

Oracle Accelerated Data Science SDK (ADS)

Oracle Accelerated Data Science (ADS) SDK

The Oracle Accelerated Data Science (ADS) SDK is a Python library that is included as part
of the Oracle Cloud Infrastructure Data Science service. ADS offers a friendly user interface,
with objects and methods that cover all the steps involved in the lifecycle of machine
learning models, from data acquisition to model evaluation and interpretation.

Installation

python3 -m pip install oracle-ads

>>> import ads
>>> ads.hello()

 _ ____ ____
 / \ | _ \/ ___|
 / _ \ | | | ___ \
 / ___ \| |_| |___) |
/_/ _____/|____/

Overview

The Oracle Accelerated Data Science (ADS) SDK is a Python library that is included as part of the Oracle Cloud Infrastructure Data Science service. ADS offers a friendly user interface with objects and methods that describe the steps involved in the lifecycle of machine learning models, from data acquisition to model evaluation and interpretation.

You access ADS when you launch a JupyterLab session from the Data Science service. ADS is pre-configured to access Data Science and other Oracle Cloud Infrastructure resources, such as the models in the Data Science model catalog or files in Oracle Cloud Infrastructure Object Storage.

The ADS SDK is also publicly available on PyPi, and can be installed with python3 -m pip install oracle-ads.

Main Features

	Connect to Different Data Sources

The Oracle JupyterLab environment is pre-installed with default storage options for reading from and writing to Oracle Cloud Infrastructure Object Storage. However, you can load your datasets into ADS from almost anywhere including:

	Oracle Cloud Infrastructure Object Storage

	Oracle Autonomous Data Warehouse

	Oracle Database

	Hadoop Distributed File System

	Amazon S3

	Google Cloud Service

	Microsoft Azure

	Blob

	MongoDB

	NoSQL DB instances

	Elastic Search instances

	Your local files

These datasets can be numerous formats including:

	csv

	tsv

	Parquet

	libsvm

	JSON

	Excel

	SQL

	HDF5

	XML

	Apache server log files

	arff

[image: ../../_images/open-dataset.png]

Example of Opening a Dataset

	Perform Exploratory Data Analysis

The ADS data type discovery supports simple data types like categorical, continuous, ordinal to sophisticated data types. For example, geo data, date time, zip codes, and credit card numbers.

[image: ../../_images/target-visualization.png]

Example showing exploring the class imbalance of a target variable

	Automatic Data Visualization

The ADSDataset object comes with a comprehensive plotting API. It allows you to explore data visually using automatic plotting or create your own custom plots.

[image: ../../_images/feature-visualization-1.png]

Example showing Gaussian Heatmap Visualization

[image: ../../_images/feature-visualization-2.png]

Example showing plotting lat/lon points on a map

	Feature Engineering

Leverage ADS and the Pandas API [https://pandas.pydata.org/docs/index.html] to transform the content of a ADSDataset object with custom data transformations.

[image: ../../_images/balance-dataset.png]

Example showing using ADS to drop columns and apply auto transforms

	Data Snapshotting for Training Reproducibility

Save and load a copy of any dataset in binary optimized Parquet format. By snapshotting a dataset, a URL is returned that can be used by anyone with access to the resource to load the data exactly how it was at that point with all transforms materialized.

	Model Training

[image: ../../_images/dot-decision-tree.png]

Example showing a visualized Decision Tree

The Oracle AutoML engine, that produces ADSModel models, automates:

	Feature Selection

	Algorithm Selection

	Feature Encoding

	Hyperparameter Tuning

Create your own models using any library. If they resemble sklearn estimators, you can promote them to ADSModel objects and use them in evaluations, explanations, and model catalog operations. If they do not support the sklearn behavior, you can wrap them in a Lambda then use them.

[image: ../../_images/automl.png]

Example showing how to invoke AutoML

[image: ../../_images/automl-hyperparameter-tuning.png]

Example showing the AutoML hyper-parameter tuning trials

	Model Evaluations

Model evaluation generates a comprehensive suite of evaluation metrics and suitable visualizations to measure model performance against new data, and can rank models over time to ensure optimal behavior in production. Model evaluation goes beyond raw performance to take into account expected baseline behavior. It uses a cost API so that the different impacts of false positives and false negatives can be fully incorporated.

ADS helps data scientists evaluate ADSModel instances through the ADSEvaluator object. This object provides a comprehensive API that covers regression, binary, and multinomial classification use cases.

[image: ../../_images/model-evaluation.png]

Example showing how to evaluate a list of models

[image: ../../_images/model-evaluation-performance.png]

Example showing some model evaluation plots

	Model Interpretation and Explainablility

Model explanation makes it easier to understand why machine learning models return the results that they do by identifying relative importance of features and relationships between features and predictions. Data Science offers the first commercial implementation
of model-agnostic explanation. For example, a compliance officer can be certain that a model is not making decisions in violation of GDPR or regulations against discrimination.

For data scientists, it enables them to ensure that any model they build is generating results based on predictors that make sense. Understanding why a model behaves the way it does is critical to users and regulators. Data Science ensures that deployed models are more accurate, robust, and compliant with relevant regulations.

Oracle provides Machine Learning Explainablility (MLX), which is a package that explains the internal mechanics of a machine learning system to better understand models. Models are in the ADSModel format. You use MLX to explain models from different training platforms. You create an ADSModel from a REST end point then use the ADS model explainability to explain a model that’s remote.

	Interact with the Model Catalog

You can upload the models that you create with ADS into the Data Science model catalog directly from ADS. You can save all your models, with their provenance information, in the catalog and make them accessible to anybody who needs to use them. Other users can then load the models and use them as an ADSModel object. You can also use this feature to help put the models into production with Oracle Functions [https://docs.cloud.oracle.com/iaas/Content/Functions/Concepts/functionsoverview.htm].

Quick Start Guide

The Accelerated Data Science (ADS) SDK is a Oracle Cloud Infrastructure Data Science and Machine learning SDK that data scientists can use for the entire lifecycle of their workflows. You can also use Python methods in ADS to interact with the following Data Science resources:

	Models (saved in the model catalog)

	Notebook Sessions

	Projects

ADS is pre-installed in the notebook session environment of the Data Science service.

For a guide on ADS features, check out the overview. This Quick Start guide is a five minute compressed set of instructions about what you can accomplish with ADS and includes:

	Setting up ADS

	Getting Data into ADS

	Performing Data Visualization

	Model Training with ADS

	Creating an ADSModel from Other Machine Learning Libraries

	Saving and Loading Models to the Model Catalog

	Model Evaluations and Explanations with ADS

Setting up ADS

Inside Data Science Conda Environments

ADS is already installed in the environment.

Install in Your Local Environment

You can use pip to install ADS with python3 -m pip install oracle-ads.

Getting Started

import ads

Turn debug mode on or off with:

ads.set_debug_mode(bool)

Getting Data into ADS

Before you can use ADS for anything involving a dataset (visualization,
transformations, or model training), you have to load your data. When ADS opens a
dataset, you have the option to provide the name of the column to be the target
variable during modeling. The type of this target determines what type of modeling
to use (regression, binary, and multi-class classification, or time series forecasting).

There are several ways to turn data into an ADSDataset. The simplest way is to
use DatasetFactory, which takes as its first argument as a string URI or a
Pandas Dataframe object. The URI supports many formats, such as Object Storage
or S3 files. The
class documentation <https://docs.cloud.oracle.com/en-us/iaas/tools/ads-sdk/latest/modules.html>_ describes all classes.

For example:

	From a Pandas Dataframe instance:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df["species"] = data.target

from ads.dataset.factory import DatasetFactory

these two are equivalent:
ds = DatasetFactory.open(df, target="species")
OR
ds = DatasetFactory.from_dataframe(df, target="species")

The ds (ADSDataset) object is Pandas like. For example, you can use ds.head(). It’s
an encapsulation of a Pandas Dataframe with immutability. Any attempt to
modify the data yields a new copy-on-write of the ADSDataset.

Note

Creating an ADSDataset object involves more than simply reading data
to memory. ADS also samples the dataset for visualization purposes, computes
co-correlation of the columns in the dataset, and performs type discovery on the
different columns in the dataset. That is why loading a dataset with
DatasetFactory can be slower than simply reading the same dataset
with Pandas. In return, you get the added data visualizations and data
profiling benefits of the ADSDataset object.

	To load data from a URL:

import pandas as pd

ds = pd.read_csv("oci://hosted-ds-datasets@hosted-ds-datasets/iris/dataset.csv", target="variety")

	To load data with ADS type discovery turned off:

import pandas as pd

pd.DataFrame({'c1':[1,2,3], 'target': ['yes', 'no', 'yes']}).to_csv('Users/ysz/data/sample.csv')

ds = DatasetFactory.open('Users/ysz/data/sample.csv',
 target = 'target',
 type_discovery = False, # turn off ADS type discovery
 types = {'target': 'category'}) # specify target type

Performing Data Visualization

ADS offers a smart visualization tool that automatically detects the type of your data columns and offers
the best way to plot your data. You can also create custom visualizations with ADS by using your
preferred plotting libraries and packages.

To get a quick overview of all the column types and how the column’s values are distributed:

ds.show_in_notebook()

To plot the target’s value distribution:

ds.target.show_in_notebook()

To plot a single column:

ds.plot("sepal.length").show_in_notebook(figsize=(4,4)) # figsize optional

To plot two columns against each other:

ds.plot(x="sepal.length", y="sepal.width").show_in_notebook()

You are not limited to the types of plots that ADS offers. You can also use other
plotting libraries. Here’s an example using Seaborn. For more examples, see Data Visualization
or the ads_data_visualizations notebook example in the notebook session environment.

import seaborn as sns
sns.set(style="ticks", color_codes=True)
sns.pairplot(df.dropna())

[image: ADS Model Training]

Model Training with ADS

ADS includes the Oracle AutoML Provider. It is an automated machine learning module that is simple to use, fast to
run, and performs comparably with its alternatives. You can also create your own machine learning provider and let ADS
take care of the housekeeping.

Detailed examples are included in the ads-example folder in the notebook session environment.

AutoML provides these features:

	An ideal feature set.

	Minimal sampling size.

	The best algorithm to use (you can also restrict AutoML to your favorite algorithms).

	The best set of algorithm specific hyperparameters.

How to train a model using ADSDataset:

import pandas as pd
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
from ads.dataset.factory import DatasetFactory

this is the default AutoML provider for regression and classification problem types.
over time Oracle will introduce other providers for other training tasks.
ml_engine = OracleAutoMLProvider()

use an example where Pandas opens the dataset
df = pd.read_csv("https://raw.githubusercontent.com/darenr/public_datasets/master/iris_dataset.csv")
ds = DatasetFactory.open(df, target='variety')

train, test = ds.train_test_split()

automl = AutoML(train, provider=ml_engine)

model, baseline = automl.train(model_list=[
 'LogisticRegression',
 'LGBMClassifier',
 'XGBClassifier',
 'RandomForestClassifier'], time_budget=10)

At this point, AutoML has built a baseline model. In this
case, it is a Zero-R model (majority class is always predicted), along with a tuned model.

You can use print(model) to get a model’s parameters and their values:

print(model)

Framework: automl.models.classification.sklearn.lgbm
Estimator class: LGBMClassifier
Model Parameters: {'boosting_type': 'dart', 'class_weight': None, 'learning_rate': 0.1, 'max_depth': -1, 'min_child_weight': 0.001, 'n_estimators': 100, 'num_leaves': 31, 'reg_alpha': 0, 'reg_lambda': 0}

You can get details about a model, such as its selected algorithm, training data size,
and initial features using the show_in_notebook() method:

model.show_in_notebook()

Model Name AutoML Classifier
Target Variable variety
Selected Algorithm LGBMClassifier
Task classification
Training Dataset Size (128, 4)
CV 5
Optimization Metric recall_macro
Selected Hyperparameters {'boosting_type': 'dart', 'class_weight': None, 'learning_rate': 0.1, 'max_depth': -1, 'min_child_weight': 0.001, 'n_estimators': 100, 'num_leaves': 31, 'reg_alpha': 0, 'reg_lambda': 0}
Is Regression None
Initial Number of Features 4
Initial Features [sepal.length, sepal.width, petal.length, petal.width]
Selected Number of Features 1
Selected Features [petal.width]

From here you have two ADSModel objects that can be used in ADS’s evaluation and explanation
modules along with any other ADSModel instances.

Creating an ADSModel from Other Machine Learning Libraries

You are not limited to using models that were created using Oracle AutoML. You can promote other models to ADS
so that they too can be used in evaluations and explanations.

ADS provides a static method that promotes an estimator-like object to an ADSModel.

For example:

from xgboost import XGBClassifier
from ads.common.model import ADSModel

...

xgb_classifier = XGBClassifier()
xgb_classifier.fit(train.X, train.y)

ads_model = ADSModel.from_estimator(xgb_classifier)

Optionally, the from_estimator() method can provide a list of target classes. If the
estimator provides a classes_ attribute, then this list is not needed.

You can also provide a scalar or iterable of objects implementing transform functions. For a more
advanced use of this function, see the ads-example folder in the notebook session environment.

Saving and Loading Models to the Model Catalog

The getting-started.ipynb notebook, in the notebook session environment, helps you create the Oracle Cloud
Infrastructure configuration file. You must set up this configuration file to access the model catalog or
Oracle Cloud Infrastructure services, such as Object Storage, Functions, and Data Flow from the notebook environment.

This configuration file is also needed to run ADS. You must run the getting-started.ipynb notebook
every time you launch a new notebook session. For more details, see Configuration and Model Catalog.

You can use ADS to save models built with ADS or generic models built outside of ADS
to the model catalog. One way to save an ADSModel is:

from os import environ
from ads.common.model_export_util import prepare_generic_model
from joblib import dump
import os.path
import tempfile
tempfilepath = tempfile.mkdtemp()
dump(model, os.path.join(tempfilepath, 'model.onnx'))
model_artifact = prepare_generic_model(tempfilepath)
compartment_id = environ['NB_SESSION_COMPARTMENT_OCID']
project_id = environ["PROJECT_OCID"]

...

mc_model = model_artifact.save(
 project_id=project_id,
 compartment_id=compartment_id,
 display_name="random forest model on iris data",
 description="random forest model on iris data",
 training_script_path="model_catalog.ipynb",
 ignore_pending_changes=False)

ADS also provides easy wrappers for the model catalog REST APIs. By constructing
a ModelCatalog object for a given compartment, you can list the models with the list_models() method:

from ads.catalog.model import ModelCatalog
from os import environ
mc = ModelCatalog(compartment_id=environ['NB_SESSION_COMPARTMENT_OCID'])
model_list = mc.list_models()

To load a model from the catalog, the model has to be fetched, extracted, and restored into memory
so that it can be manipulated. You must specify a folder where the download would extract the files to:

import os
path_to_my_loaded_model = os.path.join('/', 'home', 'datascience', 'model')
mc.download_model(model_list[0].id, path_to_my_loaded_model, force_overwrite=True)

Then construct or reconstruct the ADSModel object with:

from ads.common.model_artifact import ModelArtifact
model_artifact = ModelArtifact(path_to_my_loaded_model)

There’s more details to interacting with the model catalog in Model Catalog.

Model Evaluations and Explanations with ADS

Model Evaluations

ADS can evaluate a set of models by calculating and reporting a variety of task-specific
metrics. The set of models must be heterogeneous and be based on the same test set.

The general format for model explanations (ADS or non-ADS models that have been promoted
using the ADSModel.from_estimator function) is:

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

evaluator = ADSEvaluator(test, models=[model, baseline], training_data=train)
evaluator.show_in_notebook()

If you assign a value to the optional training_data method, ADS calculates how the models
generalize by comparing the metrics on training with test datasets.

The evaluator has a property metrics, which can be used to access all of the calculated
data. By default, in a notebook the evaluator.metrics outputs a table highlighting
for each metric which model scores the best.

evaluator.metrics

[image: ../../_images/evaluation-test.png]
[image: ../../_images/evaluation-training.png]
If you have a binary classification, you can rank models by their calculated cost by using
the calculate_cost() method.

[image: ../../_images/evaluation-cost.png]
You can also add in your own custom metrics, see the Model Evaluation
for more details.

Model Explanations

ADS provides a module called Machine learning explainability (MLX), which is the process
of explaining and interpreting machine learning and deep learning models.

MLX can help machine learning developers to:

	Better understand and interpret the model’s behavior. For example:
- Which features does the model consider important?
- What is the relationship between the feature values and the target predictions?

	Debug and improve the quality of the model. For example:
- Did the model learn something unexpected?
- Does the model generalize or did it learn something specific to the train/validation/test datasets?

	Increase confidence in deploying the model.

MLX can help end users of machine learning algorithms to:

	Understand why the model has made a certain prediction. For example:
- Why was my bank loan denied?

Some useful terms for MLX:

	Explainability: The ability to explain the reasons behind a machine learning model’s prediction.

	Interpretability: The level at which a human can understand the explanation.

	Global Explanations: Understand the behavior of a machine learning model as a whole.

	Local Explanations: Understand why the machine learning model made a single prediction.

	Model-Agnostic Explanations: Explanations treat the machine learning model (and feature pre-processing) as a black-box,
instead of using properties from the model to guide the explanation.

MLX provides interpretable model-agnostic local and global explanations.

How to get global explanations:

from ads.explanations.explainer import ADSExplainer
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer

our model explainer class
explainer = ADSExplainer(test, model)

let's created a global explainer
global_explainer = explainer.global_explanation(provider=MLXGlobalExplainer())

Generate the global feature importance explanation
importances = global_explainer.compute_feature_importance()

Visualize the top six features in a bar chart (the default).

Visualize the top 6 features as a bar chart
importances.show_in_notebook(n_features=6)

Visualize the top five features in a detailed scatter plot:

Visualize a detailed scatter plot
importances.show_in_notebook(n_features=5, mode='detailed')

Get the dictionary object that is used to generate the visualizations so that you can create your own:

Get the dictionary object used to generate the visualizations
importances.get_global_explanation()

MLX can also do much more. For example, Partial Dependence Plots (PDP) and Individual
Conditional Expectation explanations along with local explanations can provide insights
into why a machine learning model made a specific prediction.

For more detailed examples and a thorough overview of MLX, see the MLX documentation and
the ads_OracleMLXProvider examples in the ads-example folder of the notebook session environment.

Configuration

Authenticating to the Oracle Cloud Infrastructure APIs from a Notebook Session

When you are working within a notebook session, you are operating as the datascience Linux user. This user does not have an OCI Identity and Access Management (IAM) identity, so it has no access to the Oracle Cloud Infrastructure API. Oracle Cloud Infrastructure resources include Data Science projects and models, and the resources of other OCI serviceS, such as Object Storage, Functions, Vault, Data Flow, and so on. To access these resources from the notebook environment, you must use one of the two provided authentication approaches:

1. Authenticating Using Resource Principals

This is the generally preferred way to authenticate with an OCI service. A resource principal is a feature of IAM that enables resources to be authorized principal actors that can perform actions on service resources. Each resource has its own identity, and it authenticates using the certificates that are added to it. These certificates are automatically created, assigned to resources, and rotated avoiding the need for you to upload credentials to your notebook session.

Data Science enables you to authenticate using your notebook session’s resource principal to access other OCI resources. When compared to using the OCI configuration and key files approach, using resource principals provides a more secure and easy way to authenticate to the OCI APIs.

Within your notebook session, you can choose to use the resource principal to authenticate while using the Accelerated Data Science (ADS) SDK by running ads.set_auth(auth='resource_principal') in a notebook cell. For example:

import ads
ads.set_auth(auth='resource_principal')
compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
pc.list_projects()

2. Authenticating Using API Keys

This is the default method of authentication. You can also authenticate as your own personal IAM user by creating or uploading OCI configuration and API key files inside your notebook session environment. The OCI configuration file contains the necessary credentials to authenticate your user against the model catalog and other OCI services like Object Storage. The example notebook, api_keys.ipynb demonstrates how to create these files.

The getting-started.ipynb notebook in the home directory of the notebook session environment demonstrates all the steps needed to create the configuration file and the keys. Follow the steps in that notebook before importing and using ADS in your notebooks.

Note

If you already have an OCI configuration file (config) and associated keys, you can upload them directly to the /home/datascience/.oci directory using the JupyterLab Upload Files or the drag-and-drop option.

3. Authenticating Using a Customized Oracle Cloud Infrastructure Configuration (Customization)

The default authentication that is used by ADS is set with the set_auth() method. However, each relevant ADS method has an optional parameter to specify the authentication method to use. The most common use case for this is when you have different permissions in different API keys or there are differences between the permissions granted in the resource principals and your API keys.

Most ADS methods do not require a signer to be explicitly given. By default, ADS uses the API keys to sign requests to OCI resources. The set_auth() method is used to explicitly set a default signing method. This method accepts one of two strings "api_key" or "resource_principal".

The ~/.oci/config configuration allow for multiple configurations to be stored in the same file. The set_auth() method takes is oci_config_location parameter that specifies the location of the configuration, and the default is "~/.oci/config". Each configuration is called a profile, and the default profile is DEFAULT. The set_auth() method takes in a parameter profile. It specifies which profile in the ~/.oci/config configuration file to use. In this context, the profile parameter is only used when API keys are being used. If no value for profile is specified, then the DEFAULT profile section is used.

ads.set_auth("api_key") # default signer is set to API Keys
ads.set_auth("api_key", profile = "TEST") # default signer is set to API Keys and to use TEST profile
ads.set_auth("api_key", oci_config_location = "~/.test_oci/config") # default signer is set to API Keys and to use non-default oci_config_location

The authutil module has helper functions that return a signer which is used for authentication. The api_keys() method returns a signer that uses the API keys in the .oci configuration directory. There are optional parameters to specify the location of the API keys and the profile section. The resource_principal() method returns a signer that uses resource principals. The method default_signer() returns either a signer for API Keys or resource principals depending on the defaults that have been set. The set_auth() method determines which signer type is the default. If nothing is set then API keys are the default.

from ads.common import auth as authutil
from ads.common import oci_client as oc

Example 1: Create Object Storage client with the default signer.
auth = authutil.default_signer()
oc.OCIClientFactory(**auth).object_storage

Example 2: Create Object Storage client with timeout set to 6000 using resource principal authentication.
auth = authutil.resource_principal({"timeout": 6000})
oc.OCIClientFactory(**auth).object_storag

Example 3: Create Object Storage client with timeout set to 6000 using API Key authentication.
auth = authutil.api_keys(oci_config="/home/datascience/.oci/config", profile="TEST", kwargs={"timeout": 6000})
oc.OCIClientFactory(**auth).object_storage

In the this example, the default authentication uses API keys specified with the set_auth method. However, since the os_auth is specified to use resource principals, the notebook session uses the resource principal to access OCI Object Store.

set_auth("api_key") # default signer is set to api_key
os_auth = authutil.resource_principal() # use resource principal to as the preferred way to access object store

Setup for ADB

There are two different configurations of the Autonomous Database (ADB). They are the Autonomous Data Warehouse (ADW) and the Autonomous Transaction Processing (ATP). The steps to connect to ADW and ATP are the same. To access an instance
of the ADB from the notebook environment, you need the client credentials and connection information. The client credentials include the wallet, which is required for all types of connections.

Use these steps to access Oracle ADB:

	From the ADW or ATP instance page that you want to load a dataset from, click DB Connection.

[image: ../../_images/DB-Connection.png]

	Click Download Wallet to download the wallet file. You need to create a password to for the wallet to complete the download. You don’t need this password to connect from the notebook.

	Unzip the wallet.

[image: ../../_images/Download-Wallet.png]

	Create a <path_to_wallet_folder> folder for your wallet on the notebook environment environment.

	Upload your wallet files into the <path_to_wallet_folder> folder using the Jupyterlab Upload Files:

[image: ../../_images/Upload_Wallet.png]

	Open the sqlnet.ora file from the wallet files, then configure the METHOD_DATA:

METHOD_DATA = (DIRECTORY="<path_to_wallet_folder>")

	To find the location of the sqlnet.ora file, the TNS_ADMIN environment variable must point to that location. We suggest that you create a Python dictionary to store all of the connection information. In this example, this dictionary is called creds. It is generally poor security practice to store credentials in your notebook. We recommend that you use the ads-examples/ADB_working_with.ipynb notebook example that demonstrates how to store them outside the notebook in a configuration file.

The environment variable should be set in your notebooks. For example:

Replace with your TNS_ADMIN value here:
creds = {}
creds['tns_admin'] = <path_to_wallet_folder>
os.environ['TNS_ADMIN'] = creds['tns_admin']

	You can find SID names from the tnsname.ora file in the wallet file. Create a dictionary to manage your credentials. In this example, the variable creds is used. The SID is an identifier that identifies the consumer group of the the Oracle Database:

Replace with your SID name here:
creds['sid'] = <your_SID_name>

	Ask your database administrator for the username and password, and then add them to your creds dictionary. For example:

creds['user'] = <database_user>
creds['password'] = <database_password>

	Test the connection to the ADB by running these commands:

os.environ['TNS_ADMIN'] = creds['tns_admin']
connect = 'sqlplus ' + creds['user'] + '/' + creds['password'] + '@' + creds['sid']
print(os.popen(connect).read())

Messages similar to the following display if the connection is successful:

[image: ../../_images/Test_connection.png]

An introduction to loading data from ADB into ADS using cx_Oracle and SQLAlchemy is in Loading Data.

Example Notebook: Using OCI Vault for Secret Storage and Retrieval

Overview:

The Oracle Cloud Infrastructure Vault is a service that provides
management of encryption keys and secret credentials. A vault is a
storage container that holds keys and secrets. The Vault service not
only secures your secrets it provides a central repository that allows
them to be used in different notebooks and shared with only those that
need access. No longer will your secrets be stored in code that can
accidentally be checked into git repositories.

This notebook demonstrates how to create a vault, a key, and store a
secret that is encrypted with that key. It also demonstrates how to
retrieve the secret so that it can be used in a notebook. The notebook
explains how to update that secret and basic operations, such as listing
deleting vaults, keys, and secrets.

Important:

Placeholder text for required values are surrounded by angle brackets
that must be removed when adding the indicated content. For example,
when adding a database name to database_name = "<database_name>"
would become database_name = "production".

Prerequisites:

	Experience with specific topic: Novice

	Professional experience: None

Before using this notebook, your tenancy must be configured to use the Vault service.

