ML library that doesn’t include hyperparameter tuning.

First, import the packages:

import category_encoders as ce
import lightgbm

import logging

import numpy as np

import os

import pandas as pd

import pytest

import sklearn

import xgboost

from ads.hpo.stopping_criterion import *
from ads.hpo.distributions import *
from ads.hpo.search_cv import ADSTuner, NotResumableError

from lightgbm import LGBMClassifier
from sklearn import preprocessing

(continues on next page)
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(continued from previous page)

from sklearn.compose import ColumnTransformer

from sklearn.datasets import load_iris, load_boston

from sklearn.decomposition import PCA

from sklearn.ensemble import AdaBoostRegressor, AdaBoostClassifier
from sklearn.impute import SimpleImputer

from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.metrics import make_scorer, fl_score

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import SelectKBest, f_classif

from xgboost import XGBClassifier

This is an example of running the ADSTuner on a support model SGD from sklearn:

model = SGDClassifier() ##Initialize the model

X, y = load_iris(return_X_y=True)

X_train, X_valid, y_train, y_valid = train_test_split(X, y)
tuner = ADSTuner(model, cv=3) ## cv is cross validation splits
tuner.search_space() ##This is the default search space
tuner.tune(X_train, y_train, exit_criterion=[NTrials(10)])

ADSTuner generates a tuning report that lists its trials, best performing hyperparameters, and performance statistics
with:

[I 2020-10-23 21:56:17,630] Trial 9 finished with value: ©.8316737790422001 and parameters: {'alpha': 0.0002576226059719444, 'penalty': '12'}. Best is trial 9 with value: @.831673779@
422001.

[I 2020-10-23 21:56:17,674] Trial 5 finished with value: ©.9106211474632527 and parameters: {'alpha': 0.87161796713234189, ‘penalty’': '12'}. Best is trial 5 with value: 0.910621147463
2527.

[I 2020-10-23 21:56:17,792] Trial 3 finished with value: ©.9642010431484116 and parameters: {'alpha': 0.006158601374396708, 'penalty': 'none'}. Best is trial 3 with value: 0.964201043
1484116.

[I 2020-10-23 21:56:17,891] Trial 4 finished with value: ©.7956377430061642 and parameters: {'alpha': 0.0008008011222908228, 'penalty': '12'}. Best is trial 3 with value: ©.9642010431
484116.

[I 2020-10-23 21:56:17,903] Trial 6 finished with value: ©.9551920341394027 and parameters: {'alpha': 0.002629113116871369, 'penalty': 'l1'}. Best is trial 3 with value: 0.96420104314
84116.

[I 2020-10-23 21:56:17,937] Trial 7 finished with value: ©.9642010431484116 and parameters: {'alpha': 0.0007283968106220585, 'penalty': 'none'}. Best is trial 3 with value: 0.96420104
31484116.

[I 2020-10-23 21:56:17,940] Trial 1 finished with value: ©.9551920341394026 and parameters: {'alpha': 0.0003638169088886491, 'penalty': 'l1'}. Best is trial 3 with value: ©.9642010431
484116.

[I 2020-10-23 21:56:17,955] Trial 2 pruned. trial was pruned at iteration 99.

[T 2026-10-23 21:56:18,097] Trial 8 finished with value: 8.9732108521574285 and parameters: {'alpha': 8.006335356664818435, 'penalty': 'l1'}. Best is trial 8 with value: 08.97321005215
74205.

[T 2026-10-23 21:56:18,101] Trial @ finished with value: 8.9642010431484116 and parameters: {'alpha': 8.0013210136796797667, 'penalty': 'l1'}. Best is trial 8 with value: ©.9732100521
574205.

CPU times: user 16.4 s, sys: 8.99 s, total: 25.3 s

Wall time: 16.4 s

You can use tuner.best_score to get the best score on the scoring metric used (accessible as™ tuner.scoring_name’")
The best selected parameters are obtained with tuner.best_params and the complete record of trials with tuner.
trials

If you have further compute resources and want to continue hyperparameter optimization on a model that has already
been optimized, you can use:

tuner.resume(exit_criterion=[TimeBudget(5)], loglevel=logging.NOTSET)
print('So far the best {} score is {}'.format(tuner.scoring name, tuner.best_score))
print("The best trial found was number: " + str(tuner.best_index))

ADSTuner has some robust visualization and plotting capabilities:

tuner.plot_best_scores()
tuner.plot_intermediate_scores()

tuner.search_space()
tuner.plot_contour_scores(params=['penalty', 'alpha'l])

(continues on next page)
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(continued from previous page)

tuner.plot_parallel_coordinate_scores(params=['penalty', 'alpha'])
tuner.plot_edf_scores()

These commands produce the following plots:

Contour Plot

Objective Value
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ADSTuner supports custom scoring functions and custom search spaces. This example uses a different model:

model2 = LogisticRegression()

tuner = ADSTuner (model2,

tuner.tune(X_train, y_train, exit_criterion=[NTrials(5)])

ADSTuner doesn’t support every model. The supported models are:

strategy = {

'C': LogUniformDistribution(low=1e-05, high=1),
'solver': CategoricalDistribution(['saga']),

'max_iter': IntUniformDistribution(500,

1000,

501,

scoring=make_scorer(fl_score, average='weighted'),

cv=3)

‘Ridge’,

‘RidgeClassifier’,

‘Lasso’,

‘ElasticNet’,
‘LogisticRegression’,

‘SvC’,

‘SVR’,

‘LinearSVC’,

‘LinearSVR’,
‘DecisionTreeClassifier’,
‘DecisionTreeRegressor’,
‘RandomForestClassifier’,
‘RandomForestRegressor’,
‘GradientBoostingClassifier’,
‘GradientBoostingRegressor’,
‘XGBClassifier’,
‘XGBRegressor’,
‘ExtraTreesClassifier’,
‘ExtraTreesRegressor’,

‘LGBMClassifier’,

126
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* ‘LGBMRegressor’,
¢ ‘SGDClassifier’,
* ‘SGDRegressor’

The AdaBoostRegressor model is not supported. This is an example of a custom strategy to use with this model:

model3 = AdaBoostRegressor()

X, y = load_boston(return_X_y=True)

X_train, X_valid, y_train, y_valid = train_test_split(X, y)

tuner = ADSTuner(model3, strategy={'n_estimators': IntUniformDistribution(50, 100)})
tuner. tune(X_train, y_train, exit_criterion=[TimeBudget(5)])

Finally, ADSTuner supports sklearn pipelines:

df, target = pd.read_csv(os.path.join('~", 'advanced-ds', 'tests', 'vor_datasets',6 'vor_
—titanic.csv')), 'Survived'
X = df.drop(target, axis=1)

y = df[target]

numeric_features = X.select_dtypes(include=['int64', 'float64', 'int32', 'float32']).
—,columns

categorical_features = X.select_dtypes(include=['object', 'category', 'bool']).columns

y = preprocessing.LabelEncoder().fit_transform(y)

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.3, random_
<Hstate:42)

num_features = len(numeric_features) + len(categorical_features)

numeric_transformer = Pipeline(steps=[
("'num_imputer', SimpleImputer(strategy='median')),
('num_scaler', StandardScaler())

D

categorical_transformer = Pipeline(steps=[
('cat_imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('cat_encoder', ce.woe.WOEEncoder())

D

preprocessor = ColumnTransformer (
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)

)

pipe = Pipeline(
steps=[
('preprocessor', preprocessor),
('feature_selection', SelectKBest(f_classif, k=int(0.9 * num_features))),
('classifier', LogisticRegression())

(continues on next page)
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(continued from previous page)

)

def customerize_score(y_true, y_pred, sample_weight=None):
score = y_true == y_pred
return np.average(score, weights=sample_weight)

score = make_scorer(customerize_score)
ads_search = ADSTuner(
pipe,
scoring=score,
strategy="'detailed"',
cv=2,
random_state=42

)

ads_search.tune(X=X_train, y=y_train, exit_criterion=[NTrials(20)])

11.1.1 Notebook Example: Hyperparameter Optimization with ADSTuner

Overview:

A hyperparameter is a parameter that is used to control a learning process. This is in contrast to other parameters
that are learned in the training process. The process of hyperparameter optimization is to search for hyperparameter
values by building many models and assessing their quality. This notebook provides an overview of the ADSTuner
hyperparameter optimization engine. ADSTuner can optimize any estimator object that follows the scikit-learn API.

Objectives:

* Introduction
— Synchronous Tuning with Exit Criterion Based on Number of Trials
— Asynchronously Tuning with Exit Criterion Based on Time Budget
— Inspecting the Tuning Trials

* Defining a Custom Search Space and Score
— Changing the Search Space Strategy

* Optimizing a scikit-learn Pipeline ()

e References

Important:

Placeholder text for required values are surrounded by angle brackets that must be removed when adding the indicated
content. For example, when adding a database name to database_name = "<database_name>" would become
database_name = "production".

Datasets are provided as a convenience. Datasets are considered third party content and are not considered materials
under your agreement with Oracle applicable to the services. The iris dataset is distributed under the BSD license.
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import category_encoders as ce
import lightgbm

import logging

import numpy as np

import os

import pandas as pd

import sklearn

import time

from ads.hpo.stopping_criterion import *
from ads.hpo.distributions import *
from ads.hpo.search_cv import ADSTuner, State

from sklearn import preprocessing

from sklearn.compose import ColumnTransformer

from sklearn.datasets import load_iris, load_boston

from sklearn.decomposition import PCA

from sklearn.impute import SimpleImputer

from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.metrics import make_scorer, fl_score

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import SelectKBest, f_classif

Introduction
Hyperparameter optimization requires a model, dataset, and an ADSTuner object to perform the search.

ADSTuner () Performs a hyperparameter search using cross-validation. You can specify the number of folds you want
to use with the cv parameter.

Because the ADSTuner () needs a search space in which to tune the hyperparameters, you must use the strategy
parameter. This parameter can be set in two ways. You can specify detailed search criteria or you can use the built-
in defaults. For the supported model classes, ADSTuner provides perfunctoryand detailed search spaces that are
optimized for the chosen class of model. The perfunctory option is optimized for a small search space so that the most
important hyperparameters are tuned. Generally, this option is used early in your search as it reduces the computational
cost and allows you to assess the quality of the model class that you are using. The detailed search space instructs
ADSTuner to cover a broad search space by tuning more hyperparameters. Typically, you would use it when you have
determined what class of model is best suited for the dataset and type of problem you are working on. If you have
experience with the dataset and have a good idea of what the best hyperparameter values are, you can explicitly specify
the search space. You pass a dictionary that defines the search space into the strategy.

The parameter storage takes a database URL. For example, sqlite:////home/datascience/example.db. When
storage is set to the default value None, a new sqlite database file is created internally in the tmp folder with a unique
name. The name format is sqlite:////tmp/hpo_*.db. study_name is the name of this study for this ADSTuner
object. Each ADSTuner object has a unique study_name. However, one database file can be shared among different
ADSTuner objects. load_if_exists controls whether to load an existing study from an existing database file. If
False, it raises a DuplicatedStudyError when the study_name exists.

The loglevel parameter controls the amount of logging information displayed in the notebook.

This notebook uses the scikit-learn SGDClassifer () model and the iris dataset. This model object is a regularized
linear model with stochastic gradient descent (SGD) used to optimize the model parameters.

The next cell creates the SGDClassifer () model, initialize san ADSTuner object, and loads the iris data.
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tuner = ADSTuner (SGDClassifier(), cv=3, loglevel=logging.WARNING)
X, y = load_iris(return_X_y=True)

[32m[I 2021-04-21 20:04:03,435][0m A new study created with name: hpo_22cfd4d5-c512-4e84-
—b7£8-d6d9c721££05[Om

Each model class has a set of hyperparameters that you need to optimized. The strategy attribute returns what
strategy is being used. This can be perfunctory, detailed, or a dictionary that defines the strategy. The method
search_space() always returns a dictionary of hyperparameters that are to be searched. Any hyperparameter that is
required by the model, but is not listed, uses the default value that is defined by the model class. To see what search
space is being used for your model class when strategy is perfunctory or detailed use the search_space()
method to see the details.

The adstuner_search_space_update.ipynb notebook has detailed examples about how to work with and update
the search space.

The next cell displaces the search strategy and the search space.

print(f'Search Space for strategy "{tuner.strategy/" is: \n {tuner.search_space()}')

Search Space for strategy "perfunctory" is:
{'alpha': LogUniformDistribution(low=0.0001, high=0.1), 'penalty':.
—.CategoricalDistribution(choices=['11", '12', 'none'])}

The tune () method starts a tuning process. It has a synchronous and asynchronous mode for tuning. The mode is set
with the synchronous parameter. When it is set to False, the tuning process runs asynchronously so it runs in the
background and allows you to continue your work in the notebook. When synchronous is set to True, the notebook
is blocked until tune () finishes running. The adntuner_sync_and_async. ipynb notebook illustrates this feature
in a more detailed way.

The ADSTuner object needs to know when to stop tuning. The exit_criterion parameter accepts a list of criteria
that cause the tuning to finish. If any of the criteria are met, then the tuning process stops. Valid exit criteria are:

e NTrials(n): Run for n number of trials.

e TimeBudget (t): Run for t seconds.

e ScoreValue(s): Run until the score value exceeds s.
The default behavior is to run for 50 trials (NTrials(50)).
The stopping criteria are listed in the ads.hpo.stopping_criterion module.
Synchronous Tuning with Exit Criterion Based on Number of Trials

This section demonstrates how to perform a synchronous tuning process with the exit criteria based on the number of
trials. In the next cell, the synchronous parameter is set to True and the exit_criterionis setto [NTrials(5)].

tuner.tune(X, y, exit_criterion=[NTrials(5)], synchronous=True)

You can access a summary of the trials by looking at the various attributes of the tuner object. The scoring_name
attribute is a string that defines the name of the scoring metric. The best_score attribute gives the best score of all
the completed trials. The best_params parameter defines the values of the hyperparameters that have to lead to the
best score. Hyperparameters that are not in the search criteria are not reported.

print(f"So far the best {tuner.scoring_name/ score is {tuner.best_score} and the best.
—hyperparameters are {tuner.best_params}")
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So far the best mean accuracy score is 0.9666666666666667 and the best hyperparameters.
—are {'alpha': 0.002623793623610696, 'penalty': 'none'}

You can also look at the detailed table of all the trials attempted:

tuner.trials.tail()

Asynchronously Tuning with Exit Criterion Based on Time Budget

ADSTuner () tuner can be run in an asynchronous mode by setting synchronous=False in the tune () method. This
allows you to run other Python commands while the tuning process is executing in the background. This section
demonstrates how to run an asynchronous search for the optimal hyperparameters. It uses a stopping criteria of five
seconds. This is controlled by the parameter exit_criterion=[TimeBudget (5)]

The next cell starts an asynchronous tuning process. A loop is created that prints the best search results that have been
detected so far by using the best_score attribute. It also displays the remaining time in the time budget by using the
time_remaining attribute. The attribute status is used to exit the loop.

# This cell will return right away since it's running asynchronous.

tuner. tune(exit_criterion=[TimeBudget(5)])
while tuner.status == State.RUNNING:

print(f"So far the best score is

—remaining /")
time.sleep(1)

tuner.best_score

and the time left is

tuner.time_

So far the best score is 0.9666666666666667 and the time left is 4.977275848388672

So far the best score is 0.9666666666666667 and the time left is 3.9661824703216553
So far the best score is 0.9666666666666667 and the time left is 2.9267797470092773
So far the best score is 0.9666666666666667 and the time left is 1.912914752960205

So far the best score is 0.9733333333333333 and the time left is 0.9021461009979248
So far the best score is 0.9733333333333333 and the time left is 0

The attribute best_index givse you the index in the trials data frame where the best model is located.

tuner.trials.loc[tuner.best_index, :]

number

value
datetime_start
datetime_complete
duration

10

0.98

2021-04-21 20:04:17.013347
2021-04-21 20:04:18.623813
0 days 00:00:01.610466

params_alpha 0.014094
params_penalty 11
user_attrs_mean_fit_time 0.16474
user_attrs_mean_score_time 0.024773
user_attrs_mean_test_score 0.98
user_attrs_metric mean accuracy
user_attrs_split®_test_score 1.0
user_attrs_splitl_test_score 1.0
user_attrs_split2_test_score 0.94
user_attrs_std_fit_time 0.006884
user_attrs_std_score_time 0.00124
user_attrs_std_test_score 0.028284

(continues on next page)
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(continued from previous page)

state COMPLETE
Name: 10, dtype: object

The attribute n_trials reports the number of successfully completed trials.

print(£f"The total of trials was: {tuner.n_trials}.")

The total of trials was: 11.

Inspecting the Tuning Trials
You can inspect the tuning trials performance using several built-in plots.

Note: If the tuning process is still running in the background, the plot runs in real time to update the new changes until
the tuning process completes.

# tuner.tune(exit_criterion=[NTrials(5)], loglevel=logging.WARNING) # uncomment this.
—line to see the real-time plot.
tuner.plot_best_scores()

tuner.plot_intermediate_scores()
tuner.plot_contour_scores(params=['penalty', 'alpha'l])
tuner.plot_parallel_coordinate_scores(params=['penalty', 'alpha'])
tuner.plot_edf_scores()

tuner.plot_param_importance()

Waiting for more trials before evaluating the param importance.

Defining a Custom Search Space and Score
Instead of using a perfunctory or detailed strategy, define a custom search space strategy.

The next cell, creates a LogisticRegression() model instance then defines a custom search space strategy for the
three LogisticRegression() hyperparameters, C, solver, and max_iter parameters.

You can define a custom scoring parameter, see Optimizing a scikit-learn Pipeline () though this example uses the
standard weighted average F}, f1_score.

tuner = ADSTuner(LogisticRegression(),
strategy = {'C': LogUniformDistribution(low=1e-05, high=1),
'solver': CategoricalDistribution(['saga']),
'max_iter': IntUniformDistribution(500, 2000, 50)},
scoring=make_scorer(fl_score, average='weighted'),
cv=3)
tuner.tune(X, y, exit_criterion=[NTrials(5)], synchronous=True, loglevel=logging.WARNING)

Changing the Search Space Strategy
You can change the search space in the following three ways:

* Add new hyperparameters
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* Remove existing hyperparameters
* Modify the range of existing non-categorical hyperparameters

Note: You can’t change the distribution of an existing hyperparameter or make any changes to a hyperparameter that
is based on a categorical distribution. You need to initiate a new ADSTuner object for those cases. For more detailed
information, review the adstuner_search_space_update.ipynb notebook.

The next cell switches to a detailed strategy. All previous values set for C, solver, and max_iter are kept,
and ADSTuner infers distributions for the remaining hyperparameters. You can force an overwrite by setting
overwrite=True.

tuner.search_space(strategy="'detailed")

{'C': LogUniformDistribution(low=1e-05, high=10),
'solver': CategoricalDistribution(choices=['saga']),
'max_iter': IntUniformDistribution(low=500, high=2000, step=50),
"dual': CategoricalDistribution(choices=[False]),
'penalty': CategoricalDistribution(choices=['elasticnet']),
'l1_ratio': UniformDistribution(low=0, high=1)}

Alternatively, you can edit a subset of the search space by changing the range.

tuner.search_space(strategy={'C': LogUniformDistribution(low=1e-05, high=1)3})

{'C': LogUniformDistribution(low=1e-05, high=1),
'solver': CategoricalDistribution(choices=['saga']),
'max_iter': IntUniformDistribution(low=500, high=2000, step=50),
"dual': CategoricalDistribution(choices=[False]),
'penalty': CategoricalDistribution(choices=['elasticnet']),
'l1_ratio': UniformDistribution(low=0, high=1)}

Here’s an example of using overwrite=True to reset to the default values for detailed:

tuner.search_space(strategy='detailed', overwrite=True)

{'C"'": LogUniformDistribution(low=1e-05, high=10),
"dual': CategoricalDistribution(choices=[False]),
'penalty': CategoricalDistribution(choices=['elasticnet']),
'solver': CategoricalDistribution(choices=['saga']),
'11_ratio': UniformDistribution(low=0, high=1)}

tuner.tune(X, y, exit_criterion=[NTrials(5)], synchronous=True, loglevel=logging.WARNING)

Optimizing a scikit-learn Pipeline

The following example demonstrates how the ADSTuner hyperparameter optimization engine can optimize the sklearn
Pipeline() objects.

You create a scikit-learn Pipeline () model object and use ADSTuner to optimize its performance on the iris dataset
from sklearn.

The dataset is then split into X and y, which refers to the training features and the target feature respectively. Again,
applying a train_test_split() call splits the data into training and validation datasets.
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X, v = load_iris(return_X_y=True)

X = pd.DataFrame(data=X, columns=["sepal_length", "sepal_width", "petal_length", "petal_
—width"])

y = pd.DataFrame(data=y)

numeric_features = X.select_dtypes(include=['int64"', 'float64', 'int32', 'float32']).
—»columns
categorical_features = y.select_dtypes(include=['object', 'category', 'bool']).columns

y = preprocessing.LabelEncoder() .fit_transform(y)
num_features = len(numeric_features) + len(categorical_features)

numeric_transformer = Pipeline(steps=[
('num_imputer', SimpleImputer(strategy='median')),
('num_scaler', StandardScaler())

D

categorical_transformer = Pipeline(steps=[
('cat_imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('cat_encoder', ce.woe.WOEEncoder())

D

preprocessor = ColumnTransformer (
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)

pipe = Pipeline(
steps=[
('preprocessor', preprocessor),
('feature_selection', SelectKBest(f_classif, k=int(0.9 * num_features))),
('classifier', LogisticRegression())

You can define a custom score function. In this example, it is directly measuring how close the predicted y-values are
to the true y-values by taking the weighted average of the number of direct matches between the y-values.

def custom_score(y_true, y_pred, sample_weight=None):
score = (y_true == y_pred)
return np.average(score, weights=sample_weight)

score = make_scorer(custom_score)

Again, you instantiate the ADSTuner () object and use it to tune the iris™ dataset:

ads_search = ADSTuner(
pipe,
scoring=score,
strategy="detailed"',

(continues on next page)
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cv=2,
random_state=42)

(continued from previous page)

ads_search.tune (X=X, y=y, exit_criterion=[NTrials(20)], synchronous=True,.

—loglevel=logging.WARNING)

The ads_search tuner can provide useful information about the tuning process, like the best parameter that was

optimized, the best score achieved, the number of trials, and so on.

ads_search.sklearn_steps

{'classifier__C': 9.47220908749299,

'classifier__dual': False,

'classifier__11_ratio': 0.9967712201895031,
'classifier__penalty': 'elasticnet',

'classifier__solver': 'saga'}

ads_search.best_params

{'C': 9.47220908749299,

'dual': False,

'11_ratio': 0.9967712201895031,
'penalty': 'elasticnet',
'solver': 'saga'}

ads_search.best_score

0.9733333333333334

ads_search.best_index

12

ads_search.trials.head()

ads_search.n_trials

20

References
e ADS Library Documentation

¢ Cross-Validation

OCI Data Science Documentation
* Oracle Data & Al Blog

¢ Stochastic Gradient Descent
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11.2 Distributed Training

Distributed Training with OCI Data Science

This documentation shows you how to preprocess, and train on a machine learning model, using Oracle Cloud Infras-
tructure. This section will not teach you about distributed training, instead it will help you run your existing distributed
training code on OCI Data Science.

Distributed training is the process of taking a training workload which comprises training code and training data and
making both of these available in a cluster.

The conceptual difference with distributed training is that multiple workers coordinated in a cluster running on multiple
VM instances allows horizontal scaling of parallelizable tasks. While singe node training is well suited to traditional
ML models, very large datasets or compute intensive workloads like deep learning and deep neural networks, tends to
be better suited to distributed computing environments.

Distributed Training benefits two classes of problem, one where the data is parallelizable, the other where the model
network is parallelizable. The most common and easiest to develop is data parallelism. Both forms of parallelism can
be combined to handle both large models and large datasets.

Data Parallelism

In this form of distributed training the training data is partitioned into some multiple of the number of nodes in the
compute cluster. Each node holds the model and is in communication with other node participating in a coordinated
optimization effort.

Sometimes data sampling is possible, but often at the expense of model accuracy. With distributed training you can
avoid having to sample the data to fit a single node.

Model Parallelism

This form of distributed training is used when workers need to worker nodes need to synchronize and share parameters.
The data fits into the memory of each worker, but the training takes too long. With model parallelism more epochs can
run and more hyper-parameters can be explored.

Distributed Training with OCI Data Science

To outline the process by which you create distributed training workloads is the same regardless of framework used.
Sections of the configuration differ between frameworks but the experience is consistent. The user brings only the
(framework specific) training python code, along with the yaml declarative definition.

ADS makes use of yaml to express configurations. The yaml specification has sections to describe the cluster infras-
tructure, the python runtime code, and the cluster framework.

The architecture is extensible to support well known frameworks and future versions of these. The set of service
provided frameworks for distributed training include:

e Dask for LightGBM, XGBoost, Scikit-Learn, and Dask-ML
e Horovod for PyTorch & Tensorflow

» PyTorch Distributed for PyTorch native using DistributedDataParallel - no training code changes to run
PyTorch model training on a cluster. You can use Horovod to do the same, which has some advanced features
like auto-tuning to improve allreduce performance, and £fp16 gradient compression.

e Tensorflow Distributed for Tensorflow distributed training strategies like MirroredStrategy,
MultiWorkerMirroredStrategy and ParameterServerStrategy
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11.2.1 Getting Started

11.2.1.1 Key Steps

1. Initialize the code workspace to prepare for distributed training
Build container image

Tag and Push the image to ocir

Define the cluster requirement using YAML Spec

Start distributed training using ads opctl run —f <yaml file>

AR

Monitor the job using ads jobs watch <main job run id>

11.2.1.2 Prepare container image for distributed workload

Prerequisite:
1. Internet Connection
2. ADS cli is installed

3. Docker engine

ads opctl distributed-training init --framework <framework choice>

To run a distributed workload on OCI Data Science Jobs, you need prepare a container image with the source code
that you want to run and the framework (Dask|Horovod|PyTorch) setup. OCI Data Science provides you with the
Dockerfiles and bootstrapping scripts to build framework specific container images. This step creates a folder in the
current working directory called oci_distributed_training. This folder contains all the artifacts required to setup
and bootstrap the framework code. Refer to README . md file to see more details on how to build and push the container
image to the ocir

11.2.1.3 Check Config File generated by the Main and the Worker Nodes

Prerequisite:
1. A cluster that is in In-Progress, Succeeded or Failed (Supported only in some cases)

2. Job OCID and the work dir of the cluster or a yaml file which contains all the details displayed during cluster
creation.

ads opctl distributed-training show-config -f <cluster yaml file>

The main node generates MAIN_config. json and worker nodes generate WORKER_<job run ocid>_config. json.
You may want to check the configuration details for find the IP address of the Main node. This can be useful to bring
up dashboard for dask or debugging.
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11.2.2 Configurations

11.2.2.1 Networks
You need to use a private subnet for distributed training and configure the security list to allow traffic through specific
ports for communication between nodes. The following default ports are used by the corresponding frameworks:

* Dask:

Scheduler Port: 8786. More information here

Dashboard Port: 8787. More information here

Worker Ports: Defaultis Random. It is good to open a specific range of port and then provide the value
in the startup option. More information here

Nanny Process Ports: Default is Random. It is good to open a specific range of port and then provide
the value in the startup option. More information here

* PyTorch: By default, PyTorch uses 29400.
* Horovod: allow TCP traffic on all ports within the subnet.

o Tensorflow: Worker Port: Allow traffic from all source ports to one worker port (default: 12345). If changed,
provide this in train.yaml config.