This notebook performs CRUD (create, read, update, delete) operations on
vaults, keys, and secrets. These are all part of the Vault Service. The
account that is using this notebook requires permissions to these
resources. The account administrator needs to grant privileges to
perform these actions. How the permissions are configured can depend on
your tenancy configuration, see the Vault Service’s permissions
documentation [https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Reference/keypolicyreference.htm]
for details. The Vault Service’s common
policies [https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Concepts/commonpolicies.htm#sec-admins-manage-vaults-keys]
are:

allow group <group> to manage vaults in compartment <compartment>
allow group <group> to manage keys in compartment <compartment>
allow group <group> to manage secret-family in compartment <compartment>

Objectives:

	Introduction to the Vault Service

	Key and Secret Management Concepts

	Vaults

	Keys

	Key Version

	Hardware Security Modules

	Envelope Encryption

	Secrets

	Secret Versions

	Secret Bundles

	Creating a Vault

	Creating a Key

	Secret

	Storing a Secret

	Retrieving a Secret

	Updating a Secret

	Listing Resources

	List Secrets

	Listing Keys

	Listing Vaults

	Deletion

	Deleting a Secret

	Deleting a Key

	Deleting a Vault

	References

Introduction to the Vault Service

The Oracle Cloud Infrastructure
Vault [https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Concepts/keyoverview.htm]
lets you centrally manage the encryption keys that protect your data and
the secret credentials that you use to securely access resources.

Vaults securely store master encryption keys and secrets that you might
otherwise store in configuration files or in code.

Use the Vault service to exercise control over the lifecycle keys and
secrets. Integration with Oracle Cloud Infrastructure Identity and
Access Management (IAM) lets you control who and what services can
access which keys and secrets and what they can do with those resources.
The Oracle Cloud Infrastructure Audit integration gives you a way to
monitor key and secret use. Audit tracks administrative actions on
vaults, keys, and secrets.

Keys are stored on highly available and durable hardware security
modules (HSM) that meet Federal Information Processing Standards (FIPS)
140-2 Security Level 3 security certification. The Vault service uses
the Advanced Encryption Standard (AES) as its encryption algorithm and
its keys are AES symmetric keys.

Key and Secret Management Concepts

The following concepts are integral to understanding the Vault service.

Vaults

Vaults are logical entities where the Vault service stores keys and
secrets. The Vault service offers different vault types. A virtual
private vault is an isolated partition on an HSM. Vaults can share
partitions on the HSM with other vaults.

Keys

Keys are logical entities that represent one or more key versions that
contain the cryptographic material used to encrypt and decrypt data. The
Vault service recognizes master encryption keys, wrapping keys, and data
encryption keys.

Master encryption keys can be generated internally by the Vault service
or imported to the service from an external source. Once a master
encryption key has been created, the Oracle Cloud Infrastruture API can
be used to generate data encryption keys that the Vault service returns
to you. by default, a wrapping key is included with each vault. A
wrapping key is a 4096-bit asymmetric encryption key pair based on the
RSA algorithm.

Key Version

Each master encryption key is assigned a version number. When a key is
rotated, a new key version is created by the Vault service or it can be
imported. Periodically rotating keys reduces the risk if a key is ever
compromised. A key’s unique OCID remains the same across rotations, but
the key version enables the Vault service to seamlessly rotate keys to
meet any compliance requirements. Older key versions cannot be used for
encryption. However, they remain available to decrypt data.

Hardware Security Modules

Keys and secrets are stored within an HSM. This provides a layer of
physical security. Keys and secrets are only stored on HSM and cannot be
exported from the HSM. HSMs meet the FIPS 140-2 Security Level 3
security certification. This means that the HSM hardware is
tamper-evident, has physical safeguards for tamper-resistance, requires
identity-based authentication, and deletes keys from the device when it
detects tampering.

Envelope Encryption

The data encryption key used to encrypt your data is, itself, encrypted
with a master encryption key. This concept is known as envelope
encryption. Oracle Cloud Infrastructure services do not have access to
the plain text data without interacting with the Vault service and
without access to the master encryption key that is protected by IAM.

Secrets

Secrets are credentials, such as passwords, certificates, SSH keys, or
authentication tokens. You can retrieve secrets from the Vault service
when you need them to access resources or other services.

Secret Versions

Each secret is automatically assigned a version number. When secrets are
rotated and updated, the new secret has a new version number. A secret’s
unique OCID remains the same across rotations and updates. It is
possible to configure a rule that prevents a secret from being reused
after rotation and updating. However, the older secret remains
available.

Secret Bundles

A secret bundle consists of the secret contents, properties of the
secret, and the secret version (version number or rotation state), and
user-provided contextual metadata for the secret.

import base64
import json
import oci
import os
import random
import string
import uuid

from oci.config import from_file
from oci.key_management import KmsManagementClient
from oci.key_management import KmsManagementClientCompositeOperations
from oci.key_management import KmsVaultClient
from oci.key_management import KmsVaultClientCompositeOperations
from oci.key_management.models import CreateVaultDetails
from oci.key_management.models import KeyShape
from oci.key_management.models import CreateKeyDetails
from oci.key_management.models import ScheduleKeyDeletionDetails
from oci.key_management.models import ScheduleVaultDeletionDetails
from oci.secrets import SecretsClient
from oci.vault import VaultsClient
from oci.vault.models import Base64SecretContentDetails
from oci.vault.models import CreateSecretDetails
from oci.vault.models import ScheduleSecretDeletionDetails
from oci.vault.models import UpdateSecretDetails
from oci.vault import VaultsClientCompositeOperations
from os import path

Some helper functions are:

def dict_to_secret(dictionary):
 return base64.b64encode(json.dumps(dictionary).encode('ascii')).decode("ascii")

def secret_to_dict(wallet):
 return json.loads(base64.b64decode(wallet.encode('ascii')).decode('ascii'))

Setup

Optionally, you could edit the following code to configure this
notebook. You need an Oracle Cloud Infrastructure configuration file. If
this has not been set up, see the getting-started.ipynb notebook. By
default, this notebook uses the ~/.oci/config configuration file and
the DEFAULT profile. If you have changed your configuration from the
one setup using the getting-started.ipynb notebook, then the
config variable may need to be updated.

A vault, keys, and secret need to belong to a compartment. By default,
the compartment of this notebook session is used. To set up these
resources in a different compartment, enter the compartment’s OCID in
the compartment_id variable.

The main use case for a data scientist is to store a secret, such as an
SSH key, database password, or some other credential. To do this, a
vault and key are required. By default, this notebook creates these
resources. However, the vault_id and key_id variables can be
updated with vault and key OCIDs to use existing resources.

Select the configuration file to connect to Oracle Cloud Infrastructure resources
config = from_file(path.join(path.expanduser("~"), ".oci", "config"), "DEFAULT")

Select the compartment to create the secrets in.
Use the notebook compartment by default
compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']

Enter a vault OCID. Otherwise, one is created.
vault_id = "<vault_id>"
Enter a KMS OCID to encrypt the secret. Otherwise, one is created
key_id = "<key_id>"

For the purposes of this notebook, a secret is stored. The secret is the
credentials needed to access a database. The notebook is designed so
that any secret can be stored as long as it is in the form of a
dictionary. To store your secret, just modify the dictionary.

Sample credentials that are going to be stored.
credential = {'database_name': 'databaseName_high',
 'username': 'admin',
 'password': 'MySecretPassword',
 'database_type': 'oracle'}

Note, to connect to an Oracle database the database_name value should be its
connection identifier. You can find the connection identifier by extracting the
credential wallet zip file and opening the tnsnames.ora file
(connection_identifier = (…)). Usually the connection identifier will
end with _high, _medium or _low i.e. ‘MyDatabaseName_high’.

Create a Vault

To store a secret, a key is needed to encrypt and decrypt the secret.
This key and secret are stored in a vault. The code in the following
cell creates a vault if you have not specified an OCID in the
vault_id variable. The KmsVaultClient class takes a
configuration object and establishes a connection to the key management
service (KMS). Communication with KmsVaultClient is asynchronous.
For the purpose of this notebook, it is better to have synchronous
communication so the KmsVaultClient are wrapped in a
KmsVaultClientCompositeOperations object.

The details of the vault are specified using an object of the
CreateVaultDetails type. A compartment ID must be provided along
with the properties of the vault. For the purposes of this notebook, the
vault’s display name is DataScienceVault_ and a random string
because the names of a vault must be unique. This value can be changed
to fit your individual needs.

if vault_id == "<vault_id>":
 # Create a VaultClientCompositeOperations for composite operations.
 vault_client = KmsVaultClientCompositeOperations(KmsVaultClient(config))

 # Create vault_details object for use in creating the vault.
 vault_details = CreateVaultDetails(compartment_id=compartment_id,
 vault_type=oci.key_management.models.Vault.VAULT_TYPE_DEFAULT,
 display_name="DataScienceVault_{}".format(str(uuid.uuid4())[-6:]))

 # Vault creation is asynchronous; Create the vault and wait until it becomes active.
 print("Creating vault...", end='')
 vault = vault_client.create_vault_and_wait_for_state(vault_details,
 wait_for_states=[oci.vault.models.Secret.LIFECYCLE_STATE_ACTIVE]).data
 vault_id = vault.id
 print('Done')
 print("Created vault: {}".format(vault_id))
else:
 # Get the vault using the vault OCID.
 vault = KmsVaultClient(config).get_vault(vault_id=vault_id).data
 print("Using vault: {}".format(vault.id))

Creating vault...Done
Created vault: ocid1.vault.oc1.iad.bfqidkaoaacuu.abuwcljrq272bqs3gkzil5dunchkqmojdcbtt4o4worttrz6ogxsad3ckzpq

Create a Key

The secret is encrypted and decrypted using an AES key. The code in the
following cell creates a key if you have not specified an OCID in the
key_id variable. The KmsManagementClient class takes a
configuration object and the endpoint for the vault that is going to be
used to store the key. It establishes a connection to the KMS.
Communication with KmsManagementClient is asynchronous. For the
purpose of this notebook, it is better to have synchronous communication
so the KmsManagementClient is wrapped in a
KmsManagementClientCompositeOperations object.

The details of the key are specified using an object of type
CreateKeyDetails. A compartment OCID must be provided along with the
properties of the key. The KeyShape class defines the properties of
the key. In this example, it is a 32-bit AES key.

For the purposes of this notebook, the key’s display name is
DataScienceKey_ and a random string because the names of a key must
be unique. This value can be changed to fit your individual needs.

if key_id == "<key_id>":
 # Create a vault management client using the endpoint in the vault object.
 vault_management_client = KmsManagementClientCompositeOperations(
 KmsManagementClient(config, service_endpoint=vault.management_endpoint))

 # Create key_details object that needs to be passed when creating key.
 key_details = CreateKeyDetails(compartment_id=compartment_id,
 display_name="DataScienceKey_{}".format(str(uuid.uuid4())[-6:]),
 key_shape=KeyShape(algorithm="AES", length=32))

 # Vault creation is asynchronous; Create the vault and wait until it becomes active.
 print("Creating key...", end='')
 key = vault_management_client.create_key_and_wait_for_state(key_details,
 wait_for_states=[oci.key_management.models.Key.LIFECYCLE_STATE_ENABLED]).data
 key_id = key.id
 print('Done')
 print("Created key: {}".format(key_id))
else:
 print("Using key: {}".format(key_id))

Creating key...Done
Created key: ocid1.key.oc1.iad.bfqidkaoaacuu.abuwcljsronxc2udqylxfdzyywtxrlhr3jpyxz34ovfpn7ioqeanm2bvzuoq

Secret

Store a Secret

The code in the following cell creates a secret that is to be stored.
The variable credential is a dictionary and contains the information
that is to be stored. The UDF dict_to_secret takes a Python
dictionary, converts it to a JSON string, and then Base64 encodes it.
This string is what is to be stored as a secret so the secret can be
parsed by any system that may need it.

The VaultsClient class takes a configuration object and establishes
a connection to the Vault service. Communication with VaultsClient
is asynchronous. For the purpose of this notebook, it is better to have
synchronous communication so VaultsClient is wrapped in a
VaultsClientCompositeOperations object.

The contents of the secret are stored in a
Base64SecretContentDetails object. This object contains information
about the encoding being used, the stage to be used,and most importantly
the payload (the secret). The CreateSecretDetails class is used to
wrap the Base64SecretContentDetails object and also specify other
properties about the secret. It requires the compartment OCID, the vault
that is to store the secret, and the key to use to encrypt the secret.
For the purposes of this notebook, the secret’s display name is
DataScienceSecret_ and a random string because the names of a secret
must be unique. This value can be changed to fit your individual needs.

Encode the secret.
secret_content_details = Base64SecretContentDetails(
 content_type=oci.vault.models.SecretContentDetails.CONTENT_TYPE_BASE64,
 stage=oci.vault.models.SecretContentDetails.STAGE_CURRENT,
 content=dict_to_secret(credential))

Bundle the secret and metadata about it.
secrets_details = CreateSecretDetails(
 compartment_id=compartment_id,
 description = "Data Science service test secret",
 secret_content=secret_content_details,
 secret_name="DataScienceSecret_{}".format(str(uuid.uuid4())[-6:]),
 vault_id=vault_id,
 key_id=key_id)

Store secret and wait for the secret to become active.
print("Creating secret...", end='')
vaults_client_composite = VaultsClientCompositeOperations(VaultsClient(config))
secret = vaults_client_composite.create_secret_and_wait_for_state(
 create_secret_details=secrets_details,
 wait_for_states=[oci.vault.models.Secret.LIFECYCLE_STATE_ACTIVE]).data
secret_id = secret.id
print('Done')
print("Created secret: {}".format(secret_id))

Creating secret...Done
Created secret: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia2bmkbroin34eu2ghmubvmrtjdgo4yr6daewakacwuk4q

Retrieve a Secret

The SecretsClient class takes a configuration object. The
get_secret_budle method takes the secret’s OCID and returns a
Response object. Its data attribute returns SecretBundle
object. This has an attribute secret_bundle_content that has the
object Base64SecretBundleContentDetails and the content
attribute of this object has the actual secret. This returns the Base64
encoded JSON string that was created with the dict_to_secret
function. The process can be reversed with the secret_to_dict
function. This will return a dictionary with the secrets.

secret_bundle = SecretsClient(config).get_secret_bundle(secret_id)
secret_content = secret_to_dict(secret_bundle.data.secret_bundle_content.content)

print(secret_content)

{'database': 'datamart', 'username': 'admin', 'password': 'MySecretPassword'}

Update a Secret

Secrets are immutable but it is possible to update them by creating new
versions. In the code in the following cell, the credential object
updates the password key. To update the secret, a
Base64SecretContentDetails object must be created. The process is
the same as previously described in the Store a
Secret section. However, instead of using a
CreateSecretDetails object, an UpdateSecretDetails object is
used and only the information that is being changed is passed in.

Note that the OCID of the secret does not change. A new secret version
is created and the old secret is rotated out of use, but it may still be
available depending on the tenancy configuration.

The code in the following cell updates the secret. It then prints the
OCID of the old secret and the new secret (they will be the same). It
also retrieves the updated secret, converts it into a dictionary, and
prints it. This shows that the password was actually updated.

Update the password in the secret.
credential['password'] = 'UpdatedPassword'

Encode the secret.
secret_content_details = Base64SecretContentDetails(
 content_type=oci.vault.models.SecretContentDetails.CONTENT_TYPE_BASE64,
 stage=oci.vault.models.SecretContentDetails.STAGE_CURRENT,
 content=dict_to_secret(credential))

Store the details to update.
secrets_details = UpdateSecretDetails(secret_content=secret_content_details)

#Create new secret version and wait for the new version to become active.
secret_update = vaults_client_composite.update_secret_and_wait_for_state(
 secret_id,
 secrets_details,
 wait_for_states=[oci.vault.models.Secret.LIFECYCLE_STATE_ACTIVE]).data

The secret OCID does not change.
print("Orginal Secret OCID: {}".format(secret_id))
print("Updated Secret OCID: {}".format(secret_update.id))

Read a secret's value.
secret_bundle = SecretsClient(config).get_secret_bundle(secret_update.id)
secret_content = secret_to_dict(secret_bundle.data.secret_bundle_content.content)

print(secret_content)

Orginal Secret OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia2bmkbroin34eu2ghmubvmrtjdgo4yr6daewakacwuk4q
Updated Secret OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia2bmkbroin34eu2ghmubvmrtjdgo4yr6daewakacwuk4q
{'database': 'datamart', 'username': 'admin', 'password': 'UpdatedPassword'}

List Resources

This section demonstrates how to obtain a list of resources from the
vault, key, and secrets

List Secrets

The list_secrets method of the VaultsClient provides access to
all secrets in a compartment. It provides access to all secrets that are
in all vaults in a compartment. It returns a Response object and the
data attribute in that object is a list of SecretSummary
objects.

The SecretSummary class has the following attributes: *
compartment_id: Compartment OCID. * defined_tags: Oracle defined tags.
* description: Secret description. * freeform_tags: User-defined tags.
* id: OCID of the secret. * key_id: OCID of the key used to encrypt
and decrypt the secret. * lifecycle_details: Details about the
lifecycle. * lifecycle_state: The current lifecycle state, such as
ACTIVE and PENDING_DELETION. * secret_name: Name of the secret. *
time_created: Timestamp of when the secret was created. *
time_of_current_version_expiry: Timestamp of when the secret expires if
it is set to expire. * time_of_deletion: Timestamp of when the secret
is deleted if it is pending deletion. * vault_id: Vault OCID that the
secret is in.

Note that the SecretSummary object does not contain the actual
secret. It does provide the secret’s OCID that can be used to obtain the
secret bundle, which has the secret. See the retrieving a
secret, section.

The following code uses attributes about a secret to display basic
information about all the secrets.

secrets = VaultsClient(config).list_secrets(compartment_id)
for secret in secrets.data:
 print("Name: {}\nLifecycle State: {}\nOCID: {}\n---".format(
 secret.secret_name, secret.lifecycle_state,secret.id))

Name: DataScienceSecret_fd63db
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniagqpunilowexgxnwjqzx5eya4an6265yoy7wo4p63kynq

Name: DataScienceSecret_fcacaa
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniax6dbkfszad7viefndaopzxubfxjeaf7tln72pagc4mxa

Name: DataScienceSecret_fc51f0
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia567p7mzsoky2xpwwwfrn7r6focxqqhq26sc4rakdegia

Name: DataScienceSecret_fa0d5f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia4vouh2p4e44a6aovizduocdzzgk2eaykkue5zb3hnppa

Name: DataScienceSecret_f88189
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniazodsiisibvqts5jb7nlvbscu75bhniy3dq4mdgvctmiq

Name: DataScienceSecret_f357db
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniawm3hpm7kqxke63c7hpv4o5ugajv45mjvyuajhlminh7q

Name: DataScienceSecret_f2dd9b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniayplhqx6v34d5gwb5nlsvsmbcb4mh7lcocbutmhsqlehq

Name: DataScienceSecret_f2ba4e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnialk4r5k7pqp4aqzedyqajlpizpirzv3u3tjkr3c46r26a

Name: DataScienceSecret_f1beef
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniawda3c6q2hvbpewa2epog7conytqbfkehes7tuq4zmy4a

Name: DataScienceSecret_ef2bf9
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia3prpt3zx2r4jc6uhzk3si75z4vbmtyvr64fnveivsbya

Name: DataScienceSecret_ed4db0
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnialfqf7ntctbsdagqsx35ltdcjpkpolu2hm7zgcslxlm5q

Name: DataScienceSecret_ea2e0f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaacaatikyxme3ldrlnd3gb4vquks74ykelofjkm3dxstq

Name: DataScienceSecret_e914bf
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniabee37s75dbwdxv6a5ufljmbuzsdwismlnak64l5kykka

Name: DataScienceSecret_e8d27c
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia6hubu6pymmohytwvnppllaqwo2mndc63ehr2fudn4bja

Name: DataScienceSecret_e86db5
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaqpzmofvkch2qik5igszlfztvpin23wkgt24tugyoudja

Name: DataScienceSecret_e6519b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia66xyoasi55yok3oh2qpo3dhon4suwxpcglgvtsy2db6q

Name: DataScienceSecret_e2a66e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaqx5bwlctcqdn6ktlicjcihj7obhp7hks24ygl6iat75q

Name: DataScienceSecret_e2058f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniagpieuw6uxvwrmrsumxnpzkrakps5wx4couvrwu3avria

Name: DataScienceSecret_e0ce7c
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniansqyvlxtpt53tdnk6ys4f4phran6tgxk7s6depxdi2qq

Name: DataScienceSecret_e06595
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaedel6xgimxtkjflrcqjlzahgvlevjig27ddpk6rbkshq

Name: DataScienceSecret_da03ab
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniarcsog6bfvc424j5hfxb2eajfe42ysfvhenjaiymuwl6a

Name: DataScienceSecret_d36d3b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniamqqece3bmhcx23ylxujzongeix6iw56bsno2mmfgw6ja

Name: DataScienceSecret_d104f6
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia3k5dxj6icleecmvuu7e3tnptamf42sknnun3swkwonrq

Name: DataScienceSecret_ce23c0
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniarhynqfwbmvm5bxhqtxfqjdtxjmmnhfqaac2h5nbmwgfa

Name: DataScienceSecret_cde37f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaf5no6vhanhw7vwt2kby7a2p755no4pxlwnowxo7lkymq

Name: DataScienceSecret_c5ff0f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniactsdjzdtifh75gsedo45piqosph4szmexhyb7akfzixa

Name: DataScienceSecret_c508fb
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniasmmohgq3b2icayhgy7qvr55hflzudsexyvp4agzpc6uq

Name: DataScienceSecret_c2dcee
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaovub3wlvzrgc5nfti6cffdnz6vjuwbftk3hejqxoixsa

Name: DataScienceSecret_c00d2f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniayfdiymjemvqmeogasqje2zu7gglnyaayqwbmtqewavqq

Name: DataScienceSecret_be8899
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniakjqjkywfwnnk35d4rn42tr7te33gr6ouu7gmulg42yeq

Name: DataScienceSecret_be6b0e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniad534l5sqxny3fuzducn4jcgzvz632u7g4bf3tq5nfmqa

Name: DataScienceSecret_bdc992
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniah4xdqspldq6dj7lww6adkex6gmmm3fcpsoeibwbcxlwq

Name: DataScienceSecret_b9de9b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia33kq43z5646skcoqn4ztb2p4w7c2y5m3itpaehkjioja

Name: DataScienceSecret_b715ab
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaz35pcy7i6tvtxgognovtdjpoz34g23rrybc3x6um4soa

Name: DataScienceSecret_b5ca7d
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniasfsbjrovrnaokr3c3yhywmqezhzumfcm6explpmauyxa

Name: DataScienceSecret_b55d36
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaesjugeq64subnn44ex2jxj5td3kgzo2jfoeuyhdomrca

Name: DataScienceSecret_b2c11d
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniasj7lgbbcsw4dccjcwjmubsthjs4j7mcl4ex4hsfn2ibq

Name: DataScienceSecret_acc994
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnialjye4pp47ju5rkhu5gux2gblxazu6q2jt25eptcxs74a

Name: DataScienceSecret_a574d7
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaoyhs27zkifruhc7h2w5sacvhrkcuj5ay3uexlzuusgwq

Name: DataScienceSecret_a425fc
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia7aw5jx6olskkjupl4pqkqjtfhixscftektad3wvpobzq

Name: DataScienceSecret_9c9d64
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia7jufq3spbj2kdlzohjiwnlcejaqp52bsbtmj2vevk54q

Name: DataScienceSecret_97bc4b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniax3lzkmhswpqoinr7eg3gm3zfrk553ciytygpqdpg45za

Name: DataScienceSecret_968bcd
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia5dibuy6psvmwzh5gna4n5czmupum7yam7crw64joipha

Name: DataScienceSecret_92dfaf
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniazi25vjxdepwzrc2ofhjnzs23u4fzubdpvdgxbqia2jiq

Name: DataScienceSecret_919df1
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia5vd3u665yr7o72jxf6l2fbxhwodyixqlqvyipp3varsq

Name: DataScienceSecret_904a11
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniajaf55isgwm36bfjvqnay3awpghdzaxq72qgp2zdfdzya

Name: DataScienceSecret_8dae1f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia2bmkbroin34eu2ghmubvmrtjdgo4yr6daewakacwuk4q

Name: DataScienceSecret_8c2628
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia5f6cworyppjhi2cn6ubcaqx5ja3tr53npakqkegspqca

Name: DataScienceSecret_83b6d6
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniacvq6j6qrlbrmxeff7uccg4ifuoicermwhq67phjnmbja

Name: DataScienceSecret_8339c1
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniase2lwd4fumayx5pwyxipfjdrrfhubgpvq7jjkmubjyna

Name: DataScienceSecret_7fe4ac
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniau53l43vnadaid4vw2k7x3wp5hxjthrgcdpc24su4p23q

Name: DataScienceSecret_779386
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaguu2isimuzyeecrndapt2zzlp5fpp6pwwt5b5w6hogvq

Name: DataScienceSecret_71b360
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia7atkoj4dwcbt4zffqyz663ch62agisjhfvyyqwde67qq

Name: DataScienceSecret_719e1b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniah2qv4ktkgtkwowzpbk47mdvmaqwh6g4r2h544iq3i4qa

Name: DataScienceSecret_711ffc
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniadplcwv6c5lisnssnh2n72wvguxyzf3z75wp3xpui37nq

Name: DataScienceSecret_6ba803
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaftyrdp4lekmru2cbcentabw6o7f7afjaituam7jzozgq

Name: DataScienceSecret_64ea61
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnialbo7kv6d5sbtznnq46cghkwifieetkp5jqspjvzms4bq

Name: DataScienceSecret_64db4f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniakvkqs6ezowdcgxnmky6boveeir7h6fu6bcio7bcgtlta

Name: DataScienceSecret_645a92
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniavd3txh22xegslbsxnptjtt7jglahxpj5ysqb34xk3vta

Name: DataScienceSecret_623939
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniasue5jr555ih2ummklhauf63ukthmdfwx2vhq37jaegna

Name: DataScienceSecret_622766
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia3qe7hj75poy6dbuczi7wj6eos27g4ikgsxpwp7yqjyna

Name: DataScienceSecret_5fb302
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniauzksrbvsd2oyyid7n7asopel2ry6ofjvjjtbftwdlyaa

Name: DataScienceSecret_5f3d3b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniawwwobkv25seccdam7mxnppzwwr4qgrkf7vo3uhbmhkia

Name: DataScienceSecret_5a0c20
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaetad535uwbrpdyln76lmhogn6i36aghgh77anqezrfeq

Name: DataScienceSecret_590fd1
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia2mvzrk2gr53tqzfld2zboflabau45v5lj6xkfanbde3q

Name: DataScienceSecret_583408
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia7pa7ohb4zb7opws724i6cgyxmqqedb7khcej767h7crq

Name: DataScienceSecret_4c9c71
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniahrcrxyzviakneier65kxjw55gkb6h5sj7uu7bubknyua

Name: DataScienceSecret_4b0709
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniagiznfmfkl3uedhvseaatex7dnoifpww3b5mihemugblq

Name: DataScienceSecret_4a8597
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniampulcmv3c5qgwmahpjrxmddwhymxl2bdp3kxk5ax2vda

Name: DataScienceSecret_47aff8
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniax4bedwdnxhug3jcea42etxzautdh6iizj4ctt6qjzsla

Name: DataScienceSecret_437a2d
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia5twvyx6nquffscjzqsrebnu2uo4acuqcvwvsuzpagruq

Name: DataScienceSecret_432baf
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniasqk5dqiyjlje4pebijpxhzo3nmct2abmzsi5p4yhk2za

Name: DataScienceSecret_411eb2
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniarugb4i422kouj6tcy6ac2m5t4r2h7bflyr6xt2dyv7ha

Name: DataScienceSecret_3f298c
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia4azphsmz4luohe5kzvm5tptgo3rtktsvibqotqhgaxxa

Name: DataScienceSecret_395edf
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniayfe3abji4xmzt3d3qmseo54dwykkmneylmag4rffd33q

Name: DataScienceSecret_371e2c
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniavnyp44wttdrctul3mlujqwqze4wrmag3jazit666pkua

Name: DataScienceSecret_344a64
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniawoovhzxlkmyjmctgcxl45b6cjshyfkz7cd3k5ysyihbq

Name: DataScienceSecret_326b66
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniapt7ow7vmrrngumruch6ij2ih3q7sdwwsbocnicabqpxa

Name: DataScienceSecret_2fc373
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnias562odlfdwrgdnpufzdjucq6xazygqs57ncyvavckc5q

Name: DataScienceSecret_2f92d0
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaolunt5o43db4dkrf7p2dv7dwb6qxcvtvqeylkrm6kk5a

Name: DataScienceSecret_2f6f2e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniafir7dcubdmlhuuqlvtlzipmxh5jr3sbxwyrl7n7yktza

Name: DataScienceSecret_2860ff
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia2hbry43edxu2sw6gkxq72zbu3wpiddvshla3uwuunibq

Name: DataScienceSecret_200013
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniawphd5i6ge7ycbdcv5etqwagz3nwah6jyprq72doiwk7q

Name: DataScienceSecret_1fc3f1
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniarp5uimnfq2tpdremwkxbb7byj3mawkopvqiwuydomc3a

Name: DataScienceSecret_1f7551
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniarg7arsbc4eaumsddt46ss2wsrceqkg62m2l3weijdieq

Name: DataScienceSecret_1c7eb1
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaa4l3rsyh4mamsg4wz5ugxm5boxb7oszfeiu7ubgc7cfq

Name: DataScienceSecret_19362f
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia4gmx2eyl44zho6qco5o62g3ir7nsbws3mhdxxxvvasra

Name: DataScienceSecret_18d9f8
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia7z4ohnmjogi62zudlq2n33k4rthbbsrcxzcfafg2delq

Name: DataScienceSecret_1833ea
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniafhp2g5uhs6axdqurofprzju6lddavfzhi5ded6cqgoaq

Name: DataScienceSecret_17bca7
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniazxfzfdzrhzsoj5vpnxlddutmvc5do2z5npfifeakrloq

Name: DataScienceSecret_16da8e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniayryidsnrbkxcpyqlnqgnvfrprl5cfrvx6zlkkd6e2wiq

Name: DataScienceSecret_0f063e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniadwuziqauyx6kf7eobpggtmqxyhjzzknsu2vkl5hswy5q

Name: DataScienceSecret_0efc06
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniayj5p3cuu45tac3wsxuxphfpwzvye7d2xgxlivr3m3pxa

Name: DataScienceSecret_0ef56b
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaddre2xhjtgj4xmpmozyassdx7ihnbwtkdtehiueusxqa

Name: DataScienceSecret_0888ef
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia6rpqign5xga2omytmtvrgu3lchv2pv55rygfsplt7pla

Name: DataScienceSecret_074734
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaqlplqctmrmjh5dok2wrx5jx4nu365dj3zofguqhqs7dq

Name: DataScienceSecret_05fe9c
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvniaawr76c7wtdh5aznabqykxh6jcc22adf44c5amfuw4kya

Name: DataScienceSecret_02924e
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnianvmfulgezha6fmkxocq5hwobij5norqpitkicfm2fsqa

Name: DataScienceSecret_0133e0
Lifecycle State: ACTIVE
OCID: ocid1.vaultsecret.oc1.iad.amaaaaaav66vvnia4tukytzvkbwcb45lz5fvkzmuwrdypvtwndbk2gfv4joa

List Keys

The list_keys method of the KmsManagementClient object provide
access returns a list of keys in a specific vault. It returns a
Response object and the data attribute in that object is a list
of KeySummary objects.

The KeySummary class has the following attributes: *
compartment_id: OCID of the compartment that the key belongs to *
defined_tags: Oracle defined tags * display_name: Name of the key *
freeform_tags: User-defined tags * id: OCID of the key *
lifecycle_state: The lifecycle state such as ENABLED * time_created:
Timestamp of when the key was created * vault_id: OCID of the vault
that holds the key

Note, the KeySummary object does not contain the AES key. When a
secret is returned that was encrypted with a key it will automatiacally
be decrypted. The most common use-case for a data scientist is to list
keys to get the OCID of a desired key but not to interact directly with
the key.

The following code uses some of the above attributes to provide details
on the keys in a given vault.

Get a list of keys and print some information about each one
key_list = KmsManagementClient(config, service_endpoint=vault.management_endpoint).list_keys(
 compartment_id=compartment_id).data
for key in key_list:
 print("Name: {}\nLifecycle State: {}\nOCID: {}\n---".format(
 key.display_name, key.lifecycle_state,key.id))

Name: DataScienceKey_1ddde6
Lifecycle State: ENABLED
OCID: ocid1.key.oc1.iad.bfqidkaoaacuu.abuwcljsronxc2udqylxfdzyywtxrlhr3jpyxz34ovfpn7ioqeanm2bvzuoq

List Vaults

The list_vaults method of the KmsVaultClient object returns a
list of all the vaults in a specific compartment. It returns a
Response object and the data attribute in that object is a list
of VaultSummary objects.

The VaultSummary class has the following attributes: *
compartment_id: OCID of the compartment that the key belongs to. *
crypto_endpoint: The end-point for encryption and decryption. *
defined_tags: Oracle defined tags. * display_name: Name of the key. *
freeform_tags: User-defined tags. * id: OCID of the vault. *
lifecycle_state: The lifecycle state, such as ACTIVE. * time_created:
Timestamp of when the key was created. * management_endpoint: Endpoint
for managing the vault. * vault_type: The
oci.key_management.models.Vault type. For example, DEFAULT.

The following code uses some of the above attributes to provide details
on the vaults in a given compartment.

Get a list of vaults and print some information about each one.
vault_list = KmsVaultClient(config).list_vaults(compartment_id=compartment_id).data
for vault_key in vault_list:
 print("Name: {}\nLifecycle State: {}\nOCID: {}\n---".format(
 vault_key.display_name, vault_key.lifecycle_state,vault_key.id))

Name: DataScienceVault_594c0f
Lifecycle State: ACTIVE
OCID: ocid1.vault.oc1.iad.bfqidkaoaacuu.abuwcljrq272bqs3gkzil5dunchkqmojdcbtt4o4worttrz6ogxsad3ckzpq

Name: DataScienceVault_a10ee1
Lifecycle State: DELETED
OCID: ocid1.vault.oc1.iad.bfqfe7rlaacuu.abuwcljrteupphxni7fogpmvhtiomypj2wopp4t4sqbqxfzepmnmcvw3bfjq

Name: DataScienceVault_0cbf46
Lifecycle State: ACTIVE
OCID: ocid1.vault.oc1.iad.bbpu3dcbaaeug.abuwcljsxsmzjuw556zslquqstrdrhlhsv3qizroqe63wrvtrxhedshyujpq

Name: shay_test
Lifecycle State: ACTIVE
OCID: ocid1.vault.oc1.iad.bbpnctjwaacuu.abuwcljr2wsf2bfhd7j7bcmyovpv7ksno5ob2dkpw6twpy4ewkwldavhh5da

Deletion

Vaults, keys, and secrets cannot be deleted immediately. They are marked
as pending deletion. By default, they are deleted 30 days after they
request for deletion. The length of time before deletion is
configurable.

Delete a Secret

The schedule_secret_deletion method of the VaultsClient class is
used to delete a secret. It requires the secret’s OCID and a
ScheduleSecretDeletionDetails object. The
ScheduleSecretDeletionDetails provides details about when the secret
is deleted.

The schedule_secret_deletion method returns a Response object
that has information about the deletion process. If the key has already
been marked for deletion, a ServiceError occurs with information
about the key.

try:
 VaultsClient(config).schedule_secret_deletion(secret_id, ScheduleSecretDeletionDetails())
except:
 print("The secret has already been deleted?")

Delete a Key

The schedule_key_deletion method of the KmsManagementClient
class is used to delete a key. It requires the key’s OCID and a
ScheduleKeyDeletionDetails object. The
ScheduleKeyDeletionDetails provides details about when the key is
deleted.

The schedule_key_deletion method returns a Response object that
has information about the deletion process. If the key has already been
marked for deletion, a ServiceError occurs.

Note that secrets are encrypted with a key. If that key is deleted, then
the secret cannot be decrypted.

try:
 KmsManagementClient(config, service_endpoint=vault.management_endpoint).schedule_key_deletion(
 key_id, ScheduleKeyDeletionDetails())
except:
 print("Key has already been deleted?")

Delete a Vault

The schedule_vault_deletion method of the KmsVaultClient class
is used to delete a vault. It requires the vault’s OCID and a
ScheduleVaultDeletionDetails object. The
ScheduleVaultDeletionDetails provides details about when the vault
is deleted.

The schedule_vault_deletion method returns a Response object
that has information about the deletion process. If the vault has
already been marked for deletion, then a ServiceError occurs.

Note that keys and secrets are associated with vaults. If a vault is
deleted, then all the keys and secrets in that vault are deleted.

try:
 KmsVaultClient(config).schedule_vault_deletion(vault_id, ScheduleVaultDeletionDetails())
except:
 print("Vault has already been deleted?")

References

Overview of the Vault [https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Concepts/keyoverview.htm]
* Example code for working with the key management
service [https://github.com/oracle/oci-python-sdk/blob/master/examples/kms_example.py]
* API reference for Key
Management [https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/key_management.html]
* API reference for
Vault [https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/vault.html]
* Managing permissions for
Vault [https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Reference/keypolicyreference.htm]
* Secure way of managing secrets in Oracle Cloud
Infrastructure [https://www.ateam-oracle.com/secure-way-of-managing-secrets-in-oci]

Big Data Service

	Overview

	Quick Start

	Conda Environment

	Connect

	File Management

	SQL Data Management

Overview

Available with ADS v2.5.10 and greater

The Oracle Big Data Service (BDS) is an Oracle Cloud Infrastructure (OCI) service
designed for a diverse set of big data use cases and workloads. From
short-lived clusters used to tackle specific tasks to long-lived
clusters that manage data lakes. BDS scales to meet
an organization’s requirements at a low cost and with the highest levels
of security. To be able to connect to the BDS from the notebook session,
the cluster created must have Kerberos enabled.

Quick Start

Available with ADS v2.5.10 and greater

Set Up A Conda Environment

The following are the recommended steps to create a conda environment to connect to BDS:

	Open a terminal window then run the following commands:

	odsc conda install -s pyspark30_p37_cpu_v3: Install the PySpark conda environment.

	conda activate /home/datascience/conda/pyspark30_p37_cpu_v3: Activate the PySpark conda environment so that you can modify it.

	pip uninstall oracle_ads: Uninstall the old ADS package in this environment.

	pip install oracle_ads[bds]: Install the latest version of ADS that contains BDS support.

	conda install sasl: Install sasl.

Connect from a Notebook

Using the Vault

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 cursor = hive.connect(host=cred["hive_host"],
 port=cred["hive_port"],
 auth='KERBEROS',
 kerberos_service_name="hive").cursor()

Without Using the Vault

import ads
import fsspec
import os

from ads.bds.auth import refresh_ticket

ads.set_auth('resource_principal')
refresh_ticket(principal="<your_principal>", keytab_path="<your_local_keytab_file_path>",
 kerb5_path="<your_local_kerb5_config_file_path>")
cursor = hive.connect(host="<hive_host>", port="<hive_port>",
 auth='KERBEROS', kerberos_service_name="hive").cursor()

Conda Environment

Available with ADS v2.5.10 and greater

To work with BDS in a notebook session or job, you must have a conda environment that supports the BDS module in ADS along with support for PySpark.
This section demonstrates how to modify a PySpark Data Science conda environment to work with BDS. It also demonstrates how to publish this conda environment so that you can be share it with team members and use it in jobs.

Create a Conda Environment

The following are the recommended steps to create a conda environment to connect to BDS:

	Open a terminal window then run the following commands:

	odsc conda install -s pyspark30_p37_cpu_v3: Install the PySpark conda environment.

	conda activate /home/datascience/conda/pyspark30_p37_cpu_v3: Activate the PySpark conda environment so that you can modify it.

	pip uninstall oracle_ads: Uninstall the old ADS package in this environment.

	pip install oracle_ads[bds]: Install the latest version of ADS that contains BDS support.

	conda install sasl: Install sasl.

Publish a Conda Environment

	Create an Object Storage bucket to store published conda environments.

	Open a terminal window then run the following commands and actions:

	odsc conda init -b <bucket_name> -b <namespace> -a <resource_principal or api_key>: Initialize the environment so that you can work with Published Conda Environments.

	odsc conda publish -s pyspark30_p37_cpu_v3: Publish the conda environment.

	In the OCI Console, open Data Science.

	Select a project.

	Select a click the notebook session’s name, or the Actions menu, and click Open to open the notebook session’s JupyterLab interface in another tab..

	Click Published Conda Environments in the Environment Explorer tab to list all the published conda environments that are available in your designated Object Storage bucket.

	Select the Environment Version that you specified.

	Click the copy button adjacent to the Source conda environment to copy the file source path to use when installing the conda environment in other notebook sessions or to use with jobs.

Connect

Available with ADS v2.5.10 and greater

Notebook Session

Notebook sessions require a conda environment that has the BDS module of ADS installed.

Using the Vault

The preferred method to connect to a BDS cluster is to use the BDSSecretKeeper class. This allows you to store the BDS credentials in
the vault and not the notebook. It also provides a greater level of access control to the secrets and allows for credential rotation
without breaking connections from various sources.

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 cursor = hive.connect(host=cred["hive_host"],
 port=cred["hive_port"],
 auth='KERBEROS',
 kerberos_service_name="hive").cursor()

Without Using the Vault

BDS requires a Kerberos ticket to authenticate to the service. The preferred method is to use the vault and BDSSecretKeeper
because it is more secure, and prevents private information from being stored in a notebook. However, if this is not possible,
you can use the refresh_ticket() method to manually create the Kerberos ticket. This method requires the following parameters:

	kerb5_path: The path to the krb5.conf file. You can copy this file from the master node of the BDS cluster located in /etc/krb5.conf.

	keytab_path: The path to the principal’s keytab file. You can download this file from the master node on the BDS cluster.

	principal: The unique identity to that Kerberos can assign tickets to.

import ads
import fsspec
import os

from ads.bds.auth import refresh_ticket

ads.set_auth('resource_principal')
refresh_ticket(principal="<your_principal>", keytab_path="<your_local_keytab_file_path>",
 kerb5_path="<your_local_kerb5_config_file_path>")
cursor = hive.connect(host="<hive_host>", port="<hive_port>",
 auth='KERBEROS', kerberos_service_name="hive").cursor()

Jobs

A job requires a conda environment that has the BDS module of ADS installed. It also requires secrets and configuration information that can be used to obtain a Kerberos ticket for authentication. You must copy the keytab and krb5.conf files to the jobs instance and can be copied as part of the job. We recommend that you save them into the vault then use BDSSecretKeeper to access them. This is secure because the vault provides access control and allows for key rotation without breaking exiting jobs. You can use the notebook to load configuration parameters like hdfs_host, hdfs_port, hive_host, hive_port, and so on. The keytab and krb5.conf files are securely loaded from the vault then saved in the jobs instance. The krbcontext() method is then used to create the Kerberos ticket. Once the ticket is created, you can query BDS.

File Management

Available with ADS v2.5.10 and greater

This section demonstrates various methods to work with files on BDS’ HDFS, see the individual framework’s documentation for details.

A Kerberos ticket is needed to connect to the BDS cluster. This authentication ticket can be obtained with the refresh_ticket() method or with the use of the Vault and a BDSSercretKeeper object. This section will demonstrate the use of the BDSSecretKeeper object as this is more secure and is the preferred method.

FSSpec

The fsspec or Filesystem Spec [https://filesystem-spec.readthedocs.io/en/latest/] is an interface that allows access to local, remote, and embedded file systems. You use it to access data stored in the BDS’ HDFS. This connection is made with the WebHDFS [https://hadoop.apache.org/docs/r1.0.4/webhdfs.html] protocol.

The fsspec library must be able to access BDS so a Kerberos ticket must be generated. The secure and recommended method to do this is to use BDSSecretKeeper that stores the BDS credentials in the vault not the notebook session.

This section outlines some common file operations, see the fsspec API Reference [https://filesystem-spec.readthedocs.io/en/latest/api.html] for complete details on the features that are demonstrated and additional functionality.

Pandas and PyArrow can also use fsspec to perform file operations.

Connect

Credentials and configuration information is stored in the vault. This information is used to obtain a Kerberos ticket and define the hdfs_config dictionary. This configuration dictionary is passed to the fsspec.filesystem() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.filesystem] method to make a connection to the BDS’ underlying HDFS storage.

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
 hdfs_config = {
 "protocol": "webhdfs",
 "host": cred["hdfs_host"],
 "port": cred["hdfs_port"],
 "kerberos": "True"
 }

fs = fsspec.filesystem(**hdfs_config)

Delete

Delete files from HDFS using the .rm() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.rm] method. It accepts a path of the files to delete.

fs.rm("/data/biketrips/2020??-tripdata.csv", recursive=True)

Download

Download files from HDFS to a local storage device using the .get() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.get] method. It takes the HDFS path of the files to download, and the local path to store the files.

fs.get("/data/biketrips/20190[123456]-tripdata.csv", local_path="./first_half/", overwrite=True)

List

The .ls() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.archive.AbstractArchiveFileSystem.ls] method lists files. It returns the matching file names as a list.

fs.ls("/data/biketrips/2019??-tripdata.csv")

['201901-tripdata.csv',
 '201902-tripdata.csv',
 '201903-tripdata.csv',
 '201904-tripdata.csv',
 '201905-tripdata.csv',
 '201906-tripdata.csv',
 '201907-tripdata.csv',
 '201908-tripdata.csv',
 '201909-tripdata.csv',
 '201910-tripdata.csv',
 '201911-tripdata.csv',
 '201912-tripdata.csv']

Upload

The .put() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.put] method is used to upload files from local storage to HDFS. The first parameter is the HDFS path where the files are to be stored. The second parameter is the local path of the files to upload.

hdfs.put(lpath="/data/biketrips/second_quarter/",
 path="./first_half/20200[456]-tripdata.csv",
 overwrite=True, recursive=True)

Ibis

Ibis [https://github.com/ibis-project/ibis] is an open-source library by Cloudera [https://www.cloudera.com/] that provides a Python framework to access data and perform analytical computations from different sources. Ibis allows access to the data ising HDFS. You use the ibis.impala.hdfs_connect() method to make a connection to HDFS, and it returns a handler. This handler has methods such as .ls() to list, .get() to download, .put() to upload, and .rm() to delete files. These operations support globbing. Ibis’ HDFS connector supports a variety of additional operations [https://ibis-project.org/docs/dev/backends/Impala/#hdfs-interaction].

Connect

After obtaining a Kerberos ticket, the hdfs_connect() method allows access to the HDFS. It is a thin wrapper around a fsspec [https://filesystem-spec.readthedocs.io/en/latest/] file system. Depending on your system configuration, you may need to define the ibis.options.impala.temp_db and ibis.options.impala.temp_hdfs_path options.

import ibis

with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 hdfs = ibis.impala.hdfs_connect(host=cred['hdfs_host'], port=cred['hdfs_port'],
 use_https=False, verify=False,
 auth_mechanism='GSSAPI', protocol='webhdfs')

Delete

Delete files from HDFS using the .rm() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.rm] method. It accepts a path of the files to delete.

hdfs.rm("/data/biketrips/2020??-tripdata.csv", recursive=True)

Download

Download files from HDFS to a local storage device using the .get() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.get] method. It takes the HDFS path of the files to download, and the local path to store the files.

hdfs.get("/data/biketrips/20190[123456]-tripdata.csv", local_path="./first_half/", overwrite=True)

List

The .ls() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.archive.AbstractArchiveFileSystem.ls] method lists files. It returns the matching file names as a list.

hdfs.ls("/data/biketrips/2019??-tripdata.csv")

['201901-tripdata.csv',
 '201902-tripdata.csv',
 '201903-tripdata.csv',
 '201904-tripdata.csv',
 '201905-tripdata.csv',
 '201906-tripdata.csv',
 '201907-tripdata.csv',
 '201908-tripdata.csv',
 '201909-tripdata.csv',
 '201910-tripdata.csv',
 '201911-tripdata.csv',
 '201912-tripdata.csv']

Upload

Use the .put() [https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.put] method to upload files from local storage to HDFS. The first parameter is the HDFS path where the files are to be stored. The second parameter is the local path of the files to upload.

hdfs.put(lpath="/data/biketrips/second_quarter/",
 rpath="./first_half/20200[456]-tripdata.csv",
 overwrite=True, recursive=True)

Pandas

Pandas allows access to BDS’ HDFS system through :ref: FSSpec. This section demonstrates some common operations.

Connect

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
 hdfs_config = {
 "protocol": "webhdfs",
 "host": cred["hdfs_host"],
 "port": cred["hdfs_port"],
 "kerberos": "True"
 }

fs = fsspec.filesystem(**hdfs_config)

File Handle

You can use the fsspec .open() [https://filesystem-spec.readthedocs.io/en/latest/_modules/fsspec/core.html#open] method to open a data file. It returns a file handle. That file handle, f, can be passed to any Pandas’ methods that support file handles. In this example, a file on a BDS’ HDFS cluster is read into a Pandas dataframe.

with fs.open("/data/biketrips/201901-tripdata.csv", "r") as f:
 df = pd.read_csv(f)

URL

Pandas supports fsspec so you can preform file operations by specifying a protocol string. The WebHDFS protocol is used to access files on BDS’ HDFS system. The protocol string has this format:

webhdfs://host:port/path/to/data

The host and port parameters can be passed in the protocol string as follows:

df = pd.read_csv(f"webhdfs://{hdfs_config['host']}:{hdfs_config['port']}/data/biketrips/201901-tripdata.csv",
 storage_options={'kerberos': 'True'})

You can also pass the host and port parameters in the dictionary used by the storage_options parameter. The sample code for hdfs_config defines the host and port with the keyes host and port respectively.

hdfs_config = {
 "protocol": "webhdfs",
 "host": cred["hdfs_host"],
 "port": cred["hdfs_port"],
 "kerberos": "True"
}

In this case, Pandas uses the following syntax to read a file on BDS’ HDFS cluster:

df = pd.read_csv(f"webhdfs:///data/biketrips/201901-tripdata.csv",
 storage_options=hdfs_config)

PyArrow

PyArrow [https://arrow.apache.org/docs/python/index.html] is a Python interface to Apache Arrow [https://arrow.apache.org/]. Apache Arrow is an in-memory columnar analytical tool that is designed to process data at scale. PyArrow supports the fspec.filesystem() through the use of the filesystem parameter in many of its data operation methods.

Connect

Make a connection to BDS’ HDFS using fsspec:

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
 hdfs_config = {
 "protocol": "webhdfs",
 "host": cred["hdfs_host"],
 "port": cred["hdfs_port"],
 "kerberos": "True"
 }

fs = fsspec.filesystem(**hdfs_config)

filesystem

The following sample code shows several different PyArrow methods for working with BDS’ HDFS using the filesystem parameter:

import pyarrow as pa
import pyarrow.parquet as pq
import pyarrow.dataset as ds

ds = ds.dataset("/path/on/BDS/HDFS/data.csv", format="csv", filesystem=fs)
pq.write_table(ds.to_table(), '/path/on/BDS/HDFS/data.parquet', filesystem=fs)

import pandas as pd
import numpy as np

idx = pd.date_range('2022-01-01 12:00:00.000', '2022-03-01 12:00:00.000', freq='T')

df = pd.DataFrame({
 'numeric_col': np.random.rand(len(idx)),
 'string_col': pd._testing.rands_array(8,len(idx))},
 index = idx
)
df["dt"] = df.index
df["dt"] = df["dt"].dt.date

table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, root_path="/path/on/BDS/HDFS", partition_cols=["dt"],
 flavor="spark", filesystem=fs)

SQL Data Management

Available with ADS v2.5.10 and greater

This section demonstrates how to perform standard SQL-based data management operations in BDS using various frameworks, see the individual framework’s documentation for details.

A Kerberos ticket is needed to connect to the BDS cluster. You can obtain this authentication ticket with the refresh_ticket() method, or with the use of the vault and a BDSSercretKeeper object. This section demonstrates the use of the BDSSecretKeeper object because this is more secure and is the recommended method.

Ibis

Ibis [https://github.com/ibis-project/ibis] is an open-source library by Cloudera [https://www.cloudera.com/] that provides a Python framework to access data and perform analytical computations from different sources. The Ibis project [https://ibis-project.org/docs/dev/] is designed to provide an abstraction over different dialects of SQL. It enables the data scientist to interact with many different data systems. Some of these systems are Dask, MySQL, Pandas, PostgreSQL, PySpark, and most importantly for use with BDS, Hadoop clusters.