See also: Security Lists

11.2.2.2 OCI Policies

Several OCI policies are needed for distributed training.

Policy subject

In the following example, group <your_data_science_users> is the subject of the policy. When starting the
job from an OCI notebook session using resource principal, the subject should be dynamic-group, for example,
dynamic-group <your_notebook_sessions>

Distributed training uses OCI Container Registry to store the container image.

To push images to container registry, the manage repos policy is needed, for example:

Allow group <your_data_science_users> to manage repos in compartment <your_compartment_
—.name>

To pull images from container registry for local testing, the use repos policy is needed, for example:

Allow group <your_data_science_users> to read repos in compartment <your_compartment_
—name>

You can also restrict the permission to specific repository, for example:

Allow group <your_data_science_users> to read repos in compartment <your_compartment_
—.name> where all { target.repo.name=<your_repo_name> }

See also: Policies to Control Repository Access

To start distributed training jobs, the user will need access to multiple resources, including:
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e read repos

e manage data-science-jobs

* manage data-science-job-runs
e use virtual-network-family

e manage log-groups

e use log-content

e read metrics

For example:

Allow group <your_data_science_users> to manage data-science-jobs in compartment <your_
- compartment_name>

Allow group <your_data_science_users> to manage data-science-job-runs in compartment
—<your_compartment_name>

Allow group <your_data_science_users> to use virtual-network-family in compartment <your_
—,compartment_name>

Allow group <your_data_science_users> to manage log-groups in compartment <your_

- compartment_name>

Allow group <your_data_science_users> to use logging-family in compartment <your_
—,compartment_name>

Allow group <your_data_science_users> to use read metrics in compartment <your_
—,compartment_name>

We also need policies for job runs, for example:

Allow dynamic-group <distributed_training_job_runs> to read repos in compartment <your_
- compartment_name>

Allow dynamic-group <distributed_training_job_runs> to use data-science-family in.,
—,compartment <your_compartment_name>

Allow dynamic-group <distributed_training_job_runs> to use virtual-network-family in.,
—,compartment <your_compartment_name>

Allow dynamic-group <distributed_training_job_runs> to use log-groups in compartment

- <your_compartment_name>

Allow dynamic-group <distributed_training_job_runs> to use logging-family in compartment
—<your_compartment_name>

See also Data Science Policies.

Distributed training uses OCI Object Storage to store artifacts and outputs. The bucket should be created before starting
any distributed training. The manage objects policy is needed for users and job runs to read/write files in the bucket.
The manage buckets policy is required for job runs to synchronize generated artifacts. For example:

Allow group <your_data_science_users> to manage objects in compartment your_compartment_
—name where all {target.bucket.name=<your_bucket_name>}

Allow dynamic-group <distributed_training_job_runs> to manage objects in compartment..
—your_compartment_name where all {target.bucket.name=<your_bucket_name>}

Allow dynamic-group <distributed_training_job_runs> to manage buckets in compartment..

. your_compartment_name where all {target.bucket.name=<your_bucket_name>}

See also Object Storage Policies
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11.2.2.3 Policy Syntax

The overall syntax of a policy statement is as follows:

Allow <subject> to <verb> <resource-type> in <location> where <conditions>
See also: https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/policysyntax.htm

For <subject>:

* If you are using API key authentication, <subject> should be the group your user belongs to. For example,
group <your_data_science_users>.

e If you are using resource principal or instance principal authentication, <subject> should be the dy-
namic group to which your OCI resource belongs. Here the resource is where you initialize the API re-
quests, which is usually a job run, a notebook session or compute instance. For example, dynamic-group
<distributed_training_job_runs>

Dynamic group allows you to group OCI resources like job runs and notebook sessions. Distributed training is running
on Data Science Jobs, for the training process to access resources, the job runs need to be defined as a dynamic group
and use as the <subject> for policies.

In the following examples, we define distributed_training_job_runs dynamic group as:

all { resource.type='datasciencejobrun', resource.compartment.id="'<job_run_compartment_ocid>"'

}

We also assume the user in group <your_data_science_users> is preparing the docker image and starting the
training job.

The <verb> determines the ability of the <subject> to work on the <resource-type>. Four options are available:
inspect, read, user and manage.

The <resource-type> specifies the resources we would like to access. Distributed training uses the following OCI
resources/services:

» Data Science Jobs. Resource Type: data-science-jobs and data-science-job-runs
* Object Storage. Resource Type: buckets and objects
» Container Registry. Resource Type: repos

The <location> is usually the compartment or tenancy that your resources (specified by <resource-type>) resides.
* If you would like the <subject> to have access to all resources (specified by <resource-type>) in the tenancy,
you can use tenancy as <location>. * If you would like the <subject> to have access to resources in specific
compartment, you can use compartment your_compartment_name as <location>.

The where <conditions> can be used to filter the resources specified in <resource-type>.

11.2.3 Developer Guide

11.2.3.1 Build Image

Tip
Use -h option to see options and usage help

ads opctl distributed-training build-image -h

Args
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e -t: Tag of the docker image

* -reg: Docker Repository

e -df: Dockerfile using which docker will be build
 -push: push the image to oci registry

e -s: source code dir

ads opctl distributed-training build-image \
-t $TAG \

-reg $NAME_OF_REGISTRY \

-df $PATH_TO_DOCKERFILE \

-s $MOUNT_FOLDER_PATH

Note :

This command can be used to build a docker image from ads CLI. It writes the config.ini file in the user’s runtime
environment which can be used further referred by other CLI commands.

If -push tag is used in command then docker image is pushed to mentioned repository

Sample config.ini file

[main]

tag = $TAG

registry = $NAME_OF_REGISTRY

dockerfile = $PATH_TO_DOCKERFILE

source_folder = $MOUNT_FOLDER_PATH

; mount oci keys for local testing

oci_key mnt = ~/.oci:/home/oci_dist_training/.oci

11.2.3.2 Publish Docker Image

Args
» -image: Name of the Docker image (default value is picked from config.ini file)

Command

ads opctl distributed-training publish-image

Note

This command can be used to push images to the OCI repository. In case the name of the image is not mentioned it
refers to the image name from the config.ini file.
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11.2.3.3 Run the container Image on the OCI Data Science or local

Tip

Use -h option to see options and usage help

ads opctl run -h

Args

-f: Path to train.yaml file (required argument)

-b:
— local — Run DT workflow on the local environment
— job — Run DT workflow on the OCI ML Jobs
— Note : default value is set to jobs

-i: Auto increments the tag of the image

-nopush: Doesn’t Push the latest image to OCIR

-nobuild: Doesn’t build the image

-t: Tag of the docker image

-reg: Docker Repository

-df: Dockerfile using which docker will be build

-s: source code dir

Note : The value “@image” for image attribute in train.yaml is replaced at runtime using combination of -t and
-r params.

Command

Local Command

ads opctl run

-f train.yaml
-b local
-i

Jobs Command

ads opctl run

Note

-f train.yaml

The command ads opctl run -f train.yaml is used to run distributed training jobs on OCI Data Science. By
default, it builds the new image and pushes it to the OCIR.

If required OCI API keys can be mounted by specifying the location in the config.ini file
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11.2.3.4 Development Flow

Step 1:

Build the Docker and run it locally.

If required mount the code folder using the -s tag
Step 2:

If the user has changed files only in the mounted folder and needs to run it locally. {Build is not required}

ads opctl run
-f train.yaml
-b local
-nobuild

In case there are some changes apart from the mounted folder and needs to run it locally. {Build is required)}

-1 tag is required only if the user needs to increment the tag of the image

ads opctl run
-f train.yaml
-b local
-i

Step 3:

Finally, to run on a jobs platform

ads opctl run
-f train.yaml

11.2.3.5 Diagnosing Infrastructure Setup
Before submitting your code to Data Science Jobs, check if the infra setup meets the framework requirement. Each
framework has a specific set of requirements.

ads opctl check runs diagnosis by starting a single node jobrun using the container image specified in the train.
yaml file.

ads opctl check -f train.yaml --output infra_report.html

The train.yaml is the same yaml file that is defined for running distributed training code. The diagnostic report is saved
in the file provided in --output option.

Here is a sample report generated for Horovod cluster -
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Diagnostic Report for horovod

# Requirement Status
1 Check if job run has access to Job definition information M

2 Check if job run has access to VCN information

3 Check if job run hass access to the WORK DIR (object storage) configured in the cluster definition file

4 Check Ports for Ingress

BEEER

5 Check if internet access is available

You have satisfied all the requirements for cluster: horovod

11.2.4 Dask

Dask is a flexible library for parallel computing in Python. The documentation will split between the two areas of writing
distributed training using the Dask framework and creating both the container and yaml spec to run the distributed
workload.

Dask

This is a good choice when you want to use Scikit-Learn, XGBoost, LightGBM or have data parallel tasks for very
large datasets where the data can be partitioned.

11.2.4.1 Creating Workloads

Prerequisites

1. Internet Connection

2. ADS cli is installed

3. Install docker: https://docs.docker.com/get-docker
Write your training code:

While running distributed workload, the IP address of the scheduler is known only during the runtime. The IP address
is exported as environment variable - SCHEDULER_IP in all the nodes when the Job Run is in IN_PROGRESS state.
Create dask.distributed.Client object using environment variable to specify the IP address. Eg. -

client = Client(f"{os.environ['SCHEDULER_IP']}:{os.environ.get('SCHEDULER_PORT', '8786")
-

see Writing Dask Code for more examples.

For this example, the code to run on the cluster will be:
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Listing 1: gridsearch.py

from dask.distributed import Client

from sklearn.datasets import make_classification
from sklearn.svm import SVC

from sklearn.model_selection import GridSearchCV

import pandas as pd
import joblib
import os

import argparse

default_n_samples = int(os.getenv("DEFAULT_N_SAMPLES", "1000"))

parser = argparse.ArgumentParser ()

parser.add_argument ("--n_samples", default=default_n_samples, type=int, help="size of.
—dataset")

parser.add_argument ("--cv", default=3, type=int, help="number of cross validations")
args, unknownargs = parser.parse_known_args()

# Using environment variable to fetch the SCHEDULER_IP is important.
client = Client(f"{os.environ['SCHEDULER_IP']}:{os.environ.get('SCHEDULER_PORT', '8786")
-

X, y = make_classification(n_samples=args.n_samples, random_state=42)

with joblib.parallel_backend("dask™):
GridSearchCV(
SVC(gamma="auto", random_state=0, probability=True),
param_grid={
"C": [0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0],
"kernel": ["rbf", "poly", "sigmoid"],
"shrinking": [True, False],
e
return_train_score=False,
cv=args.cv,
n_jobs=-1,
). fit(X, y)

Initialize a distributed-training folder:

At this point you have created a training file (or files) - gridsearch.py in the above example. Now running the
command below

Note: This step requires an internet connection. The init command initializes your code directory with dask related
artifacts to build

ads opctl distributed-training init --framework dask
Containerize your code and build container:

Before you can build the image, you must set the following environment variables:

Specify image name and tag
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export IMAGE_NAME=<region.ocir.io/my-tenancy/image-name>
export TAG=latest

Build the container image.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/dask/v1/Dockerfile

The code is assumed to be in the current working directory. To override the source code directory, use the -s flag and
specify the code dir. This folder should be within the current working directory.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/dask/v1/Dockerfile
-s <code_dir>

If you are behind proxy, ads opctl will automatically use your proxy settings (defined via no_proxy, http_proxy and
https_proxy).

Define your workload yaml:

The yaml file is a declarative way to express the workload. Refer YAML schema for more details.

Listing 2: train.yaml

kind: distributed
apiVersion: v1.0
spec:
infrastructure:
kind: infrastructure
type: dataSciencelob
apiVersion: v1.0
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: my_distributed_training
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxx.<log_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.Standard2.4
blockStorageSize: 50
cluster:
kind: dask
apiVersion: v1.0
spec:
image: my-region.ocir.io/my-tenancy/dask-cluster-examples:dev
workDir: "oci://my-bucket@my-namespace/daskexample/001"
name: GridSearch Dask
main:
config:
worker:

(continues on next page)
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config:
replicas: 2
runtime:
kind: python
apiVersion: v1.0

spec:
entryPoint: "gridsearch.py"
kwargs: "--cv 5"
env:
- name: DEFAULT_N_SAMPLES
value: 5000

Use ads opctl to create the cluster infrastructure and run the workload:

(continued from previous page)

Do a dry run to inspect how the yaml translates to Job and Job Runs. This does not create actual Job or Job Run.

ads opctl run -f train.yaml --dry-run

This will give an option similar to this -

Creating Job with payload:
kind: job
spec:
infrastructure:
kind: infrastructure
spec:
blockStorageSize: 50
compartmentId: oci.xxxx.<compartment_ocid>
displayName: GridSearch Dask
jobInfrastructureType: ME_STANDALONE
jobType: DEFAULT
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxxx.<log_ocid>
projectId: oci.xxxx.<project_ocid>
shapeName: VM.Standard2.4
subnetId: oci.xxxx.<subnet-ocid>
type: dataSciencelob
name: GridSearch Dask
runtime:
kind: runtime
spec:
entrypoint: null
env:
- name: OCI__WORK_DIR
value: oci://my-bucket@my-namespace/daskexample/001
- name: OCI__EPHEMERAL
value: None
- name: OCI__CLUSTER_TYPE

value: DASK
- name: OCI__WORKER_COUNT
value: '2°'

- name: OCI__START_ARGS

(continues on next page)
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(continued from previous page)

value:
- name: OCI__ENTRY_SCRIPT

value: gridsearch.py
- name: OCI__ENTRY_SCRIPT_KWARGS

value: --cv 5
- name: DEFAULT_N_SAMPLES
value: '5000'

image: my-region.ocir.io/my-tenancy/dask-cluster-examples:dev
type: container

Creating Main Job with following details:
Name: main
Environment Variables:

OCI__MODE:MAIN

Creating 2 worker jobs with following details:
Name: worker
Environment Variables:

OCI__MODE:WORKER

Test Locally:

Before submitting the workload to jobs, you can run it locally to test your code, dependencies, configurations etc. With
-b local flag, it uses a local backend. Further when you need to run this workload on OCI data science jobs, simply
use -b job flag instead.

ads opctl run -f train.yaml -b local

If your code requires to use any oci services (like object bucket), you need to mount oci keys from your local host
machine onto the container. This is already done for you assuming the typical location of oci keys ~/.oci. You can
modify it though, in-case you have keys at a different location. You need to do this in the config.ini file.

oci_key mnt = ~/.oci:/home/oci_dist_training/.oci

Note that the local backend requires the source code for your workload is available locally in the source folder specified
in the config.ini file. If you specified Git repository or OCI object storage location as source code location in your
workflow YAML, please make sure you have a local copy available for local testing.

Submit the workload:

ads opctl run -f train.yaml -b job

Note:: This will automatically push the docker image to the OCI container registry repo .

Once running, you will see on the terminal outputs similar to the below

Listing 3: info.yaml

jobId: oci.xxxx.<job_ocid>
mainJobRunId:
mainJobRunIdName: oci.xxxx.<job_run_ocid>
workDir: oci://my-bucket@my-namespace/cluster-testing/005

(continues on next page)
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otherJobRunIds:
- workerJobRunIdName_1: oci.xxxx.<job_run_ocid>
- workerJobRunIdName_2: oci.xxxx.<job_run_ocid>
- workerJobRunIdName_3: oci.xxxx.<job_run_ocid>

This information can be saved as YAML file and used as input to ads opctl distributed-training
show-config -f <info.yaml>. You can use --job-info to save the job run info into YAML, for example:

ads opctl run -f train.yaml --job-info info.yaml

Monitoring the workload logs

To view the logs from a job run, you could run -

ads opctl watch oci.xxxx.<job_run_ocid>

You could stream the logs from any of the job run ocid using ads opctl watch command. You could run this
command from multiple terminal to watch all of the job runs. Typically, watching mainJobRunId should yield most
informative log.

To find the IP address of the scheduler dashboard, you could check the configuration file generated by the Main job by
running -

ads opctl distributed-training show-config -f info.yaml

This will generate an output such as follows -

Main Info:

OCI__MAIN_TP: <ip address>

SCHEDULER_IP: <ip address>

tmpdir: oci://my-bucket@my-namesapce/daskcluster-testing/005/0ci.xxxx.<job_ocid>

Dask dashboard is host at : http://{SCHEDULER_IP}:8787 If the IP address is reachable from your workstation
network, you can access the dashboard directly from your workstation. The alternate approach is to use either a Bastion
host on the same subnet as the Job Runs and create an ssh tunnel from your workstation.

For more information about the dashboard, checkout https://docs.dask.org/en/stable/diagnostics-distributed.html
Saving Artifacts to Object Storage Buckets

In case you want to save the artifacts generated by the training process (model checkpoints, TensorBoard logs, etc.)
to an object bucket you can use the ‘sync’ feature. The environment variable OCI__SYNC_DIR exposes the directory
location that will be automatically synchronized to the configured object storage bucket location. Use this directory in
your training script to save the artifacts.

To configure the destination object storage bucket location, use the following settings in the workload yaml
file(train.yaml).

- name: SYNC_ARTIFACTS
value: 1

- name: WORKSPACE
value: "<bucket_name>"

- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"

Note: Change SYNC_ARTIFACTS to 0 to disable this feature. Use OCI__SYNC_DIR env variable in your code to save
the artifacts. For Example :
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with open(os.path.join(os.environ.get("OCI__SYNC_DIR"),"results.txt"), "w") as rf:
rf.write(f"Best Params are: {grid.best_params_}, Score is {grid.best_score_}")
Terminating In-Progress Cluster

To terminate a running cluster, you could run -

ads opctl distributed-training cancel -f info.yaml

11.2.4.2 Writing Dask Code

Dask Integrates at many levels into the Python ecosystem.
Run parallel computation using dask.distributed and Joblib

Joblib can use Dask as the backend. In the following example the long running function is distributed across the Dask
cluster.

import time
import joblib

def long_running_function(i):
time.sleep(.1)
return i

This function can be called under Dask as a dask task which will be scheduled automatically by Dask across the cluster.
Watching the cluster utilization will show the tasks run on the workers.

with joblib.parallel_backend('dask'):
joblib.Parallel (verbose=100) (
joblib.delayed(long_running_function) (i)
for i in range(10))

Run parallel computation using Scikit-Learn & Joblib

To use the Dask backend to Joblib you have to create a Client, and wrap your code with the joblib.
parallel_backend('dask') context manager.

import os
from dask.distributed import Client
import joblib

# the cluster once created will make available the IP address of the Dask scheduler
# through the SCHEDULER_IP environment variable
client = Client(f"{os.environ['SCHEDULER_IP']}:8786")

with joblib.parallel_backend('dask'):
# Your scikit-learn code

A full example showing scaling out CPU-bound workloads; workloads with datasets that fit in RAM, but have many
individual operations that can be done in parallel. To scale out to RAM-bound workloads (larger-than-memory datasets)
use one of the dask-ml provided parallel estimators, or the dask-ml wrapped XGBoost & LightGBM estimators.
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import numpy as np
from dask.distributed import Client

import joblib

from sklearn.datasets import load_digits

from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

client Client(f"{os.environ['SCHEDULER_IP'] }:8786")

digits = load_digits()

param_space = {
'C'": np.logspace(-6, 6, 13),
'gamma’: np.logspace(-8, 8, 17),
'tol': np.logspace(-4, -1, 4),
'class_weight': [None, 'balanced'],

}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=3, n_iter=50, verbose=10)

with joblib.parallel_backend('dask'):
search.fit(digits.data, digits.target)

11.2.4.3 Distributed XGBoost & LightGBM

11.2.4.3.1 LightGBM

For further examples and comprehensive documentation see LightGBM and Github Examples

import os

import joblib

import dask.array as da

from dask.distributed import Client
from sklearn.datasets import make_blobs

import lightgbm as 1lgb

if _name__ == "__main__":
print("loading data")
size = int(os.environ.get("SIZE", 1000))
X, y = make_blobs(n_samples=size, n_features=50, centers=2)
client = Client(

f"{os.environ['SCHEDULER_IP'] }:{os.environ.get('SCHEDULER_PORT', '8786"')}"

)

print("distributing training data on the Dask cluster™)
dX = da.from_array(X, chunks=(100, 50))
dy = da.from_array(y, chunks=(100,))

(continues on next page)
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print("beginning training")
dask_model = lgb.DaskLGBMClassifier(n_estimators=10)
dask_model. fit(dX, dy)
assert dask_model.fitted_

print("done training")

# Convert Dask model to sklearn model

sklearn_model = dask_model.to_local()

print(type(sklearn_model)) #<class 'lightgbm.sklearn.LGBMClassifier'>
joblib.dump(sklearn_model, "sklearn-model.joblib")

11.2.4.3.2 XGBoost

For further examples and comprehensive documentation see XGBoost

XGBoost has a Scikit-Learn interface, this provides a familiar programming interface that mimics the scikit-learn
estimators with higher level of of abstraction. The interface is easier to use compared to the functional interface but
with more constraints. It’s worth mentioning that, although the interface mimics scikit-learn estimators, it doesn’t work
with normal scikit-learn utilities like GridSearchCYV as scikit-learn doesn’t understand distributed dask data collection.

import os
from distributed import LocalCluster, Client
import xgboost as xgb

def main(client: Client) -> None:
X, y = load_data(Q)
clf = xgb.dask.DaskXGBClassifier(n_estimators=100, tree_method="hist")
clf.client = client # assign the client
clf. fit(X, y, eval_set=[(X, yD]1)
proba = clf.predict_proba(X)

if __name__ == "__main__":
with Client(f"{os.environ['SCHEDULER_IP']}:8786") as client:
main(client)

11.2.4.4 Securing with TLS

You can setup Dask cluster to run using TLS. To do so, you need three things -
1. CA Certificate
2. A Certificate signed by CA
3. Private key of the certificate

For more details refer Dask documentation

Self signed Certificate using openssl

openssl lets you create test CA and certificates required to setup TLS connectivity for Dask cluster. Use the commands
below to create certificate in your code folder. When the container image is built, all the artifacts in the code folder is
copied to /code directory inside container image.
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1.

Generate CA Certificate

openssl req -x509 -nodes -newkey rsa:4096 -days 10 -keyout dask-tls-ca-key.pem -out dask-
—tls-ca-cert.pem -subj "/C=US/ST=CA/CN=0DSC CLUSTER PROVISIONER"

2

Generate CSR

openssl req -nodes -newkey rsa:4096 -keyout dask-tls-key.pem -out dask-tls-req.pem -subj
" /C=US/ST=CA/CN=DASK CLUSTER"

3.

Sign CSR

openssl x509 -req -in dask-tls-req.pem -CA dask-tls-ca-cert.pem -CAkey dask-tls-ca-key.
—pem -CAcreateserial -out dask-tls-cert.pem

4.
5

Follow the container build instrcutions /ere to build, tag and push the image to ocir.

Create a cluster definition YAML and configure the certifacte information under cluster/config/
startOptions. Here is an example -

kind: distributed

apiVersion: v1.0

spec:
infrastructure:

kind: infrastructure

type: dataSciencelob

apiVersion: v1.0

spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: my_distributed_training
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxx.<log_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.Standard2.4
blockStorageSize: 50

cluster:

kind: dask

apiVersion: v1.0

spec:
image: iad.ocir.io/mytenancy/dask-cluster-examples:dev
workDir: oci://mybucket@mytenancy/daskexample/001
name: LGBM Dask

main:
config:
startOptions:
- --tls-ca-file /code/dask-tls-ca-cert.pem
- —-tls-cert /code/dask-tls-cert.pem
- --tls-key /code/dask-tls-key.pem
worker:
config:

startOptions:
- --tls-ca-file /code/dask-tls-ca-cert.pem
- —--tls-cert /code/dask-tls-cert.pem
- --tls-key /code/dask-tls-key.pem

(continues on next page)
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replicas: 2
runtime:
kind: python
apiVersion: v1.0

spec:
entryPoint: 1lgbm_dask.py
env:
- name: SIZE

value: 1000000

Using OCI Certificate manager

See OCI Certificates for reference. In this approach, the Admin of the tenancy or the person with the requisite permis-
sion can create and manage certificate on OCI console. Sepcify the OCID of the CA Certificate, TLS Certificate and
Private Key of the Certificate in cluster/certificates option.