Connect

Obtaining a Kerberos ticket, depending on your system configuration, you may need to define the ibis.options.impala.temp_db and ibis.options.impala.temp_hdfs_path options. The ibis.impala.connect() method makes a connection to the Impala execution backend [https://ibis-project.org/docs/dev/backends/Impala/]. The .sql() allows you to run SQL commands on the data.

import ibis

with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 ibis.options.impala.temp_db = '<temp_db>'
 ibis.options.impala.temp_hdfs_path = '<temp_hdfs_path>'
 hdfs = ibis.impala.hdfs_connect(host=cred['hdfs_host'], port=cred['hdfs_port'],
 use_https=False, verify=False,
 auth_mechanism='GSSAPI', protocol='webhdfs')
 client = ibis.impala.connect(host=cred['hive_host'], port=cred['hive_port'],
 hdfs_client=hdfs, auth_mechanism="GSSAPI",
 use_ssl=False, kerberos_service_name="hive")

Query

To query the data using ibis use an SQL DML command like SELECT. Pass the string to the .sql() method, and then call .execute() on the returned object. The output is a Pandas dataframe.

df = client.sql("SELECT * FROM bikes.trips LIMIT 100").execute(limit=None)

Close a Connection

It is important to close sessions when you don’t need them anymore. This frees up resources in the system. Use the .close() method close sessions.

client.close()

Impala

Impala [https://github.com/cloudera/impyla] is a Python client for HiveServer2 [https://cwiki.apache.org/confluence/display/hive/hiveserver2+overview] implementations (i.e. Impala, Hive). Both Impala and PyHive clients are HiveServer2 compliant so the connection syntax is very similar. The difference is that the Impala client uses the Impala query engine and PyHive uses Hive. In practical terms, Hive is best suited for long-running batch queries and Impala is better suited for real-time interactive querying, see more about the differences between Hive and Impala [https://www.topcoder.com/thrive/articles/the-relationship-between-impala-and-hive-and-its-application-in-business].

The Impala dbapi module is a Python DB-API [http://www.python.org/dev/peps/pep-0249/] interface.

Connect

After obtaining a Kerberos ticket, use the connect() method to make the connection. It returns a connection, and the .cursor() method returns a cursor object. The cursor has the method .execute() that allows you to run Impala SQL commands on the data.

from impala.dbapi import connect

with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 cursor = connect(host=cred["hive_host"], port=cred["hive_port"],
 auth_mechanism="GSSAPI", kerberos_service_name="hive").cursor()

Create a Table

To create an Impala table and insert data, use the .execute() method on the cursor object, and pass in Impala SQL commands to perform these operations.

cursor.execute("CREATE TABLE default.location (city STRING, province STRING)")
cursor.execute("INSERT INTO default.location VALUES ('Halifax', 'Nova Scotia')")

Query

To query an Impala table, use an Impala SQL DML command like SELECT. Pass this string to the .execute() method on the cursor object to create a record set in the cursor. You can obtain a Pandas dataframe with the as_pandas() function.

from impala.util import as_pandas

cursor.execute("SELECT * FROM default.location")
df = as_pandas(cursor)

Drop a Table

To drop an Impala table, use an Impala SQL DDL command like DROP TABLE. Pass this string to the .execute() method on the cursor object.

cursor.execute("DROP TABLE IF EXISTS default.location")

Close a Connection

It is important to close sessions when you don’t need them anymore. This frees up resources in the system. Use the .close() method on the cursor object to close a connection.

cursor.close()

PyHive

PyHive [https://github.com/dropbox/PyHive] is a set of interfaces to Presto and Hive. It is based on the SQLAlchemy [http://www.sqlalchemy.org/] and Python DB-API [http://www.python.org/dev/peps/pep-0249/] interfaces for Presto [https://prestodb.io/] and Hive [http://hive.apache.org/].

Connect

After obtaining a Kerberos ticket, call the hive.connect() method to make the connection. It returns a connection, and the .cursor() method returns a cursor object. The cursor has the .execute() method that allows you to run Hive SQL commands on the data.

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 cursor = hive.connect(host=cred["hive_host"],
 port=cred["hive_port"],
 auth='KERBEROS',
 kerberos_service_name="hive").cursor()

Create a Table

To create a Hive table and insert data, use the .execute() method on the cursor object and pass in Hive SQL commands to perform these operations.

cursor.execute("CREATE TABLE default.location (city STRING, province STRING)")
cursor.execute("INSERT INTO default.location VALUES ('Halifax', 'Nova Scotia')")

Query

To query a Hive table, use a Hive SQL DML command like SELECT. Pass this string to the .execute() method on the cursor object. This creates a record set in the cursor. You can access the actual records with methods like .fetchall(), .fetchmany(), and .fetchone().

In the following example, the .fetchall() method is used in a pd.DataFrame() call to return all the records in Pandas dataframe:
.

import pandas as pd

cursor.execute("SELECT * FROM default.location")
df = pd.DataFrame(cursor.fetchall(), columns=[col[0] for col in cursor.description])

Drop a Table

To drop a Hive table, use a Hive SQL DDL command like DROP TABLE. Pass this string to the .execute() method on the cursor object.

cursor.execute("DROP TABLE IF EXISTS default.location")

Close a Connection

It is important to close sessions when you don’t need them anymore. This frees up resources in the system. Use the .close() method on the cursor object to close a connection.

cursor.close()

Data Labeling

	Overview

	Export Metadata

	List

	Load

	Visualize

	Examples

Overview

The Oracle Cloud Infrastructure (OCI) Data Labeling service allows you to create and browse datasets,
view data records (text, images) and apply labels for the purposes of building AI/machine learning (ML) models.
The service also provides interactive user interfaces that enable the labeling process.
Afert you label records, you can export the dataset as line-delimited JSON Lines (JSONL) for use in model development.

Datasets are the core resource available within the Data Labeling service. They contain records and their associated labels.
A record represents a single image or text document. Records are stored by reference to their original source such as path on Object Storage. You can also upload records from local storage. Labels are annotations that describe a data record.

There are three different dataset formats, each having its respective annotation classes:

	Images: Single label, multiple label, and object detection. Supported image types are .png, .jpeg, and .jpg.

	Text: Single label, multiple label, and entity extraction. Plain text, .txt, files are supported.

	Document: Single label and multiple label. Supported document types are .pdf and .tiff.

Quick Start

The following examples provide an overview of how to use ADS to work with the Data Labeling service.

List all the datasets in the compartment:

from ads.data_labeling import DataLabeling
dls = DataLabeling()
dls.list_dataset()

With a labeled data set, the details of the labeling is called the export.
To generate the export and get the path to the metadata JSONL file,
you can use export() with these parameters:

	dataset_id: The OCID of the Data Labeling dataset to take a snapshot of.

	path: The Object Storage path to store the generated snapshot.

metadata_path = dls.export(
 dataset_id="<dataset_id>",
 path="oci://<bucket_name>@<namespace>/<prefix>"
)

To load the labeled data into a Pandas dataframe, you can use LabeledDatasetReader object
that has these parameters:

	materialize: Load the contents of the dataset. This can be quite large. The default is False.

	path: The metadata file path that can be local or object storage path.

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_export(
 path="<metadata_path>",
 materialize=True
)
df = ds_reader.read()

You can also read labeled datasets from the OCI Data Labeling Service into a Pandas dataframe using LabeledDatasetReader object by specifying
dataset_id:

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_DLS(
 dataset_id="<dataset_ocid>",
 materialize=True
)
df = ds_reader.read()

Alternatively, you can use the .read_labeled_data() method by either specifying path or dataset_id.

This example loads a labeled dataset and returns a Pandas dataframe containing the content and the annotations:

df = pd.DataFrame.ads.read_labeled_data(
 path="<metadata_path>",
 materialize=True
)

The following example loads a labeled dataset from the OCI Data Labeling, and returns a Pandas dataframe containing the content and the annotations:

df = pd.DataFrame.ads.read_labeled_data(
 dataset_id="<dataset_ocid>",
 materialize=True
)

Export Metadata

To obtain a handle to a DataLabeling object, you call the DataLabeling() constructor. The default compartment is the same compartment as the notebook session, but the compartment_id parameter can be used to select a different compartment.

To work with the labeled data, you need a snapshot of the dataset. The export() method copies the labeled data from the Data Labeling service into a bucket in Object Storage. The .export() method has the following parameters:

	dataset_id: The OCID of the Data Labeling dataset to take a snapshot of.

	path: The Object Storage path to store the generated snapshot.

The export process creates a JSONL file that contains metadata about the labeled dataset in the specified bucket.
There is also a record JSONL file that stores the image, text, or document file path of each record and its label.

The export() method returns the path to the metadata file that was created in the export operation.

from ads.data_labeling import DataLabeling
dls = DataLabeling()
metadata_path = dls.export(
 dataset_id="<dataset_id>",
 path="oci://<bucket_name>@<namespace>/<prefix>"
)

List

The .list_dataset() method generates a list of the available labeled datasets in the compartment. The compartment is set when you call DataLabeling(). The .list_dataset() method returns a Pandas dataframe where each row is a dataset.

from ads.data_labeling import DataLabeling
dls = DataLabeling(compartment_id="<compartment_id>")
dls.list_dataset()

Load

The returned value from the .export() method is used to load a dataset.
You can load a dataset into a Pandas dataframe using LabeledDatasetReader or a Pandas accessor.
The LabeledDatasetReader creates an object that allows you to perform operations, such as getting
information about the dataset without having to load the entire dataset. It also allows you to read the
data directly into a Pandas dataframe or to use an iterator to process the records one at a time.
The Pandas accessor approach provides a convenient method to load the data in a single command.

LabeledDatasetReader

Call the .from_export() method on LabeledDatasetReader to construct an object that allows you to read the data.
You need the metadata path that was generated by the .export() method.
Optionally, you can set materialize to True to load the contents of the dataset. It’s set to False by default.

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_export(
 path=metadata_path,
 materialize=True
)

You can explore the metadata information of the dataset by calling info() on the LabeledDatasetReader object.
You can also convert the metadata object to a dictionary using to_dict:

metadata = ds_reader.info()
metadata.labels
metadata.to_dict()

On the LabeledDatasetReader object, you call read() to load the labeled dataset. By default, it’s read into a Pandas dataframe.
You can specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the Object Detection dataset.

An Entity Extraction dataset is a dataset type that supports natural language processing named entity recognition (NLP NER).
Here is an example of spacy format [https://spacy.io/api/data-formats].
A Object Detection dataset is a dataset type that contains data from detecting instances of objects of a certain class within an image.
Here is an example of yolo format [https://opencv-tutorial.readthedocs.io/en/latest/yolo/yolo.html].

df = ds_reader.read()
df = ds_reader.read(format="spacy")
df = ds_reader.read(format="yolo")

When a dataset is too large, you can read it in small portions. The result is presented as a generator.

for df in ds_reader.read(chunksize=10):
 df.head()

Alternatively, you can call read(iterator=True) to return a generator of the loaded dataset,
and loop all the records in the ds_generator by running:

ds_generator = ds_reader.read(iterator=True)
for item in ds_generator:
 print(item)

The iterator parameter can be combined with the chunksize parameter.
When you use the two parameters, the result is also presented as a generator. Every item in the generator is a list of dataset records.

for items in ds_reader.read(iterator=True, chunksize=10):
 print(items)

Pandas Accessor

The Pandas accessor approach allows you to to read a labeled dataset into a Pandas dataframe using a single command.

Use the .read_labeled_data() method to read the metadata file, record file, and all the corpus documents.
To do this, you must know the metadata path that was created from the .export() method.
Optionally you can set materialize to True to load content of the dataset. It’s set to False by default.
The read_labeled_data() method returns a dataframe that is easy to work with.

This example loads a labeled dataset and returns a Pandas dataframe containing the content and the annotations:

import pandas as pd
df = pd.DataFrame.ads.read_labeled_data(
 path="<metadata_path>",
 materialize=True
)

If you’d like to load a labeled dataset from the OCI Data Labeling, you can specify the dataset_id,
which is dataset OCID that you’d like to read.

The following example loads a labeled dataset from the OCI Data Labeling and returns a Pandas dataframe containing the content and the annotations:

import pandas as pd
df = pd.DataFrame.ads.read_labeled_data(
 dataset_id="<dataset_ocid>",
 materialize=True
)

You can specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the Object Detection dataset.

import pandas as pd
df = pd.DataFrame.ads.read_labeled_data(
 dataset_id="<dataset_ocid>",
 materialize=True,
 format="spacy"
)

An example of a dataframe loaded with the labeled dataset is:

[image: ../../_images/loaded_df.png]

Visualize

After the labeled dataset is loaded in a Pandas dataframe, you can be visualize it using ADS.
The visualization functionality only works if there are no transformations made to the Annotations column.

Image

An image dataset, with an Object Detection annotation class, can have selected image records
visualized by calling the .render_bounding_box() method. You can provide customized colors for each label.
If the path parameter is specified, the annotated image file is saved to that path.
Otherwise, the image is displayed in the notebook session.
The maximum number of records to display is set to 50 by default. This setting can be changed with the limit parameter:

df.head(1).ads.render_bounding_box() # without user defined colors

df.iloc[1:3,:].ads.render_bounding_box(
 options={"default_color": "white",
 "colors": {"flower":"orange", "temple":"green"}},
 path="test.png"
)

An example of a single labeled image record is similar to:

[image: ../../_images/bounding_box.png]
Optionally, you can convert the bounding box to YOLO format by calling to_yolo() on bounding box.
The labels are mapped to the index value of each label in the metadata.labels list.

df["Annotations"] = df.Annotations.apply(
 lambda items: [item.to_yolo(metadata.labels) for item in items] if items else None
)

Text

For a text dataset, with an entity extraction annotation class,
you can also visualize selected text records by calling .render_ner(), and
optionally providing customized colors for each label. By default, a maximum of 50 records
are displayed. However, you can adjust this using the limit parameter:

df.head(1).ads.render_ner() # without user defined colors

df.iloc[1:3,:].ads.render_ner(options={"default_color":"#DDEECC",
 "colors": {"company":"#DDEECC",
 "person":"#FFAAAA",
 "city":"#CCC"}})

This is an example output for a single labeled text record:

[image: ../../_images/ner.png]
Optionally, you can convert the entities by calling to_spacy():

df["Annotations"] = df.Annotations.apply(
 lambda items: [item.to_spacy() for item in items] if items else None
)

Examples

Binary Text Classification

This example will demonstrate how to do binary text classification. It will
demonstrate a typical data science workflow using a single label dataset
from the Data Labeling Service (DLS).

Start by loading in the required libraries:

import ads
import oci
import os
import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.tree import DecisionTreeClassifier

Dataset

A subset of the 20 Newsgroups dataset is used in this example. The
complete dataset is a collection of approximately 20,000 newsgroup
documents partitioned across 20 different newsgroups. The dataset is
popular for experiments where the machine learning application predicts
which newsgroup a record belongs to.

Since this example is a binary classification, only the rec.sport.baseball
and sci.space newsgroups are used.
The dataset was previously labeled in the Data Labeling service. The metadata was
exported and saved in a publicly accessible Object Storage bucket.

The data was previously labeled in the Data Labeling service. The metadata was exported
and was saved in a publicly accessible Object Storage bucket. The metadata
JSONL file is used to import the data and labels.

Load

You use the .read_labeled_data() method to read in the metadata file,
record file, and the entire corpus of documents. Only the metadata file has
to be specified because it contains references to the record and corpus
documents. The .read_labeled_data() method returns a dataframe that
is easy to work with.

The next example loads a labeled dataset, and returns the text from
each email and the labeled annotation:

df = pd.DataFrame.ads.read_labeled_data(
 "oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_single_label_20news/metadata.jsonl",
 materialize=True
)

Preprocessing

The data needs to be standardized. The next example performs the following operations:

	Converts the text to lower case.

	Uses a regular expression (RegEx) command to remove any character that is not alphanumeric, underscore, or whitespace.

	Replace the sequence of characters \n with a space.

The binary classifier model you train is a decision tree where the
features are based on n-grams of the words. You use n-grams that are
one, two, and three words long (unigrams, bigrams, and trigrams). The
vectorizer removes English stop words because they provide little value
to the model being built. A weight is assigned to these features
using the
term frequency-inverse document frequency [https://en.wikipedia.org/wiki/Tf–idf]
(TF*IDF) approach .

df['text_clean'] = df['Content'].str.lower().str.replace(r'[^\w\s]+', '').str.replace('\n', ' ')
vectorizer = TfidfVectorizer(stop_words='english', analyzer='word', ngram_range=(1,3))

Train

In this example, you skip splitting the dataset into the training
and test sets since the goal is to build a toy model. You assign 0 for the
rec.sport.baseball label and 1 for the sci.space label:

classifier = DecisionTreeClassifier()
feature = vectorizer.fit_transform(df['text_clean'])
model = classifier.fit(feature, df['Annotations'])

Predict

Use the following to predict the category for a given text data
using the trained binary classifier:

classifier.predict(vectorizer.transform(["reggie jackson played right field"]))

Image Classification

This example demonstrates how to read image files and labels, normalize the size of the image, train a SVC model, and make predictions. The SVC model is used to try and determine what class a model belongs to.

To start, import the required libraries:

import ads
import matplotlib.pyplot as plt
import oci
import os
import pandas as pd

from ads.data_labeling import LabeledDatasetReader
from PIL import Image
from sklearn import svm, metrics
from sklearn.model_selection import train_test_split

Data Source

The data for this example was taken from a set of x-rays that were previously labeled in the
Data Labeling service whether they have pneumonia or not. The metadata was exported and saved in a publicly
accessible Object Storage bucket. The following commands define the parameters needed to
access the metadata JSONL file:

metadata_path = f"'oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/image_single_label_xray/metadata.jsonl'"

Load

This example loads and materializes the data in the dataframe. That is the dataframe to contain a
copy of the image file. You do this with the .ads.read_labeled_data() method:

df = pd.DataFrame.ads.read_labeled_data(path=metadata_path,
 materialize=True)

Visualize

The next example extracts images from the dataframe, and plots them along with their labels:

_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
for ax, image, label in zip(axes, df.Content, df.Annotations):
 ax.set_axis_off()
 ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
 ax.set_title(f'Training: {label}')

Preprocessing

The image files are mixture of RGB and grayscale. Convert all the images
to single channel grayscale so that the input to the SVC model is consistent:

df.Content = df.Content.apply(lambda x: x.convert("L"))

The images are different sizes and you can normalize the size with:

basewidth, hsize = min(df.Content.apply(lambda x: x.size))
df.Content = df.Content.apply(lambda x: x.resize((basewidth, hsize), Image.NEAREST))

Convert the image to a numpy array as that is what the SVC is expecting. Each pixel in the
image is now a dimension in hyperspace.

from numpy import asarray
import numpy as np

data = np.stack([np.array(image).reshape(-1) for image in df.Content], axis=0)
labels = df.Annotations

The model needs to be trained on one set of data, and then its performance would be
assessed on a set of data that it has not seen before. Therefore, this splits the
data into a training and testing sets:

X_train, X_test, y_train, y_test = train_test_split(
 data, labels, test_size=0.1, shuffle=True)

Train

The following obtains an SVC classifier object, and trains it on the training set:

clf = svm.SVC(gamma=0.001)
clf.fit(X_train, y_train)

Predict

With the trained SVC model, you can now make predictions using the testing dataset:

predicted = clf.predict(X_test)
predicted

Multiclass Text Classification

Building a multiclass text classifier is a similar to creating a binary
text classifier except that you make a classifier for each class.
You use a one-vs-the-rest (OvR) multiclass strategy. That is, you
create one classifier for each class where one class is the class your
are trying to predict, and the other class is all the other classes.
You treat the other classes as if they were one class. The classifier
predicts wheter the observation is in the class or not. If there are m
classes, then there will be m classifiers. Classification is based on
which classifier has the more confidence that an observation is in the class.

Start by loading in the required libraries:

import ads
import nltk
import oci
import os
import pandas as pd

from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import cross_val_score
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.svm import LinearSVC

Dataset

A subset of the Reuters Corpus [https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection]
dataset is used in this example. You use scikit-learn and nltk packages to
build a multiclass classifier. The Reuters data is a benchmark dataset
for document classification. More precisely, it is a multilabel (each
document can belong to many classes) dataset. It has 90 categories,
7,769 training documents, and 3,019 testing documents.

The data was previously labeled in the Data Labeling service. The metadata was exported
and was saved in a publicly accessible Object Storage bucket. The metadata
JSONL file is used to import the data and labels.

Load

This example loads a multi-labeled dataset. It returns the
text and the multi-labeled annotation in a dataframe:

df = pd.DataFrame.ads.read_labeled_data(
 "oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_multi_label_nltk_reuters/metadata.jsonl",
 materialize=True
)

Preprocessing

You can use the MultiLabelBinarizer() method to convert the labels
into the scikit-learn classification format during the dataset
preprocessing. This transformer converts [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html] a list of sets or tuples into
the supported multilabel format, a binary matrix of samples*classes.

The next step is to vectorize the input text to feed it into a
supervised machine learning system. In this example, TF*IDF
vectorization is used.

For performance reasons, the TfidfVectorizer is limited to 10,000
words.

nltk.download('stopwords')

stop_words = stopwords.words("english") ## See scikit-learn documentation for what these words are
vectorizer = TfidfVectorizer(stop_words=stop_words, max_features = 10000)
mlb = MultiLabelBinarizer()

X_train = vectorizer.fit_transform(df["Content"]) ## Vectorize the inputs with tf-idf
y_train = mlb.fit_transform(df["Annotations"]) ## Vectorize the labels

Train

You train a Linear Support Vector, LinearSVC, classifier using
the text data to generate features and annotations to represent the response variable.

The data from the study class [https://probml.github.io/pml-book/book0.html] is treated as positive, and the data from all the
other classes is treated as negative.

This example uses the scalable Linear Support Vector Machine,
LinearSVC, for classification. It’s quick to train and empirically
adequate on NLP problems:

clf = OneVsRestClassifier(LinearSVC(class_weight = "balanced"), n_jobs = -1)
clf.fit(X_train, y_train)

Predict

The next example applies cross-validation to
estimate the prediction error. The K fold cross-validation works by
partitioning a dataset into K splits. For the k th part, it
fits the model to the other K-1 splits of the data and calculates
the prediction error. It uses the k th part to do this prediction.
For more details about this process, see
here [https://en.wikipedia.org/wiki/Cross-validation_(statistics)]
and specifically this
image [https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/K-fold_cross_validation_EN.svg/1920px-K-fold_cross_validation_EN.svg.png].

By performing cross-validation, there are five separate models
trained on different train and test splits to get an
estimate of the error that is expected when the model is generalized to
an independent dataset. This example uses the
cross_val_score [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html]
method to estimate the mean and standard deviation of errors:

cross_val_score(clf, X_train, y_train, cv=5)

Named Entity Recognition

This example shows you how to use a labeled dataset to create a named entity
recognition model. The dataset is labeled using the Oracle Cloud Infrastructure (OCI)
Data Labeling Service (DLS).

To start, load the required libraries

import ads
import os
import pandas as pd
import spacy

from spacy.tokens import DocBin
from tqdm import tqdm

Dataset

The Reuters Corpus [https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection]
is a benchmark dataset that is used in the evaluation of document classification models. It is based on
Reuters’ financial newswire service articles from 1987. It contains the title and text of the article in addition
to a list of people, places and organizations that are referenced in the article. It is this information that is
used to label the dataset. A subset of the news articles were labeled using the DLS.

Load

This labeled dataset has been exported from the DLS and the metadata has been stored in a publically accessible
Object Storage bucket. The .read_labeled_data() method is used to load the data. The materialize parameter
causes the original data to be also be returned with the dataframe.

path = 'oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_entity_extraction_nltk_reuters/metadata.jsonl'
df = pd.DataFrame.ads.read_labeled_data(
 path,
 materialize=True
)

Preprocessing

Covert the annotations data to the SpaCy format [https://spacy.io/api/data-formats] This will give you the start
and end position of each entity and then the type of entity, such as person, place, organization.

df.Annotations = df.Annotations.apply(lambda items: [x.to_spacy() for x in items])

The resulting dataframe will look like the following:

[image: ../../_images/ner_df.png]
In this example, you will not be evaluating the performance of the model. Therefore, the data will not be
split into train and test sets. Instead, you use all the data as training data. The following code snippet
will create a list of tuples that contain the original article text and the annotation data.

train_data = []
for i, row in df.iterrows():
 train_data.append((row['Content'], {'entities': row['Annotations']}))

The training data will look similar to the following:

[("(CORRECTED) - MOBIL <MOB> TO UPGRADE REFINERY UNIT
Mobil Corp said it will spend over 30
mln dlrs to upgrade a gasoline-producing unit at its Beaumont,
...
(Correcting unit's output to barrels/day from barrels/year)",
 {'entities': [(56, 66, 'company'), (149, 157, 'city'), (161, 166, 'city')]}),
 ('COFFEE, SUGAR AND COCOA EXCHANGE NAMES CHAIRMAN
 The New York Coffee, Sugar and Cocoa
 ...
 of Demico Futures, was elected treasurer.',
 {'entities': [(54, 62, 'city'),
 (99, 103, 'company'),
 (140, 146, 'person'),
 (243, 254, 'person'),
 ...
 (718, 732, 'person')]}),

 ...

]

The DocBin format will be used as it provides faster serialization and efficient storage. The following code snippet
does the conversion and writes the resulting DocBin object to a file.

nlp = spacy.blank("en") # load a new spacy model
db = DocBin() # create a DocBin object
i=0
for text, annot in tqdm(train_data): # data in previous format
 doc = nlp.make_doc(text) # create doc object from text
 ents = []
 for start, end, label in annot["entities"]: # add character indexes
 span = doc.char_span(start, end, label=label, alignment_mode="contract")

 if span is not None:
 ents.append(span)
 doc.ents = ents # label the text with the ents
 db.add(doc)

db.to_disk(os.path.join(os.path.expanduser("~"), "train.spacy") # save the docbin object

Train

The model will be trained using spaCy. Since this is done through the command line a configuration file is needed. In spaCy, this is
a two-step process. You will create a base_config.cfg file that will contain the non-default settings for the model. Then the
init fill-config argument on the spaCy module will be used to auto-fill a partial config.cfg file with the default values for
the parameters that are not given in the base_config.cfg file. The config.cfg file contains all the settings and hyperparameters
that will be needed to train the model. See the spaCy training documentation [https://spacy.io/usage/training] for more details.

The following code snippet will write the base_config.cfg configuration file and contains all the non-default parameter values.

config = """
[paths]
train = null
dev = null

[system]
gpu_allocator = null

[nlp]
lang = "en"
pipeline = ["tok2vec","ner"]
batch_size = 1000

[components]

[components.tok2vec]
factory = "tok2vec"

[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"

[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = ${components.tok2vec.model.encode.width}
attrs = ["ORTH", "SHAPE"]
rows = [5000, 2500]
include_static_vectors = false

[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 96
depth = 4
window_size = 1
maxout_pieces = 3

[components.ner]
factory = "ner"

[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null

[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}

[corpora]

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0

[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"

[training.optimizer]
@optimizers = "Adam.v1"

[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2

[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001

[initialize]
vectors = ${paths.vectors}
"""

with open(os.path.join(os.path.expanduser("~"), "base_config.cfg"), 'w') as f:
 f.write(config)

The following code snippet calls a new Python interpretrer that runs the spaCy module.
It loads the base_config.cfg file and writes out the configuration file config.cfg
that has all of the training parameters that will be used. It contains the default values
plus the ones that were specified in the base_config.cfg file.