Policies Required:

# Create DG with resource.type='certificateauthority’

Allow dynamic-group certauthority-resource to use keys in compartment <my-compartment-
—name>

Allow dynamic-group certauthority-resource to manage objects in compartment <my-
—,compartment-name>

1. Create certificate authority, certificate and private key inside 0CI Certificates console.

2. Create a cluster definition YAML and configure the certifacte information under cluster/config/
startOptions. Here is an example -

kind: distributed
apiVersion: v1.0
spec:
infrastructure:
kind: infrastructure
type: dataSciencelob
apiVersion: v1.0
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: my_distributed_training
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxx.<log_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.Standard2.4
blockStorageSize: 50
cluster:
kind: dask
apiVersion: v1.0
spec:
image: iad.ocir.io/mytenancy/dask-cluster-examples:dev
workDir: oci://mybucket@mytenancy/daskexample/001
name: LGBM Dask
certificate:

(continues on next page)
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caCert:
id: ocidl.certificateauthority.ocl.XXX.XXXXXXX
downloadLocation: /code/dask-tls-ca-cert.pem
cert:
id: ocidl.certificate.ocl.XXX.XXXXXXX
certDownloadLocation: /code/dask-tls-cert.pem
keyDownloadLocation: /code/dask-tls-key.pem
main:
config:
startOptions:
- --tls-ca-file /code/dask-tls-ca-cert.pem
- --tls-cert /code/dask-tls-cert.pem
- --tls-key /code/dask-tls-key.pem
worker:
config:
startOptions:
- --tls-ca-file /code/dask-tls-ca-cert.pem
- --tls-cert /code/dask-tls-cert.pem
- --tls-key /code/dask-tls-key.pem
replicas: 2
runtime:
kind: python
apiVersion: v1.0
spec:
entryPoint: lgbm_dask.py
env:
- name: SIZE
value: 1000000

11.2.4.5 Dask Cluster Tuning

11.2.4.5.1 Configuring dask startup options
Dask scheduler

Dask scheduler is launched with dask-scheduler command. By default no arguments are supplied to
dask-scheduler. You could influence the startup option by adding them to startOptions under cluster/spec/
main/config section of the cluster YAML definition

Eg. Here is how you could change the scheduler port number:

# Note only portion of the yaml file is shown here for brevity.
cluster:
kind: dask
apiVersion: v1.0
spec:
image: region.ocir.io/my-tenancy/image:tag
workDir: "oci://my-bucket@ny-namespace/daskcluster-testing/005"
ephemeral: True
name: My Precious
main:
(continues on next page)
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config:
startOptions:
- --port 8788

Dask worker

Dask worker is launched with dask-worker command. By default no arguments are supplied to dask-worker. You
could influence the startup option by adding them to startOptions under cluster/spec/worker/config section
of the cluster YAML definition

Eg. Here is how you could change the worker port, nanny port, number of workers per host and number of threads per
process:

# Note only portion of the yaml file is shown here for brevity.
cluster:
kind: dask
apiVersion: v1.0
spec:
image: region.ocir.io/my-tenancy/image:tag
workDir: "oci://my-bucket@ny-namespace/daskcluster-testing/005
ephemeral: True
name: My Precious
main:
config:
worker:
config:
startOptions:
- --worker-port 8700:8800
- --nanny-port 3000:3100
- --nworkers 8
- --nthreads 2

Refer to the complete list

11.2.4.5.2 Configuration through Environment Variables

You could set configuration parameters that Dask recognizes by add it to cluster/spec/config/env or cluster/
spec/main/config/env or cluster/spec/worker/config/env If a configuration value is some for both
scheduler and worker section, then set it at cluster/spec/config/env section.

# Note only portion of the yaml file is shown here for brevity.
cluster:
kind: dask
apiVersion: v1.0
spec:
image: region.ocir.io/my-tenancy/image:tag
workDir: "oci://my-bucket@my-tenancy/daskcluster-testing/005"
ephemeral: True
name: My Precious
config:
(continues on next page)
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env:
- name: DASK_ARRAY__CHUNK_SIZE
value: 128 MiB
- name: DASK_DISTRIBUTED__WORKERS__MEMORY__SPILL

value: 0.85

- name: DASK_DISTRIBUTED__WORKERS__MEMORY__TARGET
value: 0.75

- name: DASK_DISTRIBUTED__WORKERS__MEMORY__TERMINATE
value: 0.98

Refer here for more information

11.2.4.6 Dask dashboard

Dask dashboard allows you to monitor the progress of the tasks. It gives you a real time view of the resource usage,
task status, number of workers, task distribution, etc. To learn more about Dask dashboard refer this link.
Prerequisite

1. IP address of the Main/Scheduler Node. Use ads opctl distributed-training show-config or find the
IP address from the logs of the main job run.

2. The default port is 8787. You can override this port in cluster/main/config/startOptions in the cluster
definition file.

3. Allow ingress to the port 8787 in the security list associated with the Subnet of Main/Scheduler node.

The dashboard is accessible over <SCHEDULER_IP>:8787. The IP address may not always be accessible from your
workstation especially if you are using a subnet which is not connected to your corporate network. To overcome this,
you could setup a bastion host on the private regional subnet that was added to the jobrun and create an ssh tunnel from
your workstation to bastion host to the Job Run instance with <SCHEDULER_IP>

11.2.4.6.1 Bastion Host

Here are the steps to setup a Bastion host to allow you to connect to the scheduler dashboard -

1. Launch a compute instance (Linux or Windows) with primary vnic with a public subnet or the subnet that is
connected to your corporate network.

2. Attach a secondary VNIC on the subnet used for starting the cluster. Follow the steps detailed here on how to
setup and configure the host to setup the secondary VNIC.

3. Create a public IP if you need access to the dashboard over the internet.

Linux instance

If you setup a Linux instance, you can create ssh tunnel from your workstation and access the scheduler dashboard from
your workstation at localhost:8787. To setup ssh tunnel -

ssh -i <oci-instance-key>.key <ubuntu or opc>@<instance-ip> L 8787:<scheduler jobrun-ip>:
8787

If you are using proxy, use this command -

11.2. Distributed Training 157


https://docs.dask.org/en/stable/configuration.html#environment-variables
https://docs.dask.org/en/stable/diagnostics-distributed.html
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/managingVNICs.htm#Linux

ADS Documentation, Release 2.7.3

ssh -i <oci-instance-key>.key <ubuntu or opc>@<instance-ip> -o “ProxyCommand=nc -X.
—.connect -x $http_proxy:$http_port %h %p” -L 8787:<scheduler jobrun-ip>:8787

Windows instance

RDP to the Windows instance and access the dashboard using <SCHEDULER_IP>: 8787 from a browser running within
the Windows instance.

11.2.5 Horovod

Distributed training framework for TensorFlow, Keras, PyTorch

Horovod is an open-source software framework for distributed deep learning training using TensorFlow, Keras,
PyTorch. Horovod has the goal of improving the speed, scale, and resource allocation when training a machine
learning model.

OCI Data Science currently support Elastic Horovod workloads with gloo backend.

11.2.5.1 Creating Horovod Workloads

Prerequisites

1. Internet Connection

2. ADS cli is installed

3. Install docker: https://docs.docker.com/get-docker
Write your training code:

Your model training script (TensorFlow or PyTorch) needs to be adapted to use (Elastic) Horovod APIs for distributed
training. Refer Writing distributed code with horovod framework

Also see : Horovod Examples

For this example, the code to run was inspired from an example found here . There are minimal changes to this script
to save the training artifacts and TensorBoard logs to a folder referenced by OCI__SYNC_DIR environment variable.
OCI__SYNC_DIR is a pre-provisioned folder which can be synchronized with an object bucket during the training
process.

Listing 4: train.py

# Script adapted from https://github.com/horovod/horovod/blob/master/examples/elastic/
—tensorflow2/tensorflow2_keras_mnist_elastic.py

#

import argparse

import tensorflow as tf

import horovod.tensorflow.keras as hvd
from distutils.version import LooseVersion

import os

(continues on next page)
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os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
parser = argparse.ArgumentParser(description="Tensorflow 2.0 Keras MNIST Example")

parser.add_argument (
"--use-mixed-precision",
action="store_true",
default=False,
help="use mixed precision for training",

)

parser.add_argument (

"--data-dir",

help="1location of the training dataset in the local filesystem (will be downloaded.
—if needed)",

default='/code/data/mnist.npz'
)

args = parser.parse_args()

if args.use_mixed_precision:
print(f"using mixed precision {args.use_mixed_precision}")
if LooseVersion(tf.__version__) >= LooseVersion("2.4.0"):
from tensorflow.keras import mixed_precision

mixed_precision.set_global_policy("mixed_floatl6")

else:
policy = tf.keras.mixed_precision.experimental.Policy('mixed_floatl6")
tf.keras.mixed_precision.experimental.set_policy(policy)

# Horovod: initialize Horovod.
hvd.init(Q

# Horovod: pin GPU to be used to process local rank (one GPU per process)
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], "GPU")

import numpy as np

minist_local = args.data_dir

def load_data(Q):
print("using pre-fetched dataset")
with np.load(minist_local, allow_pickle=True) as f:
X_train, y_train = f["x_train"], f["y_train"]
x_test, y_test = f["x_test"], f["y_test"]
return (x_train, y_train), (x_test, y_test)

(continues on next page)
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(mnist_images, mnist_labels), _ = (
load_data()
if os.path.exists(minist_local)
else tf.keras.datasets.mnist.load_data(path="mnist-%d.npz" % hvd.rank())

dataset = tf.data.Dataset.from_tensor_slices(
(
tf.cast(mnist_images[..., tf.newaxis] / 255.0, tf.float32),
tf.cast(mnist_labels, tf.int64),
)

)
dataset = dataset.repeat().shuffle(10000).batch(128)

model = tf.keras.Sequential(

[
tf.keras.layers.Conv2D(32, [3, 3], activation="relu"),
tf.keras.layers.Conv2D(64, [3, 3], activation="relu"),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation="softmax"),

]

# Horovod: adjust learning rate based on number of GPUs.
scaled_lr = 0.001 * hvd.size()
opt = tf.optimizers.Adam(scaled_1r)

# Horovod: add Horovod DistributedOptimizer.
opt = hvd.DistributedOptimizer(
opt, backward_passes_per_step=1, average_aggregated_gradients=True

)

# Horovod: Specify ‘experimental_run_tf_ function=False' to ensure TensorFlow
# uses hvd.DistributedOptimizer() to compute gradients.
model . compile(

loss=tf.losses.SparseCategoricalCrossentropy(),

optimizer=opt,

metrics=["accuracy"],

experimental_run_tf_function=False,

# Horovod: initialize optimizer state so we can synchronize across workers

# Keras has empty optimizer variables() for TF2:

# https://sourcegraph.com/github.com/tensorflow/tensorflow@v2.4.1/-/blob/tensorflow/
—python/keras/optimizer_v2/optimizer_v2.py#L351:10

(continues on next page)
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model . fit(dataset, steps_per_epoch=1, epochs=1, callbacks=None)

state = hvd.elastic.KerasState(model, batch=0, epoch=0)

def on_state_reset():
tf.keras.backend.set_value(state.model.optimizer.lr, 0.001 * hvd.size())
# Re-initialize, to join with possible new ranks
state.model.fit(dataset, steps_per_epoch=1, epochs=1, callbacks=None)

state.register_reset_callbacks([on_state_reset])

callbacks = [
hvd.callbacks.MetricAverageCallback(),
hvd.elastic.UpdateEpochStateCallback(state),
hvd.elastic.UpdateBatchStateCallback(state),
hvd.elastic.CommitStateCallback(state),

]

# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting.

< them.

# save the artifacts in the OCI__SYNC_DIR dir.

artifacts_dir = os.environ.get("OCI__SYNC_DIR") + "/artifacts"

tb_logs_path = os.path.join(artifacts_dir, "logs")

check_point_path = os.path.join(artifacts_dir, "ckpts", "checkpoint- .h5")

if hvd.rank() == 0:
callbacks.append(tf.keras.callbacks.ModelCheckpoint (check_point_path))
callbacks.append(tf.keras.callbacks.TensorBoard(tb_logs_path))

# Train the model.
# Horovod: adjust number of steps based on number of GPUs.
@hvd.elastic.run
def train(state):
state.model.fit(

dataset,

steps_per_epoch=500 // hvd.size(),

epochs=2 - state.epoch,

callbacks=callbacks,

verbose=1,

train(state)

Initialize a distributed-training folder:

At this point you have created a training file (or files) - train.py from the above example. Now, run the command
below.

ads opctl distributed-training init --framework horovod-tensorflow --version vl

Note: If you choose to run a PyTorch example instead, use horovod-pytorch as the framework.
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ads opctl distributed-training init --framework horovod-pytorch --version vl

This will download the horovod-tensorflow|horovod-pytorch framework and place it inside
'oci_dist_training_artifacts' folder.

Containerize your code and build container:
To build the image:

Horovod frameworks for TensorFlow and PyTorch contains two separate docker files, for cpu and gpu. Choose the
docker file based on whether you are going to use cpu or gpu based shapes.

Before you can build the image, you must set the following environment variables:

Specify image name and tag

export IMAGE_NAME=<region.ocir.io/my-tenancy/image-name>
export TAG=latest

Build the container image.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/horovod/vl/<pytorch|tensorflow>.<cpu|gpu>.Dockerfile

The code is assumed to be in the current working directory. To override the source code directory, use the -s flag and
specify the code dir. This folder should be within the current working directory.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/horovod/vl/<pytorch|tensorflow>.<cpu|gpu>.Dockerfile
-s <code_dir>

If you are behind proxy, ads opctl will automatically use your proxy settings (defined via no_proxy, http_proxy and
https_proxy).

SSH Setup:

In Horovod distributed training, communication between scheduler and worker(s) uses a secure connection. For this
purpose, SSH keys need to be provisioned in the scheduler and worker nodes. This is already taken care in the docker
images. When the docker image is built, SSH key pair is placed inside the image with required configuration changes
(adding public key to authorized_keys file). This enables a secure connection between scheduler and the workers.

Define your workload yaml:

The yaml file is a declarative way to express the workload.

Listing 5: train.yaml

kind: distributed
apiVersion: v1.0
spec:
infrastructure: # This section maps to Job definition. Does not include environment.,
—variables
kind: infrastructure
type: dataSciencelob

(continues on next page)
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apiVersion: v1.0

spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: HVD-Distributed-TF
logGroupId: oci.xxxx.<log_group_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.GPU2.1
blockStorageSize: 50

cluster:
kind: HOROVOD
apiVersion: v1.0

spec:
image: "<region>.ocir.io/<tenancy_id>/<repo_name>/<image_name>:<image_tag>"
workDir: ‘"oci://<bucket_name>@<bucket_namespace>/<bucket_prefix>"
name: "horovod_tf"
config:
env:
# MIN_NP, MAX_NP and SLOTS are inferred from the shape. Modify only when.
—needed.
# - name: MIN_NP
# value: 2
# - name: MAX_NP
# value: 4
# - name: SLOTS
# value: 2

- name: WORKER_PORT
value: 12345
- name: START_TIMEOUT #Optional: Defaults to 600.
value: 600
- name: ENABLE TIMELINE # Optional: Disabled by Default.Significantly.,
-sincreases training duration if switched on (1).

value: 0
- name: SYNC_ARTIFACTS #Mandatory: Switched on by Default.
value: 1

- name: WORKSPACE #Mandatory if SYNC_ARTIFACTS==1: Destination object bucket.
—to sync generated artifacts to.
value: "<bucket_name>"
- name: WORKSPACE_PREFIX #Mandatory if SYNC_ARTIFACTS==1: Destination object.
—bucket folder to sync generated artifacts to.
value: "<bucket_prefix>"
- name: HOROVOD_ARGS # Parameters for cluster tuning.
value: "--verbose"
main:
name: "scheduler"
replicas: 1 #this will be always 1
worker:
name: "worker"
replicas: 2 #number of workers
runtime:
kind: python
apiVersion: v1.0
(continues on next page)
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spec:

(continued from previous page)

entryPoint: "/code/train.py" #location of user's training script in docker image.

args: #any arguments that the training script requires.

env:

Use ads opctl to create the cluster infrastructure and run the workload:

Do a dry run to inspect how the yaml translates to Job and Job Runs

ads opctl run -f train.yaml --dry-run

This will give output similar to this.

Creating Job with payload:
kind: job
spec:
infrastructure:
kind: infrastructure
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: HVD-Distributed-TF
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxx.<log_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.GPU2.1
blockStorageSize: 50
type: dataSciencelob
name: horovod_tf
runtime:
kind: runtime
spec:
entrypoint: null
env:
- name: WORKER_PORT
value: 12345
- name: START_TIMEOUT
value: 600
- name: ENABLE_TIMELINE
value: 0
- name: SYNC_ARTIFACTS
value: 1
- name: WORKSPACE
value: "<bucket_name>"
- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"
- name: HOROVOD_ARGS
value: --verbose
- name: OCI__WORK_DIR

value: oci://<bucket_name>@<bucket_namespace>/<bucket_prefix>

- name: OCI__EPHEMERAL
value: None

(continues on next page)
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- name: OCI__CLUSTER_TYPE
value: HOROVOD
- name: OCI__WORKER_COUNT

value: '2°'
- name: OCI__START_ARGS
value: "'

- name: OCI__ENTRY_SCRIPT
value: /code/train.py
image: "<region>.ocir.io/<tenancy_id>/<repo_name>/<image_name>:<image_tag>"
type: container

R o e T B B o L T o o T B
Creating Main Job with following details:
Name: scheduler
Environment Variables:
OCI__MODE:MAIN

Creating 2 worker jobs with following details:
Name: worker
Environment Variables:

OCI__MODE:WORKER

Test Locally:

Before submitting the workload to jobs, you can run it locally to test your code, dependencies, configurations etc. With
-b local flag, it uses a local backend. Further when you need to run this workload on OCI data science jobs, simply
use -b job flag instead.

ads opctl run -f train.yaml -b local

If your code requires to use any oci services (like object bucket), you need to mount oci keys from your local host
machine onto the container. This is already done for you assuming the typical location of oci keys ~/.oci. You can
modify it though, in-case you have keys at a different location. You need to do this in the config.ini file.

oci_key mnt = ~/.oci:/home/oci_dist_training/.oci

Note that the local backend requires the source code for your workload is available locally in the source folder specified
in the config.ini file. If you specified Git repository or OCI object storage location as source code location in your
workflow YAML, please make sure you have a local copy available for local testing.

Submit the workload:

ads opctl run -f train.yaml -b job

Note:: This will automatically push the docker image to the OCI container registry repo .

Once running, you will see on the terminal outputs similar to the below

Listing 6: info.yaml
jobId: oci.xxxx.<job_ocid>
mainJobRunId:
mainJobRunIdName: oci.xxxx.<job_run_ocid>

(continues on next page)
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workDir: oci://my-bucket@my-namespace/cluster-testing/005
otherJobRunIds:

- workerJobRunIdName_1: oci.xxxx.<job_run_ocid>

- workerJobRunIdName_2: oci.xxxx.<job_run_ocid>

- workerJobRunIdName_3: oci.xxxx.<job_run_ocid>

This information can be saved as YAML file and used as input to ads opctl distributed-training
show-config -f <info.yaml>. You can use --job-info to save the job run info into YAML, for example:

ads opctl run -f train.yaml --job-info info.yaml

Saving Artifacts to Object Storage Buckets

In case you want to save the artifacts generated by the training process (model checkpoints, TensorBoard logs, etc.)
to an object bucket you can use the ‘sync’ feature. The environment variable OCI__SYNC_DIR exposes the directory
location that will be automatically synchronized to the configured object storage bucket location. Use this directory in
your training script to save the artifacts.

To configure the destination object storage bucket location, use the following settings in the workload yaml
file(train.yaml).

- name: SYNC_ARTIFACTS
value: 1

- name: WORKSPACE
value: "<bucket_name>"

- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"

Note: Change SYNC_ARTIFACTS to 0 to disable this feature. Use OCI__SYNC_DIR env variable in your code to save
the artifacts. For Example :

tf.keras.callbacks.ModelCheckpoint(os.path.join(os.environ.get("OCI__SYNC_DIR"),"ckpts",
'checkpoint- .h5"))

Monitoring the workload logs

To view the logs from a job run, you could run -

ads jobs watch oci.xxxx.<job_run_ocid>

For more monitoring options, please refer to Monitoring Horovod Training

11.2.5.2 Writing Distributed code with Horovod Framework
11.2.5.2.1 TensorFlow

To use Horovod in TensorFlow, following modifications are required in the training script:

1. Import Horovod and initialize it.

import horovod.tensorflow as hvd
hvd.init(Q)

2. Pin each GPU to a single process.
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With TensorFlow v1.

config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

With TensorFlow v2.

gpus = tf.config.experimental.list_physical_devices('GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

3. Scale the learning rate by the number of workers.

opt = tf.keras.optimizers.SGD(0.0005 * hvd.size())

4. Wrap the optimizer in hvd.DistributedOptimizer.

opt = hvd.DistributedOptimizer(opt)

5. Maodify your code to save checkpoints(and any other artifacts) only in the rank-0 training process to prevent other
workers from corrupting them.

if hvd.rank() == 0:
tf.keras.callbacks.ModelCheckpoint (ckpts_path)
tf.keras.callbacks.TensorBoard(tblogs_path)

6. OCI Data Science Horovod workloads are based on Elastic Horovod. In addition to above changes, the training
script also needs to use state synchronization. In summary, this means:

a. Use the decorator hvd.elastic.run to wrap the main training process.

b. Use hvd.elastic.State to add all variables that needs to be sync across workers.

c. Save state periodically, using hvd.elastic.State

A complete example can be found in the Write your training code section. More examples can be found here. Refer
horovod with TensorFlow and horovod with Keras for more details.

11.2.5.2.2 PyTorch

To use Horovod in PyTorch, following modifications are required in the training script:

1. Import Horovod and initialize it.

import horovod.torch as hvd
hvd.initQ

2. Pin each GPU to a single process. (use hvd.local_rank())

torch.manual_seed(args. seed)

if args.cuda:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)
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3. Scale the learning rate by the number of workers. (use hvd.size())

optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),
momentum=args . momentum)

4. Wrap the optimizer in hvd.DistributedOptimizer.

optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=model .named_parameters(),
compression=compression,
op=hvd.Adasum if args.use_adasum else hvd.Average

D)
5. Modify your code to save checkpoints only in the rank-0 training process to prevent other workers from corrupting
them.
6. Like TensorFlow, Horovod PyTorch scripts also need to use state synchronization. Refer TensorFlow section above.

Here is a complete PyTorch sample which is inspired from examples found here and here.

Listing 7: train.py

# Script adapted from https://github.com/horovod/horovod/blob/master/examples/elastic/
—pytorch/pytorch_mnist_elastic.py

#
import argparse

import os

from filelock import FileLock

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms
import torch.utils.data.distributed

import horovod.torch as hvd

from torch.utils.tensorboard import SummaryWriter

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument ('--batch-size', type=int, default=64, metavar='N'",
help="input batch size for training (default: 64)')
parser.add_argument ('--test-batch-size', type=int, default=1000, metavar='N',
help="input batch size for testing (default: 1000)')
parser.add_argument ('--epochs', type=int, default=10, metavar='N",
help="number of epochs to train (default: 10)"')
parser.add_argument('--1r', type=float, default=0.01, metavar='LR',
help="learning rate (default: 0.01)')
parser.add_argument (' --momentum', type=float, default=0.5, metavar='M"',
help='SGD momentum (default: 0.5)"')
parser.add_argument('--no-cuda', action='store_true', default=False,
help="disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help="random seed (default: 42)"')

(continues on next page)
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parser.add_argument ('--log-interval', type=int, default=10, metavar='N'",

help="how many batches to wait before logging training status')
parser.add_argument('--fpl6-allreduce’', action='store_true', default=False,

help="use £fpl6 compression during allreduce')
parser.add_argument ('--use-adasum', action='store_true', default=False,

help="use adasum algorithm to do reduction')
parser.add_argument ('--data-dir"',

help="location of the training dataset in the local filesystem (will..
—be downloaded if needed)')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

checkpoint_format = 'checkpoint- .pth.tar’'

# Horovod: initialize library.
hvd.init(Q)
torch.manual_seed(args. seed)

if args.cuda:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)

# Horovod: limit # of CPU threads to be used per worker.
torch.set_num_threads (1)

kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
data_dir = args.data_dir or './data'
with FileLock(os.path.expanduser('~/.horovod_lock")):
train_dataset = \
datasets.MNIST(data_dir, train=True, download=True,
transform=transforms.Compose ([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
D))
# Horovod: use DistributedSampler to partition the training data.
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.Dataloader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)

test_dataset = \
datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
1
# Horovod: use DistributedSampler to partition the test data.
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
test_loader = torch.utils.data.Dataloader(test_dataset, batch_size=args.test_batch_size,

(continues on next page)
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sampler=test_sampler, **kwargs)

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__QO
self.convl = nn.Conv2d(1l, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fcl = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)

def forward(self, x):

= F.relu(F.max_pool2d(self.convl(x), 2))
F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x.view(-1, 320)

= F.relu(self.fcl(x))
F.dropout(x, training=self.training)

self.fc2(x)

return F.log_softmax(x)

LT o B T -

model = Net()

# By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1

if args.cuda:
# Move model to GPU.
model.cuda()
# If using GPU Adasum allreduce, scale learning rate by local_size.
if args.use_adasum and hvd.nccl_built():
1r_scaler = hvd.local_size()

# Horovod: scale learning rate by lr_scaler.
optimizer = optim.SGD(model.parameters(), lr=args.lr * lr_scaler,
momentum=args .momentum)

# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fpl6 if args.fpl6_allreduce else hvd.Compression.none

def metric_average(val, name):
tensor = torch.tensor(val)
avg_tensor = hvd.allreduce(tensor, name=name)
return avg_tensor.item()

def create_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
# Horovod: average metrics from distributed training.
class Metric(object):

(continues on next page)
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def __init__(self, name):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)

def update(self, val):
self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
self.n += 1

@property
def avg(self):
return self.sum / self.n

@hvd.elastic.run
def train(state):
# post synchronization event (worker added, worker removed) init ...

artifacts_dir = os.environ.get("OCI__SYNC_DIR") + "/artifacts"
chkpts_dir = os.path.join(artifacts_dir, "ckpts")
logs_dir = os.path.join(artifacts_dir, "logs")
if hvd.rank() == 0:
print("creating dirs for checkpoints and logs'")
create_dir(chkpts_dir)
create_dir(logs_dir)

writer = SummaryWriter(logs_dir) if hvd.rank() == 0 else None

for state.epoch in range(state.epoch, args.epochs + 1):
train_loss = Metric('train_loss'")
state.model.train()

train_sampler.set_epoch(state.epoch)
steps_remaining = len(train_loader) - state.batch

for state.batch, (data, target) in enumerate(train_loader):
if state.batch >= steps_remaining:
break

if args.cuda:
data, target = data.cuda(), target.cuda(Q)
state.optimizer.zero_grad()
output = state.model(data)
loss = F.nll _loss(output, target)
train_loss.update(loss)
loss.backward()
state.optimizer.step()
if state.batch % args.log_interval ==
# Horovod: use train_sampler to determine the number of examples in
# this worker's partition.
print('Train Epoch: [{}/ ( %) 1\tLoss: ', format (
state.epoch, state.batch * len(data), len(train_sampler),
100.0 * state.batch / len(train_loader), loss.item()))

(continues on next page)
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state.commit()
if writer:
writer.add_scalar("Loss", train_loss.avg, state.epoch)
if hvd.rank() == 0:
chkpt_path = os.path.join(chkpts_dir,checkpoint_format.format(epoch=state.
—.epoch + 1))
chkpt = {
'model': state.model.state_dict(),
'optimizer': state.optimizer.state_dict(),
}
torch.save(chkpt, chkpt_path)
state.batch = 0

def test(Q):
model.eval()
test_loss = 0.
test_accuracy = 0.
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.data.max(l, keepdim=True)[1]
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()

# Horovod: use test_sampler to determine the number of examples in
# this worker's partition.

test_loss /= len(test_sampler)

test_accuracy /= len(test_sampler)

# Horovod: average metric values across workers.
test_loss = metric_average(test_loss, 'avg_loss')
test_accuracy = metric_average(test_accuracy, 'avg_accuracy')

# Horovod: print output only on first rank.
if hvd.rank() == 0:
print('\nTest set: Average loss: , Accuracy: %\n' . format (
test_loss, 100. * test_accuracy))

# Horovod: wrap optimizer with DistributedOptimizer.

optimizer = hvd.DistributedOptimizer (optimizer,
named_parameters=model .named_parameters(),
compression=compression,
op=hvd.Adasum if args.use_adasum else hvd.Average)

# adjust learning rate on reset
def on_state_reset():

(continues on next page)
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for param_group in optimizer.param_groups:
param_group['lr'] = args.lr * hvd.size()

state = hvd.elastic.TorchState(model, optimizer, epoch=1, batch=0)
state.register_reset_callbacks([on_state_reset])

train(state)

test()

Refer to more examples here. Refer horovod with PyTorch for more details.

Next Steps

Once you have the training code ready (either in TensorFlow or PyTorch), you can proceed to creating Horovod work-
loads.

11.2.5.3 Monitoring Training

Monitoring Horovod training using TensorBoard is similar to how it is usually done for TensorFlow or PyTorch
workloads. Your training script generates the TensorBoard logs and saves the logs to the directory reference by
OCI__SYNC_DIR env variable. With SYNC_ARTIFACTS=1, these TensorBoard logs will be periodically synchronized
with the configured object storage bucket.

Please refer Saving Artifacts to Object Storage Buckets.
Aggregating metrics:

In a distributed setup, the metrics(loss, accuracy etc.) need to be aggregated from all the workers. Horovod provides
MetricAverageCallback callback(for TensorFlow) which should be added to the model training step. For PyTorch, refer
this Pytorch Example.

Using TensorBoard Logs:

TensorBoard can be setup on a local machine and pointed to object storage. This will enable a live monitoring setup
of TensorBoard logs.

OCIFS_TAM_TYPE=api_key tensorboard --logdir oci://<bucket_name>/path/to/logs

Note: The logs take some initial time (few minutes) to reflect on the tensorboard dashboard.
Horovod Timelines:

Horovod also provides Timelines, which provides a snapshot of the training activities. Timeline files can be optionally
generated with the following environment variable(part of workload yaml).

config:
env:
- name: ENABLE_TIMELINE #Disabled by Default(0).
value: 1

Note: Creating Timelines degrades the training execution time.
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11.2.6 PyTorch Distributed

PyTorch is an open source machine learning framework used for applications such as computer vision and natural
language processing, primarily developed by Facebook’s Al Research lab. ADS supports running PyTorch’s native
distributed training code (torch.distributed and DistributedDataParallel) with OCI Data Science Jobs. Pro-
vided you are following the official PyTorch distributed data parallel guidelines, no changes to your PyTorch code
are required.

PyTorch distributed training requires initialization using the torch.distributed.init_process_group() func-
tion. By default this function collects uses environment variables to initialize the communications for the training
cluster. When using ADS to run PyTorch distributed training on OCI data science Jobs, the environment variables, in-
cluding MASTER_ADDR, MASTER_PORT, WORLD_SIZE RANK, and LOCAL_RANK will automatically be set in the job runs.
By default MASTER_PORT will be set to 29400.

11.2.6.1 Creating PyTorch Distributed Workloads

Prerequisites
1. Internet Connection
2. ADS cli is installed
3. Install docker: https://docs.docker.com/get-docker
Write your training code:
For this example, the code to run was inspired from an example found here

Note that MASTER_ADDR, MASTER_PORT, WORLD_SIZE, RANK, and LOCAL_RANK are environment variables that will
automatically be set.

Listing 8: train.py

# Copyright (c) 2017 Facebook, Inc. All rights reserved.

# BSD 3-Clause License

#

# Script adapted from:

# https://github.com/Azure/azureml-examples/blob/
—32eeda9e91394bd6c3b687b55e2740abc50b116¢c/sdk/python/jobs/single-step/pytorch/
—distributed-training/src/train.py

#

import datetime

import torch

import torchvision

import torchvision.transforms as transforms
import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import os, argparse

# define network architecture
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__(Q

(continues on next page)
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self.convl = nn.Conv2d(3, 32, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 3)
self.conv3 = nn.Conv2d(64, 128, 3)
self.fcl = nn.Linear(128 * 6 * 6, 120)
self.dropout = nn.Dropout(p=0.2)
self.fc2 = nn.Linear(120, 84)

self.fc3 = nn.Linear(84, 10)

def forward(self, x):
F.relu(self.convl(x))
self.pool(F.relu(self.conv2(x)))
= self.pool(F.relu(self.conv3(x)))
x.view(-1, 128 * 6 * 6)
self.dropout (F.relu(self.fcl1(x)))
F.relu(self.fc2(x))

self.fc3(x)

return x

E T B - T -
1l

# define functions
def train(train_loader, model, criterion, optimizer, epoch, device, print_freq, rank):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[l].to(device)

# zero the parameter gradients
optimizer.zero_grad()

# forward + backward + optimize
outputs = model (inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

# print statistics
running_loss += loss.item()

if i % print_freq == 0: # print every print_freq mini-batches
print(
"Rank : [%d, ] loss: "

% (rank, epoch + 1, i + 1, running_loss / print_freq)

)

running_loss = 0.0

def evaluate(test_loader, model, device):
classes = (
"plane",
"car",
Ilbirdll ,
"cat",

(continues on next page)
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"deer",
"dog",
"frog",
"horse",
"ship",
"truck",

)
model.eval()

correct = 0
total = 0
class_correct = 1ist(0.0 for i in range(10))
class_total = 1ist(0.0 for i in range(10))
with torch.no_gradQ):
for data in test_loader:
images, labels = data[0].to(device), data[l].to(device)
outputs = model (images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
c = (predicted == labels).squeeze()
for i in range(10):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1

# print total test set accuracy

print(
"Accuracy of the network on the 10000 test images: "
% (100 * correct / total)

)

# print test accuracy for each of the classes
for i in range(10):
print(
"Accuracy of
% (classes[i], 100 * class_correct[i] / class_total[i])

main(args):

# get PyTorch environment variables
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])

local_rank = int(os.environ["LOCAL_RANK"])

distributed = world_size > 1

if torch.cuda.is_available():
print("CUDA is available.™)
else:

(continues on next page)
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print("CUDA is not available.")

# set device
if distributed:
if torch.cuda.is_available():
device = torch.device('"cuda", local_rank)
else:
device = torch.device("cpu")
else:
device = torch.device('"cuda:0" if torch.cuda.is_available() else "cpu'")

# initialize distributed process group using default env:// method
if distributed:
torch.distributed.init_process_group(
backend=args.backend,
timeout=datetime.timedelta(minutes=args.timeout)

)

# define train and test dataset Dataloaders
transform = transforms.Compose(

[transforms.ToTensor(), transforms.Normalize((®.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)

train_set = torchvision.datasets.CIFAR10(
root=args.data_dir, train=True, download=True, transform=transform

)

if distributed:

train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
else:

train_sampler = None

train_loader = torch.utils.data.Dataloader(
train_set,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
sampler=train_sampler,

test_set = torchvision.datasets.CIFAR10(
root=args.data_dir, train=False, download=True, transform=transform

)
test_loader = torch.utils.data.DatalLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers

model = Net().to(device)

# wrap model with DDP
if distributed:
if torch.cuda.is_available():

(continues on next page)
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model = nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank
)
else:
model = nn.parallel.DistributedDataParallel (model)

# define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
model .parameters(), lr=args.learning rate, momentum=args.momentum

)

# train the model
for epoch in range(args.epochs):
print ("Rank : Starting epoch " % (rank, epoch))
if distributed:
train_sampler.set_epoch(epoch)
model . train()

train(
train_loader,
model,
criterion,
optimizer,
epoch,
device,
args.print_freq,
rank,

)

print ("Rank : Finished Training" % (rank))

if not distributed or rank ==
os.makedirs(args.output_dir, exist_ok=True)
model_path = os.path.join(args.output_dir, "cifar_net.pt")
torch.save(model .state_dict(), model_path)

# evaluate on full test dataset
evaluate(test_loader, model, device)

# run script

if

__hame__ == "__main__":

# setup argparse
parser = argparse.ArgumentParser()
parser.add_argument (
"--data-dir", type=str, help="directory containing CIFAR-10 dataset"
)
parser.add_argument ("--epochs", default=10, type=int, help="number of epochs")
parser.add_argument (
"--batch-size",
default=16,
type=int,

(continues on next page)
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help="mini batch size for each gpu/process",

)
parser.add_argument (

"--workers",

default=2,

type=int,

help="number of data loading workers for each gpu/process",
)

parser.add_argument (
"--learning-rate", default=0.001, type=float, help="learning rate"
)
parser.add_argument ("'--momentum", default=0.9, type=float, help="momentum")
parser.add_argument (
"--output-dir", default="outputs", type=str, help="directory to save model to"

)
parser.add_argument (

"--print-freq",

default=200,

type=int,

help="frequency of printing training statistics",
)

parser.add_argument (
"--backend", default="gloo", type=str,
help="distributed communication backend, should be gloo, nccl or mpi"
)
parser.add_argument (
"--timeout", default=30, type=int,
help="timeout in minutes for waiting for the initialization of distributed.
—process group."

)

args = parser.parse_args()

# call main function
main(args)
Initialize a distributed-training folder:

At this point you have create a training file (or files) - train.py in the above example. Now running the com-
mand below will download the artifacts required for building the docker image. The artifacts will be saved into the
oci_dist_training_artifacts/pytorch/v1 directory under your current working directory.

ads opctl distributed-training init --framework pytorch --version vl
Containerize your code and build container:

Before you can build the image, you must set the following environment variables:

Specify image name and tag

export IMAGE_NAME=<region.ocir.io/my-tenancy/image-name>
export TAG=latest

Build the container image
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ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/pytorch/vl/Dockerfile

The code is assumed to be in the current working directory. To override the source code directory, use the -s flag and
specify the code dir. This folder should be within the current working directory.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/pytorch/vl/Dockerfile
-s <code_dir>

If you are behind proxy, ads opctl will automatically use your proxy settings (defined via no_proxy, http_proxy and
https_proxy).

Define your workload yaml:

The yaml file is a declarative way to express the workload. Following is the YAML for running the example code, you
will need to replace the values in the spec sections for your project:

e infrastructure contains spec for OCI Data Science Jobs. Here you need to specify a subnet that allows
communications between nodes. The VM.GPU2. 1 shape is used in this example.

* cluster contains spec for the image you built and a working directory on OCI object storage, which will be used
by job runs to shared internal configurations. Environment variables specified in the cluster.spec.config
will be available in all nodes. Here the NCCL_ASYNC_ERROR_HANDLING is used to enable the timeout for NCCL
backend. The job runs will be terminated if the nodes failed to connect to each other in certain minutes as
specified in your training code when calling init_process_group().

* runtime contains spec for the name of your training script, and the command line arguments for running the
script. Here the nccl backend is used for communications between GPUs. For CPU training, you can use
the gloo backend. The timeout argument specify the maximum minutes for the nodes to wait when calling
init_process_group(). This is useful for preventing the job runs to wait forever in case of node failure.

Listing 9: train.yaml

kind: distributed
apiVersion: v1.0
spec:
infrastructure:
kind: infrastructure
type: dataSciencelob
apiVersion: v1.0
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: PyTorch-Distributed
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxx.<log_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.GPU2.1
blockStorageSize: 50
cluster:
kind: pytorch

(continues on next page)
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apiVersion: v1.0
spec:
image: <region.ocir.io/my-tenancy/image-name>
workDir: "oci://my-bucket@my-namespace/pytorch/distributed"

config:
env:
- name: NCCL_ASYNC_ERROR_HANDLING
value: '1'
main:

name: PyTorch-Distributed-main
replicas: 1
worker:
name: PyTorch-Distributed-worker
replicas: 3
runtime:
kind: python
apiVersion: v1.0
spec:
entryPoint: "train.py"
args:
- --data-dir
- /home/datascience/data
- --output-dir
- /home/datascience/outputs
- --backend
- gloo
- --timeout
-5

Use ads opctl to create the cluster infrastructure and dry-run the workload:

ads opctl run -f train.yaml --dry-run

the output from the dry run will show all the actions and infrastructure configuration.
Use ads opctl to create the cluster infrastructure and run the workload:
Test Locally:

Before submitting the workload to jobs, you can run it locally to test your code, dependencies, configurations etc. With
-b local flag, it uses a local backend. Further when you need to run this workload on OCI data science jobs, simply
use -b job flag instead.

ads opctl run -f train.yaml -b local

If your code requires to use any oci services (like object bucket), you need to mount oci keys from your local host
machine onto the container. This is already done for you assuming the typical location of oci keys ~/.oci. You can
modify it though, in-case you have keys at a different location. You need to do this in the config.ini file.

oci_key_mnt = ~/.oci:/home/oci_dist_training/.oci

Note that the local backend requires the source code for your workload is available locally in the source folder specified
in the config.ini file. If you specified Git repository or OCI object storage location as source code location in your
workflow YAML, please make sure you have a local copy available for local testing.
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Submit the workload:

ads opctl run -f train.yaml -b job

Note:: This will automatically push the docker image to the OCI container registry repo .

Once running, you will see on the terminal outputs similar to the below

Listing 10: info.yaml

jobId: oci.xxxx.<job_ocid>
mainJobRunId:
mainJobRunIdName: oci.xxxx.<job_run_ocid>
workDir: oci://my-bucket@my-namespace/cluster-testing/005
otherJobRunlds:
- workerJobRunIdName_1: oci.xxxx.<job_run_ocid>
- workerJobRunIdName_2: oci.xxxx.<job_run_ocid>
- workerJobRunIdName_3: oci.xxxx.<job_run_ocid>

This information can be saved as YAML file and used as input to ads opctl distributed-training
show-config -f <info.yaml>. You can use --job-info to save the job run info into YAML, for example:

ads opctl run -f train.yaml --job-info info.yaml

Monitoring the workload logs

To view the logs from a job run, you could run -

ads opctl watch oci.xxxx.<job_run_ocid>

You could stream the logs from any of the job run ocid using ads opctl watch command. You could run this
command from multiple terminal to watch all of the job runs. Typically, watching mainJobRunId should yield most
informative log.

Saving Artifacts to Object Storage Buckets

In case you want to save the artifacts generated by the training process (model checkpoints, TensorBoard logs, etc.)
to an object bucket you can use the ‘sync’ feature. The environment variable OCI__SYNC_DIR exposes the directory
location that will be automatically synchronized to the configured object storage bucket location. Use this directory in
your training script to save the artifacts.

To configure the destination object storage bucket location, use the following settings in the workload yaml
file(train.yaml).

- name: SYNC_ARTIFACTS
value: 1

- name: WORKSPACE
value: "<bucket_name>"

- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"

Note: Change SYNC_ARTIFACTS to 0 to disable this feature. Use OCI__SYNC_DIR env variable in your code to save
the artifacts. For Example :

model_path = os.path.join(os.environ.get("OCI__SYNC_DIR"),"model.pt")
torch.save(model, model_path)

Profiling
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You may want to profile your training setup for optimization/performance tuning. Profiling typically provides a detailed
analysis of cpu utilization, gpu utilization, top cuda kernels, top operators etc. You can choose to profile your training
setup using the native Pytorch profiler or using a third party profiler such as Nvidia Nsights.

Profiling using Pytorch Profiler

Pytorch Profiler is a native offering from Pytorch for Pytorch performance profiling. Profiling is invoked using code
instrumentation using the api torch.profiler.profile.

Refer this link for changes that you need to do in your training script for instrumentation. You should choose the
OCI__SYNC_DIR directory to save the profiling logs. For example

prof = torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,torch.
—profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=3,
repeat=1),
on_trace_ready=torch.profiler. tensorboard_trace_handler(os.environ.get("OCI__SYNC_
—DIR") + "/logs"),
with_stack=False)
prof.start()

# training code
prof.end()

Also, the sync feature SYNC_ARTIFACTS should be enabled '"1' to sync the profiling logs to the configured object
storage.

You would also need to install the Pytorch Tensorboard Plugin.

pip install torch-tb-profiler

Thereafter, use Tensorboard to view logs. Refer the Tensorboard setup for set-up on your computer.
Profiling using Nvidia Nsights
Nvidia Nsights. is a system wide profiling tool from Nvidia that can be used to profile Deep Learning workloads.

Nsights requires no change in your training code. This works on process level. You can enable this experimental feature
in your training setup via the following configuration in the runtime yaml file(highlighted).

spec:
image: "@image"
workDir: ‘“oci://@/"
name: "tf _multiworker"
config:
env:
- name: WORKER_PORT
value: 12345
- name: SYNC_ARTIFACTS
value: 1
- name: WORKSPACE
value: "<bucket_name>"
- name: WORKSPACE_PREFIX
value: "<bucket_prefix>'

(continues on next page)
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- name: PROFILE
value: 1
- name: PROFILE_CMD
value: "nsys profile -w true -t cuda,nvtx,osrt,cudnn,cublas -s none -o /opt/
—ml/nsight_report -x true"
main:
name: "main"
replicas: 1
worker:
name: "worker"
replicas: 1

Refer this for nsys profile command options. You can modify the command within the PROFILE_CMD but remember this
is all experimental. The profiling reports are generated per node. You need to download the reports to your computer
manually or via the oci command.

oci os object bulk-download \
-ns <namespace> \
-bn <bucket_name> \
--download-dir /path/on/your/computer \
--prefix path/on/bucket/<job_id>

Note: -bn == WORKSPACE and --prefix path == WORKSPACE_PREFIX/<job_id> , as configured in the runtime
yaml file. To view the reports, you would need to install Nsight Systems app from here. Thereafter, open the downloaded
reports in the Nsight Systems app.

11.2.7 Tensorflow

Distributed training with Native TensorFlow

TensorFlow is an open-source software framework for distributed deep learning training. Tensorflow has multiple
strategies. The following are supported:

1. MirroredStrategy
2. MultiWorkerMirroredStrategy

3. ParameterServerStrategy

11.2.7.1 Creating Tensorflow Workloads

Prerequisites
1. Internet Connection
2. ADS cli is installed
3. Install docker: https://docs.docker.com/get-docker
Write your training code:
Your model training script needs to use one of Distributed Strategies in tensorflow.

For example, you can have the following training Tensorflow script for MultiWorkerMirroredStrategy saved as mnist.py:
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# Script adapted from tensorflow tutorial: https://www.tensorflow.org/tutorials/
—distribute/multi_worker with_keras

import tensorflow as tf

import tensorflow_datasets as tfds

import os

import sys

import time

import ads

from ocifs import OCIFileSystem

from tensorflow.data.experimental import AutoShardPolicy

BUFFER_SIZE = 10000
BATCH_SIZE_PER_REPLICA = 64

if '.' not in sys.path:
sys.path.insert(0, '.")

def create_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)

def create_dirs(task_type="worker", task_id=0):
artifacts_dir = os.environ.get("OCI__SYNC_DIR", "/opt/ml")
model_dir = artifacts_dir + "/model"
print("creating dirs for Model: ", model_dir)
create_dir(model_dir)
checkpoint_dir = write_filepath(artifacts_dir, task_type, task_id)
return artifacts_dir, checkpoint_dir, model_dir

def write_filepath(artifacts_dir, task_type, task_id):
if task_type == None:
task_type = "worker"
checkpoint_dir = artifacts_dir + "/checkpoints/" + task_type + "/" + str(task_id)
print("creating dirs for Checkpoints: ", checkpoint_dir)
create_dir(checkpoint_dir)
return checkpoint_dir

def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label

def get_data(data_bckt=None, data_dir="/code/data", num_replicas=1, num_workers=1):
if data_bckt is not None and not os.path.exists(data_dir + '/mnist'):
print(f"downloading data from {data_bckt}")
ads.set_auth(os.environ.get("OCI_TAM_TYPE", "resource_principal"))
authinfo = ads.common.auth.default_signer()
oci_filesystem = OCIFileSystem(**authinfo)
1ck_file = os.path.join(data_dir, '.lck"')

(continues on next page)
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if not os.path.exists(lck_file):
os.makedirs(os.path.dirname(lck_file), exist_ok=True)
open(lck_file, 'w').close()
oci_filesystem.download(data_bckt, data_dir, recursive=True)
else:
print(f"data downloaded by a different process. waiting")
time.sleep(30)

BATCH_SIZE = BATCH_SIZE_PER_REPLICA * num_replicas * num_workers

print("Now printing data_dir:", data_dir)

datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True, data_
—dir=data_dir)

mnist_train, mnist_test = datasets['train'], datasets['test']

print("num_train_examples :", info.splits['train'].num_examples,

num_te St_example S.

s 0

info.splits['test'].num_examples)

train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE) .batch(BATCH_SIZE)
test_dataset = mnist_test.map(scale).batch(BATCH_SIZE)

train = shard(train_dataset)

test = shard(test_dataset)

return train, test, info

def shard(dataset):
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATA
return dataset.with_options(options)

def decay(epoch):
if epoch < 3:
return le-3
elif epoch >= 3 and epoch < 7:
return le-4
else:
return le-5

def get_callbacks(model, checkpoint_dir="/opt/ml/checkpoints"):
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_ ")

class PrintLR(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
print('\nLearning rate for epoch is '.format(epoch + 1, model.optimizer.
~1lr.numpy()), flush=True)

callbacks = [
tf.keras.callbacks.TensorBoard(log_dir="./logs"'),
tf.keras.callbacks.ModelCheckpoint (filepath=checkpoint_prefix,
# save_weights_only=True

) ’

(continues on next page)
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tf.keras.callbacks.LearningRateScheduler(decay),
PrintLR()
]

return callbacks

def build_and_compile_cnn_model():

print ("TF_CONFIG in model:", os.environ.get("TF_CONFIG"))

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10)

D

model .compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(Q),
metrics=["'accuracy'])

return model

And, save the following script as train.py

import tensorflow as tf
import argparse
import mnist

print(tf.__version__)

parser = argparse.ArgumentParser(description='Tensorflow Native MNIST Example')
parser.add_argument('--data-dir',
help="location of the training dataset in the local filesystem (will.
—be downloaded if needed)',
default='/code/data')
parser.add_argument ('--data-bckt',
help="location of the training dataset in an object storage bucket',
default=None)

args = parser.parse_args()
artifacts_dir, checkpoint_dir, model_dir = mnist.create_dirs()

strategy = tf.distribute.MirroredStrategy()
print ('Number of devices: '.format(strategy.num_replicas_in_sync))

train_dataset, test_dataset, info = mnist.get_data(data_bckt=args.data_bckt, data_
—dir=args.data_dir,
num_replicas=strategy.num_replicas_in_
<»8ync)
with strategy.scope():
model = mnist.build_and_compile_cnn_model ()

(continues on next page)
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model . fit(train_dataset, epochs=2, callbacks=mnist.get_callbacks(model, checkpoint_dir))
model . save(model_dir, save_format='tf')

Initialize a distributed-training folder:

At this point you have created a training file (or files) - train.py from the above example. Now, run the command
below.

ads opctl distributed-training init --framework tensorflow --version vl

This will download the tensorflow framework and place it inside 'oci_dist_training_artifacts' folder.

Note: Whenever you change the code, you have to build, tag and push the image to repo. This is automatically done in
“ads opctl run’ cli command.

Containerize your code and build container:

The  required python  dependencies are  provided inside the conda  environment file
oci_dist_training_artifacts/tensorflow/vi/environments.yaml. If your code requires additional dependency, up-
date this file.

Also, while updating environments.yaml do not remove the existing libraries. You can append to the list.

Update the TAG and the IMAGE_NAME as per your needs -

export IMAGE_NAME=<region.ocir.io/my-tenancy/image-name>
export TAG=latest
export MOUNT_FOLDER_PATH=.

Build the container image.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/tensorflow/v1l/Dockerfile \

The code is assumed to be in the current working directory. To override the source code directory, use the -s flag and
specify the code dir. This folder should be within the current working directory.

ads opctl distributed-training build-image \
-t $TAG \
-reg $IMAGE_NAME \
-df oci_dist_training_artifacts/tensorflow/v1l/Dockerfile \
-s $MOUNT_FOLDER_PATH

If you are behind proxy, ads opctl will automatically use your proxy settings (defined via no_proxy, http_proxy and
https_proxy).

Define your workload yaml:

The yaml file is a declarative way to express the workload. In this example, we bring up 1 worker node and 1 chief-
worker node. The training code to run is train.py. All your training code is assumed to be present inside /code
directory within the container. Additionally, you can also put any data files inside the same directory (and pass on the
location ex /code/data/** as an argument to your training script using runtime->spec->args).
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kind: distributed
apiVersion: v1.0
spec:
infrastructure:
kind: infrastructure
type: dataSciencelob
apiVersion: v1.0
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: Tensorflow
logGroupId: oci.xxxx.<log_group_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.GPU2.1
blockStorageSize: 50
cluster:
kind: TENSORFLOW
apiVersion: v1.0

spec:
image: "@image"
workDir: ‘"oci://<bucket_name>@<bucket_namespace>/<bucket_prefix>"
name: "tf_multiworker"
config:
env:

- name: WORKER_PORT #Optional. Defaults to 12345
value: 12345
- name: SYNC_ARTIFACTS #Mandatory: Switched on by Default.
value: 1
- name: WORKSPACE #Mandatory if SYNC_ARTIFACTS==1: Destination object bucket.
—to sync generated artifacts to.
value: "<bucket_name>"
- name: WORKSPACE_PREFIX #Mandatory if SYNC_ARTIFACTS==1: Destination object.
—bucket folder to sync generated artifacts to.
value: "<bucket_prefix>"
main:
name: "chief"
replicas: 1 #this will be always 1.
worker:
name: "worker"
replicas: 1 #number of workers. This is in addition to the 'chief' worker. Could.
—be more than 1
runtime:
kind: python
apiVersion: v1.0
spec:
entryPoint: "/code/train.py" #location of user's training script in the container.
—,image.
args: #any arguments that the training script requires.
- --data-dir # assuming data folder has been bundled in the container image.
- /code/data/
env:

Use ads opctl to create the cluster infrastructure and run the workload:

11.2. Distributed Training 189



ADS Documentation, Release 2.7.3

Do a dry run to inspect how the yaml translates to Job and Job Runs

ads opctl run -f train.yaml --dry-run

This will give output similar to this.