!$CONDA_PREFIX/bin/python -m spacy init fill-config ~/base_config.cfg ~/config.cfg

To train the model, you will call a new Python interpreter to run the spaCy module using the train
command-line argument and other arguments that point to the training files that you have created.

!$CONDA_PREFIX/bin/python -m spacy train ~/config.cfg --output ~/output --paths.train ~/train.spacy --paths.dev ~/train.spacy

Predict

The spaCy training procedure creates a number of models. The best model is stored in model-best under the output directory
that was specified. The following code snippet loads that model and creates a sample document. The model is run and the
output has the new document plus and entities that were detected are highlighted.

nlp = spacy.load(os.path.join(os.path.expanduser("~), "output", "model-best")) #load the best model
doc = nlp("The Japanese minister for post and telecommunications was reported as saying that he opposed Cable and Wireless having a managerial role in the new company.") # input sample text

spacy.displacy.render(doc, style="ent", jupyter=True) # display in Jupyter

[image: ../../_images/ner_pic.png]

Data Flow

Data Flow is an OCI service for creating and running Spark applications.
ADS can be used to to create and run PySpark Data Flow applications directly from a notebook session.
There are conda environments for Spark v2.4 and v3.0 that align with the versions available in the Data Flow service.
These conda environments are identical except for the version of Spark that they support.

These are the feature highlights of Spark 3.0:

-adaptive query execution
- dynamic partition pruning
- ANSI SQL compliance
- significant improvements in Pandas APIs
- new UI for structured streaming
- up to 40x speedups for calling R user defined functions
- accelerator-aware scheduler
- SQL reference documentation

Spark 3 is roughly two times faster than Spark 2.4.

	Getting Started with Data Flow

	Configuring core-site.xml

	Create a Data Flow Instance

	Generate a Script Using a Template

	Create a Data Flow Application

	Load an Existing Data Flow Application

	Listing Data Flow Applications

	Create a Data Flow Run

	Fetching Logs

	Edit and Synchronize PySpark Script

	Arguments and Parameters

	Add Third-Party Libraries

	Fetching PySpark Output

	Frequently Asked Questions

Getting Started with Data Flow

Note

We recommend that you use one of the Data Science service PySpark conda environments for Data Flow code development.

	Before running applications in Data Flow, there are two storage buckets that are required in Object Store. Data Flow requires a bucket to store the logs, and a data warehouse bucket for Spark SQL application, see set up storage [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#set_up_storage].

	Data Flow requires policies to be set in IAM to access resources in order to manage and run applications, see policy set up [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#policy_set_up].

	Data Flow documentation [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_data_flow.htm]

	To access Object Storage from the notebook session, the core-site.xml file must be configured.

Configuring core-site.xml

When the conda environment is installed, a templated version of core-site.xml is also installed. You can update the core-site.xml file using an automated configuration or manually.

Authentication with Resource Principals

Authentication to Object Storage can be done with a resource principal.

For automated configuration, run the following command in a terminal odsc core-site config -a resource_principal. This command will populate the file ~/spark_conf_dir/core-site.xml with the values needed to connect to Object Storage.

The following command line options are available:

	-a, –authentication Authentication mode. Supports resource_principal and api_key (default).

	-r, –region Name of the region.

	-o, –overwrite Overwrite core-site.xml.

	-O, –output Output path for core-site.xml.

	-q, –quiet Suppress non-error output.

	-h, –help Show help message and exit.

To manually configure the core-site.xml file, you edit the file, and then specify these values:

fs.oci.client.hostname: The address of Object Storage. For example, https://objectstorage.us-ashburn-1.oraclecloud.com You have to replace us-ashburn-1 with the region you are in.

fs.oci.client.custom.authenticator: Set the value to com.oracle.bmc.hdfs.auth.ResourcePrincipalsCustomAuthenticator.

When using resource principals, these properties don’t need to be configured:

	fs.oci.client.auth.tenantId

	fs.oci.client.auth.userId

	fs.oci.client.auth.fingerprint

	fs.oci.client.auth.pemfilepath

The following example core-site.xml file illustrates using resource principals for authentication to access Object Storage:

<?xml version="1.0"?>
<configuration>
 <property>
 <name>fs.oci.client.hostname</name>
 <value>https://objectstorage.us-ashburn-1.oraclecloud.com</value>
 </property>
 <property>
 <name>fs.oci.client.custom.authenticator</name>
 <value>com.oracle.bmc.hdfs.auth.ResourcePrincipalsCustomAuthenticator</value>
 </property>
</configuration>

For details, see HDFS connector for Object Storage #using resource principals for authentication [https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/hdfsconnector.htm#hdfs_using_resource_principals_for_authentication].

Authentication with API Keys

When using authentication with API keys, the core-site.xml file is be updated in two ways, automated or manual configuration.

For automated configuration, you use the odsc command line tool. With an OCI configuration file, you can run odsc core-site config -o.
By default, this command uses the OCI configuration file stored in ~/.oci/config, automatically populates the core-site.xml file,
and then saves it to ~/spark_conf_dir/core-site.xml.

The following command line options are available:

	-a, –authentication Authentication mode. Supports resource_principal and api_key (default).

	-c, –configuration Path to the OCI configuration file.

	-p, –profile Name of the profile.

	-r, –region Name of the region.

	-o, –overwrite Overwrite core-site.xml.

	-O, –output Output path for core-site.xml.

	-q, –quiet Suppress non-error output.

	-h, --help Show help message and exit.

To manually configure the core-site.xml file, you must specify these parameters:

fs.oci.client.hostname: Address of Object Storage. For example, https://objectstorage.us-ashburn-1.oraclecloud.com. You must replace us-ashburn-1 with the region you are in.
fs.oci.client.auth.tenantId: OCID of your tenancy.
fs.oci.client.auth.userId: Your user OCID.
fs.oci.client.auth.fingerprint: Fingerprint for the key pair.
fs.oci.client.auth.pemfilepath: The fully qualified file name of the private key used for authentication.

The values of these parameters are found in the OCI configuration file.

Create a Data Flow Instance

First, you create a DataFlow object instance.

By default, all Data Flow artifacts are stored using the dataflow_base_folder optional argument. By default, all Data Flow artifacts are stored in /home/datascience/dataflow.
The dataflow_base_folder directory contains multiple subdirectories, each one corresponds to a different application. The name of the subdirectory corresponds to the application name that a random string is added as a suffix.
In each application directory, artifacts generated by separate Data Flow runs are stored in different folders. Each folder is identified by the run display name and the run creation time. All the run specific artifacts including the script, the run configuration, and the run logs are saved in the corresponding run folder.

Also, you can choose to use a specific compartment using the optional compartment_id argument when creating the dataflow instance. Otherwise, it uses the same compartment as your notebook session to create the instance.

from ads.dataflow.dataflow import DataFlow
data_flow = DataFlow(
 compartment_id="<compartmentA_OCID>",
 dataflow_base_folder="<my_dataflow_dir>"
)

Generate a Script Using a Template

We provide simple PySpark or sparksql templates for you to get started with Data Flow. You can use data_flow.template() to generate a pre-written template.

We support these templates:

The standard_pyspark template is used for standard PySpark jobs.

The sparksql template is used for sparksql jobs.

from ads.dataflow.dataflow import DataFlow
data_flow = DataFlow()
data_flow.template(job_type='standard_pyspark')

data_flow.template() returns the local path to the script you have generated.

Create a Data Flow Application

The application creation process has two stages, preparation and creation.

In the preparation stage, you prepare the configuration object necessary to create a Data Flow application. You must provide values for these three parameters:

	display_name: The name you give your application.

	script_bucket: The bucket used to read/write the PySpark script in Object Storage.

	pyspark_file_path: The local path to your PySpark script.

ADS checks that the bucket exists, and that you can write to it from your notebook sesssion. Optionally, you can change values for these parameters:

	compartment_id: The OCID of the compartment to create a Data Flow application. If it’s not provided, the same compartment as your dataflow object is used by default.

	logs_bucket: The bucket used to store run logs in Object Storage. The default value is "dataflow-logs".

	driver_shape: The driver shape used to create the application. The default value is "VM.Standard2.4".

	executor_shape: The executor shape to create the application. The default value is "VM.Standard2.4".

	num_executors: The number of executor VMs requested. The default value is 1.

Note

If you want to use a private bucket as the logs_bucket, ensure that you add a corresponding Data Flow service policy using Data Flow Identity: Policy Set Up [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#policy_set_up].

Then you can use prepare_app() to create the configuration object necessary to create the application.

from ads.dataflow.dataflow import DataFlow

data_flow = DataFlow()
app_config = data_flow.prepare_app(
 display_name="<app-display-name>",
 script_bucket="<your-script-bucket>" ,
 pyspark_file_path="<your-scirpt-path>"
)

After you have the application configured, you can create a Data Flow application using create_app:

app = data_flow.create_app(app_config)

Your local script is uploaded to the script bucket in this application creation step. Object Storage supports file versioning that creates an object version when the content changes, or the object is deleted. You can enable Object Versioning in your bucket in the OCI Console to prevent overwriting of existing files in Object Storage.

You can create an application with a script file that exists in Object Storage by setting overwrite_script=True in create_app. Similarly, you can set overwrite_archive=True to create an application with an archive file that exists in Object Storage. By default, the overwrite_script and overwrite_archive options are set to false.

app = data_flow.create_app(app_config, overwrite_script=True, overwrite_archive=True)

You can explore a few attributes of the DataFlowApp object.

First , you can look at the configuration of the application.

app.config

Next, you could get a URL link to the OCI Console Application Details page.

app.oci_link

Load an Existing Data Flow Application

As an alternative to creating applications in ADS, you can load existing applications created elsewhere.
These Data Flow applications must be Python applications. To load an existing applications, you need the
applications’s OCID.

existing_app = data_flow.load_app(app_id, target_folder)

You can find the app_id in the the OCI Console or by listing existing applications.

Optionally, you could assign a value to the parameter target_folder. This parameter is the directory you want to store the local artifacts of this application in. If target_folder is not provided, then the local artifacts of this application are stored in the dataflow_base_folder folder defined by the dataflow object instance.

Listing Data Flow Applications

From ADS you can list applications, that are returned a as a list of dicts, with a function to
provide the data in a Pandas dataframe. The default sort order is the most recent run first.

For example, to list the most recent five applications use this code:

from ads.dataflow.dataflow import DataFlow
data_flow = DataFlow()
data_flow.list_apps().to_dataframe().head(5)

[image: Listing of data flow apps]

Create a Data Flow Run

After an application is created or loaded in your notebook session, the next logical step is to execute a run of that application. The process of running (or creating) a run is similar to creating an application.

First, you configure the run using the prepare_run() method of the DataFlowApp object. You only need to provide a value for the name of your run using run_display_name:

run_config = app.prepare_run(run_display_name="<run-display-name>")

You could use a compartment different from your application to create a run by specifying the compartment_id in prepare_run. By default, it uses the same compartment as your dataflow application to create the run.

Optionally, you can specify the logs_bucket to store the logs of your run. By default, the run inherits the logs_bucket from the parent application, but you can overwrite that option.

Every time the Data Flow application launches a run, a local folder representing this Data Flow run is created. This folder stores all the information including the script, the run configuration, and any logs that are stored in the logs bucket.

Then, you can create a Data Flow run using the run_config generated in the preparation stage. During this process, you can monitor the Data Flow run while the job is running. You can also pull logs into your local directories by setting, save_log_to_local=True.

run = app.run(run_config, save_log_to_local=True)

The DataFlowRun object has some useful attributes similar to the DataFlowApp object.

You can check the status of the run with:

run.status

You can get the configuration file that created this run. The run configuration and the PySpark script used in this run are also saved in the corresponding run directory in your notebook environment.

run.config

You can get the run directory where the artifacts are stored in your notebook environment with:

run.local_dir

Similarily, you can get a clickable link to the OCI Console Run Details page with:

run.oci_link

Fetching Logs

After a Data Flow run has completed, you can examine the logs using ADS. There are two types of logs, stdout and stderr.

run.log_stdout.head() # show first rows of stdout
run.log_stdout.tail() # show last lines of stdout

where the logs are stored on OCI Storage
run.log_stdout.oci_path

the path to the saved logs in the notebook environment if ``save_log_to_local`` was ``True`` when you create this run
run.log_stdout.local_path

If save_log_to_local is set to False during app.run(...), you can fetch logs by calling the fetch_log(...).save() method on the DataFlowRun object with the correct logs type.

run.fetch_log("stdout").save()
run.fetch_log("stderr").save()

Note

Due to a limitation of PySpark (specifically Python applications in Spark), both stdout and stderr are merged into the stdout stream.

Edit and Synchronize PySpark Script

The Data Flow integration with ADS supports the edit-run-edit cycle, so the local
PySpark script can be edited, and is automatically synchronized to Object Storage
each time the application is run.

Data Flow obtains the PySpark script from Object Storage
so the local files in the notebook session are not visible to Data Flow. The
app.run(...) method compares the content hash of the local file with the remote copy
on Object Storage. If any change is detected, the new local version is copied over to the remote. For
the first run the syncronization creates the remote file and generates a fully qualified
URL with namespace that’s required for Data Flow.

Synchronizing is the default setting in app.run(...). If you don’t want the application to sync with the local modified files, you need to include sync=False as an argument parameter in app.run(...).

Arguments and Parameters

Passing arguments to PySpark scripts is done with the arguments value in prepare_app. Additional to the arguments Data Flow
supports, is a parameter dictionary that you can use to interpolate arguments. To just pass arguments, the script_parameter section
may be ignored. However, any key-value pair defined in script_parameter can be referened in arguments using the ${key} syntax, and
the value of that key is passed as the argument value.

from ads.dataflow.dataflow import DataFlow

data_flow = DataFlow()
app_config = data_flow.prepare_app(
 display_name,
 script_bucket,
 pyspark_file_path,
 arguments = ['${foo}', 'bar', '-d', '--file', '${filename}'],
 script_parameters={
 'foo': 'val1 val2',
 'filename': 'file1',
 }
)
app = data_flow.create_app(app_config)

run_config = app.prepare_run(run_display_name="test-run")
run = app.run(run_config)

Note

The arguments in the format of ${arg} are replaced by the value provided in script parameters when passed in, while arguments not in this format are passed into the script verbatim.

You can override the values of some or all script parameters in each run by passing different values to prepare_run().

run_config = app.prepare_run(run_display_name="test-run", foo='val3')
run = app.run(run_config)

Add Third-Party Libraries

Your PySpark applications might have custom dependencies in the form of Python wheels or virtual environments, see Adding Third-Party Libraries to Data Flow Applications [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_data_flow_library.htm#third-party-libraries].

Pass the archive file to your Data Flow applications with archive_path and archive_bucket values in prepare_app.

	archive_path: The local path to archive file.

	archive_bucket: The bucket used to read and write the archive file in Object Storage; if not provided, archive_bucket will use the bucket for PySpark bucket by default.

Use prepare_app() to create the configuration object necessary to create the application.

from ads.dataflow.dataflow import DataFlow

data_flow = DataFlow()
app_config = data_flow.prepare_app(
 display_name="<app-display-name>",
 script_bucket="<your-script-bucket>",
 pyspark_file_path="<your-scirpt-path>",
 archive_path="<your-archive-path>",
 archive_bucket="<your-archive-bucket>"
)

The behavior of the archive file is very similar to the PySpark script when creating:

	An application, the local archive file is uploaded to the specified bucket Object Storage.

	A run, the latest local archive file is synchronized to the remote file in Object Storage. The sync parameter controls this behavior.

	Loading an existing application created with archive_uri, the archive file is obtained from Object Storage, and saved in the local directory.

Fetching PySpark Output

After the application has run and any stdout captured in the log file, the PySpark
script likely produces some form of output. Usually a PySpark script batch processes
something. For example, sampling data, aggregating data, preprocessing data. You can load the resulting
output as an ADSDataset.open() using the ocis:// protocol handler.

The only way to get output from PySpark back into the notebook session is to create files
in Object Storage that is read into the notebook, or use the stdout stream.

Following is a simple example of a PySpark script producing output printed in a portable JSON-L
format, though CSV works too. This method, while convenient as an example,
is not a recommended for large data.

from pyspark.sql import SparkSession

def main():

 # create a spark session
 spark = SparkSession \
 .builder \
 .appName("Python Spark SQL basic example") \
 .getOrCreate()

 # load an example csv file from dataflow public storage into DataFrame
 original_df = spark\
 .read\
 .format("csv")\
 .option("header", "true")\
 .option("multiLine", "true")\
 .load("oci://oow_2019_dataflow_lab@bigdatadatasciencelarge/usercontent/kaggle_berlin_airbnb_listings_summary.csv")

 # the dataframe as a sql view so we can perform SQL on it
 original_df.createOrReplaceTempView("berlin")

 query_result_df = spark.sql("""
 SELECT
 city,
 zipcode,
 number_of_reviews,
 CONCAT(latitude, ',', longitude) AS lat_long
 FROM
 berlin"""
)

 # Convert the filtered Spark DataFrame into json format
 # Note: we are writing to the spark stdout log so that we can retrieve the log later at the end of the notebook.

 print('\n'\
 .join(query_result_df\
 .toJSON()\
 .collect()))

if __name__ == '__main__':
 main()

After you run the stdout stream (which contains CSV formatted data), it can be
interpreted as a string using Pandas

import io
import pandas as pd

the PySpark script wrote to the log as jsonL, and we read the log back as a pandas dataframe
df = pd.read_json((str(run.log_stdout)), lines=True)

df.head()

Example Notebook: Develop Pyspark jobs locally - from local to remote workflows

This notebook provides spark operations for customers by bridging the
existing local spark workflows with cloud based capabilities. Data
scientists can use their familiar local environments with JupyterLab, and
work with remote data and remote clusters simply by selecting a kernel.
The operations demonstrated are, how to:

	Use the interactive spark environment and produce a spark script,

	Prepare and create an application,

	Prepare and create a run,

	List existing dataflow applications,

	Retrieve and display the logs,

The purpose of the dataflow module is to provide an efficient and
convenient way for you to launch a Spark application, and run Spark
jobs. The interactive Spark kernel provides a simple and efficient way
to edit and build your Spark script, and easy access to read from an OCI
filesystem.

Prerequisites:

	Before accessing OCI filesystem from your local Spark environment,
ensure that you have the core-site.xml in
spark_conf_dir configured properly, because it sets the connector
properties that are used to connect to OCI.

	Before creating applications in the OCI Data
Flow service, ensure that you have configured your tenancy for the
service. Follow the steps in Getting Started with Data Flow [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#getting_started/].

import io
import matplotlib.pyplot as plt
import os
from os import path
import pandas as pd
import tempfile
import uuid

from ads.dataflow.dataflow import DataFlow

from pyspark.sql import SparkSession

Build your PySPark Script Using an Interactive Spark kernel

Set up spark session in your PySPark conda environment:

create a spark session
spark = SparkSession \
 .builder \
 .appName("Python Spark SQL basic example") \
 .config("spark.driver.cores", "4") \
 .config("spark.executor.cores", "4") \
 .getOrCreate()

Load the Employee Attrition data file from OCI
Object Storage into a Spark DataFrame:

emp_attrition = spark\
 .read\
 .format("csv")\
 .option("header", "true")\
 .option("inferSchema", "true")\
 .option("multiLine", "true")\
 .load("oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.csv") \
 .cache() # cache the dataset to increase computing speed
emp_attrition.createOrReplaceTempView("emp_attrition")

Next, explore the dataframe:

spark.sql('select * from emp_attrition limit 5').toPandas()

 Data Transformations

Data Transformations

When datasets are loaded with DatasetFactory, they can be transformed and manipulated easily with the built-in functions. Underlying, an ADSDataset object is a Pandas dataframe. Any operation that can be performed to a Pandas dataframe [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html] can also be applied to an ADS Dataset.

Loading the Dataset

You can load a pandas dataframe into an ADSDataset by calling.

from ads.dataset.factory import DatasetFactory

ds = DatasetFactory.from_dataframe(df)

Applying Automated Transformations to the Dataset

ADS has built in automatic transform tools for datasets. When the get_recommendations() tool is applied to an ADSDataset object, it shows the user detected issues with the data and recommends changes to apply to the dataset. You can accept the changes
is as easy as clicking a button in the drop down menu. After all the changes are applied, the transformed dataset can be retrieved by
calling get_transformed_dataset().

wine_ds.get_recommendations()

Alternatively, you can use auto_transform() to apply all the recommended transformations at once. auto_transform() returns a transformed dataset with several optimizations applied automatically. The optimizations include:

	Dropping constant and primary key columns, which has no predictive quality.

	Imputation to fill in missing values in noisy data.

	Dropping strongly co-correlated columns that tend to produce less generalizable models.

	Balancing a dataset using up or down sampling.

One optional argument to auto_transform() is fix_imbalance, which is set to True by default. When True, auto_transform() corrects any imbalance between the classes. ADS downsamples the dominant class first unless there are too few data points. In that case, ADS upsamples the minority class.

ds = wine_ds.auto_transform()

You can visualize the transformation that has been performed on a dataset by calling visualize_transforms().

Note

visualize_transforms() is only applied to the automated transformations and does not capture any custom transformations that you may have applied to the dataset.

ds.visualize_transforms()

[image: ../../_images/visual_transform.png]

Row Operations

The operations that can be applied to a Pandas dataframe can be applied to an ADSDataset object.

Examples of some of the most common row operations you can apply on an ADSDataset object follow.

Deleting rows

Rows within a dataset can be filtered out by row numbers. The index of the new dataset can be reset accordingly.

#Filter out rows by row number and reset index of new data
ds_subset = ds.loc[10:100]
ds_subset = ds_subset.reset_index()

Do not try to insert index into dataset columns.

Reseting index

Reset the index to the default index.
When you reset index, the old index is added as a column index and a new sequential index is used. You can use the drop parameter to avoid the old index being added as a column:

ds_subset = ds.loc[10:100]
ds_subset = ds_subset.reset_index(drop=True)
ds_subset.head()

The index restarts at zero for each partition. This is due to the inability to statically know the full length of the index.

Appending rows

New rows can be added to an existing dataset:

#Create new row to be added
row_to_add = ds.loc[0]
row_to_add['target'] = 'class_0'

#Add in new row to existing dataset
new_addition_ds = ds.merge(row_to_add, how = 'outer')

Alternatively, you can use the append() method of a Pandas dataframe to achieve a similar result:

ds2 = wine_ds.df.append(ds)

The ds2 is created as a Pandas DataFrame object.

Row Filtering based on Column Values

Columns can be filtered out by the values:

ds_filtered = ds[(ds['alcohol'] > 13.0) & (ds['malic_acid'] < 2.5)]
ds_filtered.head()

Removing Duplicated Rows

Duplicate rows can removed using the drop_duplicates function:

ds_without_dup = ds.drop_duplicates()

Column Operations

The column operations that can be applied to a Pandas dataframe can be applied to an ADS dataset as in the following examples.

Deleting a Column

To delete specific columns from the dataset, the drop_columns function can be used along with names of the columns to be deleted
from the dataset. The ravel Pandas command returns the flattened underlying data as an ndarray. The name_of_df.columns[:].ravel() command returns the name of all the columns in a dataframe as an array.

ds_subset_columns = ds.drop_columns(['alcohol', 'malic_acid'])
ds_subset_columns.columns[:].ravel()

array(['ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols',
 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins',
 'color_intensity', 'hue', 'od280/od315_of_diluted_wines',
 'proline', 'target'], dtype=object)

Renaming a Column

Columns can be renamed with the rename_columns() method:

ds_columns_rename = ds.rename_columns({'alcohol': 'alcohol_amount',
 'malic_acid': 'malic_acid_amount'})
ds_columns_rename.columns[:].ravel()

array(['alcohol_amount', 'malic_acid_amount', 'ash', 'alcalinity_of_ash',
 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols',
 'proanthocyanins', 'color_intensity', 'hue',
 'od280/od315_of_diluted_wines', 'proline', 'target'], dtype=object)

Obtaining the Counts of Unique Values in a Column

The count per unique value can be obtained with the value_counts() method:

ds['target'].value_counts()

class_1 71
class_0 59
class_2 48
Name: target, dtype: int64

Normalizing a Column

You can apply a variety of normalization techniques to numerical columns (both continuous and discrete). You can leverage the built in max() and min() methods to perform a minmax normalization:

max_alcohol = wine_ds['alcohol'].max()
min_alcohol = wine_ds['alcohol'].min()
alcohol_range = max_alcohol - min_alcohol
wine_ds.df['norm_alcohol'] = (wine_ds['alcohol'] / alcohol_range)

Creating a Column by Combining Other Columns

This example creates a new column by performing operations to combine two or more columns together:

new_feature_col = ((0.4)*wine_ds['total_phenols'] + (0.6)*wine_ds['flavanoids'])
ds_new_feature = wine_ds.assign_column('new_feature', new_feature_col)
ds_new_feature.head()

Alternatively, you can create a new column directly in the Pandas dataframe attribute:

new_feature_col = ((0.4)*wine_ds['total_phenols'] + (0.6)*wine_ds['flavanoids'])
wine_ds.df['new_feature'] = new_feature_col
wine_ds.head()

To add new column, use a new name for it. You can add anew column and change it by combining with existing column:

noise = np.random.normal(0,.1,wine_ds.shape[0])
ds_noise = wine_ds.assign_column('noise', noise)

ds_ash = ds_noise.assign_column('noise', ds_noise['noise'] + ds_noise['ash'])
ds_ash = ds_ash.rename(columns={'noise':'ash_with_noise'})
ds_ash.head()

The resulting column is renamed with dict-like mapper.

Changing a Column by Values Derived from a Function

You can apply functions to update column values in existing column. This example updates the column in place using lambda expression:

wine_ds.assign_column('proline', lambda x: x is None or x > 1000)
wine_ds.head()

Changing Data Types of Columns

You can change the data type columns with the astype() method. ADS uses the Pandas method, astype(), on dataframe objects. For specifics, see astype for a Pandas Dataframe [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.astype.html],
using numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], or
Pandas dtypes [https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#dtypes].

When you change the type of a column, ADS updates its semantic type to categorical, continuous, datetime, or ordinal. For example, if you update a column type to integer, its semantic type updates to ordinal. For data type details, see ref:loading-data-specify-dtype.