Creating Job with payload:
kind: job
spec:
infrastructure:
kind: infrastructure
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: Tensorflow
logGroupId: oci.xxxx.<log_group_ocid>
logId: oci.xxx.<log_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.GPU2.1
blockStorageSize: 50
type: dataSciencelob
name: tf_multiworker
runtime:
kind: runtime
spec:
entrypoint: null
env:
- name: WORKER_PORT
value: 12345
- name: SYNC_ARTIFACTS
value: 1
- name: WORKSPACE
value: "<bucket_name>"
- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"
- name: OCI__WORK_DIR
value: oci://<bucket_name>@<bucket_namespace>/<bucket_prefix>
- name: OCI__EPHEMERAL
value: None
- name: OCI__CLUSTER_TYPE
value: TENSORFLOW
- name: OCI__WORKER_COUNT

value: '1'
- name: OCI__START_ARGS
value: "'

- name: OCI__ENTRY_SCRIPT
value: /code/train.py
image: '"<region>.ocir.io/<tenancy_id>/<repo_name>/<image_name>:<image_tag>"
type: container
Creating Main Job
Name: chief

PR T O T N O O O O O O T T
T T T T T T T T T T T T T

Run with following details:

TR T T T T N O T O T N O S N A T O
LIt i i i i i ke ke e e i e ke i i e e e e e e

(continues on next page)
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Environment Variables:
OCI__MODE:MAIN

Creating Job Runs with following details:
Name: worker_0
Environment Variables:

OCI__MODE:WORKER

Test Locally:

Before submitting the workload to jobs, you can run it locally to test your code, dependencies, configurations etc. With
-b local flag, it uses a local backend. Further when you need to run this workload on OCI data science jobs, simply
use -b job flag instead.

ads opctl run -f train.yaml -b local

If your code requires to use any oci services (like object bucket), you need to mount oci keys from your local host
machine onto the container. This is already done for you assuming the typical location of oci keys ~/.oci. You can
modify it though, in-case you have keys at a different location. You need to do this in the config.ini file.

oci_key_mnt = ~/.oci:/home/oci_dist_training/.oci

Note that the local backend requires the source code for your workload is available locally in the source folder specified
in the config.ini file. If you specified Git repository or OCI object storage location as source code location in your
workflow YAML, please make sure you have a local copy available for local testing.

Submit the workload:

ads opctl run -f train.yaml -b job

Note:: This will automatically push the docker image to the OCI container registry repo .

Once running, you will see on the terminal outputs similar to the below

Listing 11: info.yaml

jobId: oci.xxxx.<job_ocid>
mainJobRunId:
mainJobRunIdName: oci.xxxx.<job_run_ocid>
workDir: oci://my-bucket@my-namespace/cluster-testing/005
otherJobRunlds:
- workerJobRunIdName_1: oci.xxxx.<job_run_ocid>
- workerJobRunIdName_2: oci.xxxx.<job_run_ocid>
- workerJobRunIdName_3: oci.xxxx.<job_run_ocid>

This information can be saved as YAML file and used as input to ads opctl distributed-training
show-config -f <info.yaml>. You can use --job-info to save the job run info into YAML, for example:

ads opctl run -f train.yaml --job-info info.yaml

Saving Artifacts to Object Storage Buckets

In case you want to save the artifacts generated by the training process (model checkpoints, TensorBoard logs, etc.)
to an object bucket you can use the ‘sync’ feature. The environment variable OCI__SYNC_DIR exposes the directory
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location that will be automatically synchronized to the configured object storage bucket location. Use this directory in
your training script to save the artifacts.

To configure the destination object storage bucket location, use the following settings in the workload yaml
file(train.yaml).

- name: SYNC_ARTIFACTS
value: 1

- name: WORKSPACE
value: "<bucket_name>"

- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"

Note: Change SYNC_ARTIFACTS to 0 to disable this feature. Use OCI__SYNC_DIR env variable in your code to save
the artifacts. For Example :

tf.keras.callbacks.ModelCheckpoint(os.path.join(os.environ.get("OCI__SYNC_DIR"),"ckpts",
— "'checkpoint- .h5"))
Monitoring the workload logs

To view the logs from a job run, you could run -

ads jobs watch oci.xxxx.<job_run_ocid>

Profiling

You may want to profile your training setup for optimization/performance tuning. Profiling typically provides a detailed
analysis of cpu utilization, gpu utilization, top cuda kernels, top operators etc. You can choose to profile your training
setup using the native Pytorch profiler or using a third party profiler such as Nvidia Nsights.

Profiling using Tensorflow Profiler
Tensorflow Profiler is a native offering from Tensforflow for Tensorflow performance profiling.
Profiling is invoked using code instrumentation using one of the following apis.
tf keras.callbacks.TensorBoard
tf.profiler.experimental.Profile
Refer above links for changes that you need to do in your training script for instrumentation.

You should choose the OCI__SYNC_DIR directory to save the profiling logs. For example:

options = tf.profiler.experimental.ProfilerOptions/(

host_tracer_level=2,

python_tracer_level=1,

device_tracer_level=1,

delay_ms=None)
with tf.profiler.experimental.Profile(os.environ.get("OCI__SYNC_DIR") + "/logs",
—,options=options):

# training code

In case of keras callback:

tboard_callback = tf.keras.callbacks.TensorBoard(log_dir = os.environ.get("OCI__SYNC_DIR
(ﬂll) + ll/logsll ,
histogram_freq = 1,

(continues on next page)
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profile_batch = '500,520")
model.fit(...,callbacks = [tboard_callback])

Also, the sync feature SYNC_ARTIFACTS should be enabled '1' to sync the profiling logs to the configured object
storage.

Thereafter, use Tensorboard to view logs. Refer the Tensorboard setup for set-up on your computer.
Profiling using Nvidia Nsights
Nvidia Nsights. is a system wide profiling tool from Nvidia that can be used to profile Deep Learning workloads.

Nsights requires no change in your training code. This works on process level. You can enable this experimental feature
in your training setup via the following configuration in the runtime yaml file(highlighted).

spec:
image: "@image"
workDir: ‘“oci://@/"
name: "tf_multiworker"
config:
env:
- name: WORKER_PORT
value: 12345
- name: SYNC_ARTIFACTS
value: 1
- name: WORKSPACE
value: "<bucket_name>"
- name: WORKSPACE_PREFIX
value: "<bucket_prefix>"
- name: PROFILE
value: 1
- name: PROFILE_CMD
value: "nsys profile -w true -t cuda,nvtx,osrt,cudnn,cublas -s none -o /opt/
—ml/nsight_report -x true"
main:
name: "main"
replicas: 1
worker:
name: "worker"
replicas: 1

Refer this for nsys profile command options. You can modify the command within the PROFILE_CMD but remember this
is all experimental. The profiling reports are generated per node. You need to download the reports to your computer
manually or via the oci command.

oci os object bulk-download \
-ns <namespace> \
-bn <bucket_name> \
--download-dir /path/on/your/computer \
--prefix path/on/bucket/<job_id>

Note: -bn == WORKSPACE and --prefix path == WORKSPACE_PREFIX/<job_id>, as configured in the runtime
yaml file. To view the reports, you would need to install Nsight Systems app from here. Thereafter, open the downloaded
reports in the Nsight Systems app.

Other Tensorflow Strategies supported
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Tensorflow has two multi-worker strategies: MultiWorkerMirroredStrategy and ParameterServerStrategy.
Let’s see changes that you would need to do to run ParameterServerStrategy workload.

You can have the following training Tensorflow script for ParameterServerStrategy saved as train.py (just like
mnist.py and train.py in case of MultiWorkerMirroredStrategy):

# Script adapted from tensorflow tutorial: https://www.tensorflow.org/tutorials/
—distribute/parameter_server_training

import os

import tensorflow as tf
import json

import multiprocessing

NUM_PS = len(json.loads(os.environ['TF_CONFIG'])['cluster']['ps'])
global_batch_size = 64

def worker (num_workers, cluster_resolver):
# Workers need some inter_ops threads to work properly.
worker_config = tf.compat.vl.ConfigProto()
if multiprocessing.cpu_count() < num_workers + 1:
worker_config.inter_op_parallelism_threads = num_workers + 1

for i in range(num_workers):
print("cluster_resolver.task_id:

, cluster_resolver.task_id, flush-=-True)

s = tf.distribute.Server(
cluster_resolver.cluster_spec(),
job_name=cluster_resolver.task_type,
task_index=cluster_resolver.task_id,
config=worker_config,
protocol="grpc")

s.join()

def ps(num_ps, cluster_resolver):
print("cluster_resolver.task_id:
for i in range(num_ps):

s = tf.distribute.Server(
cluster_resolver.cluster_spec(),
job_name=cluster_resolver.task_type,
task_index=cluster_resolver.task_id,
protocol="grpc")

s.join()

, cluster_resolver.task_id, flush=True)

def create_cluster(cluster_resolver, num_workers=1, num_ps=1, mode="worker"):
os.environ["GRPC_FAIL_FAST"] = "use_caller"

if mode.lower() == 'worker':
print("Starting worker server...", flush=True)
worker (num_workers, cluster_resolver)

else:

(continues on next page)
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print("Starting ps server...", flush=True)
ps(num_ps, cluster_resolver)

return cluster_resolver, cluster_resolver.cluster_spec()

def decay(epoch):
if epoch < 3:
return le-3
elif epoch >= 3 and epoch < 7:
return le-4
else:
return le-5

def get_callbacks(model):
class PrintLR(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
print('\nLearning rate for epoch is '.format(epoch + 1, model.optimizer.
~1r.numpy()), flush=True)

callbacks = [
tf.keras.callbacks.TensorBoard(log_dir="./logs"'),
tf.keras.callbacks.LearningRateScheduler(decay),
PrintLR(Q)

]

return callbacks

def create_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)

def get_artificial_data(Q):
x = tf.random.uniform((10, 10))
y tf.random.uniform((10,))

dataset = tf.data.Dataset.from_tensor_slices((x, y)).shuffle(10).repeat()
dataset = dataset.batch(global_batch_size)

dataset = dataset.prefetch(2)

return dataset

cluster_resolver = tf.distribute.cluster_resolver.TFConfigClusterResolver()
if not os.environ["OCI__MODE"] == "MAIN":

create_cluster(cluster_resolver, num_workers=1, num_ps=1, mode=os.environ["OCI__MODE
<"1

pass

variable_partitioner = (
tf.distribute.experimental.partitioners.MinSizePartitioner/(
min_shard_bytes=(256 << 10),
max_shards=NUM_PS))

(continues on next page)
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strategy = tf.distribute.ParameterServerStrategy(
cluster_resolver,
variable_partitioner=variable_partitioner)

dataset = get_artificial_data()

with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
model .compile(tf.keras.optimizers.SGD(), loss="mse", steps_per_execution=10)

callbacks = get_callbacks(model)
model . fit(dataset, epochs=5, steps_per_epoch=20, callbacks=callbacks)

Train.yaml: The only difference here is that the parameter server train.yaml also needs to have ps worker-pool. This
will create dedicated instance(s) for Tensorflow Parameter Servers.

Use the following train.yaml:

kind: distributed
apiVersion: v1.0
spec:
infrastructure:
kind: infrastructure
type: dataSciencelob
apiVersion: v1.0
spec:
projectId: oci.xxxx.<project_ocid>
compartmentId: oci.xxxx.<compartment_ocid>
displayName: Distributed-TF
logGroupId: oci.xxxx.<log_group_ocid>
subnetId: oci.xxxx.<subnet-ocid>
shapeName: VM.Standard2.4
blockStorageSize: 50
cluster:
kind: TENSORFLOW
apiVersion: v1.0

spec:
image: "@image"
workDir: ‘"oci://<bucket_name>@<bucket_namespace>/<bucket_prefix>"
name: "tf ps"
config:
env:

- name: WORKER_PORT #Optional. Defaults to 12345
value: 12345
- name: SYNC_ARTIFACTS #Mandatory: Switched on by Default.
value: 1
- name: WORKSPACE #Mandatory if SYNC_ARTIFACTS==1: Destination object bucket.
< to sync generated artifacts to.
value: "<bucket_name>"
- name: WORKSPACE_PREFIX #Mandatory if SYNC_ARTIFACTS==1: Destination object.
—bucket folder to sync generated artifacts to.

value: "<bucket_prefix>"
(continues on next page)
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main:
name: "coordinator"
replicas: 1 #this will be always 1.
worker:
name: "worker"
replicas: 1 #number of workers; any number > 0
ps:
name: "ps" # number of parameter servers; any number > 0
replicas: 1
runtime:
kind: python
apiVersion: v1.0
spec:
spec:
entryPoint: "/code/train.py" #location of user's training script in the container.,
—image.
args: #any arguments that the training script requires.
env:

The rest of the steps remain the same and should be followed as it is.

11.2.8 Run Source Code from Git or Object Storage

Require ADS >=2.6.3
Running source code from Git or Object Storage requires ADS 2.6.3 or newer.

python3 -m pip install oracle-ads>=2.6.3 --upgrade

Instead of adding the training source code to the docker image, you can also fetch the code at runtime from Git repository
or object storage.

11.2.8.1 Git Repository

To fetch code from Git repository, you can update the runtime section of the yaml to specify type as git and add
uri of the Git repository to the runtime. spec section. For example:

runtime:

apiVersion: vl

kind: python

type: git

spec:
uri: git@github.com:username/repository.git
branch: develop
commit: abcdef
gitSecretId: ocidl.xxxxxx
entryPoint: "train.py"

The spec supports the following options:
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e uri, the URI of the git repository. This can be http or https URI for public repository. For private repository,
please use ssh or git@ URL

* branch, the Git branch. The default branch (usually main) will be used if this is not specified.
e commit, the Git commit. The latest commit will be used if this is not specified.
* gitSecretId, the OCID of secret from OCI vault, which stores the SSH key for accessing private repository.

* entryPoint, the file path to start the training code. The can be the relative path relative to the root of the git
repository. The source code is cloned to the /code directory. You may also use the absolute path.

To clone the git repository, your subnet needs egress from port 80 for http, 443 for https, or 22 for ssh.

You can config proxy for git clone by setting the corresponding ssh_proxy, http_proxy or https_proxy environ-
ment variable to the proxy address. If you configured https_proxy or http_proxy, you also need to add all IP
addresses in your subnet to the no_proxy environment variable since communications between training nodes should
not go through proxy.

11.2.8.2 Object Storage

To fetch code from Object Storage, you can update the runtime section of the yaml to specify type as remote and
add uri of the OCI object storage to the runtime. spec section. For example:

runtime:
apiVersion: vl
kind: python
type: remote
spec:
uri: oci://bucket@namespace/prefix/to/source_code_dir
entryPoint: "/code/source_code_dir/train.py"

The uri can be a single file or a prefix (directory). The entryPoint is the the file path to start the training code. When
using relative path, if uri is a single file, entryPoint should be the filename. If uri is a directory, the entryPoint
should contain the name of the directory like the example above. The source code is cloned to the /code directory.
You may also use the absolute path.

11.2.9 YAML Schema

The distributed training workload is defined in YAML and can be launched by invoking the ads opctl run -f path/
to/yaml command.

Following is the YAML schema for validating the YAML using Cerberus:

kind:
type: string
allowed:
- distributed
apiVersion:
type: string
spec:

(continues on next page)
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type: dict
schema:
infrastructure:
type: dict
schema:
kind:
type: string
allowed:
- infrastructure
type:
type: string
allowed:
- dataSciencelob
apiVersion:
type: string
spec:
type: dict
schema:
displayName:
type: string
compartmentId:
type: string
projectId:
type: string
logGroupId:
type: string
logId:
type: string
subnetId:
type: string
shapeName:
type: string

blockStorageSize:

type: integer
min: 50
cluster:
type: dict
schema:
kind:
type: string
allowed:
- PYTORCH
- DASK
- HOROVOD
- dask
- pytorch
- horovod
apiVersion:
type: string
spec:
type: dict
schema:

(continued from previous page)
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image:
type: string
workDir:
type: string
name:
type: string
config:
type: dict
nullable: true
schema:
startOptions:
type: list
schema:
type: string
env:
type: list
nullable: true
schema:
type: dict
schema:
name:

type: string

value:
type:
- number
- string
main:
type: dict
schema:
name:
type: string
replicas:
type: integer
config:
type: dict
nullable: true
schema:
env:
type: list

nullable: true

schema:

type: dict

schema:
name:

type: string

value:
type:

- number
- string

worker:
type: dict
schema:

(continued from previous page)

(continues on next page)
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name:
type: string
replicas:
type: integer
config:
type: dict
nullable: true
schema:
env:
type: list
nullable: true
schema:
type: dict
schema:
name:
type: string
value:
type:
- number
- string
runtime:
type: dict
schema:
kind:
type: string
apiVersion:
type: string
spec:
type: dict
schema:
entryPoint:
type: string
kwargs:
type: string
args:
type: list
schema:
type:
- number
- string
env:
type: list
nullable: true
schema:
type: dict
schema:
name:
type: string
value:
type:
- number
- string

(continued from previous page)
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11.2.10 Troubleshooting

Check guide for troubleshooting and known issues.

11.3 TensorBoard

TensorBoard helps visualizing your experiments. You bring up a TensorBoard session on your workstation and point
to the directory that contains the TensorBoard logs.

Prerequisite
1. Object storage bucket
2. Access to Object Storage bucket from your workstation

3. ocifs version 1.1.0 and above

11.3.1 Setting up local environment

It is required that tensorboard is installed in a dedicated conda environment or virtual environment. Prepare an
environment yaml file for creating conda environment with following command -

cat <<EOF > tensorboard-dep.yaml
dependencies:
- python=3.8
- pip
- pip:
- ocifs
- tensorboard
name: tensorboard
EOF

Create the conda environment from the yaml file generated in the preceeding step

conda env create -f tensorboard-dep.yaml

This will create a conda environment called tensorboard. Activate the conda environment by running -

conda activate tensorboard

11.3.2 Viewing logs from your experiments

To launch a TensorBoard session on your local workstation, run -

export OCIFS_TIAM KEY=api_key # If you are using resource principal, set resource_
—principal

tensorboard --logdir oci://my-bucket@my-namespace/path/to/logs

This will bring up TensorBoard app on your workstation. Access TensorBoard at http://localhost: 6006/

Note: The logs take some initial time (few minutes) to reflect on the tensorboard dashboard.
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11.3.3 Writing TensorBoard logs to Object Storage

Prerequisite
1. tensorboard is installed.
2. ocifs version is 1.1.0 and above.

3. oracle-ads version 2.6.0 and above.

11.3.3.1 PyTorch

You could write your logs from your PyTorch experiements directly to object storage and view the logs on Tensor-
Board running on your local workstation in real time. Here is an example or running PyTorch experiment and writing
TensorBoard logs from OCI Data Science Notebook

1. Create or Open an existing OCI Data Science Notebook session

Run odsc conda install -s pytorch110_p37_cpu_vl on terminal inside the notebook session
Activate conda environment - conda activate /home/datascience/conda/pytorchl110_p37_cpu_vl
Install TensorBoard - python3 -m pip install tensorboard

Upgrade to latest ocifs - python3 -m pip install ocifs --upgrade

Create a notebook and select pytorch110_p37_cpu_v1 kernel

N oA »d

Copy the following code into a cell and update the object storage path in the code snippet

# Reference: https://github.com/pytorch/tutorials/blob/master/recipes_source/recipes/
—tensorboard_with_pytorch.py

import torch
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("oci://my-bucket@ny-namespace/path/to/logs")

x = torch.arange(-5, 5, 0.1).view(-1, 1)
y =-5%x+ 0.1 * torch.randn(x.size())

model = torch.nn.Linear(l, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), 1lr = 0.1)

def train_model(iter):
for epoch in range(iter):
y1l = model (x)
loss = criterion(yl, y)
writer.add_scalar("Loss/train", loss, epoch)
optimizer.zero_grad()
loss.backward()
optimizer.step()

train_model (10)
writer.flush()

writer.close()

7. Run the cell
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8. View the logs from you workstation while the experiement is in progress by lauching TensorBoard with following
command -

OCIFS_IAM_TYPE=api_key tensorboard --logdir "oci://my-bucket@my-namespace/path/to/logs"

For more possibilities with TensorBoard and PyTorch check this link

11.3.3.2 TensorFlow

Currently TensorFlow cannot write directly to object storage. However, we can create logs in the local directory and
then copy the logs over to object storage, which then can be viewed from the TensorBoard running on your local
workstation.

When you run a OCI Data Science Job with ads. jobs.NotebookRuntime or ads. jobs.GitRuntime, all the
output is automatically copied over to the configured object storage bucket.

11.3.3.2.1 OCI Data Science Notebook

Here is an example of running a TensorFlow experiment in OCI Data Science Notebook and then viewing the logs
from TensorBoard

1. Create or open an existing notebook session.

2. Download notebook - https://raw.githubusercontent.com/mayoor/stats-ml-exps/master/tensorboard_tf.ipynb

lwget https://raw.githubusercontent.com/mayoor/stats-ml-exps/master/tensorboard_tf.ipynb

3. Run odsc conda install -s tensorflow27_p37_cpu_vl on terminal to install TensorFlow 2.6 environ-
ment.
Open the downloaded notebook - tensorboard_t£f.ipynb

4,
5. Select tensorflow27_p37_cpu_v1 kernel.
6. Run all cells.

7.

Copy TensorBoard logs folder - tflogs to object storage using oci-cli

oci os object bulk-upload -bn "<my-bucket>" -ns "<my-namespace>" --src-dir tflogs --
—prefix myexperiment/tflogs/

View the logs from you workstation once the logs are uploaded by lauching the TensorBoard with following command

OCIFS_TAM_TYPE=api_key tensorboard --logdir "oci://my-bucket@my-namespace/myexperiment/
—tflogs/"
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11.3.3.2.2 OCI Data Science Jobs

Here is an example of running a TensorFlow experiment in OCI Data Science Jobs and then viewing the logs from
TensorBoard

1. Run the following code to submit a notebook to OCI Data Science Job. You could run this code snippet from
your local workstation or OCI Data Science Notebook session. You need oracle-ads version >= 2.6.0.

from ads.jobs import Job, DataSciencelob, NotebookRuntime
# Define an OCI Data Science job to run a jupyter Python notebook
job = (
Job(name="<job_name>")
.with_infrastructure(
# The same configurations as the OCI notebook session will be used.
DataSciencelob()
.with_log_group_id("oci.xxxx.<log_group_ocid>")
.with_log_id("oci.xxx.<log_ocid>")
.with_project_id("oci.xxxx.<project_ocid>")
.with_shape_name("VM.Standard2.1")
.with_subnet_id("oci.xxxx.<subnet-ocid>")
.with_block_storage_size(50)
.with_compartment_id("oci.xxxx.<compartment_ocid>")
)
.with_runtime(
NotebookRuntime ()
.with_notebook("https://raw.githubusercontent.com/mayoor/stats-ml-exps/master/
—tensorboard_tf.ipynb")
.with_service_conda("tensorflow27_p37_cpu_v1")
# Saves the notebook with outputs to OCI object storage.
.with_output("oci://my-bucket@my-namespace/myexperiment/jobs/")
)
).create()
# Run and monitor the job
run = job.run() .watch()

View the logs from you workstation once the jobs is complete by lauching the tensorboard with following command -

OCIFS_IAM_TYPE=api_key tensorboard --logdir "oci://my-bucket@my-namespace//myexperiment/
—jobs/tflogs/"

11.4 Model Evaluation

With the ever-growing suite of models at the disposal of data scientists, the problems with selecting a model have grown
similarly. ADS offers the Evaluation Class, a collection of tools, metrics, and charts concerned with the contradistinc-
tion of several models.

After working hard to architect and train your model, it’s important to understand how it performs across a series of
benchmarks. Evaluation is a set of functions that convert the output of your test data into an interpretable, standardized
series of scores and charts. From the accuracy of the ROC curve and residual QQ plots.

Evaluation can help machine learning developers to:

* Quickly compare models across several industry-standard metrics.
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— For example, what’s the accuracy, and F1-Score of my binary classification model?
» Discover where a model is failing to feedback into future model development.

— For example, while accuracy is high, precision is low, which is why the examples I care about are failing.
¢ Increase understanding of the trade-offs of various model types.

Evaluation helps you understand where the model is likely to perform well or not. For example, model A performs well
when the weather is clear, but is much more uncertain during inclement conditions.

There are three types of ADS Evaluators, binary classifier, multinomial classifier, and regression.

11.4.1 Quick Start
11.4.1.1 Comparing Binary Classification Models

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

from ads.common.model import ADSModel
from ads.common.data import ADSData

from ads.evaluations.evaluator import ADSEvaluator

seed = 42

X, y = make_classification(n_samples=10000, n_features=25, n_classes=2, flip_y=0.1)

trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.30, random_state=seed)

Ir_clf = LogisticRegression(
random_state=0, solver="1lbfgs", multi_class="multinomial"
). fit(trainx, trainy)

rf_clf = RandomForestClassifier(n_estimators=50).fit(trainx, trainy)

bin_lr_model = ADSModel.from_estimator(lr_clf, classes=[0, 1])
bin_rf_model = ADSModel.from_estimator(rf_clf, classes=[0, 1])

evaluator = ADSEvaluator(
ADSData(testx, testy),
models=[bin_lr_model, bin_rf_model],
training_data=ADSData(trainx, trainy),

print(evaluator.metrics)
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11.4.1.2 Comparing Multi Classification Models

from
from
from
from

from
from

from

seed

X,y

sklearn.datasets import make_classification

sklearn.model_selection import train_test_split
sklearn.linear_model import LogisticRegression
sklearn.ensemble import RandomForestClassifier

ads.common.model import ADSModel
ads.common.data import ADSData

ads.evaluations.evaluator import ADSEvaluator

= 42

= make_classification(

n_samples=10000, n_features=25, n_classes=3, flip_y=0.1, n_clusters_per_class=1

)

trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.30, random_state=seed)

lr_multi_clf = LogisticRegression(
random_state=0, solver="1lbfgs", multi_class="multinomial"
).fit(trainx, trainy)

rf multi_clf = RandomForestClassifier(n_estimators=10).fit(trainx, trainy)

multi_lr_model
multi_rf_model

ADSModel . from_estimator(lr_multi_clf)
ADSModel . from_estimator(rf_multi_clf)

evaluator = ADSEvaluator(
ADSData(testx, testy),
models=[multi_lr_model, multi_rf model],

print(evaluator.metrics)

11.4.1.3 Comparing Regression Models

from
from
from
from

from
from
from

sklearn.datasets import make_regression
sklearn.model_selection import train_test_split
sklearn.linear_model import LinearRegression, Lasso
sklearn.ensemble import RandomForestClassifier

ads.common.model import ADSModel
ads.common.data import ADSData
ads.evaluations.evaluator import ADSEvaluator

(continues on next page)
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(continued from previous page)

seed = 42

X, y = make_regression(n_samples=10000, n_features=10, n_informative=2, random_state=42)

trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.3, random_state=seed)
lin_reg = LinearRegression().fit(trainx, trainy)

lasso_reg = Lasso(alpha=0.1).fit(trainx, trainy)

lin_reg_model = ADSModel.from_estimator(lin_reg)
lasso_reg_model = ADSModel.from_estimator(lasso_reg)

reg_evaluator = ADSEvaluator(
ADSData(testx, testy), models=[lin_reg_model, lasso_reg_model]
)

print(reg_evaluator.metrics)

11.4.2 Binary Classification

Binary classification is a type of modeling wherein the output is binary. For example, Yes or No, Up or Down, 1 or 0.
These models are a special case of multinomial classification so have specifically catered metrics.