This example converts a dataframe column from float, to the low-level integer type and ADS updates its semantic type to ordinal:

wine_ds = wine_ds.astype(types={'proline': 'int64'})
print(wine_ds.feature_types['proline']['low_level_type'])
print(wine_ds.feature_types['proline']['type'])

Note: When you cast a float column to integer, you lose precision.
wine_ds['proline'].head()

To convert a column of type float to categorical, you convert it to integer first. This example converts a column data type from float to integer, then to categorical, and then the number of categories in the column is reduced:

create a new dataset with a renamed column for binned data and update the values
ds = wine_ds.rename_columns({'color_intensity': 'color_intensity_bin'})
ds = ds.assign_column('color_intensity_bin', lambda x: x/3)

convert the column from float to categorical:
ds = ds.astype(types={'color_intensity_bin': 'int64'})
ds = ds.astype(types={'color_intensity_bin': 'categorical'})

You can use feature_types to see if the semantic data type of the converted column is categorical:

wine_ds.feature_types['color_intensity_bin']['type']

'categorical'

The low-level type of the converted column is category:

ds['color_intensity_bin'].head()

0 1
1 1
2 1
3 2
4 1
Name: color_intensity_bin, dtype: category
Categories (5, int64): [0, 1, 2, 3, 4]

Dataset Manipulation

ADS has built in functions that support categorical encoding, null values and imputation.

Categorical Encoding

ADS has a built in categorical encoder that can be accessed by calling from ads.dataset.label_encoder import DataFrameLabelEncoder. This example encodes the three classes of wine that make up the dataset:

from ads.dataset.label_encoder import DataFrameLabelEncoder
ds_encoded = DataFrameLabelEncoder().fit_transform(ds.to_pandas())
ds_encoded['target'].value_counts()

1 71
0 59
2 48

One-Hot Encoding

One-hot encoding transforms one categorical column with n categories into n or n-1 columns with indicator variables. You can prepare one of the columns to be categorical with categories low, medium, and high:

def convert_to_level(value):
 if value < 12:
 return 'low'
 elif value > 13:
 return 'high'
 else:
 return 'medium'

ds = wine_ds
ds = ds.assign_column('alcohol', convert_to_level)

You can use the Pandas method get_dummies() to perform one-hot encoding on a column. Use the prefix parameter to assign a prefix to the new columns that contain the indicator variables. This example creates n columns with one-hot encoding:

data = ds.to_pandas()['alcohol'] # data of which to get dummy indicators
onehot = pd.get_dummies(data, prefix='alcohol')

To create n-1 columns, use drop_first=True when converting the categorical column. You can add a one-hot column to the initial dataset with the merge() method:

data = ds.to_pandas()['alcohol'] # data of which to get dummy indicators
onehot = pd.get_dummies(data, prefix='alcohol', drop_first=False)
ds_onehot = ds.merge(onehot)

Encoding for all categorical columns can be accomplished with the fit_transform() method:

from ads.dataset.label_encoder import DataFrameLabelEncoder

ds_encoded = DataFrameLabelEncoder().fit_transform(ds_onehot.to_pandas())
ds_encoded['alcohol'].value_counts()

0 92
2 67
1 19

To drop the initial categorical column that you transformed into one-hot, use one of these examples:

ds_onehot = ds_onehot.drop_columns('alcohol') # before ``fit_transform()`` method
or
ds_encoded = ds_encoded.drop(columns='alcohol') # after ``fit_transform()`` method

Extracting Null Values from Datasets

To detect all nulls in a dataset, use the isnull function to return a boolean dataset matching the dimension of our input:

ds_null = ds.isnull()
np.any(ds_null)

alcohol False
malic_acid False
ash False
alcalinity_of_ash False
magnesium False
total_phenols False
flavanoids False
nonflavanoid_phenols False
proanthocyanins False
color_intensity False
hue False
od280/od315_of_diluted_wines False
proline False
target False

Imputation

The fillna function ia used to replace null values with specific values. Generate a null value by replacing the entry below a certain value with null, and then imputing it with a value:

ds_with_null = ds.assign_column("malic_acid", lambda x: None if x < 2 else x)
ds_with_null['malic_acid'].head()

0 NaN
1 NaN
2 2.36
3 NaN
4 2.59
Name: malic_acid, dtype: float64

ds_impute = ds_with_null.fillna(method='bfill')
ds_impute['malic_acid'].head()

0 2.36
1 2.36
2 2.36
3 2.59
4 2.59
Name: malic_acid, dtype: float64

Combining Datasets

ADS datasets can be merged and combined together to form a new dataset.

Joining Datasets

You can merge two datasets together with a database-styled join on columns or indexes by specifying the type of join left, right, outer, or inner. These type are defined by:

	left: Use only keys from the left dataset, similar to SQL left outer join.

	right: Use only keys from the right dataset, similar to SQL right outer join.

	inner: Intersection of keys from both datasets, similar to SQL inner join.

	outer: Union of keys from both datasets, similar to SQL outer join.

This is an example of performing an outer join on two datasets. The datasets are subsets of the wine dataset, and each dataset contains only one class of wine.

ds_class1 = ds[ds['target']=='class_1']
ds_class2 = ds[ds['target']=='class_2']
ds_merged_outer = ds_class1.merge(ds_class2, how='outer')
ds_merged_outer['target'].value_counts()

class_1 71
class_2 48
class_0 0
Name: target, dtype: int64

Concatenating Datasets

Two datasets can be concatenated along a particular axis (vertical or horizontal) with the option of performing set logic (union or intersection) of the indexes on the other axes. You can stack two datasets vertically with:

ds_concat = pd.concat([ds_class1, ds_class2], axis = 0)
ds_concat['target'].value_counts()

class_1 71
class_2 48
class_0 0
Name: target, dtype: int64

Split Dataset into Train, Validation, Test Data

After all data transformations are complete, you can split the data into a train and test or train, test, and validation set. To split data into a train and test set with a train size of 80% and test size of 20%:

from ads.dataset.dataset_browser import DatasetBrowser
sklearn = DatasetBrowser.sklearn()
wine_ds = sklearn.open('wine')
ds = wine_ds.auto_transform()
train, test = ds.train_test_split(test_size=0.2)

For a train, test, and validation set, the defaults are set to 80% of the data for training, 10% for testing, and 10% for validation. This example sets split to 70%, 15%, and 15%:

data_split = wine_ds.train_validation_test_split(
 test_size=0.15,
 validation_size=0.15
)
train, validation, test = data_split
print(data_split) # print out shape of train, validation, test sets in split

The resulting three data subsets each have separate data (X) and labels (y).

print(train.X) # print out all features in train dataset
print(train.y) # print out labels in train dataset

You can split the dataset right after the DatasetFactory.open() statement:

ds = DatasetFactory.open("path/data.csv").set_target('target')
train, test = ds.train_test_split(test_size=0.25)

 Data Visualization

Data Visualization

Data visualization is an important aspect of data exploration, analysis, and communication. Generally, visualization
of the data is one of the first steps in any analysis. It allows the analysts to efficiently gain an understanding
of the data and guides the exploratory data analysis (EDA) and the modeling process.

An efficient and flexible data visualization tool can provide a lot of insight into the data. ADS provides a smart
visualization tool. It automatically detects the data type and renders plots that optimally represent the
characteristics of the data. Within ADS, custom visualizations can be created using any plotting library.

Automatic Visualization

The ADS show_in_notebook() method creates a comprehensive preview of all the basic information about a dataset including:

	The predictive data type (for example, regression, binary classification, or multi-class classification).

	The number of columns and rows.

	Feature type information.

	Summary visualization of each feature.

	The correlation map.

	Any warnings about data conditions that you should be aware of.

To improve plotting performance, the ADS show_in_notebook() method uses an optimized subset of the data. This
smart sample is selected so that it is statistically representative of the full dataset with a 95th percentile
confidence level. The correlation map is only displayed when the data only has numerical (continuous or
oridinal) columns.

ds.show_in_notebook()

[image: ../../_images/show_in_notebook_summary.png]

[image: ../../_images/show_in_notebook_features.png]

[image: ../../_images/show_in_notebook_feature_visualizations.png]

To visualize the correlation, call the show_corr() method. If the correlation matrices have not been cached, this call triggers the corr() function which calculates the correlation matrices.

corr() uses the following methods to calculate the correlation based on the data types:

	Continuous-Continuous: `Pearson method <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`__. The correlations range from -1 to 1.

	Categorical-Categorical: `Cramer's V method <https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V>`__. The correlations range from 0 to 1.

	Continuous-Categorical: `Correlation Ratio method <https://en.wikipedia.org/wiki/Correlation_ratio>`__. The correlations range from 0 to 1.

Correlations are displayed independently because the correlations are calculated using different methodologies and the ranges are not the same. Consolidating them into one matrix could be confusing and inconsistent.

Note

Continuous features consist of continuous and ordinal types.
Categorical features consist of categorical and zipcode types.

ds.show_corr(nan_threshold=0.8, correlation_methods='all')

[image: ../../_images/show_corr1.png]

[image: ../../_images/show_corr2.png]

[image: ../../_images/show_corr3.png]

By default, nan_threshold is set to 0.8. This means that if more than 80% of the values in a column are missing, that column is dropped from the correlation calculation. nan_threshold should be between 0 and 1. Other options includes:

	correlation_threshold: Apply a filter to the correlation matrices and only exhibit the pairs whose correlation values are greater than or equal to the correlation_threshold.

	frac: Defaults to 1. The portion of the original data to calculate the correlation on. frac must be between 0 and 1.

	force_recompute: Defaults to False. Correlation matrices are cached. Set force_recompute to True to recalculate the correlation. Note that both corr() and show_corr() method can trigger calculation of correlation matrices if run with force_recompute set to be True, or when there is no cached value exists. show_in_notebook() calculates the correlation only when there are only numerical columns in the dataset.

	plot_type: Defaults to heatmap. Valid values are heatmap and bar. If bar is chosen, correlation_target also has to be set and the bar chart will only show the correlation values of the pairs which have the target in them.

	correlation_target: Defaults to None. It can be any columns of type continuous, ordinal, categorical or zipcode. When correlation_target is set, only pairs that contain correlation_target display.

	correlation_methods: Methods to calculate the correlation. By default, only pearson correlation is calculated and shown. Can select one or more from pearson, cramers v, and correlation ratio. Or set to all to show all correlation charts.

ds.show_corr(correlation_target='col01', plot_type='bar')

[image: ../../_images/show_corr4.png]

To explore features, use the smart plot() method. It accepts one or two feature names. The show_in_notebook() method automatically determines the best type of plot based on the type of features that are to be plotted.

Three different examples are described. They use a binary classification dataset with 1,500 rows and 21 columns. 13 of the columns have a continuous data type, and 8 are categorical. There are three different examples.

	A single categorical feature: The plot() method detects that the feature is categorical because it only has the values of 0 and 1. It then automatically renders a plot of the count of each category.

ds.plot("col02").show_in_notebook(figsize=(4,4))

[image: ../../_images/single_column_count_plot.png]

	Categorical and continuous feature pair: ADS chooses the best plotting method, which is a violin plot.

ds.plot("col02", y="col01").show_in_notebook(figsize=(4,4))

[image: ../../_images/violin_plot.png]

	A pair of continuous features: ADS chooses a Gaussian heatmap as the best visualization. It generates a scatter plot and assigns a color to each data point based on the local density (Gaussian kernel).

ds.plot("col01", y="col03").show_in_notebook()

[image: ../../_images/gaussian_heatmap.png]

Customized Visualization

ADS provides intelligent default options for your plots. However, the visualization API is flexible enough to let you customize your charts or choose your own plotting library. You can use the ADS call() method to select your own plotting routine.

Seaborn

In this example, a dataframe is passed directly to the Seaborn pair plot function. It does a faceted, pairwise plot between all the features in the dataset. The function creates a grid of axises such that each variable in the data is shared in the y-axis across a row and in the x-axis across a column. The diagonal axises are treated differently by drawing a histogram of each feature.

import seaborn as sns
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
sns.set(style="ticks", color_codes=True)
sns.pairplot(df.dropna())

[image: ../../_images/pairgrid.png]

Matplotlib

	Using Matplotlib:

import matplotlib.pyplot as plt
from numpy.random import randn

df = pd.DataFrame(randn(1000, 4), columns=list('ABCD'))

def ts_plot(df, figsize):
 ts = pd.Series(randn(1000), index=pd.date_range('1/1/2000', periods=1000))
 df.set_index(ts)
 df = df.cumsum()
 plt.figure()
 df.plot(figsize=figsize)
 plt.legend(loc='best')

ts_plot(df, figsize=(7,7))

[image: ../../_images/matplotlib.png]

	Using a Pie Chart:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data = {'data': [1109, 696, 353, 192, 168, 86, 74, 65, 53]}
df = pd.DataFrame(data, index = ['20-50 km', '50-75 km', '10-20 km', '75-100 km', '3-5 km', '7-10 km', '5-7 km', '>100 km', '2-3 km'])

explode = (0, 0, 0, 0.1, 0.1, 0.2, 0.3, 0.4, 0.6)
colors = ['#191970', '#001CF0', '#0038E2', '#0055D4', '#0071C6', '#008DB8', '#00AAAA',
 '#00C69C', '#00E28E', '#00FF80',]

def bar_plot(df, figsize):
 df["data"].plot(kind='pie', fontsize=17, colors=colors, explode=explode)
 plt.axis('equal')
 plt.ylabel('')
 plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
 plt.show()

bar_plot(df, figsize=(7,7))

[image: ../../_images/piechart.png]

Geographic Information System (GIS) Chart

This example uses the California earthquake data retrieved from United States Geological Survey (USGS) earthquake catalog. It visualizes the location of major earthquakes.

earthquake.plot_gis_scatter(lon="longitude", lat="latitude")

[image: ../../_images/gis_scatter.png]

Datasets are provided as a convenience. Datasets are considered Third Party Content and are not considered Materials under Your agreement with Oracle applicable to the Services. The earthquake dataset is in the public domain. It was retrieved from the USGS Earthquake Hazards Program.

 Feature Type

Feature Type

	Overview

	Assigning Feature Types

	Correlation

	Feature Count

	Feature Plot

	Feature Statistics

	Feature Type Manager

	Feature Type Selection

	Feature Type Validator

	Feature Type Warnings

 Overview

Overview

There is a distinction between the data type of a feature and the nature
of data that it represents. The data type represents the form of the
data that the computer understands. ADS uses the term “feature type” to
refer to the nature of the data. For example, a medical record id could
be represented as an integer, its data type, but the feature type would
be “medical record id”. The feature type represents the data the way the
data scientist understands it. Pandas uses the term ‘column’ or ‘Series’
to refer to a column of data. In ADS the term ‘feature’ is used to
refer to a column or series when feature types have been assigned to it.

ADS provides the feature type module on top of your Pandas dataframes and
series to manage and use the typing information to better understand your
data. The feature type framework comes with some common feature types.
However, the power of using feature types is that you can easily create
your own and apply them to your specific data. You don’t need to try to
represent your data in a synthetic way that does not match the nature of
your data. This framework allows you to create methods that validate
whether the data fits the specifications of your organization. For
example, for a medical record type you could create methods to validate
that the data is properly formatted. You can also have the system
generate warnings to sure the data is valid as a whole or create graphs
for summary plots.

The framework allows you to create and assign multiple feature types.
For example, a medical record id could also have a feature type id and
an integer feature type.

Key Components

The feature type system allows data scientists to separate the concept
of how data is represented physically from what the data actually
measures. That is, the data can have feature types that classify the
data based on what it represents and not how the data is stored in
memory. Each set of data can have multiple feature types through a
system of multiple inheritances. For example, an organization
that sells cars might have a set of data that represents their purchase
price of a car, that is the wholesale price. You could have a feature
set of wholesale_price, car_price, USD, and continuous.
This multiple inheritance allows a data scientist to create feature type
warnings and feature type validators for each feature type.

A feature type is a class that inherits from FeatureType. It has
several attributes and methods that can be overridden to customize
the properties of the feature type. The following is a brief summary
of some of the key methods.

Correlations

There are also various correlation methods, such as
.correlation_ratio(), .pearson(), and .cramersv() that
provide information about the correlation between different features in
the form of a dataframe. Each row represents a single correlation metric.
This information can also be represented in a plot with the
.correlation_ratio_plot(), .pearson_plot(), and
.cramersv_plot() methods.

Multiple Inheritance

This is done through a system of inheritance. For example, a hospital may
have a medical record number for each patient. That data might have the
patient_id, id, and integer feature types. The patient_id
is the child feature type with id being its parent. The integer
is the parent of the id feature type. It’s also the last feature
type in the inheritance chain, and is called the default feature type.

When calling attributes and methods on a feature type, ADS searches
the inheritance chain for the first matching feature type that defines
the attribute or method that you are calling. For example, you want
to produce statistics for the previously described patient id feature.
Assume that the patient_id class didn’t override the
.feature_stat() method. ADS would then look to the id
feature type and see if it was overridden. If it was, it dispatches
that method.

This system allows you to over override the methods that are specific
to the feature type that you are creating and improves the reusability
of your code. The default feature types are specified by ADS, and they
have overridden all the attributes and methods with smart defaults.
Therefore, you don’t need to override any of these properties unless
you want to.

Summary Plot

The .feature_plot() method returns a Seaborn plot object that
summarizes the feature. You can define what you want the plot
to look like for your feature. Further, you can modify the plot
after it’s returned, which allows you to customize it to fit your
specific needs.

Summary Statistics

The .feature_stat() method returns a dataframe where each row
represents a summary statistic and the numerical value for that
statistic. You can customize this so that it returns summary
statistics that are relevant to your specific feature type. For
example, a credit card feature type may return a count of the
financial network that issued the cards.

Validators

The feature type validators are a set of is_* methods, where *
is generally the name of the feature type. For example, the method
.is_wholesale_price()can create a boolean Pandas Series that
indicates what values meet the validation criteria. It allows you to
quickly identify which values need to be filtered, or require future
examination into problems in the data pipeline. The feature type
validators can be as complex as necessary. For example, they might
take a client ID and call an API to validate each client ID is active.

Warnings

Feature type warnings are used for rapid validation of the data. For
example, the wholesale_price might have a method that ensures that
the value is a positive number because you can’t purchase a car with
negative money. The car_price feature type may have a check to
ensure that it is within a reasonable price range. USD can check the
value to make sure that it represents a valid US dollar amount. It can’t
have values below one cent. The continuous feature type is the
default feature type, and it represents the way the data is stored
internally.

Forms of Feature Types

There are several different forms of feature types. These are designed to
balance the need to document a feature type and the ease of customization.
With each feature that you define you can specify multiple feature types.
The custom feature type gives you the most flexibility in that all the
attributes and methods of the FeatureType class can be overridden. The
tag feature type allows you to create a feature type that essentially is
a label. Its attributes and methods cannot be overridden, but it allows you
to create a feature type without creating a class. The default type is
provided by ADS. It is based on the Pandas dtype, and sets the default
attributes and methods. Each inheritance chain automatically ends in
a default feature type.

Custom

The most common and powerful feature type is the custom feature
type. It is a Python class that inherits from FeatureType. It has
attributes and methods that you can be override to define the properties
of the feature type to fit your specific needs.

As with multiple inheritance, a custom feature type
uses an inheritance chain to determine which attribute or method is
dispatched when called. The idea is that you would have a feature that
has many custom feature types with each feature type being more specific
to the nature of the feature’s data. Therefore, you only create the attributes and
methods that are specific to the child feature type and the rest are reused from
other custom or default feature types. This allows for the abstraction of the
concepts that your feature represents and the reusability of your code.

Since a custom feature type is a Python class, you can add user-defined attributes and
methods to the feature type to extend its capabilities.

Custom feature types must be registered with ADS before you can use them.

Default

The default feature type is based on the Pandas dtype. Setting the default
feature type is optional when specifying the inheritance chain for a feature.
ADS automatically appends the default feature type as an ancestor to all
custom feature types. The default feature type is listed before the tag
feature types in the inheritance chain. Each feature only has one default
feature type. You can’t mute or remove it unless the underlying Pandas dtype
has changed. For example, you have a Pandas Series called series that has
a dtype of string so its default feature type is string. If you
change the type by calling series = series.astype('category'), then the
default feature type is automatically changed to categorical.

ADS automatically detects the dtype of each Series and sets the default
feature type. The default feature type can be one of the following:

	boolean

	category

	continuous

	date_time

	integer

	object

	string

This example creates a Pandas Series of credit card numbers, and prints the
default feature type:

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740"], name='creditcard')
series.ads.default_type

'string'

You can include the default feature type using the .feature_type
property. If you do, then the default feature type isn’t added a
second time.

series.ads.feature_type = ['credit_card', 'string']
series.ads.feature_type

['credit_card', 'string']

You can’t directly create or modify default feature types.

Tag

It’s often convenient to tag a dataset with additional information
without the need to create a custom feature type class. This is the
role of the Tag() function, which allows you to create a feature
type without having to explicitly define and register a class. The
tradeoff is that you can’t define most attributes and all methods of
the feature type. Therefore, tools like feature type warnings and
validators, and summary statistics and plots cannot be customized.

Tags are semantic and provide more context about the actual
meaning of a feature. This could directly affect the interpretation of
the information.

The process of creating your tag is the same as setting the feature
types because it is a feature type. You use the .feature_type
property to create tags on a feature type.

The next example creates a set of credit card numbers, sets the feature
type to credit_card, and tags the dataset to be inactive cards.
Also, the cards are from North American financial institutions. You can
put any text you want in the Tag() because no underlying feature
type class has to exist.

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740",
 "4485348152450846"], name='Credit Card')
series.ads.feature_type=['credit_card', Tag('Inactive Card'), Tag('North American')]
series.ads.feature_type

['credit_card', 'string', 'Inactive Card', 'North American']

Tags are always listed after the other feature types:

A list of tags can be obtained using the tags attribute:

series.ads.tags

['Inactive Card', 'North American']

 Assigning Feature Types

Assigning Feature Types

The .feature_type property is used to assign the feature types that
are to be associated with a feature. It accepts an ordered list of the
custom, default, and tag feature types.

The .feature_type property is defined on a Pandas Series and
dataframe. There are small differences between the ways that they are
used are defined.

The order that you specify custom feature types defines the inheritance chain
so controls which attribute or method is dispatched a feature. The default
feature type doesn’t have to be specified. If you specify it, it is placed
after the custom feature types in the inheritance chain. Tag feature types are
always placed after the default feature type.

It is best practice to list the custom feature type first, then default, and then the
tag feature types. The order matters so list any custom features first in the list.

When using the .feature_type property, the provided list accepts
class names and custom feature type objects. For example,
assume that CreditCard is a custom feature type and has the
class name 'credit_card'. The following .feature_type
statements are equivalent:

CreditCard = feature_type_manager.feature_type_object('credit_card')
String = feature_type_manager.feature_type_object('string')
series.ads.feature_type = ['credit_card', 'string']
series.ads.feature_type = [CreditCard, String]
series.ads.feature_type = [CreditCard, 'string']

Dataframe

Like a Pandas Series, you can use .feature_type on a dataframe to
set the feature types for the columns in the dataframe. This property
accepts a dictionary where the key in the dictionary is the column name,
and the value is a list of feature types associated with that column.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Attrition', 'TravelForWork', 'JobFunction', 'EducationalLevel'])
df.ads.feature_type = {'Attrition': ['boolean', 'category'],
 'TravelForWork': ['category'],
 'JobFunction': ['category'],
 'EducationalLevel': ['category']}
df.ads.validator_registered()

[image: ../../_images/ads_feature_type_3.png]

Series

When working with a Pandas Series you can access the ADS feature
type attributes and properties by accessing the .ads method on
the Pandas Series.

To assign feature types to a Pandas Series, use the .ads.feature_type
property. The next example creates a series of credit card numbers.
Then it uses the .feature_type property with a list of strings of
the class names of the feature types.

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740", "4485348152450846"], name='Credit Card')
series.ads.feature_type = ['credit_card', 'string']
series.ads.feature_type_description

[image: ../../_images/ads_feature_type_2.png]

 Correlation

Correlation

Generally, a data scientist wants to make a model as parsimonious as
possible. This often involves determining what features are highly
correlated and removing some of them. While some models, such as decision
trees, aren’t sensitive to correlated variables, others, such as an
ordinary least squares regression, are. You might also want to remove
correlated variables because it reduces the cost of collecting and processing
the data.

ADS speeds up your analysis by providing methods to compute different
types of correlations. There are several different correlation techniques
and they have different use cases. Also, there are two sets
of methods for each correlation type. One method returns a dataframe
with the correlation information, and the other method generates a plot.

What correlation technique you use depends on the type of data that you
are working with. When using these correlation techniques, you must slice
your dataframe so that only the appropriate feature types are
used in the calculation. The ADS feature type selection tools help you
do this quickly.

The following is a summary of the different correlation techniques and
what data to use.

	correlation_ratio: The correlation ratio measures the extent to which
a distribution is spread out within individual categories relative to the
spread of the entire population. This metric is used to compare categorical
variables to continuous values.

	cramersv: The Cramér’s V provides a measure of the degree
of association between two categorical and nominal datasets.

	pearson: The Pearson correlation coefficient is a normalized measure of the
covariance between two sets of data. It measures the linear
correlation between the datasets. Use this method when both datasets
contain continuous values.

Correlation Ratio

Statistical dispersion, or scatter, is a measure of the spread of a
distribution with variance being a common metric. The correlation ratio
is a measure of dispersion with categories relative to the dispersion
across the entire dataset. The correlation ratio is a weighted variance
of the category means over the variance of all samples. It is given with
this formula:

\[\eta = \sqrt{\frac{\sigma_{\bar{y}}^2}{\sigma_y^2}}\]

where:

\[\sigma_{\bar{y}}^2 = \frac{\sum_x n_x(\bar{y}_x - \bar{y})^2}{\sum_x n_x}\]

\[\sigma_{y}^2 = \frac{\sum_{x,i} n_x(\bar{y}_{x,i} - \bar{y})^2}{n}\]

Where \(n\) is the total number of observations and \(n_x\) is
the number of observations in a category \(x\). \(\bar{y}_x\) is
the mean value in category \(x\) and \(\bar{y}\) is the overall
mean.

Values of \(\eta\) near zero indicate that there is no dispersion
between the means of the different categories. A value of \(\eta\) near
one suggests that there in no dispersion within the respective categories.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['JobFunction', 'Age', 'YearsinIndustry', 'YearsOnJob', 'YearsWithCurrManager', 'YearsAtCurrentLevel'])
df.ads.feature_type = {'Age': ['continuous'], 'YearsinIndustry': ['continuous'], 'YearsOnJob': ['continuous'],
 'YearsWithCurrManager': ['continuous'], 'YearsAtCurrentLevel': ['continuous'],
 'JobFunction': ['category']}
df.ads.correlation_ratio()

[image: ../../_images/ads_feature_type_EDA_11.png]
df.ads.correlation_ratio_plot()

[image: ../../_images/ads_feature_type_EDA_30_1.png]

Cramér’s V

Cramér’s V is used to measure the amount of association between two
categorical and nominal variables. A value of zero means that there is no
association between the bivariates, and a value of one means that there
is complete association. The \(V\) is the percentage of the maximum
association between the variables and is dependent on the frequency
in which the tuples \((x_i, y_j)\) occur.