The prevailing metrics for evaluating a binary classification model are accuracy, hamming loss, kappa score, precision,
recall, F; and AUC. Most information about binary classification uses a few of these metrics to speak to the importance
of the model.

* Accuracy: The proportion of predictions that were correct. It is generally converted to a percentage where 100%
is a perfect classifier. An accuracy of 50% is random (for a balanced dataset) and an accuracy of 0% is a perfectly
wrong classifier.

¢ AUC: Area Under the Curve (AUC) refers to the area under an ROC curve. This is a numerical way to summarize
the robustness of a model to its discrimination threshold. The AUC is computed by integrating the area under
the ROC curve. It is akin to the probability that your model scores better on results to which it accredits a higher
score. Thus 1.0 is a perfect score, 0.5 is the average score of a random classifier, and 0.0 is a perfectly backward
scoring classifier.

* F1 Score: There is generally a trade-off between the precision and recall and the F} score is a metric that
combines them into a single number. The F} Score is the harmonic mean of precision and recall:

P2 Precision x Recall

Precision + Recall

Therefore a perfect F score is 1. That is, the classifier has perfect precision and recall. The worst I} score is 0.
The F1 score of a random classifier is heavily dependent on the nature of the data.

¢ Hamming Loss: The proportion of predictions that were incorrectly classified and is equivalent to 1 —accuracy.
This means a Hamming Loss of 0 is a perfect classifier. A score of 0.5 is a random classifier (for a balanced
dataset), and 1 is a perfectly incorrect classifier.

» Kappa Score: Cohen’s « coefficient is a statistic that measures inter-annotator agreement. This function com-
putes Cohen’s x, a score that expresses the level of agreement between two annotators on a classification problem.
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It is defined as:

Po — Pe
1_pe

Do is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio).
Pe is the expected agreement when both annotators assign labels randomly. p, is estimated using a per-annotator
empirical prior over the class labels.

Precision: The proportion of the True class that were predicted to be True and are actually in the True class
TIL%. This is also known as Positive Predictive Value (PPV). A precision of 1.0 is perfect precision, 0.0 is
bad precision. However, the precision of a random classifier varies highly based on the nature of the data and to
a lesser extent a bad precision.

Recall: This is the proportion of the True class predictions that were correctly predicted over the number of
True predictions (correct or incorrect) TPZ%. This is also known as True Positive Rate (TPR) or Sensitivity.
A recall of 1.0 is perfect recall, 0.0 is bad recall. however, the recall of a random classifier varies highly based
on the nature of the data and to a lesser extent a bad recall.

The prevailing charts and plots for binary classification are the Precision-Recall Curve, the ROC curve, the Lift Chart,
the Gain Chart, and the Confusion Matrix. These are inter-related with the previously described metrics and are com-
monly used in the binary classification literature.

Confusion Matrix
Gain Chart

Lift Chart
Precision-Recall Curve

ROC curve

This code snippet demonstrates how to generate the above metrics and charts. The data has to be split into a testing
and training set with the features in X_train and X_test and the responses in y_train and y_test.

from
from
from
from

from
from

from

seed

X,y

sklearn.datasets import make_classification

sklearn.model_selection import train_test_split
sklearn.linear_model import LogisticRegression
sklearn.ensemble import RandomForestClassifier

ads.common.model import ADSModel
ads.common.data import ADSData

ads.evaluations.evaluator import ADSEvaluator

= 42

= make_classification(n_samples=10000, n_features=25, n_classes=2, flip_y=0.1)

trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.30, random_state=seed)

Ir_clf = LogisticRegression(
random_state=0, solver="1lbfgs", multi_class="multinomial"
).fit(trainx, trainy)

rf_clf = RandomForestClassifier(n_estimators=50).fit(trainx, trainy)

(continues on next page)
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(continued from previous page)

bin_lr_model = ADSModel.from_estimator(lr_clf, classes=[0, 1])
bin_rf_model = ADSModel. from_estimator(rf_clf, classes=[0, 1])

evaluator = ADSEvaluator(
ADSData(testx, testy),
models=[bin_lr_model, bin_rf_model],
training_data=ADSData(trainx, trainy),

print(evaluator.metrics)

To use the ADSEvaluator the standard sklearn models into ADSModels.

The ADSModel class in the ADS package has a from_estimator function that takes as input a fitted estimator and
converts it into an ADSModel object. With classification, the class labels also need to be provided. The ADSModel

object is used for evaluation by the ADSEvaluator object.

To show all of the metrics in a table, run:

evaluator.metrics

Evaluation Metrics (testing data):

LogisticRegression
accuracy 0.9988
hamming_loss 0.001156
kappa_score 05815
precision 0.9024
recall 0.4402
i 0.592
auc 0.9245

Evaluation Metrics (training data):

LogisticRegression
accuracy 0.9989
hamming_loss 0.001105
kappa_score 0.583
precision 0.8255
recall 04512
1 058358
aue 089164

RandomForestClassifier

0.9991

0.00088:39

0.7268

0.8814

0.619

0.7273

0.89042

RandomForestClassifier

0.9999

0.0001316

0.9603

0.9926

0.9302

0.9604

Fig. 1: Evaluator Metrics
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To show all of the charts, run:

evaluator.show_in_notebook(perfect=True)

Lift Chart Gain Chart
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Fig. 2: Lift & Gain Chart
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Fig. 3: Precision Recall and ROC Curves

Important parameters:
 If perfect is set to True, ADS plots a perfect classifier for comparison in Lift and Gain charts.
* If baseline is set to True, ADS won’t include a baseline for the comparison of various plots.
e If use_training_data is set True, ADS plots the evaluations of the training data.
 If plots contain a list of plot types, ADS plots only those plot types.

This code snippet demonstrates how to add a custom metric, a F» score, to the evaluator.

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

(continues on next page)

11.4. Model Evaluation 211



ADS Documentation, Release 2.7.3

LogisticRegression RandomForestClassifier
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Fig. 4: Normalized Confusion Matrix

(continued from previous page)
from sklearn.metrics import fbeta_score
def F2_Score(y_true, y_pred):
return fbeta_score(y_true, y_pred, 2)
evaluator.add_metrics([F2_Score], ["F2 Score"])
evaluator.metrics

11.4.2.1 Fairness Metrics

New in version 2.6.1..

Fairness metrics will be automatically generated for any feature specified in the protected_features argument to
the ADSEvaluator object. The added metrics are:

¢ Equal Odds: For each of the protected_features specified, Equal Odds is a ratio between the positive rates for
each class within that feature. The closer this value is to 1, the less biased the model and data are with respect

to the feature, F. In other terms, for a binary feature F with classes A and B, Equal Odds is calculated using the
following formula:

P=1Y =y, F=4)
P(y=1|Y =y,F = B)

* Equal Opportunity: For each of the protected_features specified, Equal Opportunity is a ratio between the
true positive rates for each class within that feature. The closer this value is to 1, the less biased the model is

with respect to the feature F. In other terms, for a binary feature F with classes A and B, Equal Opportunity is
calculated using the following formula:
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« Statistical Parity: For each of the protected_features specified, Statistical Parity is a ratio between the prediction
rates for each class within that feature. The closer this value is to 1, the less biased the model and data are with
respect to the feature F. In other terms, for a binary feature F with classes A and B, Statistical Parity is calculated
using the following formula:

P(jIF = A)
P(j|F = B)

The following plots are added to explain the fairness metrics:
* Equal Odds Bar Chart: False Positive Rate bar chart by protected feature class
» Equal Opportunity Bar Chart: True Positive Rate bar chart by protected feature class
« Statistical Parity Bar Chart: Number of positive predictions by protected feature class

If protected_features contains a list of column names in data.X, ADS will generate fairness metrics for each of
those columns.

11.4.3 Multinomial Classification

Multinomial classification is a type of modeling wherein the output is discrete. For example, an integer 1-10, an animal
at the zoo, or a primary color. These models have a specialized set of charts and metrics for their evaluation.

The prevailing metrics for evaluating a multinomial classification model are:

* Accuracy: The proportion of predictions that were correct. It is generally converted to a percentage where 100%

is a perfect classifier. For a balanced dataset, an accuracy of 10,8% where k is the number of classes, is a random

classifier. An accuracy of 0% is a perfectly wrong classifier.

* F; Score (weighted, macro or micro): There is generally a trade-off between the precision and recall and the
F score is a metric that combines them into a single number. The per-class I} score is the harmonic mean of
precision and recall:

Fl=2 Precision * Recall

Precision + Recall

As with precision, there are a number of other versions of Fj that are used in multinomial classification. The
micro and weighted F is computed the same as with precision, but with the per-class F} replacing the per-class
precision. However, the macro F} is computed a little differently. The precision and recall are computed by
summing the TP, FN, and FP across all classes, and then using them in the standard formulas.

e Hamming Loss: The proportion of predictions that were incorrectly classified and is equivalent to 1 —accuracy.
This means a Hamming loss score of 0 is a perfect classifier. A score of "% is a random classifier for a balanced
dataset, and 1.0 is a perfectly incorrect classifier.

» Kappa Score: Cohen’s « coefficient is a statistic that measures inter-annotator agreement. This function com-
putes Cohen’s x, a score that expresses the level of agreement between two annotators on a classification problem.
It is defined as:

Po — Pe
k===

1- Pe
Do is the empirical probability of agreement on the class assigned to any sample (the observed agreement ratio).
De is the expected agreement when both annotators assign classes randomly. p. is estimated using a per-annotator
empirical prior over the class.

Precision (weighted, macro or micro): This is the proportion of a class that was predicted to be in a given class
and are actually in that class. In multinomial classification, it is common to report the precision for each class
and this is called the per-class precision. It is computed using the same approach use in binary classification. For
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example, %, but only the class under consideration is used. A value of 1 means that the classifier was able

to perfectly predict, for that class. A value of 0 means that the classifier was never correct, for that class. There
are three other versions of precision that are used in multinomial classification and they are weighted, macro and
micro-precision. Weighted precision, P,,, combines the per-class precision by the number of true classes:

Pw:W1P1++WnPn

W, is the proportion of the true classes in class i P; is the per-class precision for the i‘" class. The macro-
precision, P,,, is the mean of all the per-class, P;, precisions.

1
szﬁzi:Pi

The micro-precision, P,,, is the same as the accuracy, micro-recall, and micro F}.

* Recall (weighted, macro or micro): This is the proportion of the True class predictions that were correctly
predicted over the number of True predictions (correct or incorrect) TPZ%' This is also known as the True
Positive Rate (TPR) or Sensitivity. In multinomial classification, it is common to report the recall for each class
and this is called the micro-recall. It is computed using the same approach as in the case of binary classification,
but is reported for each class. A recall of 1 is perfect recall, O is “bad” recall.

As with precision, there are three other versions of recall that are used in multinomial classification. They are
weighted, macro and micro-recall. The definitions are the same except the per-class recall replaces the per-class
precision in the preceding equations.

Generally, several of these metrics are used in combination to describe the performance of a multinomial classification
model.

The prevailing charts and plots for multinomial classification are the Precision-Recall Curve, the ROC curve, the Lift
Chart, the Gain Chart, and the Confusion Matrix. These are inter-related with preceding metrics, and are common
across most multinomial classification literature.

For multinomial classification you can view the following using show_in_notebook ():
* confusion_matrix: A matrix of the number of actual versus predicted values for each class, see [Read More].

e f1_by_label: Harmonic mean of the precision and recall by class metrics. Compute F; for each class, see
[Read More]

e jaccard_by_label: Computes the similarity for each class distribution, see [Read More].

e pr_curve: A plot of a precision versus recall (the proportion of positive class predictions that were correct
versus the proportion of positive class objects that were correctly identified), see [Read More].

e precision_by_label: It considers one class as a positive class and rest as negative. Compute precision for
each, precision numbers in this example, see [Read More].

* recall_by_label: It considers one class as a positive class and rest as negative. Compute recall for each, recall
numbers in this example, [Read More].

e roc_curve: A plot of a true positive rate versus a false positive rate (recall vs the proportion of negative class
objects that were identified incorrectly), see [Read More].

To generate all of these metrics and charts for a list of multinomial classification models on the test dataset, you can
run the following:

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

(continues on next page)
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(continued from previous page)

from ads.common.model import ADSModel
from ads.common.data import ADSData
from ads.evaluations.evaluator import ADSEvaluator

seed = 42
X, y = make_classification(

n_samples=10000, n_features=25, n_classes=3, flip_y=0.1, n_clusters_per_class=1

)

trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.30, random_state=seed)

lr_multi_clf = LogisticRegression(
random_state=0, solver="1bfgs", multi_class="multinomial"
). fit(trainx, trainy)

rf_ multi_clf = RandomForestClassifier(n_estimators=10).fit(trainx, trainy)

multi_lr_model = ADSModel.from_estimator(lr_multi_clf)
multi_rf model ADSModel . from_estimator (rf_multi_clf)

evaluator = ADSEvaluator(
ADSData(testx, testy),
models=[multi_lr_model, multi_rf model],

print(evaluator.metrics)

To use ADSEvaluator, models have to be converted into ADSModel types.

The ADSModel class in the ADS package has a from_estimator function that takes as input a fitted estimator and
converts it into an ADSModel object. With classification, you have to pass the class labels in the class argument too.
The ADSModel object is used for evaluation using the ADSEvaluator object.

To show all of the metrics in a table, run:

evaluator.metrics

evaluator.show_in_notebook ()

Multinomial classification includes the following metrics:
* accuracy: The number of correctly classified examples divided by total examples.
e hamming_loss: 1 - accuracy

* precision_weighted: The weighted average of precision_by_label. Weights are proportional to the num-
ber of true instances for each class.

* precision_micro: Global precision. Calculated by using global true positives and false positives.
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Evaluation Metrics (testing data):

LogisticRegression RandomForestClassifier
accuracy 09333 0.9333
hamming_loss 0.06667T 0.06667
kappa_score 08964 0.8971
precision_weighted 0.9381 0.9408
precision_micro 0.8333 0.8333
recall_weighted 0.8333 0.8333
recall_micro 0.9333 0.9333
1_weighted 0.9338 0.9326
f1_micro 0.9333 08333

Fig. 5: Evaluator Metrics

LogisticRegression RandomForestClassifier
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Fig. 6: Multinomial Confusion Matrix
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ROC Curve

ROC Curve
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LogisticRegression RandomForestClassifier
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Fig. 9: Multinomial Precision By Class
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Fig. 10: Multinomial F1 By Class
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LogisticRegression RandomForestClassifier
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Fig. 11: Multinomial Jaccard By Class

e recall_weighted: The weighted average of recall_by_label. Weights are proportional to the number of
true instances for each class.

* recall_micro: Global recall. Calculated by using global true positives and false negatives.

» f1_weighted: The weighted average of £1_by_label. Weights are proportional to the number of true instances
for each class.

e f1_micro: Global Fj. It is calculated using the harmonic mean of micro precision and recall metrics.
All of these metrics can be computed directly from the confusion matrix.

If the preceding metrics don’t include the specific metric you want to use, maybe an F2 score, simply add it to your
evaluator object as in this example:

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

from sklearn.metrics import fbeta_score
def F2_Score(y_true, y_pred):

return fbeta_score(y_true, y_pred, 2)
evaluator.add_metrics([F2_Score], ["F2 Score"])
evaluator.metrics

11.4.4 Regression

Regression is a type of modeling wherein the output is continuous. For example, price, height, sales, length. These
models have their own specific metrics that help to benchmark the model. How close is close enough?

The prevailing metrics for evaluating a regression model are:

» Explained variance score: The variance of the model’s predictions. The mean of the squared difference between
the predicted values and the true mean of the data, see [Read More].

¢ Mean absolute error (MAE): The mean of the absolute difference between the true values and predicted values,
see [Read More].
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* Mean squared error (MSE): The mean of the squared difference between the true values and predicted values,
see [Read More].

* R-squared: Also known as the coefficient of determination. It is the proportion in the data of the variance that
is explained by the model, see [Read More].

* Root mean squared error (RMSE): The square root of the mean squared error, see [Read More].
* Mean residuals: The mean of the difference between the true values and predicted values, see [Read More].
The prevailing charts and plots for regression are:

* Observed vs. predicted: A plot of the observed, or actual values, against the predicted values output by the
models.

* Residuals QQ: The quantile-quantile plot, shows the residuals and quantiles of a standard normal distribution.
It should be close to a straight line for a good model.

* Residuals vs observed: A plot of residuals vs observed values. This should not carry a lot of structure in a good
model.

* Residuals vs. predicted: A plot of residuals versus predicted values. This should not carry a lot of structure in
a good model.

This code snippet demonstrates how to generate the above metrics and charts. The data has to be split into a testing
and training set with the features in X_train and X_test and the responses in y_train and y_test.

from sklearn.datasets import make_regression

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Lasso
from sklearn.ensemble import RandomForestClassifier

from ads.common.model import ADSModel
from ads.common.data import ADSData

from ads.evaluations.evaluator import ADSEvaluator

seed = 42

X, y = make_regression(n_samples=10000, n_features=10, n_informative=2, random_state=42)
trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.3, random_state=seed)
lin_reg = LinearRegression().fit(trainx, trainy)

lasso_reg = Lasso(alpha=0.1).fit(trainx, trainy)

lin_reg_model = ADSModel.from_estimator(lin_reg)

lasso_reg_model = ADSModel.from_estimator(lasso_reg)

reg_evaluator = ADSEvaluator(

ADSData(testx, testy), models=[lin_reg_model, lasso_reg_model]
)

print(reg_evaluator.metrics)

To show all of the metrics in a table, run:
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evaluator.metrics

Evaluation Metrics (testing data):

LinearRegression Lasso
r2_score 0.5882 0.5749
mse 24.94 26.39
explained variance 0.5997 0.5758
mae 3326 3.348

Fig. 12: Evaluator Metrics

To show all of the charts, run:

evaluator.show_in_notebook()

LinearRegression Lasso
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Fig. 13: Observed vs Predicted

This code snippet demonstrates how to add a custom metric, Number Correct, to the evaluator.

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

def num_correct(y_true, y_pred):

return sum(y_true == y_pred)
evaluator.add_metrics([num_correct], ["Number Correct"])
evaluator.metrics
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LinearRegression Lasso
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Fig. 14: Residual Q-Q Plot
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LinearRegression Lasso
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Fig. 16: Residual vs Observed

11.5 Model Explainability

Prerequisites

e Currently Oracle AutoML and MLX libraries are available only via Data Science Conda Packs.

* See here for supported conda packs
* To install conda packs locally, see Working with Conda Packs
Machine learning and deep learning are becoming ubiquitous due to:
* The ability to solve complex problems in a variety of different domains.
e The growth in the performance and efficiency of modern computing resources.

¢ The widespread availability of large amounts of data.

However, as the size and complexity of problems continue to increase, so does the complexity of the machine learning
algorithms applied to these problems. The inherent and growing complexity of machine learning algorithms limits the
ability to understand what the model has learned or why a given prediction was made, acting as a barrier to the adoption
of machine learning. Additionally, there may be legal or regulatory requirements to be able to explain the outcome of

a prediction from a machine learning model, resulting in the use of biased models at the cost of accuracy.

Machine learning explainability (MLX) is the process of explaining and interpreting machine learning and deep learn-

ing models.
MLX can help machine learning developers to:
» Better understand and interpret the model’s behavior.
— Which features does the model consider important?
— What is the relationship between the feature values and the target predictions?
* Debug and improve the quality of the model.
— Did the model learn something unexpected?
— Does the model generalize or did it learn something specific to the training dataset?

¢ Increase trust in the model and confidence in deploying the model.

11.5. Model Explainability
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MLX can help users of machine learning algorithms to:
* Understand why the model made a certain prediction.
— Why was my bank loan denied?
Some useful terms for MLX:

» Explainability: The ability to explain the reasons behind a machine learning model’s prediction.

Global Explanations: Understand the general behavior of a machine learning model as a whole.
¢ Interpretability: The level at which a human can understand the explanation.
* Local Explanations: Understand why the machine learning model made a specific prediction.

* Model-Agnostic Explanations: Explanations treat the machine learning model and feature pre-processing as a
black box, instead of using properties from the model to guide the explanation.

Whatlf Explanations: Understand how changes in the value of features affects the model’s prediction.

The ADS explanation module provides interpretable, model-agnostic, local and global explanations.

11.5.1 Accumulated Local Effects

11.5.1.1 Overview

Similar to Partial Dependence Plots (PDP), Accumulated Local Effects (ALE) is a model-agnostic global explanation
method that evaluates the relationship between feature values and target variables. However, in the event that features
are highly correlated, PDP may include unlikely combinations of feature values in the average prediction calculation
due to the independent manipulation of feature values across the marginal distribution. This lowers the trust in the PDP
explanation when features have strong correlation. Unlike PDP, ALE handles feature correlations by averaging and
accumulating the difference in predictions across the conditional distribution, which isolates the effects of the specific
feature. This comes at the cost of requiring a larger number of observations and a near uniform distribution of those
observations so that the conditional distribution can be reliably determined.

11.5.1.2 Description

ALE highlights the effects that specific features have on the predictions of a machine learning model by partially
isolating the effects of other features. Therefore, it tends to be robust against correlated features. The resulting ALE
explanation is centered around the mean effect of the feature, such that the main feature effect is compared relative to
the average prediction of the data.

Correlated features can negatively affect the quality of many explanation techniques. Specifically, many challenges
arise when the black-box model is used to make predictions on unlikely artificial data. That is data that that fall outside
of the expected data distribution but are used in an explanation because they are not independent and the technique
is not sensitive to this possibility. This can occur, for example, when the augmented data samples are not generated
according the feature correlations or the effects of other correlated features are included in the evaluation of the feature
of interest. Consequently, the resulting explanations may be misleading. In the context of PDP, the effect of a given
feature may be heavily biased by the interactions with other features.

To address the issues associated with correlated features, ALE:

¢ Uses the conditional distribution of the feature of interest to generate augmented data. This tends to create more
realistic data that using marginal distribution. This helps to ensure that evaluated feature values, e.g., xi, are
only compared with instances from the dataset that have similar values to xi.
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¢ Calculates the average of the differences in model predictions over the augmented data, instead of the average of
the predictions themselves. This helps to isolate the effect of the feature of interest. For example, assuming we are
evaluating the effect of a feature at value xi, ALE computes the average of the difference in model predictions of
the values in the neighborhood of xi. That is, that observation within xi + that meet the conditional requirement.
This helps to reduce the effects of correlated features.

The following example demonstrates the challenges with accurately evaluating the effect of a feature on a model’s
predictions when features are highly correlated. Let us assume that features x1 and x2 are highly correlated. We can
artificially construct x2 by starting with x1 and adding a small amount of random noise. Further assume that the target
value is the product of these two features (e.g., y = x1 * x2). Since x1 and x2 are almost identical, the target value has
a quadratic relationship with them. A decision tree is trained on this dataset. Then different explanation techniques,
PDP (first column), ICE (second column), and ALE (third column), are used to evaluate the effect of the features on
the model predictions. Features x1 and x2 are evaluated in the first and second row, respectively. The following image
demonstrates that PDP is unable to accurately identify the expected relationship due to the assumption that the features
are not correlated. An examination of the ICE plots revels the quadratic relationship between the features and the
target. However, the when taking as an aggregate, this effect disappears. In contrast, ALE is able to properly capture
the isolated effect of each feature, highlighting the quadratic relationship.
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The following summarizes the steps in computing ALE explanation (note: MLX supports one-feature ALE):
* Start with a trained model.

* Select a feature to explain (for example, one of the important features identified in the global feature importance
explanations).

» Compute the intervals of the selected feature to define the upper and lower bounds used to compute the difference
in model predictions when the feature is increased or decreased.

— Numerical features: using the selected feature’s value distribution extracted from the train dataset, MLX
selects multiple different intervals from the feature’s distribution to evaluate (e.g., based on percentiles).
The number of intervals to use and the range of the feature’s distribution to consider are configurable.

— Categorical features: since ALE computes the difference in model predictions between an increase and
decrease in a feature’s value, features must have some notion of order. This can be challenging for cate-
gorical features, as there may not be a notion of order (e.g., eye color). To address this, MLX estimates
the order of categorical feature values based on a categorical feature encoding technique. MLX provides
multiple different encoding techniques based on the input data (e.g., distance_similarity: computes
a similarity matrix between all categorical feature values and the other feature values, and orders based on
similarity. Target-based approaches estimate the similarity/order based on the relationship of categorical
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feature values with the target variable. The supported techniques include, target encoding, target, James-
Stein encoding, jamesstein, Generalized Linear Mixed Model encoding, glmm, M-estimate encoding,
mestimate, and Weight of Evidence encoding, woe. The categorical feature value order is then used to
compute the upper (larger categorical value) and lower (smaller categorical value) bounds for the selected
categorical feature.

¢ For each interval, MLX approximates the conditional distribution by identifying the samples that are in the

neighborhood of the sample of interest. It then calculates the difference in the model prediction when the selected
feature’s value of the samples is replaced by the upper and lower limits of the interval. If N different intervals are
selected from the feature’s distribution, this process results in 2N different augmented datasets It is 2N as each
selected feature of the sample are replaced with the upper and lower limits of the interval. The model inference
then generates 2N different model predictions, which are used to calculate the N differences.

The prediction differences within each interval are averaged and accumulated in order, such that the ALE of a
feature value that lies in the k-th interval is the sum of the effects of the first through the k-th interval.

Finally, the accumulated feature effects at each interval is centered, such that the mean effect is zero.

11.5.1.3 Interpretation

Continuous or discrete numerical features: Visualized as line graphs. Each line represents the change in the
model prediction when the selected feature has the given value compared to the average prediction. For example,
an ALE value of +b at xj = k indicates that when the value of feature j is equal to k, the model prediction is
higher/lower by b compared to the average prediction. The x-axis shows the selected feature values and the
y-axis shows the delta in the target prediction variable relative to the average prediction (e.g., the prediction
probability for classification tasks and the raw predicted values for regression tasks).

Categorical features: Visualized as vertical bar charts. Each bar represents the change in the model prediction
when the selected feature has the given value compared to the average prediction. The interpretation of the value
of the bar is similar to continuous features. The x-axis shows the different categorical values for the selected
feature and the y-axis shows the change in the predicted value relative to the average prediction. This would be
the prediction probability for classification tasks and the raw predicted values for regression tasks.

11.5.1.4 Limitations

There is an increased computational cost for performing an ALE analysis because of the large number of models that
need to be computed relative to PDP. On a small dataset, this is generally not an issue. However, on larger datasets it
can be. It is possible to parallelize the process and to also compute it in a distributed manner.

The main disadvantage comes from the problem of sparsity of data. There needs to be sufficient number of observa-
tions in each neighborhood that is used in order to make a reasonable estimation. Even with large dataset this can be
problematic if the data is not uniformly sampled, which is rarely the case. Also, with higher dimensionality the problem
is made increasingly more difficult because of this curse of dimensionality.

Depending on the class of model that is being use, it is common practice to remove highly correlated features. In
this cases there is some rational to using a PDP for interpretation. However, if there is correlation in the data and the
sampling of the data is suitable for an ALE analysis, it may be the preferred approach.
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11.5.1.5 Examples

The following is a purposefully extreme, but realistic, example that demonstrates the effects of highly correlated features
on PDP and ALE explanations. The data set has three columns, x1, x2 and y.

 x1 is generated from a uniform distribution with a range of [-5, 5].

e x2 is x1 with some noise. x1 and x2 are highly correlated for illustration purposes.

o

* y is our target which is generated from an interaction term of x1 * x2 and x2.

This model is trained using a Sklearn RegressorMixin model and wrapped in an ADSModel object. Please note that the
ADS model explainers work with any model that is wrapped in an ADSModel object.

import numpy as np

import pandas as pd

from ads.dataset.factory import DatasetFactory
from ads.common.model import ADSModel

from sklearn.base import RegressorMixin

x1 = (np.random.rand(500) - 0.5) * 10
X2 = x1 + np.random.normal (loc=0, scale=0.5, size=500)
y = x1 * x2

correlated_df = pd.DataFrame(np.stack((xl, x2, y), axis=1), columns=['x1"', 'x2', 'y'])
correlated_ds = DatasetFactory.open(correlated_df, target='y')

correlated_train, _ = correlated_ds.train_test_split(test_size=0)

class CorrelatedRegressor(RegressorMixin):

"

implement the true model
def fit(self, X=None, y=None):
self.y_bar_ = X.iloc[:, O0].to_numpy() * X.iloc[:, 1].to_numpy() + X.iloc[:, 1].
—to_numpy ()

def predict(self, X=None):
return X.iloc[:, 0].to_numpy() * X.iloc[:, 1].to_numpy() + X.iloc[:, 1].to_
—numpy O

# train a RegressorMixin model

# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel

correlated_regressor = CorrelatedRegressor()
correlated_regressor.fit(correlated_train.X, correlated_train.y)

# Build ads models from ExtraTrees regressor
correlated_model = ADSModel. from_estimator(correlated_regressor, name="TrueModel")

# Create the ADS explainer object, which is used to construct
# global and local explanation objects. The ADSExplainer takes

(continues on next page)
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(continued from previous page)
# as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer

correlated_explainer = ADSExplainer(correlated_train, correlated_model, training_
—data=correlated_train)

# With ADSExplainer, create a global explanation object using

# the MLXGlobalExplainer provider

from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
correlated_global_explainer = correlated_explainer.global_
—.explanation(provider=MLXGlobalExplainer())

# A summary of the global accumulated local effects explanation
# algorithm and how to interpret the output
correlated_global_explainer.accumulated_local_effects_summary()
# compute a PDP between x1 and the target, y

pdp_x1 = correlated_global_explainer.compute_partial_dependence("x1")
pdp_x1.show_in_notebook()

PDP

1 —— Target

0.5

Target

-1.5
1 I T T r 1
-4 -2 0 2 4
w1l

The PDP plot shows a rug plot of the actual x1 values along the x-axis and the relationship between x1 and y appears
as a line. However, it is known that the true relationship is not linear. y is the product of x1 and x2. Since x2 nearly
identical to x1, effectively the relationship between x1 and y is quadratic. The high level of correlation between x1
and x2 violates one of the assumptions of the PDP. As demonstrated, the bias created by this correlation results in a
poor representation of the global relationship between x1 and y.

228 Chapter 11. Train Models



ADS Documentation, Release 2.7.3

# Compute the ALE on x1
ale_x1 = correlated_global_explainer.compute_accumulated_local_effects("x1")
ale_x1.show_in_notebook ()

ALE

Target

Target
P

11 I T T r I
—4 -2 0 2 4
%l

In comparison, the ALE plot does not have as strong a requirement that the features are uncorrelated. As such, there is
very little bias introduced when they are. The following ALE plot demonstrates that it is able to accurately represent
the relationship between x1 and y as being quadratic. This is due to the fact that ALE uses the conditional distribution
of these two features. This can be thought of as only using those instances where the values of x1 and x2 are close.

In general, ALE plots are unbiased with correlated features as they use conditional probabilities. The PDP method uses
the marginal probability and that can introduce a bias when there are highly correlated features. The advantage is that
when the data is not rich enough to adequately determine all of the conditional probabilities or when the features are
not highly correlated, it can be an effective method to assess the global impact of a feature in a model.
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11.5.1.6 References

¢ Accumulated Local Effects (ALE) Plot

* Visualizing the effects of predictor variables in black box supervised learning models

11.5.2 Feature Dependence Explanations

11.5.2.1 Overview

Feature Dependence Explanations (PDP and ICE) are model-agnostic global explanation methods that evaluate the
relationship between feature values and model target predictions.

11.5.2.2 Description

PDP and ICE highlight the marginal effect that specific features have on the predictions of a machine learning model.
These explanation methods visualize the effects that different feature values have on the model’s predictions.

These are the main steps in computing PDP or ICE explanations:
» Start with a trained machine learning model.

* Select a feature to explain (for example, one of the important features identified in the global feature permutation
importance explanations.)

» Using the selected feature’s value distribution extracted from the training dataset, ADS selects multiple different
values from the feature’s distribution to evaluate. The number of values to use and the range of the feature’s
distribution to consider are configurable.

* ADS replaces every sample in the provided dataset with the same feature value from the feature distribution
and computes the model inference on the augmented dataset. This process is repeated for all of the selected
values from the feature’s distribution. If N different values are selected from the feature’s distribution, this
process results in N different datasets. Each with the selected feature having the same value for all samples in the
corresponding dataset. The model inference then generates N different model predictions, each with M values
(one for each sample in the augmented dataset.)

* For ICE, the model predictions for each augmented sample in the provided dataset are considered separately
when the selected feature’s value is replaced with a value from the feature distribution. This results in N x M
different values.

» For PDP, the average model prediction is computed across all augmented dataset samples. This results in N
different values (each an average of M predictions).

The preceding is an example of one-feature PDP and ICE explanations. PDP also supports two-feature explanations
while ICE only supports one feature. The main steps of the algorithm are the same though the explanation is computed
on two features instead of one.

¢ Select two features to explain.

* ADS computes the cross-product of values selected from the feature distributions to generate a list of different
value combinations for the two selected features. For example, assuming we have selected N values from the
feature distribution for each feature:

(X1, X3, (X1, X3), o (XT, X0, (XL X)), (X2, X3, (X2 X3), . (XD, X270, (X, X))

* For each feature value combination, ADS replaces every sample in the provided set with these two feature values
and computes the model inference on the augmented dataset. There are M different samples in the provided
dataset and N different values for each selected feature. This results in N2 predictions from the model, each an
average of M predictions.
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11.5.2.3 Interpretation

11.5.2.3.1 PDP

¢ One-feature

— Continuous or discrete numerical features: Visualized as line graphs, each line represents the average pre-
diction from the model (across all samples in the provided dataset) when the selected feature is replaced
with the given value. The x-axis shows the selected feature values and the y-axis shows the predicted target
(e.g., the prediction probability for classification tasks and the raw predicted values for regression tasks).

— Categorical features: Visualized as vertical bar charts. Each bar represents the average prediction from
the model (across all samples in the provided dataset) when the selected feature is replaced with the given
value. The x-axis shows the different values for the selected feature and the y-axis shows the predicted
target (e.g., the prediction probability for classification tasks and the raw predicted values for regression
tasks).

¢ Two-feature

— Visualized as a heat map. The x and y-axis both show the selected feature values. The heat map color
represents the average prediction from the model (across all samples in the provided dataset) when the
selected features are replaced with the corresponding values.

11.5.2.3.2 ICE

* Continuous or discrete numerical features: Visualized as line graphs. While PDP shows the average prediction
across all samples in the provided dataset, ICE plots every sample from the provided dataset (when the selected
feature is replaced with the given value) separately. The x-axis shows the selected feature values and the y-axis
shows the predicted target (for example, the prediction probability for classification tasks and the raw predicted
values for regression tasks). The median value can be plotted to highlight the trend. The ICE plots can also
be centered around the first prediction from the feature distribution (for example, each prediction subtracts the
predicted value from the first sample).

» Categorical features: Visualized as violin plots. The x-axis shows the different values for the selected feature
and the y-axis shows the predicted target (for example, the prediction probability for classification tasks and the
raw predicted values for regression tasks).

Both PDP and ICE visualizations display the feature value distribution from the training dataset on the corresponding
axis. For example, the one-feature line graphs, bar charts, and violin plots show the feature value distribution on the
x-axis. The heat map shows the feature value distributions on the respective x-axis or y-axis.

11.5.2.4 Examples

The following example generates and visualizes global partial dependence plot (PDP) and Individual Conditional Ex-
pectation (ICE) explanations on the Titanic dataset. The model is constructed using the ADS OracleAutoMLProvider
(selected model: XGBClassifier), however, the ADS model explainers work with any model (classifier or regressor)
that is wrapped in an ADSModel object.

from ads.dataset.factory import DatasetFactory
from os import path
import requests

# Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'

(continues on next page)
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(continued from previous page)

if not path.exists(titanic_data_file):
# fetch sand save some data
print('fetching data from web...', end=" ")
# Data source: https://www.openml.org/d/40945
r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEKM]1 ")
with open(titanic_data_file, 'wb') as fd:
fd.write(r.content)
print("Done™)
ds = DatasetFactory.open(
titanic_data_file, target="survived").set_positive_class(True)
ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
'body', 'home.dest'])
ds = ds[ds['age'] != '"?'].astype({'age': 'float64'})
ds ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

# Build the model using AutoML. 'model' is a subclass of type ADSModel.
# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel

import logging

from ads.automl.provider import OracleAutolMLProvider

from ads.automl.driver import AutoML

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)

model, baseline = oracle_automl.train()

# Create the ADS explainer object, which is used to construct
# global and local explanation objects. The ADSExplainer takes
# as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer

explainer = ADSExplainer(test, model, training data=train)

# With ADSExplainer, create a global explanation object using

# the MLXGlobalExplainer provider

from ads.explanations.mlx_global_explainer import MLXGlobalExplainer

global_explainer = explainer.global_explanation(
provider=MLXGlobalExplainer())

# A summary of the global partial feature dependence explanation
# algorithm and how to interpret the output can be displayed with
global_explainer.partial_dependence_summary ()

# Compute the 1-feature PDP on the categorical feature, "sex",
# and numerical feature, "age"

pdp_sex = global_explainer.compute_partial_dependence("sex")
pdp_age = global_explainer.compute_partial_dependence(

"age", partial_range=(0, 1))
# ADS supports PDP visualizations for both 1-feature and 2-feature
# Feature Dependence explanations, and ICE visualizations for 1-feature

# Feature Dependence explanations (see "Interpretation" above)

(continues on next page)
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(continued from previous page)

# Visualize the categorical feature PDP for the True (Survived) label
pdp_sex.show_in_notebook(labels=True)

PDP

1.0

0.8

P(True)

female

s5ex

# Visualize the numerical feature PDP for the True (Survived) label
pdp_age.show_in_notebook(labels=True)
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# Compute the 2-feature PDP on the categorical feature, "pclass", and

# numerical feature, "age"

pdp_pclass_age = global_explainer.compute_partial_dependence(
['pclass', 'age'], partial_range=(0, 1))

pdp_pclass_age.show_in_notebook(labels=True)
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# Visualize the ICE plot for the categorical feature, "sex"

pdp_sex.show_in_notebook(mode="ice', labels=True)
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# Visualize the ICE plot for the numerical feature, "age'", and center
# around the first prediction (smallest age)
pdp_age.show_in_notebook(mode="'ice', labels=True, centered=True)

ICE - True

True

0 20 40 60 80
age
# The raw explanation data used to generate the visualizations, as well

# as the runtime performance information can be extracted with
pdp_age.get_diagnostics()
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{'feature_correlations': {},
'explanation_stats': {'Runtime analysis': {'samples': {"value': [0.l1648237705230713,
1.76076769B28T9635],
‘work': [2, 301},
‘samples average': 0.9627%57344055176,
‘samples total': 1.%255914688110352,
‘work average': 16.0,
‘work total': 32,
‘samples throughput': 16.618270551311976,
‘samples latency’: 0.06017473340034485}},
'pdp': [{'age': 0.1667,
‘mean': [0.21%62339, 0.7403766],
‘gtd’: [0.18659413, 0.1B659413]),
{'age’: 3.0,
‘mean': [0.1%585%57, 0.B041404],
‘std’: [0.20155172, 0.201851721},
{'age’': 9.0,
‘mean’: [0.2138T7196, 0.7d6l28],
‘gtd’: [0.1%405662, 0.194050882]),
{'age’: 14.172413793103445,
‘mean': [0.5155417, 0.4B04583],
‘sbd’: [0.31325%87, 0.31325987]},
‘age’: 17.0, 'mean’': [0.6653859, 0.3346141], 'std’: [0.3234773, 0.32347731},
‘age’: 18.0, '‘mean’: [0.6653859, 0.3346141], 'std’: [0.3234773, 0.3234772]},
‘age’: 19.0, 'mean’': [0.6038667, 0.3961334], 'std’: [0.3292721, 0.3292721]1},
‘age': 20.0,
‘mean': [0.5%04662, 0.40953377],
‘std’: [0.32400262, 0.32400262]1},
{'age’: 21.0,
‘mean’: [0.5%451133, ©0.4054887],
‘ged’: [0.32557142, 0.325571421}),
‘age’: 22.0, 'mean’: [0.57049%25, 0.4295075], 'std’: [0.3247535, 0.3247535]},
‘age': 23.0,
‘mean': [0.56890285, 0.43109715],
‘std’: [0.32589453, 0.32589453]},
{'age’': 24.0,
‘mean': [0.5TI2691, 0.4277309],
‘ged’: [0.32457417, 0.324574171},
{'age’': 25.0,
‘mean': [0.5646265, 0.4353734%],
‘std’: [0.32141125, 0.32141125]},
{'age’': 26.0,
‘mean': [0.56357104, O.436428%6),
‘gtd’: [0.32082796, 0.3208B2796]}),
{'age’': 27.0,
‘mean': [0.58106536, 0.41893464],
‘sbd’: [0.31745076, 0.31745076]1},
{'age’': 28.0,
‘mean': [0.62635016, 0.373649%2),
‘gtd’: [0.32%871%8, 0.3298719B]},
{'age’': 29.0,
‘mean': [0.6237644, 0.37623563],
‘std’: [0.33036%5, 0.3303695)},
{'age’': 30.0,
‘mean': [0.62962914, 0.37037088),
‘gtd’: [0.33216B46, 0.33216846]),
{'age’': 31.0,
‘mean': [0.52112424, 0.47BBT5E],
‘std’: [0.3004837, 0.3004B367]},
{'age’: 33.0,
‘mean': [0.61710674, ©.38289332),
‘gtd’: [0.33%6127, 0.33961272]},
{'age’: 34.98275B620699E5,
‘mean': [0.61710674, ©0.38289332),
‘std’: [0.33%6127, 0.33961272]},
{'age’: 36.0,
‘mean’: [0.6224%655, 0.37750348),
‘gtd’: [0.33859333, 0.33859333]},
{'age’': 38.0,
‘mean': [0.63X1857, 0.36781433],
‘std’: [0.34262648, 0.34262648]},
‘age’: 40.0, 'mean’': [0.6353405, 0.3646595], 'std’: [0.3420124, 0.34201241},
‘age': 43.0,
‘mean’: [0.6327028, 0.36729714],
‘ged’: [0.33BO9ETT, 0.33809877]1),
{'age’': 45.10,
‘mean': [0.6343053, 0.36569482],
‘std’: [0.33775553, 0.337755531},
{'age’': 49.0,
‘mean’: [0.5%65565, 0.40344357],
‘gtd’: [0.338l666, 0.33BlE6E)},
{'age’: 54.10,
‘mean': [0.64475715, 0.35524285],
‘std’: [0.3373284, 0.3373284)},
{'age’': 60.0,
‘mean': [0.6563T791, 0.34362087],
‘gtd’: [0.34226355, 0.34226355]}),
{'age’': 80.0,
‘mean': [0.6601273, 0.33987272],
‘sbd’: [0.341310%2, 0.3413109271}1}

o e e

e

-
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# The explanation can also be returned as Pandas.DataFrame with
pdp_age.as_dataframe()
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age mean_False std False mean_True std True

0 0.186700 0.219623 0.186594 0.780377 0.186594
1 3.000000 0.195860 0.201552 0.804140 0.201552
9.000000 0.213872 0.194057 0.786128 0.194057
14.172414 0.519542 0.3132860 0.480458 0.313260

17.000000 0.665386 0.323477 0.334614 0.323477

2

3

4

5 18.000000 0.6685386 0323477 0.334614 0.323477

& 19.000000 0.603867 0.329272 0.396133 0320272

7 20.000000 0.590466 0.324003 0.409534 0.324003

8 21.000000 0.594511 0.325571 0.405489 0.32557T1

g 22.000000 0.570493 0.324753 0.429507 0.324753
10 23.000000 0.568903 0.325895 0.431097 0.325895
11 24.000000 0.572269 0.324574 0427731 0.324574
12 25.000000 0.5684627  0.321411 0.435373 0.321411
13 26.000000 0.583571 0.320828 0.436429 0.320828
14 27.000000 0.581065 0.317451 0.418935 0.317451
15 28.000000 0.626350 0.329872 0.373650 0.329872
16 29.000000 0.623784 0.330370 0.376236 0.330370
17 30.000000 0.629629 0.332168 0.370371 0.332168
18 31.000000 0.521124 0.300484 0.478876 0.300484
18 33.000000 0.817107  0.33%9813 0.382883 0.339613
20 34.982759 0.817107 0.339613 0.382893 0.339613
21 36.000000 0.622497 0.338593 0377503 0.338593
22 38.000000 0.632186 0.342626 0.367814 0.342626

40.000000 0.635341 0.342012 0.364659 0.342012

(X

24 43.000000 0.632703 0.338097 0.367297 0.338097
25 45.000000 0.6343056 0.337756 0.365695 0.337756
26 49.000000 0.5896556 0.338167 0.403444 0.3381867
27 54.000000 0.644757 0.337328 0.35656243 0.337328
28 60.000000 0.656379 0.342264 0.343621 0.342264

29 B0.000000 0680127 0.341311 0.339873 0341311
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11.5.2.5 References

e Partial Dependence Plot

¢ Vanderbilt Biostatistics - titanic data

11.5.3 Feature Importance Explanations
11.5.3.1 Overview

Feature permutation importance is a model-agnostic global explanation method that provides insights into a machine
learning model’s behavior. It estimates and ranks feature importance based on the impact each feature has on the trained
machine learning model’s predictions.

11.5.3.2 Description

Feature permutation importance measures the predictive value of a feature for any black box estimator, classifier, or
regressor. It does this by evaluating how the prediction error increases when a feature is not available. Any scoring
metric can be used to measure the prediction error. For example, F for classification or R? for regression. To avoid
actually removing features and retraining the estimator for each feature, the algorithm randomly shuffles the feature
values effectively adding noise to the feature. Then, the prediction error of the new dataset is compared with the
prediction error of the original dataset. If the model heavily relies on the column being shuffled to accurately predict
the target variable, this random re-ordering causes less accurate predictions. If the model does not rely on the feature
for its predictions, the prediction error remains unchanged.

The following summarizes the main steps in computing feature permutation importance explanations:
« Start with a trained machine learning model.
* Calculate the baseline prediction error on the given dataset. For example, train dataset or test dataset.
* For each feature:
1. Randomly shuffle the feature column in the given dataset.
2. Calculate the prediction error on the shuffled dataset.

3. Store the difference between the baseline score and the shuffled dataset score as the feature importance. For
example, baseline score - shuffled score.

* Repeat the preceding three steps multiple times then report the average. Averaging mitigates the effects of random
shuffling.

» Rank the features based on the average impact each feature has on the model’s score. Features that have a larger
impact on the score when shuffied are assigned higher importance than features with minimal impact on the
model’s score.

* In some cases, randomly permuting an unimportant feature can actually have a positive effect on the model’s
prediction so the feature’s contribution to the model’s predictions is effectively noise. In the feature permutation
importance visualizations, ADS caps any negative feature importance values at zero.
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11.5.3.3 Interpretation

Feature permutation importance explanations generate an ordered list of features along with their importance values.
Interpreting the output of this algorithm is straightforward. Features located at higher ranks have more impact on the
model predictions. Features at lower ranks have less impact on the model predictions. Additionally, the importance
values represent the relative importance of features.

The output supports three types of visualizations. They are all based on the same data but present the data differently
for various use cases:

e Bar chart ('bar'): The bar chart shows the model’s view of the relative feature importance. The x-axis high-
lights feature importance. A longer bar indicates higher importance than a shorter bar. Each bar also shows the
average feature importance value along with the standard deviation of importance values across all iterations of
the algorithm (mean importance +/- standard deviation*). Negative importance values are capped at zero. The
y-axis shows the different features in the relative importance order. The top being the most important, and the
bottom being the least important.

* Box plot ('box_plot'): The detailed box plot shows the feature importance values across the iterations of
the algorithm. These values are used to compute the average feature importance and the corresponding standard
deviations shown in the bar chart. The x-axis shows the impact that permuting a given feature had on the model’s
prediction score. The y-axis shows the different features in the relative importance order. The top being the most
important, and the bottom being the least important. The minimum, first quartile, median, third quartile, and a
maximum of the feature importance values across different iterations of the algorithm are shown by each box.

* Detailed scatter plot ('detailed'): The detailed bar chart shows the feature importance values for each iter-
ation of the algorithm. These values are used to compute the average feature importance values and the corre-
sponding standard deviations shown in the bar chart. The x-axis shows the impact that permuting a given feature
had on the model’s prediction score. The y-axis shows the different features in the relative importance order.
The top being the most important, and the bottom being the least important. The color of each dot in the graph
indicates the quality of the permutation for this iteration, which is computed by measuring the correlation of
the permuted feature column relative to the original feature colum. For example, how different is the permuted
feature column versus the original feature column.

11.5.3.4 Examples

This example generates and visualizes a global feature permutation importance explanation on the Titanic dataset. The
model is constructed using the ADS OracleAutoMLProvider. However, the ADS model explainers work with any
model (classifier or regressor) that is wrapped in an ADSModel object.

import logging
import requests

from ads.automl.driver import AutoML

from ads.automl.provider import OracleAutoMLProvider
from ads.dataset.factory import DatasetFactory

from os import path

# Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):
# fetch sand save some data
print('fetching data from web...', end=" ")
# Data source: https://www.openml.org/d/40945
r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEKM]1 ")

with open(titanic_data_file, 'wb') as fd:
(continues on next page)
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(continued from previous page)

fd.write(r.content)
print("Done™)
ds = DatasetFactory.open(
titanic_data_file, target="survived").set_positive_class(True)

ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
'body', 'home.dest'])
ds =

ds[ds['age'] != '"?"'].astype({'age': 'float64'})
ds = ds[ds['fare'] != "?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

# Build the model using AutoML. 'model' is a subclass of type ADSModel.
# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)

model, baseline = oracle_automl.train()

# Create the ADS explainer object, which is used to construct global
# and local explanation objects. The ADSExplainer takes as input the
# model to explain and the train/test dataset

from ads.explanations.explainer import ADSExplainer

explainer = ADSExplainer(test, model, training_data=train)

# With ADSExplainer, create a global explanation object using

# the MLXGlobalExplainer provider

from ads.explanations.mlx_global_explainer import MLXGlobalExplainer

global_explainer = explainer.global_explanation(
provider=MLXGlobalExplainer())

# A summary of the global feature permutation importance algorithm and
# how to interpret the output can be displayed with
global_explainer. feature_importance_summary ()

# Compute the global Feature Permutation Importance explanation
importances = global_explainer.compute_feature_importance()

# ADS supports multiple visualizations for the global Feature
# Permutation Importance explanations (see "Interpretation" above)

# Simple bar chart highlighting the average impact on model score
# across multiple iterations of the algorithm
importances. show_in_notebook ()
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Importance

seX

# Box plot highlighting the mean, median, quartiles, and min/max
# impact on model score across multiple iterations of the algorithm
importances.show_in_notebook('box_plot")

sex |—-—| e @
pclass al - i
age I—-—|
sibsp I—-|
fare I—-—|
embarked L H

0 0.05 0.1 0.15 0.2 0.25

Importance

# Detailed scatter plot highlighting the individual impacts on
# model score across multiple iterations of the algorithm
importances.show_in_notebook('detailed")
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# The raw explanaiton data used to generate the visualizations, as well
# as the runtime performance information can be extracted with
importances.get_diagnostics()
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{'explanations': [{'feature’': "sex’',
'attribution’': 0.211242988B08944758,
'attribution std': 0.02617818B201628649,
'confidence': 0.9929626508892098,
'confidence std': 0.016704326572772182},

{'feature': 'pclass',
'attribution': 0.059492724602767874,
'attribution std': 0.01B261289784839586,
'confidence': 0.9421497725417008,
'confidence std': 0.04336997475992779},
{'feature': 'age',
'attribution': 0.057728BB78073588355,
'attribution std': 0.017633783394690756,
'confidence': 0.9606087248537752,
'confidence std': 0.031929775401309375},
{'feature': 'sibsp’,
'attribution’': 0.023711B1564197248,
'attribution std': 0.00908B7998301193395,
'confidence': 0.9422402486313869,
'confidence std': 0.03738B023968977173},
{'feature': 'fare',

'attribution': 0.019121222158654673,

'attribution std': 0.014307567871540862,

'confidence': 0.9597909343483199,

'confidence std': 0.02547B489355540486},

'feature': 'embarked',

'attribution': 0.006731B02664474656,

'attribution std': 0.010294686196767218,

'confidence': 0.9824752088136544,

'confidence std': 0.035B84913237068881}],

'explanations stats': {'mn iteratiomns': 20,

"total runtime': B.949006080627441,
'"iteration average runtime': 0.44195606708526614}}

e,

11.5.3.5 References

 Feature importance
* Perutation importance

¢ Vanderbilt Biostatistics - titanic data
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11.5.4 Enhanced LIME

11.5.4.1 Overview

Local explanations target specific predictions from the machine learning model. The goal is to understand why the
model made a particular prediction.

There are multiple different forms of local explanations, such as feature attribution explanations and exemplar-based
explanations. ADS supports local feature attribution explanations. They help to identify the most important features
leading towards a given prediction.

While a given feature might be important for the model in general, the values in a particular sample may cause certain
features to have a larger impact on the model’s predictions than others. Furthermore, given the feature values in a
specific sample, local explanations can also estimate the contribution that each feature had towards or against a target
prediction. For example, does the current value of the feature have a positive or negative effect on the prediction
probability of the target class? Does the feature increase or decrease the predicted regression target value?