The value of \(V\) is related to the chi-squared statistic,
\(X^2\) and is given with:

\[V = \sqrt{\frac{X^2}{min(k-1, r-1)n}}\]

Where: \(k\) and \(r\) are the number of categories in the
datasets \(x\) and \(y\). \(n\) is the sample size.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['TravelForWork', 'JobFunction', 'EducationField', 'EducationalLevel'])
df.ads.feature_type = {'TravelForWork': ['category'], 'JobFunction': ['category'], 'EducationField': ['category'],
 'EducationalLevel': ['category']}
df.ads.cramersv()

[image: ../../_images/ads_feature_type_EDA_12.png]
df.ads.cramersv_plot()

[image: ../../_images/ads_feature_type_EDA_34_1.png]

Pearson Correlation Coefficient

The Pearson correlation coefficient is known by several names like
Pearson’s r, Pearson product moment correlation coefficient,
bivariate correlation, or the correlation coefficient. It has a range of
[-1, 1] where 1 means that the two datasets are perfectly correlated, and
a value of -1 means that the correlation is perfectly out of phase.
So, when one dataset is increasing the other one is decreasing.

The Pearson correlation coefficient is a normalized value of the
covariance between the continuous datasets X and Y. It is normalized by
the product of the standard deviation between X and Y and is given with
this formula:

\[\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}\]

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Age', 'YearsinIndustry', 'YearsOnJob', 'YearsWithCurrManager', 'YearsAtCurrentLevel'])
df.ads.feature_type = {'Age': ['continuous'], 'YearsinIndustry': ['continuous'], 'YearsOnJob': ['continuous'],
 'YearsWithCurrManager': ['continuous'], 'YearsAtCurrentLevel': ['continuous']}
df.ads.pearson()

[image: ../../_images/ads_feature_type_EDA_10.png]
This same information can be represented in a plot using the
.pearson_plot() method:

df.ads.pearson_plot()

[image: ../../_images/ads_feature_type_EDA_27_1.png]

 Feature Count

Feature Count

Each column in a Pandas dataframe is associated with at least one
feature type. That feature type is the default, and it’s
determined by the Pandas dtype. However, the feature type system allows
you to associate a feature with multiple feature types using an
inheritance system. A feature could have a feature set of
wholesale_price, car_price, USD, and continuous.

You can call the .feature_count() method on a dataframe to provide
a summary of what features are being used. The output is a dataframe
where each row represents a feature type, which is listed in the
Feature Type column. The next column lists the number of times the
feature type appears in any of the columns. Since each feature can have
multiple feature types, it counts all occurrences. The Primary column
is the count of the number of times that the feature type is
listed as the primary feature type that has no subclasses.

In the next example, the orcl_attrition dataset is loaded. The feature
types are assigned and the top of the dataframe is displayed.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Attrition', 'TravelForWork', 'JobFunction', 'TrainingTimesLastYear'])
df.ads.feature_type = {'Attrition': ['boolean', 'category'],
 'TravelForWork': ['category'],
 'JobFunction': ['category'],
 'TrainingTimesLastYear': ['integer']}
df.head()

[image: ../../_images/ads_feature_type_EDA_1.png]
In the preceding example, the .ads.feature_type method is used to
store the feature types associated with each column. For example, the
Attrition column has the Boolean and category feature types. You can
also use the .ads.feature_type method to return a dictionary that
lists the feature types that are assigned to each feature. Notice that
the Attrition feature has the feature types Boolean, category, and string
associated with it. In the preceding example, only the Boolean and
category feature types were specified. That’s because the feature
type system automatically appends the feature type string based on the
Pandas dtype, and is the default feature type. With
TrainingTimesLastYear, the feature type that was specified was an
integer. Since this is the dtype, no additional feature type was
appended.

df.ads.feature_type

{'Attrition': ['boolean', 'category', 'string'],
 'TravelForWork': ['category', 'string'],
 'JobFunction': ['category', 'string'],
 'TrainingTimesLastYear': ['integer']}

The .feature_count() method is called on the dataframe in the next
example. It provides a summary of the features used across all
features in the dataframe. The output dataframe has one row for each
feature type that is represented in the dataframe. This is listed in the
Feature Type column. The next column lists the number of times the
feature type appears in any of the columns. For example, the category
feature type appears in the Attrition, TravelForWork, and JobFunction
columns. So, it has a count of three. The Primary column is the
count of the number of times that the feature type is listed as the
primary feature type. For the category feature type, the value is two because
TravelForWork and JobFunction have this set as their primary feature type.
While category is a feature type of Attrition, it’s not the primary
feature type, Boolean is. With a string feature type, it
occurs in the Attrition, TravelForWork, and JobFunction features.
However, it’s not the primary feature type in these features so
its count is 3, but its Primary count is zero.

df.ads.feature_count()

[image: ../../_images/ads_feature_type_EDA_2.png]

 Feature Plot

Feature Plot

Visualization of a dataset is a quick way to gain insights into the
distribution of values. The feature type system in ADS provides plots
for all ADS-supported feature types. However, it’s easy to create
feature plots for your custom feature types. Calling .feature_plot()
on a Pandas Series produces a univariate plot. The .feature_plot()
method is also available on a dataframe. When it is called a dataframe
is returned where the column Column lists the name of the feature
and the column Plot has a plot object.

The power of the feature plot is that you can customize the feature
plot that is created for the custom feature types that you create.
Since a feature can have multiple inheritance, the inheritance chain
is used to determine which .feature_plot() method is dispatched.

Creating

The .feature_plot() is defined on a Pandas
Series and dataframes. The behavior between the two is similar though
different. On a Pandas Series, a matplotlib.pyplot object is returned.
On a Pandas dataframe a dataframe is returned with a collection of
matplotlib.pyplot objects.

Series

When using a Pandas Series and the .feature_plot() method, a
matplotlib.pyplot object is returned.

The next example loads the orcl_attrition dataset and assigns
feature types to each feature. The TravelForWork feature has a simple
feature type inheritance chain with a single feature type, category.
category is a default feature type so ADS provides a
.feature_plot() method for it. Calling .feature_plot()
produce sa horizontal bar chart with a count of the number of observations
in each category. In this specific case, it is a count of the number of
employees that travel for work:

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Attrition', 'TravelForWork', 'JobFunction', 'TrainingTimesLastYear'])
df.ads.feature_type = {'Attrition': ['category'], 'TravelForWork': ['category'],
 'JobFunction': ['category'], 'TrainingTimesLastYear': ['continuous']}
df['TravelForWork'].ads.feature_plot()

[image: ../../_images/ads_feature_type_EDA_36_1.png]

Dataframe

It’s often expedient to produce the feature plots for all the features
in a dataframe. You can this by calling .feature_plot() on a
dataframe. Unlike the Pandas Series version of .feature_plot(), it
doesn’t return a matplotlib.pyplot object. ADS tends to be a
dataframe centric system because it often returns dataframes when
there are more than one value. This makes the interface consistent and
the output is easy to manipulate. Thus, the Pandas dataframe version of
the .feature_plot() method returns a row-dominate dataframe with
two columns, Column and Plot. Each row represents a feature in the
source dataframe. The Column column has the name of the feature or column
in the source dataframe. The Plot column has a matplotlib.pyplot
object representing the resulting plot from the call to .feature_plot()
on that column.

df.ads.feature_plot()

[image: ../../_images/ads_feature_type_EDA_13.png]
[image: ../../_images/ads_feature_type_EDA_40_1.png]
[image: ../../_images/ads_feature_type_EDA_40_2.png]
[image: ../../_images/ads_feature_type_EDA_40_3.png]
[image: ../../_images/ads_feature_type_EDA_40_4.png]

Modifying

The feature type system is designed to allow you to reuse your
code when working with a feature. The .feature_plot() method
is a custom feature type you can override to produce custom
plots that work well with the data you have. However, sometimes
the plots may need adjustments to properly represent a specific
version of a feature. The feature plot system
returns plots that can be modified.

The .feature_plot() method on a Pandas Series returns a
single matplotlib.pyplot object. This same method on a
Pandas Series returns a dataframe with the Plot column is
a matplotlib.pyplot object. You can modify these objects.

The next example captures the matplotlib.pyplot
object in the variable travel_plot, and then modifies the
plot by adding a title.

travel_plot = df['TravelForWork'].ads.feature_plot()
travel_plot.set_title("Count of the Number of Employees that Travel")

[image: ../../_images/ads_feature_type_EDA_38_1.png]
You could use this same approach on the dataframe of plots
by iterating over each row in the dataframe, and applying the
desired changes.

Custom Feature Plots

ADS comes with feature plots for the default feature types. While these
are designed to be generic and provide reasonable default values,
they aren’t designed to meet each use case. Custom features are
designed to have the .feature_plot() method overridden so that
you get a plot that best summarizes your data.

You could create a custom feature type called CreditCard. This
feature type represents a set of credit card numbers as a
series of strings. The default feature type would be String
and wouldn’t produce a satisfactory summary of the data.
A convenient summary might be a count of the number of cards that
are issued by each financial institution along with a count of
where the data is missing or that the card number is invalid.

For this example, use the
card_identify().identify_issue_network() helper function because
it returns a string of the name of the financial institution that issued
the card.

To create a custom feature plot, in the class that you’re using
to create the custom feature, override the feature_plot method.
This method must be static. It accepts a Pandas Series, and returns
a matplotlib.pyplot. There is nothing that enforces the fact
that this type of object is returned. However, it’s a good
idea to be consistent with the plots that are returned by the
default feature types.

from ads.feature_engineering import feature_type_manager, FeatureType
from ads.common.card_identifier import card_identify

class CreditCard(FeatureType):
 @staticmethod
 def feature_plot(x: pd.Series) -> plt.Axes:

 def assign_issuer(cardnumber):
 if pd.isnull(cardnumber):
 return "missing"
 else:
 return card_identify().identify_issue_network(cardnumber)

 card_types = x.apply(assign_issuer)
 df = card_types.value_counts().to_frame()
 if len(df.index):
 ax = sns.barplot(x=df.index, y=list(df.iloc[:, 0]))
 ax.set(xlabel="Issuing Financial Institution")
 ax.set(ylabel="Count")
 return ax

[image: ../../_images/ads_feature_type_EDA_14.png]

 Feature Statistics

Feature Statistics

Computing summary statistics is one of the most common tasks that data
scientists do during an exploratory data analysis (EDA). The goal of
the .feature_stat() method is to produce relevant summary statistics
for the feature set. The feature type framework allows you to customize
what statistics are used in a feature type. It also standardizes the way
those statistics are returned. This empowers you to produce visualizations,
and other tools that can use the standardized output.

Using

The .feature_stat() is used to compute the feature statistics,
and it is defined on a Pandas Series and dataframe. In both cases,
the method returns a row-dominate dataframe where each row
represents a single observation. In each case, there are
columns that represent the metric that was computed and the value.
When it is called on a dataframe, there is one other column
that represents the feature that the metric was computed for.

Dataframe

The .feature_stat() method also works at the dataframe level. It
produces a similar output to that of the series, except it
has an additional column that lists the column name where the
metric was computed.

df.ads.feature_stat()

[image: ../../_images/ads_feature_type_EDA_6.png]

Reshaping the Output

The .feature_stat() method outputs its data in a row-dominate format
to make it easy to work with. However, there are times when a column
dominate format helps to better understand the data. This is often the
case when the data all have similar summary statistics. You can convert from
the row-dominate to the column-dominate format with the
.pivot_table() method, which is part of Pandas. When there are
missing values, an NaN is inserted.

df.ads.feature_stat().pivot_table(index='Column', columns='Metric', values = 'Value')

[image: ../../_images/ads_feature_type_EDA_7.png]

Series

The .feature_stat() outputs a Pandas dataframe where each row
represents a summary statistic. This is called the row-dominate format.
The statistics that are reported depending on the inheritance chain of
the feature types. The feature type framework iterates from the primary
feature type to the default feature type looking for a feature type
that has the .feature_stat() method defined and then dispatches on that.

In the next example, the .feature_stat() for the integer feature type
is run. This feature set returns the count of the observations, the
mean value, the standard deviation, and Tukey’s Five Numbers (sample
minimum, lower quartile, median, upper quartile, and sample maximum).

df['TrainingTimesLastYear'].ads.feature_stat()

[image: ../../_images/ads_feature_type_EDA_3.png]
The summary statistics that you create depend on the feature type. For
example, assume that there is a dataframe, df, that has a column
named JobFunction and the dtype is categorical. Thus, its default
feature type is also categorical. A call to .feature_type_stat()
produces a count of the number of observations, and the number of
unique categories:

df['JobFunction'].ads.feature_stat()

[image: ../../_images/ads_feature_type_EDA_4.png]

Custom Feature Statistics

You can create custom summary statistics when working with
a custom feature type. The previous example with the JobFunction
statistics, they might not be an ideal summary for this feature. Instead,
you might want to know the number of job functions in each category.
You can create a new feature type and it is associated .feature_stat()
method. In the next example, a new custom feature type called
JobFunction is created. It overrides the .feature_stat()
method to produce a count of the number of each job functions in the
data. This feature type is then registered and the dataframe JobFunction
column is updated so that it now inherits from the JobFunction
feature type. Then it prints the feature summary statistics for the
JobFunction column.

To create a custom feature statistics, in the class that you are using
to create the custom feature, override the feature_stat method.
This method must be static. It accepts a Pandas Series and returns
a dataframe. The series is the values in the feature that you
are computing the statistic for so you must know the dtype
that will be passed in.

The resulting dataframe must have the columns Metric and Value.
The Metric column is a string that defines the metric that is
being computed. The Value column is a floating-point value of the
metric that was computed.

If there are no metrics that are to be returned, then an empty
dataframe with these columns must be returned. There is no limit
to the number of metrics that can be returned.

from ads.feature_engineering import feature_type_manager, FeatureType

Create the JobFunction feature type
class JobFunction(FeatureType):
 @staticmethod
 def feature_stat(series: pd.Series) -> pd.DataFrame:
 result = dict()
 job_function = ['Product Management', 'Software Developer', 'Software Manager', 'Admin', 'TPM']
 for label in job_function:
 result[label] = len(series[series == label])
 return pd.DataFrame.from_dict(result, orient='index', columns=[series.name])

Register the JobFunction feature type and assign it to the dataframe
feature_type_manager.feature_type_register(JobFunction)
df['JobFunction'].ads.feature_type = ['job_function', 'category']
df['JobFunction'].ads.feature_stat()

[image: ../../_images/ads_feature_type_EDA_5.png]

 Feature Type Manager

Feature Type Manager

ADS uses custom feature types that define the characteristics of the
feature types. It also uses a set of custom validators and warning
handlers to provide reusable code to provide validation information
for the feature.

The role of the feature type manager is to provide an interface to
manage the custom feature types and various handlers.

import ads
from ads.feature_engineering import feature_type_manager

Custom Feature Types

Custom feature types are created by a data scientist to define a new
feature type that is specific to their data. You do this by creating
a class that inherits from the FeatureType class. This custom
feature type class must be linked to the ADS system for it to be
available for use in ADS. The feature type manager is used to administer
this connection.

List

Calling feature_type_manager.feature_type_registered() gives an
overview of all the registered feature types. The output is a
dataframe with the following columns:

	Class: Registered feature type class.

	Name: Feature type class name.

	Description: Description of each feature type class.

feature_type_manager.feature_type_registered()

[image: ../../_images/ads_feature_type_manager_1.png]

Register

The feature type framework comes with some common feature types.
However, the power of using feature types is that you can easily create
your own, and apply them to your specific data.

To create a custom feature type, you need to create a class that is
inherited from the FeatureType class. The class must be registered
with ADS before you can use it. You do this using the
feature_type_manager.feature_type_register() method passing in the
name of the class.

In the next example, the MyFeatureType custom feature type is created
and registered:

class MyFeatureType(FeatureType):
 description = "This is an example of custom feature type."

feature_type_manager.feature_type_register(MyFeatureType)
feature_type_manager.feature_type_registered()

[image: ../../_images/ads_feature_type_manager_2.png]

Reset

The feature_type_manager.reset() is used to unregister all custom
feature types. The next example registers the MyFeatureType and checks
that it’s there. Then it resets the feature types and checks
that MyFeatureType is not registered.

feature_type_manager.feature_type_register(MyFeatureType)

print("MyFeatureType is registered:" + str('my_feature_type' in feature_type_manager.feature_type_registered()['Name'].unique()))
print("Removing all the custom feature types")
feature_type_manager.feature_type_unregister('my_feature_type')
print("MyFeatureType is registered:" + str('my_feature_type' in feature_type_manager.feature_type_registered()['Name'].unique()))

MyFeatureType is registered:True
Removing all the custom feature types
MyFeatureType is registered:False

Unregister

Custom feature types can be unregistered from ADS using the feature type
name and the feature_type_manager.feature_type_unregister() method.
Built-in feature types can’t be unregistered.

The next example unregisters the MyFeatureType class using the
my_feature_type feature type name . It also displays the list of
registered classes ,and the fact that MyFeatureType was removed.

feature_type_manager.feature_type_unregister('my_feature_type')
feature_type_manager.feature_type_registered()

[image: ../../_images/ads_feature_type_manager_3.png]

Feature Type Object

Feature type objects are derived from the FeatureType class.
Obtaining a feature type object allows access to manipulate the feature
type validators and feature type warnings that are associated with a
given feature type. A feature type object is loaded using the
feature_type_manager.feature_type_object() method and providing the
its feature type name. For example, a PhoneNumber custom feature type class
might have the feature type name phone_number. This feature type is
loaded by following this approach:

PhoneNumber = feature_type_manager.feature_type_object('phone_number')

Feature type validators and warnings register their handlers at the feature
type level. Therefore, feature type objects are used to manage these handlers.

Feature Type Validator

List

The .validator.registered() method returns a dataframe with the validators,
conditions, and feature type validators that are associated with the given
feature type. For example, assume that there is a custom feature type
CreditCard and it has a single validator registered. The next example
demonstrates how to list the validators. It returns a dataframe
with the following columns:

	Name: Method name of the validator.

	Conditions: The conditions that call the handler.

	Handler: Name of the function to perform the validation.
This is the actual handler.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_2.png]

Register

Use the .validator.register() method on a feature type object to
register a handler. A handler can be a default handler, meaning that
there are no conditions on it or a handler with conditions. To register
a default handler, use the following parameters:

	name: The validator name to use to invoke the feature type validator.

	default_handler: The function name of the default feature type validator.

	replace: The flag indicating if the registered handler is replaced with the new one.

To register a handler with conditions use the following parameters:

	name: The validator name that is used to invoke the feature type validator.

	condition: The conditions that call the handler.

	handler: The function name of the feature type validator.

	replace: The flag indicating if the registered handler is replaced with the new one.

The next example obtains the feature type object, CreditCard, and then
it registers the default feature type validator. If one exists with the
same name, it is replaced. A call to
CreditCard.validator_registered() returns the registered handlers
for the credit card feature type.

def is_visa_card_handler(data: pd.Series, *args, **kwargs) -> pd.Series:
 PATTERN = re.compile(_pattern_string, re.VERBOSE)
 def _is_credit_card(x: pd.Series):
 return (
 not pd.isnull(x)
 and PATTERN.match(str(x)) is not None
)
 return data.apply(lambda x: True if _is_credit_card(x) else False)

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_visa_card', handler=is_visa_card_handler)
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_5.png]

Unregister

Use the .validator.unregister() method to remove a feature type validator.
With a default feature type validator, only the name of the validator
is required. To remove a conditional validator, the condition parameter must
be specified with a dictionary or tuple that matches the conditions of the
handler to be removed.

Assume, that there is a CreditCard``custom feature type class with the
feature type name ``is_credit_card and the condition 'card_type'='Visa'.
The next example demonstrates how this validator is removed.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.unregister(name="is_credit_card", condition = {"card_type": "Visa"})

Feature Type Warning

List

The .warning.registered() method returns a dataframe with the name of
a warning and handler. For example, assume that there is a
custom feature type with the feature type name credit_card. The
following example provides information on the warnings that
have been registered with this custom feature type.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_warnings_3.png]

Register

Feature type warnings are registered with the feature type object.
You can assign the same handler to multiple feature types. The
.warning.register() method registers the handler
for the warning. You give it a name for the handler and the handler
function. The optional replace = True parameter overwrites the
handler when the name exists.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.register(name='invalid_credit_card',
 handler=invalid_credit_card_handler,
 replace=True)

Unregister

To remove a feature type warning from a custom feature type use the
.warning.unregister() method. It accepts the name of the feature
type warning. The next code snippet removes the invalid_credit_card
warning from a feature type class that has the feature type name
credit_card.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.unregister('invalid_credit_card')

Feature Type Validator

Feature validators are defined at the feature type object level. The
feature type manager allows you to list all validators
across all feature types. To register, unregister, or list the
validators on a specific feature type, use the feature type object.

List

To list the current feature handlers and their conditions for all
feature types, use the feature_type_manager.validator_registered()
method. It returns a dataframe with the following columns:

	Feature Type: Feature type class name.

	Validator: Validation functions that you can call to validate a Pandas Series.

	Condition: Condition that the handler is registered in.

	Handler: Registered handler.

feature_type_manager.validator_registered()

[image: ../../_images/ads_feature_type_validator_1.png]

Feature Type Warning

Feature warnings are defined at the feature type object level. The
feature type manager allows to list all warnings
across all feature types. To register, unregister, or list the
warnings on a specific feature type, use the feature type object.

List

The feature_type_manager.warning_registered() method returns a
dataframe of registered warnings all registered feature types.
The columns of returned dataframe are:

	Feature Type: Feature type class name.

	Warning: Warning name.

	Handler: Registered warning handler for that feature type.

feature_type_manager.warning_registered()

[image: ../../_images/ads_feature_type_manager_4.png]

 Feature Type Selection

Feature Type Selection

Pandas provide methods to select the columns that you want by using their
column names or positions. However, a common task that data scientists perform
is to select columns that have specific attributes. This is often done by
manually examining the column names and making a list of them. Or by having
attributes encoded to the column name and then creating a search pattern to
return a list.

None of these methods are efficient or robust. The feature type system in ADS
allows you to define feature types on the features. Since you have feature
types assigned to a set of features, the feature type selection allows
you to create a new dataframe with only the columns that have, or don’t have,
specific feature types associated with them.

You can select a subset of columns based on the feature types using the
.feature_select() method. The include parameter defaults to None.
It takes a list of feature types (feature type object or feature type name) to include
in the returned dataframe. The exclude parameter defaults to None. It takes
a list of feature types to exclude from the returned dataframe. You can’t set both
include and exclude to None. A feature type can’t be included or excluded
at the same time.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Attrition', 'TravelForWork', 'JobFunction', 'EducationalLevel'])
df.ads.feature_type = {'Attrition': ['boolean'],
 'TravelForWork': ['category'],
 'JobFunction': ['category'],
 'EducationalLevel': ['category']}

Next, create a dataframe that only has columns that have a Boolean
feature type:

df.ads.feature_select(include=['boolean'])

[image: ../../_images/ads_feature_type_9.png]
You can create a dataframe that excludes columns that have a Boolean
feature type:

df.ads.feature_select(exclude=['boolean'])

[image: ../../_images/ads_feature_type_10.png]

 Feature Type Validator

Feature Type Validator

Overview

One aspect of an exploratory data analysis (EDA) is to ensure that all the
data is valid. For example, you may have credit card data and want to
ensure that all the numbers are valid credit card numbers. The feature
type validators are a way of performing this validation. There are
built-in methods for the feature types that are provided by ADS, but
the idea is for you to create these methods for your custom feature
types.

Feature type validators are defined at the feature type level. You
define functions that are applied to the features.

The feature type validators are a set of .is_*() methods, where
* is generally the name of the feature type. For example, the method
.is_credit_card() could be called to ensure that the data are all
credit card numbers. The feature type validators return a Boolean Pandas
Series, which is the length of the original data. If the element meets the
criteria specified in the feature type validator, it indicates True.
Otherwise, it is False. The .is_*() method is called the
validator.

The feature type validator system is extensible. You can have multiple
validators for any feature type. To continue with the credit card example,
your main validator may be .is_credit_card(). However, other validators
like .is_visa() and .is_mastercard() could be added that
determine if the credit card numbers are associated with Visa or
Mastercard accounts.

You can extend the feature type validator by using
conditions. Conditions allow you to have different sets of feature type
validators based on a set of arguments that you define called
conditions. For example, if you wanted to and see if a credit card
is a Visa card you could create a condition like
.is_credit_card(card_type='Visa'). Then you register a feature
handler with that condition, and it runs when you pass in that condition.

Open and closed are the two types of conditions. A closed condition
requires that parameter and value match for the handler to be dispatched.
An open condition only checks the parameter and not the value and
will dispatch the handler based on that.

Create

The power of the feature type system is that you can quickly create new
feature type validators to validate your data. This is a two-step
process:

	Define a function that acts as the feature type validator.

	Register the feature type validator.

A feature type validator is a function that respects these rules:

	It takes a Pandas Series as the first argument.

	The *args and **kwargs are supported.

	It returns a Boolean series that is the same length as the input
series.

To register your own handler, you need to define the handler, and then
register it to the feature type. If the handler already exists, you don’t
need to create a new one.

In the next example, a new feature type validator,
.is_visa_card_handler(), is created. It checks to see if the credit
card number is issued by Visa by testing each element in the
data parameter. It returns a Boolean series the same length as data.

def is_visa_card_handler(data: pd.Series, *args, **kwargs) -> pd.Series:
 """
 Processes data and indicates if the data matches Visa credit card.

 Parameters

 data: pd.Series
 The data to process.

 Returns

 pd.Series: The logical list indicating if the data matches requirements.
 """
 _pattern_string = r"""
 ^(?:4[0-9]{12}(?:[0-9]{3})? # Visa
 | ^4[0-9]{12}(?:[0-9]{6})?$ # Visa 19 digit
)$
 """
 PATTERN = re.compile(_pattern_string, re.VERBOSE)
 def _is_credit_card(x: pd.Series):
 return (
 not pd.isnull(x)
 and PATTERN.match(str(x)) is not None
)
 return data.apply(lambda x: True if _is_credit_card(x) else False)

Conditions

A condition feature type validator allows you to specify arbitrary parameters
that are passed to the feature type system. The system examines these parameters
and determines which handler is dispatched.