The Enhanced Local Interpretable Model-Agnostic Explanation (LIME) is a model-agnostic local explanation method.
It provides insights into why a machine learning model made a specific prediction.

11.5.4.2 Description

ADS provides an enhanced version of Local Interpretable Model-Agnostic Explanations (LIME), which improves on
the explanation quality, performance, and interpretability. The key idea behind LIME is that while the global behavior
of a machine learning model might be very complex, the local behavior may be much simpler. In ADS, local refers to
the behavior of the model on similar samples. LIME tries to approximate the local behavior of the complex machine
learning model through the use of a simple, inherently interpretable surrogate model. For example, a linear model. If
the surrogate model is able to accurately approximate the complex model’s local behavior, ADS can generate a local
explanation of the complex model from the interpretable surrogate model. For example, when data is centered and
scaled the magnitude and sign of the coefficients in a linear model indicate the contribution each feature has towards
the target variable.

The predictions from complex machine learning models are challenging to explain and are generally considered as a
black box. As such, ADS refers to the model to be explained as the black box model. ADS supports classification and
regression models on tabular or text-based datasets (containing a single text-based feature).

The main steps in computing a local explanation for tabular datasets are:
* Start with a trained machine learning model (the black box model).
* Select a specific sample to explain (Xexp).

* Randomly generate a large sample space in a nearby neighborhood around Xe,. The sample space is generated
based on the feature distributions from the training dataset. Each sample is then weighted based on its distance
from Xyp to give higher weight to samples that are closer to Xexp. ADS provides several enhancements, over the
standard algorithm, to improve the quality and locality of the sample generation and weighting methods.

* Using the black box model, generate a prediction for each of the randomly generated local samples. For classifi-
cation tasks, compute the prediction probabilities using predict_proba(). For regression tasks, compute the
predicted regression value using predict().

* Fitalinear surrogate model on the predicted values from the black box model on the local generated sample space.
If the surrogate model is able to accurately match the output of the black box model (referred to as surrogate model
fidelity), the surrogate model can act as a proxy for explaining the local behavior of the black box model. For
classification tasks, the surrogate model is a linear regression model fit on the prediction probabilities of the
black box model. Consequently, for multinomial classification tasks, a separate surrogate model is required to
explain each class. In that case, the explanation indicates if a feature contributes towards the specified class or
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against the specified class (for example, towards one of the other N classes). For regression tasks, the surrogate
model is a linear regression model fit on the predicted regression values from the black box model.

* There are two available techniques for fitting the surrogate model:
— Use the features directly:

The raw (normalized) feature values are used to fit the linear surrogate model directly. This results in
a normal linear model. A positive coefficient indicates that when the feature value increases, the target
variable increases. A negative coefficient indicates that when a feature value increases, the target variable
decreases. Categorical features are converted to binary values. A value of 1 indicates that the feature in
the generated sample has the same value as Xy, and a value of 0 indicates that the feature in the generated
sample has a different value than Xeyp.

— Translate the features to an interpretable feature space:

Continuous features are converted to categorical features by discretizing the feature values (for example,
quartiles, deciles, and entropy-based). Then, all features are converted to binary values. A value of 1 indi-
cates that the feature in the generated sample has the same value as X, (for example, the same categorical
value or the continuous feature falls in the same bin) and a value of 0 indicates that the feature in the gen-
erated sample has a different value than X, (for example, a different categorical value or the continuous
feature falls in a different bin). The interpretation of the linear model here is a bit different from the regres-
sion model. A positive coefficient indicates that when a feature has the same value as X, (for example, the
same category), the feature increased the prediction output from the black box model. Similarly, negative
coeflicients indicate that when a feature has the same value as X.p, the feature decreased the prediction
output from the black box model. This does not say what happens when the feature is in a different cate-
gory than Xeyp. It only provides information when the specific feature has the same value as Xy, and if it
positively or negatively impacts the black box model’s prediction.

* The explanation is an ordered list of feature importances extracted from the coefficients of the linear surrogate
model. The magnitude of the coefficients indicates the relative feature importance and the sign indicates whether
the feature has a positive or negative impact on the black box model’s prediction.

* The algorithm is similar to text-based datasets. The main difference is in the random local sample space genera-
tion. Instead of randomly generating samples based on the feature distributions, a large number of local samples
are generated by randomly removing subsets of words from the text sample. Each of the randomly generated
samples is converted to a binary vector-based on the existence of a word. For example, the original sample to
explain, Xep, contains 1s for every word. If the randomly generated sample has the same word as Xyp, it is a
value of 1. If the word has been removed in the randomly generated sample, it is a value of 0. In this case, the
linear surrogate model evaluates the behavior of the model when the word is there or not.

Additionally, an upper bound can be set on the number of features to include in the explanation (for example, explain
the top-N most important features). If the specified number of features is less than the total number of features, a simple
feature selection method is applied prior to fitting the linear surrogate model. The black box model is still evaluated on
all features, but the surrogate model is only fits on the subset of features.

11.5.4.3 Interpretation

ADS provides multiple enhancements to the local visualizations from LIME. The explanation is presented as a grid con-
taining information about the black box model, information about the local explainer, and the actual local explanation.
Each row in the grid is described as:

¢ Model (first row)

— The left column presents information about the black box model and the model’s prediction. For example,
the type of the black box model, the true label/value for the selected sample to explain, the predicted value
from the black box model, and the prediction probabilities (classification) or prediction values (regression).
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— The right column displays the sample to explain. For tabular datasets, this is a table showing the feature

names and corresponding values for this sample. For text datasets, this shows the text sample to explain.

» Explainer (second row)

— The left column presents the explainer configuration parameters, such as the underlying local explanation

algorithm used (for example, LIME), the type of surrogate model (for example, linear), the number of
randomly generated local samples (for example, 5000) to train the local surrogate model (/V;), whether
continuous features were discretized or not.

— The right column provides a legend describing how to interpret the model explanations.

» Explanations (remaining rows)

— For classification tasks, a local explanation can be generated for each of the target labels (since the surrogate

model is fit to the prediction probabilities from the black box model). For binary classification, the expla-
nation for one class will mirror the other. For multinomial classification, the explanations describe how
each feature contributes towards or against the specified target class. If the feature contributes against the
specified target class (for example, decreases the prediction probability), it increases the prediction proba-
bility of one or more other target classes. The explanation for each target class is shown as a separate row
in the Explanation section.

The Feature Importances section presents the actual local explanation. The explanation is visualized as a
horizontal bar chart of feature importance values, ordered by relative feature importance. Features with
larger bars (top) are more important than features with shorter bars (bottom). Positive feature importance
values (to the right) indicate that the feature increases the prediction target value. Negative feature im-
portance values (to the left) indicate that the feature decreases the prediction target value. Depending on
whether continuous features are discretized or not changes the interpretation of this value (for example,
whether the specific feature value indicates a positive/negative attribution, or whether an increase/decrease
in the feature value indicates a positive/negative attribution). If the features are discretized, the correspond-
ing range is included. The feature importance value is shown beside each bar. This can either be the raw
coefficient taken from the linear surrogate model or can be normalized such that all importance values sum
to one. For text datasets, the explanation is visualized as a word cloud. Important words that have a large
positive contribution towards a given prediction (for example, increase the prediction value) are shown
larger than unimportant words that have a less positive impact on the target prediction.

* The Explanation Quality section presents information about the quality of the explanation. It is further broken

down into two sections:

— Sample Distance Distributions

This section presents the sample distributions used to train (V) and evaluate (V) the local surrogate
model based on the distances (Euclidean) of the generated samples from the sample to explain. This high-
lights the locality of generated sample spaces where the surrogate model (explainer) is trained and evaluated.
The distance distribution from the sample to explain for the actual dataset used to train the black box model,
Train, is also shown. This highlights the locality of IV, relative to the entire train dataset. For the generated
evaluation sample spaces (/V,,, ), the sample space is generated based on a percentile value of the distances
in Train relative to the sample to explain. For example, NV, is generated with the maximum distance being
limited to the 4™ percentile of the distances in train from the sample to explain.

Evaluation Metrics

This section presents the fidelity of the surrogate model relative to the black box model on the randomly
generated sample spaces used to fit and evaluate the surrogate model. In other words, this section evaluates
how accurately the surrogate model approximates the local behavior of the complex black box model. Mul-
tiple different regression and classification metrics are supported. For classification tasks, ADS supports
both regression and classification metrics. Regression metrics are computed on the raw prediction prob-
abilities between the surrogate model and the black box model. For classification metrics, the prediction
probabilities are converted to the corresponding target labels and are compared between the surrogate model
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and the black box model. Explanations for regression tasks only support regression metrics. Supported re-
gression metrics: MSE, RMSE (default), R, MAPE, SMAPE, Two-Sample Kolmogorov-Smirnov Test,
Pearson Correlation (default), and Spearman Correlation. Supported classification metrics: Fi, Accuracy,
Recall, and ROC_AUC.

— Performance

Explanation time in seconds.

11.5.4.4 Example

This example generates and visualizes local explanations on the Titanic dataset. The model is constructed using the
ADS OracleAutoMLProvider. However, the ADS model explainers work with any model (classifier or regressor)
that is wrapped in an ADSModel object.

import logging
import requests

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutolMLProvider
from ads.dataset.factory import DatasetFactory

from os import path

# Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):

ds

ds

ds
ds

with open(titanic_data_file,

# fetch sand save some data
print('fetching data from web...
# Data source: https://www.openml.org/d/40945

', end=" ")

= requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEKM] ")

fd.write(r.content)

print("Done")

= DatasetFactory.open(
titanic_data_file, target="survived").set_positive_class(True)
ds.drop_columns([ 'name', 'ticket', 'cabin', 'boat',

ds[ds['age']
ds[ds['fare']

'body', 'home.dest'])

'wb') as fd:

'?'].astype({'age': 'float64'})

'?'].astype({'fare':

'float64'})

train, test = ds.train_test_split(test_size=0.2)

# Build the model using AutoML.

model' is a subclass of type ADSModel.

# Note that the ADSExplainer below works with any model (classifier or

# regressor) that is wrapped in an ADSModel

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

# Create the ADS explainer object, which is used to construct
# global and local explanation objects. The ADSExplainer takes

# as input the model to explain and the train/test dataset

from ads.explanations.explainer import ADSExplainer

explainer = ADSExplainer(test, model, training data=train)

(continues on next page)
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(continued from previous page)

# With ADSExplainer, create a local explanation object using

# the MLXLocalExplainer provider

from ads.explanations.mlx_local_explainer import MLXLocalExplainer

local_explainer = explainer.local_explanation(
provider=MLXLocalExplainer())

# A summary of the local explanation algorithm and how to interpret
# the output can be displayed with
local_explainer. summary ()

# Select a specific sample (instance/row) to generate a local
# explanation for
sample = 13

# Compute the local explanation on our sample from the test set
explanation = local_explainer.explain(test.X.iloc[sample:sample+1],
test.y.iloc[sample:sample+1])

# Visualize the explanation for the label True (Survived). See
# the "Interpretation" section above for more information
explanation.show_in_notebook(labels=True)
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# The raw explanaiton data used to generate the visualizations, as well
# as the runtime performance information can be extracted with
explanation.get_diagnostics()
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11.5.4.5 References

« LIME
¢ Vanderbilt Biostatistics - titanic data

e Why Should I Trust You? Explaining the Predictions of Any Classifier

11.5.5 Whatlf Explainer

11.5.5.1 Description

The Whatlf explainer tool helps to understand how changes in an observation affect a model’s prediction. Use it to
explore a model’s behavior on a single observation or the entire dataset by asking “what if”” questions.

The Whatlf explainer has the following methods:
* explore_predictions: Explore the relationship between feature values and the model predictions.

* explore_sample: Modify the values in an observation and see how the prediction changes.

11.5.5.2 Example

In this example, a Whatlf explainer is created, and then the explore_predictions(), and explore_sample()
methods are demonstrated. A tree-based model is used to make predictions on the Boston housing dataset.

from ads.common.model import ADSModel

from ads.dataset.dataset_browser import DatasetBrowser

from ads.dataset.label_encoder import DataFrameLabelEncoder

from ads.explanations.explainer import ADSExplainer

from ads.explanations.mlx_whatif_ explainer import MLXWhatIfExplainer
from sklearn.ensemble import ExtraTreesRegressor

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import LabelEncoder

import logging

import warnings

logging.basicConfig(format=" : ', level=logging.ERROR)
warnings.filterwarnings('ignore")

ds = DatasetBrowser.sklearn().open("boston").set_target("target")
train, test = ds.train_test_split(test_size=0.2)

X_boston = train.X.copy(Q)
y_boston = train.y.copy()

le = DataFrameLabelEncoder()
X_boston = le.fit_transform(X_boston)

# Model Training

ensemble_regressor = ExtraTreesRegressor(n_estimators=245, random_state=42)
ensemble_regressor. fit(X_boston, y_boston)

model = ADSModel.from_estimator (make_pipeline(le, ensemble_regressor), name=
—"ExtraTreesRegressor")

(continues on next page)
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# Build a WhatIf Explainer
explainer = ADSExplainer(test, model, training data=train)
whatif_explainer = explainer.whatif explanation(provider=MLXWhatIfExplainer())

The Sample Explorer method, explore_sample(), opens a GUI that has a single observation. The values of that
sample can then be changed. By clicking Run Inference, the model computes the prediction with the updated feature
values. The interface shows the original values and the values that have been changed.

example_sample () accepts the row_idx parameter that specifies the index of the observation that is to be evaluated.
The default is zero (0). The features parameter lists the feature names that are shown in the interface. By default,
it displays all features. For datasets with a large number of features, this can be cumbersome so the max_features
parameter can be used to display only the first n features.

The following command opens the Sample Explorer. Change the values then click Run Inference to see how the
prediction changes.

whatif_explainer.explore_sample()

Select and Explore Sample

Row Selection

Select a sample between 0 and 101

Row Index: | 0 Select Sample

Sample (Row: 0)

CRIM | 0.06905 ZM | 0 INDUS | 218
CHAS | 0 NOX | 0.458 RM | 7147
AGE | 54.2 DIS | 6.0622 RAD | 3
TAX | 222 PTRATIO | 18.7 B | 3969
LSTAT | 533

Model Predictions

Sample Values

CRIM ZN INDUS CHAS NOX RM  AGE DIS RAD TAX PTRATIO B LSTAT
Original Sample 0.06305 0.0 218 0.0 0.458 7147 542 60822 3.0 2220 18.7 3969 533
Modified Sample 0.06905 0.0 2.18 0.0 0.458 7147 542 6.06822 3.0 2220 18.7 3969 5.33

Show all features

Model Predictions

Prediction (True value: 36.2)
Original Sample 32.50857142857136

Modified Sample 32.50857142857136
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The Predictions Explorer method, explore_predictions (), allows the exploration of model predictions across either
the marginal distribution (1-feature) or the joint distribution (2-features).

The method explore_predictions() has several optional parameters including:

e discretization: (str, optional) Discretization method applies the x-axis if the feature x is continuous. The
valid options are ‘quartile’, ‘decile’, or ‘percentile’. The default is None.

e label: (str or int, optional) Target label or target class name to explore only for classification problems. The
default is None.

e plot_type: (str, optional) Type of plot. For classification problems the valid options are ‘scatter’, ‘box’, or ‘bar’.
For a regression problem, the valid options are ‘scatter’ or ‘box’. The default is ‘scatter’.

* x: (str, optional) Feature column on x-axis. The default is None.
* y: (str, optional) Feature column or model prediction column on the y-axis, by default it is the target.

When only x is set, the chart shows the relationship between the features x and the target y.

whatif_explainer.explore_predictions(x="AGE")

predictions

AGE

If features are specified for both x and y, the plot uses color to indicate the value of the target.

whatif_explainer.explore_predictions(x='AGE', y="CRIM')

25 . predictions

CRIM

: -
[] . - "8 sss - -8 s als s ‘e seee ss - = "Sass ‘s 2 @ Sas = 10

20 40 &0 80 100
AGE

whatif_explainer.explore_predictions(x='RAD', plot_type='box', discretization='decile")
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CHAPTER
TWELVE

REGISTER AND DEPLOY MODELS

You could register your model with OCI Data Science service through ADS. Alternatively, the Oracle Cloud Infras-
tructure (OCI) Console can be used by going to the Data Science projects page, selecting a project, then click Models.
The models page shows the model artifacts that are in the model catalog for a given project.

After a model and its artifacts are registered, they become available for other data scientists if they have the correct
permissions.

Data scientists can:
* List, read, download, and load models from the catalog to their own notebook sessions.
* Download the model artifact from the catalog, and run the model on their laptop or some other machine.
* Deploy the model artifact as a model deployment.
* Document the model use case and algorithm using taxonomy metadata.
* Add custom metadata that describes the model.

* Document the model provenance including the resources and tags used to create the model (notebook session),
and the code used in training.

* Document the input data schema, and the returned inference schema.

* Run introspection tests on the model artifact to ensure that common model artifact errors are flagged. Thus, they
can be remediated before the model is saved to the catalog.

The ADS SDK automatically captures some of the metadata for you. It captures provenance, taxonomy, and some
custom metadata.

12.1 Workflow
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ADS has a set of framework specific classes that take your model and push it to production with a few quick steps.

The first step is to create a model serialization object. This object wraps your model and has a number of methods to
assist in deploying it. There are different model classes for different model classes. For example, if you have a PyTorch
model you would use the PyTorchModel class. If you have a TensorFlow model you would use the TensorFlowlModel
class. ADS has model serialization for many different model classes. However, it is not feasible to have a model
serialization class for all model types. Therefore, the GenericModel can be used for any class that has a .predict ()
method.

After creating the model serialization object, the next step is to use the .prepare() method to create the model
artifacts. The score.py file is created and it is customized to your model class. You may still need to modify it for
your specific use case but this is generally not required. The .prepare() method also can be used to store metadata
about the model, code used to create the model, input and output schema, and much more.

If you make changes to the score.py file, call the .verify() method to confirm that the load_model () and
predict () functions in this file are working. This speeds up your debugging as you do not need to deploy a model to
test it.

The .save() method is then used to store the model in the model catalog. A call to the .deploy () method creates a
load balancer and the instances needed to have an HTTPS access point to perform inference on the model. Using the
.predict () method, you can send data to the model deployment endpoint and it will return the predictions.

12.2 Register

12.2.1 Quick Start

ADS can auto generate the required files to register and deploy your models. Checkout the examples below to learn
how to deploy models of different frameworks.

12.2.1.1 Sklearn

import tempfile

from ads.model.framework.sklearn_model import SklearnModel
from sklearn.datasets import load_iris

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

# Load dataset and Prepare train and test split

iris = load_iris(Q)

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

# Train a LogisticRegression model
sklearn_estimator = LogisticRegression()
sklearn_estimator.fit(X_train, y_train)

# Instantite ads.model.framework.sklearn_model.SklearnModel using the sklearn.,
—LogisticRegression model
sklearn_model = SklearnModel (

estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp()

)

(continues on next page)
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# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_
—»Schema. json
sklearn_model . prepare(

inference_conda_env="dbexp_p38_cpu_vi1",

X_sample=X_train,

y_sample=y_train,

# Verify generated artifacts
sklearn_model .verify(X_test)

# Register scikit-learn model
model_id = sklearn_model.save(display_name="Sklearn Model™)

12.2.1.2 XGBoost

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile

import xgboost as xgb

from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.datasets import load_iris

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

# Load dataset and Prepare train and test split

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

# Train a XBoost Classifier model
xgboost_estimator = xgb.XGBClassifier()
xgboost_estimator.fit(X_train, y_train)

# Instantite ads.model.framework.xgboost_model.XGBoostModel using the trained XGBoost..
—Model

xgboost_model = XGBoostModel (estimator=xgboost_estimator, artifact_dir=tempfile.
—mkdtemp())

# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_
—schema. json
xgboost_model . prepare (

inference_conda_env="generalml_p38_cpu_v1",

X_sample=X_train,

y_sample=y_train,

)

# Verify generated artifacts
xgboost_model.verify(X_test)

(continues on next page)
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# Register XGBoost model
model_id = xgboost_model.save(display_name="XGBoost Model™)

12.2.1.3 LightGBM

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import lightgbm as 1lgb

import tempfile

from ads.model.framework.lightgbm_model import LightGBMModel
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load dataset and Prepare train and test split

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

# Train a XBoost Classifier model
train = lgb.Dataset(X_train, label=y_train)
param = {

'objective': 'multiclass', 'num_class': 3,
}
lightgbm_estimator = lgb.train(param, train)

# Instantite ads.model.lightgbm_model.XGBoostModel using the trained LGBM Model
lightgbm_model = LightGBMModel (estimator=1lightgbm_estimator, artifact_dir=tempfile.
—mkdtemp())

# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_
—schema. json
lightgbm_model . prepare(

inference_conda_env="generalml_p38_cpu_v1",

X_sample=X_train,

y_sample=y_train,

)

# Verify generated artifacts
lightgbm_model.verify(X_test)

# Register LightGBM model
model_id = lightgbm_model.save(display_name="LightGBM Model")
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12.2.1.4 PyTorch

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile

import torch

import torchvision

from ads.model.framework.pytorch_model import PyTorchModel

# Load a pre-trained resnet model
torch_estimator = torchvision.models.resnetl8(pretrained=True)
torch_estimator.eval()

# create random test data
test_data = torch.randn(l, 3, 224, 224)

# Instantite ads.model.framework.pytorch_model.PyTorchModel using the pre-trained.
—PyTorch Model

artifact_dir=tempfile.mkdtemp()

torch_model = PyTorchModel (torch_estimator, artifact_dir=artifact_dir)

# Autogenerate score.py, serialized model, runtime.yaml
# Set ‘use_torch_script® to ‘True' to save the model as Torchscript program.
torch_model . prepare(inference_conda_env="pytorch110_p38_cpu_vl", use_torch_script=True)

# Verify generated artifacts
torch_model .verify(test_data)

#Register PyTorch model
model_id = torch_model.save(display_name="PyTorch Model")

12.2.1.5 Spark Pipeline

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile

import os

from pyspark.sql import SparkSession

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import HashingTF, Tokenizer

from ads.model.framework.spark_model import SparkPipelineModel

spark = SparkSession \
.builder \
.appName ("Python Spark SQL basic example") \
.getOrCreate()

# create data
training = spark.createDataFrame(

(continues on next page)

12.2. Register 263



ADS Documentation, Release 2.7.3

(continued from previous page)

[
(©, "abcd e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.09),
(3, "hadoop mapreduce", 0.0),
1,
"id", "text", "label"],
)
test = spark.createDataFrame(
[
(4, "spark i j k'),
(5, "1 mn"),
(6, "spark hadoop spark"),
(7, "apache hadoop"),
1,
["id", "text"],
)

# Train a Spark Pipeline model

tokenizer = Tokenizer(inputCol="text", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001)

pipeline = Pipeline(stages=[tokenizer, hashingTF, 1lr])

model = pipeline.fit(training)

# Instantite ads.model.framework.spark model.SparkPipelineModel using the pre-trained.
—Spark Pipeline Model
spark_model = SparkPipelinelModel (estimator=model, artifact_dir=tempfile.mkdtemp())
spark_model .prepare(inference_conda_env="pyspark32_p38_cpu_v2",

X_sample = training,

force_overwrite=True)

# Verify generated artifacts
prediction = spark_model.verify(test)

#Register Spark model
spark_model . save(display_name="Spark Pipeline Model")

12.2.1.6 TensorFlow

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

from ads.model.framework.tensorflow_model import TensorFlowModel
import tempfile
import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

X_train, x_test = x_train / 255.0, x_test / 255.0

(continues on next page)
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tf_estimator = tf.keras.models.Sequential(

[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),

]

)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
tf_estimator.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
tf_estimator.fit(x_train, y_train, epochs=1)

# Instantite ads.model.framework.tensorflow_model.TensorFlowModel using the pre-trained.
—TensorFlow Model
tf_model = TensorFlowModel (tf_estimator, artifact_dir=tempfile.mkdtemp())

# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_
—»Schema. json
tf_model .prepare(inference_conda_env="tensorflow28_p38_cpu_v1")

# Verify generated artifacts
tf_model.verify(x_test[:1])

#Register TensorFlow model
model_id = tf model.save(display_name="TensorFlow Model")

12.2.1.7 Other Frameworks

import tempfile
from ads.model.generic_model import GenericModel

# Create custom framework model
class Toy:
def predict(self, x):
return x ** 2
model = Toy()

# Instantite ads.model.generic_model.GenericModel using the trained Custom Model
generic_model = GenericModel (estimator=model, artifact_dir=tempfile.mkdtemp())
generic_model . summary_status()

# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_
—schema. json
generic_model .prepare(

inference_conda_env="dbexp_p38_cpu_vl1",

model_file_name="toy_model.pkl",

force_overwrite=True

)

# Check if the artifacts are generated correctly.

(continues on next page)

12.2. Register 265



ADS Documentation, Release 2.7.3

(continued from previous page)

# The verify method invokes the “‘predict™ function defined inside “‘score.py in the.
—artifact_dir
generic_model .verify([2])

# Register the model
model_id = generic_model.save(display_name="Custom Framework Model")

12.2.2 Model Registration

12.2.2.1 Model Artifact

To save a trained model on OCI Data Science, prepare a Model Artifact.
Model Artifact is a zip file which contains the following artifacts -
* Serialized model or models
e runtime.yaml - This yaml captures provenance information and deployment conda environment
* score.py - Entry module which is used by the model deployment server to load the model and run prediction
* input_schema.json - Describes the schema of the features that will be used within predict function
* output_schema.json - Describes the schem of the prediction values
* Any other artifcat that are required during inference time.

ADS can auto generate all the mandatory files to help save the models that are compliant with the OCI Data Science
Model Deployment service.

Auto generation of score.py with framework specific code for loading models and fetching prediction is available for
following frameworks-

* scikit-learn

* XGBoost

* LightGBM

* PyTorch

» SparkPipelineModel
 TensorFlow

To accomodate for other frameworks that are unknown to ADS, a template code for score.py is generated in the
provided artificat directory location.

12.2.2.2 Prepare the Model Artifact

To prepare the model artifact -
* Train a model using the framework of your choice

* Create a Model object from one of the framework specific Models available under ads.model.framework.*. The
Model class takes two parameters - estimator object and a directory location to store autogenerated artifacts.

e call prepare() to generate all the files.
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See API documentation for more details about the parameters.

Here is an example for preparing a model artifact for TensorFlow model.

from ads.model.framework.tensorflow_model import TensorFlowModel
import tempfile

import tensorflow as tf

from ads.common.model_metadata import UseCaseType

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

X_train, x_test = x_train / 255.0, x_test / 255.0

tf_estimator = tf.keras.models.Sequential(

[
tf.keras.layers.Flatten(input_shape=(28, 2