Use the .validator.register() method to register a condition handler.
The condition parameter is used to specify the conditions that must
be met to invoke the handler. Conditions are user-defined
parameters and values that help identify what condition that the
handler is dispatched on.

The three types of condition handlers are open, closed ,and default. A closed
condition handler must match both the condition parameter name and value to
dispatch the handler. An open handler only matches the parameter name. For
example, a closed condition handler could be fruit='peach'.
Where an open condition handler would be dispatched without examination of the
value of fruit. The default condition handler must always exist. There
is one provided by the base class and you can also define a default
condition handler by not providing a condition parameter when
registering a feature type validation handler.

Closed Value

Closed value condition feature types allow you to specify any number of
key-value pairs to a condition handler, and control which
validator is dispatched. However, when calling the handler all of the
key-value pairs must match.

The condition parameter of the .validator.register() method
explicitly defines key-value pairs that are used to determine which handler
to dispatch. In a previous example, the is_visa_card validator
was created to determine if the credit cards were issued by Visa.
You could create the same effect by using a
condition feature type validator on the is_credit_card feature type
handle using explicit key-value pairs. To do this, the condition
parameter accepts a dictionary of key-value pairs where the key is the
parameter name and the dictionary value is the parameter value. For
example,
CreditCard.validator.register(name='is_credit_card', condition={"card_type": "Visa"}, handler=is_visa_card_handler)
links the parameter card_type to the value Visa. If card_type
has any other value, it won’t dispatch the handler.

In the next example, the credit card feature type has a condition handler
registered. It uses the same feature type validator,
is_visa_card_handler, that was used to create the is_visa_card
default feature type validator.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_credit_card', condition={"card_type": "Visa"},
 handler=is_visa_card_handler)
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_6.png]
The next example creates a series of credit card numbers, and uses the
card_type="Visa" parameter when calling the is_credit_card
validator. Notice that only the first two elements are flagged as being
issued by Visa. If the default handler was called, all the returned
values would be True because they are all valid credit card
numbers.

visa = ["4532640527811543", "4556929308150929"]
mastercard = ["5406644374892259", "5440870983256218"]
amex = ["371025944923273", "374745112042294"]
series = pd.Series(visa + mastercard + amex, name='Credit Card')
series.ads.feature_type = ['credit_card']
series.ads.validator.is_credit_card(card_type="Visa")

0 True
1 True
2 False
3 False
4 False
5 False
Name: Credit Card, dtype: bool

The same effect handler can be dispatched using a feature type object.
The following two validator commands are equivalent.

CreditCard = feature_type_manager.feature_type_object('credit_card')
series.ads.validator.is_credit_card(card_type="Visa")
CreditCard.validator.is_credit_card(series, card_type="Visa")

With closed value condition feature type validators, the key and values
must match what was registered. If they don’t, the condition feature
type validator isn’t called. In the next example, the value is set to
Mastercard to cause the default handler to be called:

series.ads.validator.is_credit_card(card_type="Mastercard")

0 True
1 True
2 True
3 True
4 True
5 True
Name: Credit Card, dtype: bool

To register a closed value feature type validator that has multiple
conditions, you use a dictionary with multiple key-value pairs. For
example, to create a condition that checks that the country code is 1
and area code is 902, you could do the following:

PhoneNumber.validator.register(name='is_phone_number',
 condition={"country_code": "1", "area_code": "902"},
 handler=is_1_902_handler)

Default

Each feature type has a default handler that is called when no other
handler can process a request. The process of creating a default
handler is the same as any other type of handler. A feature type
validator function is created. This handler is then registered with
ADS using the feature type object that it is to be applied to along
with a reference to a handle. Unlike the open and closed condition
handlers, the condition parameter is excluded.

The next example obtains the feature type object, CreditCard, and then
registers the default feature type validator. If one exists with the
same name, it’s replaced.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_visa_card', handler=is_visa_card_handler)
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_5.png]

Open Value

Open value condition feature type validators are similar to their closed
value counterparts except the value isn’t used in the matching process.

To register an open value condition feature type validator, the same
process is used as for the closed value condition feature type validator
with the exception that a tuple is used to specify the conditions and no
values are provided. For example,
CreditCard.validator.register(name='is_credit_card', condition=("card_type",), handler=is_any_card_handler).

This example defines a feature type condition handler that accepts the card
type as a parameter name:

def is_any_card_handler(data: pd.Series, card_type: str) -> pd.Series:
 """
 Processes data and indicates if the data matches any credit card

 Parameters

 data: pd.Series
 The data to process.

 Returns

 pd.Series: The logical list indicating if the data matches requirements.
 """

 if card_type == 'Visa':
 _pattern_string = r"""
 ^(?:4[0-9]{12}(?:[0-9]{3})? # Visa
 | ^4[0-9]{12}(?:[0-9]{6})?$ # Visa 19 digit
)$
 """
 elif card_type == 'Mastercard':
 _pattern_string = r"""
 ^5[1-5][0-9]{14}|^(222[1-9]|22[3-9]\\d|2[3-6]\\d{2}|27[0-1]\\d|2720)[0-9]{12}$
 """

 elif card_type == "Amex":
 _pattern_string = r"""
 ^3[47][0-9]{13}$
 """
 else:
 raise ValueError()

 PATTERN = re.compile(_pattern_string, re.VERBOSE)
 def _is_credit_card(x: pd.Series):
 return (
 not pd.isnull(x)
 and PATTERN.match(str(x)) is not None
)
 return data.apply(lambda x: _is_credit_card(x))

The next example registers the open value feature type validator using a
tuple. Notice that values for the card_type parameter aren’t
specified. However, the is_any_card_handler function has a formal
argument for it. The value of the parameter is passed into the handler.
Also, notice the trailing comma to make the parameter in condition a
tuple. This forces Python to make ('card_type',) a tuple. The output
of the example is the currently registered feature type validators.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_credit_card', condition=("card_type",), handler=is_any_card_handler)
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_7.png]
To determine which credit card numbers in the series variable are
issued by Mastercard, pass the parameter card_type="Mastercard" into
the .is_credit_card() feature type validator. The feature type
system examines the parameters, and then dispatches
is_any_card_handler. is_any_card_handler accepts the
card_type parameter, and has logic to detect which numbers are
Mastercard.

visa = ["4532640527811543", "4556929308150929"]
mastercard = ["5406644374892259", "5440870983256218"]
amex = ["371025944923273", "374745112042294"]
series = pd.Series(visa + mastercard + amex, name='Credit Card')
series.ads.feature_type = ['credit_card']
series.ads.validator.is_credit_card(card_type="Mastercard")

0 False
1 False
2 True
3 True
4 False
5 False
Name: Credit Card, dtype: bool

You can use this approach by using the feature type object,
CreditCard. In this example, the values in the variable series
are checked to see if they match American Express credit card numbers:

CreditCard.validator.is_credit_card(series, card_type="Amex")

0 False
1 False
2 False
3 False
4 True
5 True
Name: Credit Card, dtype: bool

To register an open value feature type validator that has multiple
conditions, you would use a tuple with multiple values. For example, if
you wanted to create a condition that would check the country and area
codes of a phone number, you could use the following:

PhoneNumber.validator.register(name='is_phone_number',
 condition=(("country_code", "area_code")),
 handler=is_county_area_handler)

You can’t mix open and closed condition feature type validators.

Disambiguation

A closed condition feature type was created for
'card_type'='Visa'. There is also an open condition feature type
that was created to handle all conditions that specify the card_type
parameter. There appears to be a conflict in that both conditions
support the case of 'card_type'='Visa'. In fact, there is no
conflict. The feature type system determines the most restrictive case
and dispatches it so the is_visa_card_handler handler is called.

CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_8.png]
The next example causes the is_visa_card_handler to be dispatched
because it has the most restrictive set of requirements that match the
parameters given:

series.ads.validator.is_credit_card(card_type="Visa")

0 True
1 True
2 False
3 False
4 False
5 False
Name: Credit Card, dtype: bool

List

There are a number of ways to list the available validators,and their
associated conditions and handlers. The feature type object is used
to list the validators that are associated with a single feature
type. Listing the feature types on a Pandas Series includes all the
validators in the inheritance chain for the feature. When listing
the validators on a dataframe it includes all the validators
used on all the features in the dataframe. Finally, the feature
type manager lists all the validators that have been registered
with ADS.

Dataframe

The .validator_registered() method can be used on a
dataframe to obtain information on the feature type validators that are
associated with the features of the dataframe. The returned information
has the validators for all features. A feature can have
multiple feature types in its inheritance chain. This method reports
on all feature types in this chain. Only features that have validators
associated with it are in the returned dataframe.

The next example loads a sample dataset into a Pandas dataframe, and the
feature types are assigned to these columns. The
.ads.validator_registered() is called on the dataframe. The following columns
are returned:

	Column: The name of the column that the validator is associated with.

	Feature Type: Feature type class name.

	Validator: Validation functions that are called validate a Pandas Series.

	Condition: Condition that the handler is registered in.

	Handler: Registered handler.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Attrition', 'TravelForWork', 'JobFunction', 'EducationalLevel'])
df.ads.feature_type = {'Attrition': ['boolean', 'category'],
 'TravelForWork': ['category'],
 'JobFunction': ['category'],
 'EducationalLevel': ['category']}

df.ads.validator_registered()

[image: ../../_images/ads_feature_type_validator_4.png]

Feature Type Manager

To list all currently registered validator handlers and their conditions
in ADS, use the feature_type_manager.validator_registered() method.
It returns the registered validators in a dataframe format. The columns
in the dataframe are:

	Feature Type: Feature type class name.

	Validator: Validation functions that are can call to validate a Pandas Series.

	Condition: Condition that the handler is registered in.

	Handler: Registered handler.

feature_type_manager.validator_registered()

[image: ../../_images/ads_feature_type_validator_1.png]

Feature Type Object

Each feature type object also has a .validator.registered() method
that returns a dataframe with the validators, conditions, and feature
type validators that are associated with the given feature type.

The next example uses the feature type manager to obtain a
feature type object for a credit card feature type. It then obtains a list of
validators, conditions, and handlers that are associated with the feature type.
The results are returned in a dataframe.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_2.png]

Series

The .validator_registered() method can be used on a Pandas Series by
calling .ads.validator_registered(). A series can have multiple
feature types associated with it. Listing the feature type
validators on a series results in all the validators associated
with all the feature types in the inheritance chain being returned.

The next example creates a series that contains credit card numbers.
The series has its feature type set to credit_card. The call to
series.ads.validator_registered() reports multiple handlers because
the series has multiple feature types associated with it (credit card
and string).

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740"], name='creditcard')
series.ads.feature_type = ['credit_card']
series.ads.validator_registered()

[image: ../../_images/ads_feature_type_validator_3.png]

Using

The goal of the feature type validator is to validate the data against
a set of criteria. You do this using the feature type object
itself or on a Pandas Series.

A feature type validator returns a Pandas Series that has the same length
as the input series. This allows you to determine which specific elements
are valid or not. To create a summary of the results, use the .any()
and .all() methods, and the results of the validator.

Feature Type Object

You can use a feature type object to invoke the feature type validator
on any Pandas Series. This series doesn’t have to have a feature type
associated with it.

The next example creates a Pandas Series. It then uses the feature type
manager to obtain a feature type object to the credit card feature type.
This object is used to call the feature type validator by passing in the
Pandas Series that is to be assessed. In this example, the series is not
assigned the feature type credit_card.

visa = ["4532640527811543", "4556929308150929", "4539944650919740", "4485348152450846", "4556593717607190"]
invalid = [np.nan, None, "", "123", "abc"]
series = pd.Series(visa + invalid)
CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.is_credit_card(series)

0 True
1 True
2 True
3 True
4 True
5 False
6 False
7 False
8 False
9 False
Name: creditcard, dtype: bool

Series

For a Pandas Series, the feature type validator is invoked by using the
name of the validator and any condition arguments that may be required.
To do this, the series object calls .ads.validator followed by a
call to the validator name. For example,
series.ads.validator.is_credit_card(starts_with='4'), where
.is_credit_card() is the validator name and starts_with='4' is
the condition.

The next example creates a Pandas Series that contains a set of valid
credit card numbers along with a set of invalid numbers. This series has
its feature type set to credit_card and invokes the
.is_credit_card() feature type validator.

visa = ["4532640527811543", "4556929308150929", "4539944650919740", "4485348152450846", "4556593717607190"]
invalid = [np.nan, None, "", "123", "abc"]

series = pd.Series(visa + invalid, name='creditcard')
series.ads.feature_type = ['credit_card']
series.ads.validator.is_credit_card()

0 True
1 True
2 True
3 True
4 True
5 False
6 False
7 False
8 False
9 False
Name: creditcard, dtype: bool

A series can have multiple feature types handlers associated with it. In
this example, .is_string() could have also been called.

Registration

Feature type validators are registered with a feature type using the
.validator.register() method on a feature type object. Registration
requires that a non-unique name be given for the validator, along with a
reference to the feature type handler. You can apply optional conditions.

To unregister a feature type validator, use the .validator.unregister()
method on a feature type object. The method requires the name of the
validator. The names of the validators don’t have to be unique. The
optional condition parameter is used to identify which validator is
to be removed. If the condition parameter is used, it must match one
of the open or closed conditions. If the condition parameter is
not specified then the default validator is removed.

Register~~~~~~~~

The feature type validator needs to be registered with the feature
type. You do that using the .validator.register() method, which is
part of the feature type object. The feature type manager is used to
obtain a link to the feature type object.

The .validator.register() method has the following parameters:

	name: The validator name that is used to invoke the feature type validator.

	condition: What conditions are to be applied to when the handler is
called. If the parameter is not given, then a default feature type handler is
created. If the parameter dictionary is then a closed feature type is created.
If the parameter is tuple an open feature type is created.

	handler: The function name of the default feature type validator.

	replace: The flag indicating if the registered handler should be replaced with the new one.

The next example obtains the feature type object, CreditCard, and then
it registers the default feature type validator. If one exists with the
same name, it is replaced. A call to CreditCard.validator_registered()
returns the registered handlers for the credit card feature type.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_visa_card', handler=is_visa_card_handler, replace = True)
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_5.png]

Unregister

Use the .validator.unregister() method to remove a feature type validator.
Condition feature type validators are removed by using the validator as
an accessor. The parameters to .unregister() are a
dictionary for closed condition feature type validators, and
they must match the dictionary that was used to register the handler. With
open condition feature type validators, a tuple is passed
to .validator.unregister(). Again, the tuple must match the tuple that was
used to register the handler.

To remove a default feature type validator, use the feature type object
along with the .validator.unregister() method. The parameter is
the name of the validator. Removing the default feature type validator
also removes any condition feature type validators that are associated
with it.

The next example lists the current feature type validators:

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_9.png]
Remove the closed condition for the case where 'card_type'='Visa' on
the is_credit_card validator as in the next example. Note that the
handler is removed.

CreditCard.validator.unregister(name="is_credit_card", condition = {"card_type": "Visa"})
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_10.png]
Remove the open condition for card_type on the validator
is_credit_card as in the next example. Note that the handler is
removed.

CreditCard.validator.unregister(name="is_credit_card", condition=("card_type",))
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_11.png]
Remove the default feature type validator for is_visa_card as in the
next example. Note that the handler is removed.

CreditCard.validator.unregister(name='is_visa_card')
CreditCard.validator.registered()

[image: ../../_images/ads_feature_type_validator_12.png]

 Feature Type Warnings

Feature Type Warnings

Overview

Part of the exploratory data analysis (EDA) is to check the state or
condition of your data. For example, you may want to ensure that there are
no missing values. With categorical data, you often want to confirm that the
cardinality is low enough for the type of modeling that you are doing.
Since the feature type system is meant to understand the nature of your
data, it is an ideal mechanism to help automate the evaluation of the
data.

Feature type warnings ensure that the data meets quality standards.
Historically, this was a manual process where a data scientist would
interactively code checks on the data, and then this code would be in a
form that would not be reusable for other analyses. The data validation
could have to be reproduced and often it wasn’t exactly the same
leading to differences in reliability on integrity.

The feature type warning infrastructure allows you to code checks on
the data, and then repeat the process each time a new dataset is used.
Since the code is at the feature type level, you can reuse
the feature type warnings across an entire organization’s data. This
allows tests to be complete, thorough, and consistent.

The feature type warning system works across an entire feature. For
example, you can check for the number of missing values, and set a
threshold on what is the permitted upper limit. This can be a count,
percentage, or some other metric. You can also create mechanisms where
you check to ensure that the data has the distribution that is assumed
by the model class that you want to use. For example, linear regression
assumes that the data is normally distributed. So, the feature
type warning might have a Shapiro-Wilk test, and a threshold for what is
an expected value.

Each feature can have as many feature type warnings as you want. Also,
the multiple inheritance nature of the feature type system allows you to
write only the feature type warnings that are relevant for that specific
feature type because the warnings for all feature types in the
inheritance chain are checked. This reduces code duplication, and speeds
up your EDA.

For example, assume that you wish to validate a set of data that
represents the wholesale price of a car. You have the following
inheritance chain, wholesale_price, car_price, USD, and
the default feature type continuous. The wholesale_price might
have a method that ensures that the value is a positive number because
you can’t purchase a car with negative money. The car_price feature
type might have a check to ensure that it is within a reasonable price
range. The USD feature can check the value to make sure that it
represents a valid US dollar amount, and that it isn’t below one cent.
This evaluation is done by registering feature type warnings
handlers with ADS.

Feature type warnings are defined at the feature type level with the
use of feature type warning handlers. These are functions that
accept a Pandas Series and returns a Pandas dataframe ib a specified format.
A feature type warning handler can return any number of warnings and
the dataframes across all the feature type warning handlers are
concatenated together to produce the final dataframe that is returned.

You can create feature type warning handlers and register them
dynamically at run time.

Create

There are two steps to creating a feature type warning. The first is to
write a function that accepts a Pandas Series and returns a carefully
crafted dataframe. If there are no warnings, then the dataframe can be
empty or the handler can return None. The dataframe must have the
following columns:

	Warning: A string that describes the type of warning.

	Message: A human-readable message about the warning.

	Metric: A string that describes what is being measured.

	Value: A real number value associated with the metric.

The next example creates the feature type warning handler,
invalid_credit_card_handler. It assumes that there is a
registered feature type class called CreditCard, and it has a
feature type validator, .is_credit_card(). A feature
type validator accepts a series and returns a logical list of the
same length as the Series. In this case, .is_credit_card()
determines if a credit card number is valid or not. Then
invalid_credit_card_handler computes the number of invalid cards.

If there are any invalid create cards, it return sa dataframe with this
information. If all of the credit cards are valid, it returns None.

If there are any invalid cards, then it creates a row in a
dataframe with the relevant information. If not, it returns None.
When None or an
empty dataframe is returned, then ADS won’t include the results in
the dataframe that summaries the warnings for an entire Series.

def invalid_credit_card_handler(x: pd.Series):
 value = len(x) - CreditCard.validator.is_credit_card(x).sum()
 if value > 0:
 df = pd.DataFrame(columns=['Warning', 'Message', 'Metric', 'Value'])
 df.Value = [value]
 df.Warning = ['invalid credit card count']
 df.Message = [f'{df.Value.values[0]} invalid credit cards']
 df.Metric = ['count']
 return df
 else:
 return None

It’s important when creating the values for the Message column
that they provide sufficient information to data scientist so they
can understand why the warning is being created. It’s generally helpful to
provide information on the possible causes.
When possible, provide details on a solution or information
about where to look to determine the solution.

Generally, a feature type warning performs only a single test and
returns a single row. This is to make managing your code easier and
reduces the complexity of testing. However, there might be times when you
want to return several warnings from the same feature type warning
handler. To do this, append more rows to the dataframe that is returned.
There is no limit to the number of warnings that can be returned.

List

There are several methods to list the registered feature type warnings.
The feature type object is used to list the warnings that are associated
with a single feature type. Listing the feature types on a Pandas Series
includes all the warnings in the inheritance chain. When listing the
warnings on a dataframe it will include all the warnings used on all
the features in the dataframe. Finally, the feature type manager
lists all the warnings that have been registered with ADS.

Dataframe

You can use the warning_registered() method on a dataframe to
obtain a list of warnings, and their handlers that are associated
with the features in the dataframe. Each feature can have multiple
feature types in the inheritance chain, and each feature type can
have multiple feature type warnings associated with it.

When calling warning_registered() on a dataframe, a Pandas
dataframe with the following columns is returned:

	Column: The name of the column that the warning is associated with.

	Feature Type: Feature type class name.

	Warning: The name of the warning.

	Handler: Registered handler.

In the next example, the orcl_attrition dataset is loaded, and the
feature types are assigned to each column. Lastly, the warning_registered()
method is called to produce a list of feature type warnings that are
associated with the features in the dataframe.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples',
 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Age', 'Attrition', 'JobFunction', 'EducationalLevel',
 'EducationField', 'Gender', 'JobRole','MonthlyIncome'])
df.ads.feature_type = {
 'Age': ['integer'],
 'Attrition': ['category'],
 'JobFunction': ['string'],
 'EducationalLevel': ['string'],
 'EducationField': ['string'],
 'Gender': ['string'],
 'JobRole': ['string'],
 'MonthlyIncome': ['integer']}
df.ads.warning_registered()

[image: ../../_images/ads_feature_type_warnings_8.png]

Feature Type Manager

Use the feature type manager to list all the currently registered
feature types warning in ADS. The
feature_type_manager.warning_registered() method is used for this purpose.
It returns a Pandas dataframe.

The feature_type_manager.warning_registered() method shows a dataframe of
registered warnings of each registered feature type. The three columns
of the returned dataframes are:

	Feature Type: Feature Type class name.

	Warning: The name of the warning.

	Handler: Registered warning handler for that feature type.

from ads.feature_engineering import feature_type_manager, Tag
feature_type_manager.warning_registered()

[image: ../../_images/ads_feature_type_warnings_1.png]

Feature Type Object

To obtain a list of feature type warnings that are associated with
a feature type, use the feature type object for a given feature type.
You can obtain a handle to a feature type object using the
feature type name along with a call to
feature_type_manager.feature_type_object().

The next example assumes that a custom
feature type was created with the feature type name 'credit_card. The
code obtains a handle to the feature type object, and gets
a dataframe of warnings associated with this custom feature type.
Notice that there is no inheritance chain associated
with a custom feature type object. The inheritance chain is
associated with a feature itself. The returned dataframe
only has warnings that have been registered for a given
custom feature type.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.registered()

[image: ../../_images/ads_feature_type_warnings_3.png]
The preceding example returns a dataframe with the following
columns:

	Name: The name of the warning.

	Handler: Registered warning handler for that feature type.

Series

A feature can have multiple feature types associated with it through the
multiple inheritance property of a feature. Therefore, calling
the .warning.registered() method on a feature results in a
dataframe that lists all of the warnings associated with each feature
type that is in the inheritance chain.

The dataframe has the following columns:
- Feature Type: Feature type class name.
- Warning: The name of the warning.
- Handler: Registered warning handler for that feature type.

The following example creates a Pandas Series of credit
card data. It assumes there is a custom feature type with the
feature type name credit_card, and that several warnings have
been registered for that feature type. The code then
assigns the custom feature type credit_card, and the default
feature type string to the feature. The inheritance chain
is credit_card and string.

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740"])
series.ads.feature_type = ['credit_card', 'string']
series.ads.warning_registered()

[image: ../../_images/ads_feature_type_warnings_3.png]

Using

The .warning() method runs all the data quality tests on a feature.
It creates a dataframe where each row is the result of a test that
generated warnings. The columns in the dataframe vary depending on
what type of object (dataframe, feature type object, or series) is being used.
The dataframe always contains the warning type, is a
human-readable message that explains the warning, the metric
that generated the warning, and the value of this metric.

Dataframe

The .warning() method on the dataframe shows all of the warnings for
all of the columns in the dataframe. This is a quick way to determine if
the data has conditions that require further investigation.

When .warning() is called on a dataframe, it returns a dataframe with the
following columns.

	Column: The column name of the source dataframe that is associated with the warning.

	Feature Type: The feature type name that generated the warning.

	Warning: A string that describes the type of warning.

	Message: A human-readable message about the warning.

	Metric: A string that describes what is being measured.

	Value: The value associated with the metric.

The next example reads in the orcl_attrition attrition data, and
sets the feature types for each column. The call to df.ads.warning()
causes ADS to run all feature type handlers in each feature. The feature
type handers that run depend on the inheritance chain as each feature
can have multiple feature types associated with it. Each feature type
can have multiple feature type warning handlers. Lastly, it returns a
dataframe that lists the warnings.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples',
 'oracle_data', 'orcl_attrition.csv')
df = pd.read_csv(attrition_path,
 usecols=['Age', 'Attrition', 'JobFunction', 'EducationalLevel',
 'EducationField', 'Gender', 'JobRole','MonthlyIncome'])
df.ads.feature_type = {
 'Age': ['integer'],
 'Attrition': ['category'],
 'JobFunction': ['string'],
 'EducationalLevel': ['string'],
 'EducationField': ['string'],
 'Gender': ['string'],
 'JobRole': ['string'],
 'MonthlyIncome': ['integer']}
df.ads.warning()

[image: ../../_images/ads_feature_type_warnings_9.png]
The MonthlyIncome output generated a warning. Features that
don’t generate any warnings won’t have rows in the returned dataframe.

Feature Type Object

Each feature type object also has a .warning() method that returns a
dataframe with the following columns:

	Warning: A string that describes the type of warning.

	Message: A human-readable message about the warning.

	Metric: A string that describes what is being measured.

	Value: The value associated with the metric.

Since there is no data associated with a feature type object, you must
pass in a Pandas Series. This series doesn’t have to have a feature
type associated with it. If it does, they don’t have to include the
feature type that is represented by the
feature type object. So the feature type object treats the
data as if it had the same feature type as what it represents.

The next example uses the feature type manager to obtain a feature
type object where the feature type name is credit_card. It creates
a Pandas Series, and then generates the warnings.

visa = ["4532640527811543", "4556929308150929", "4539944650919740",
 "4485348152450846", "4556593717607190"]
amex = ["371025944923273", "374745112042294", "340984902710890",
 "375767928645325", "370720852891659"]
invalid = [np.nan, None, "", "123", "abc"]
series = pd.Series(visa + amex + invalid, name='creditcard')
CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning(series)

[image: ../../_images/ads_feature_type_warnings_11.png]

Series

Feature type warnings can be generated by using a Pandas Series and calling
.warning(). It returns the four columns that were previously described
(Warning, Message, Metric, and Value) plus the column
Feature Type, which is the name of the feature type that generated the warning.
Since each feature can have multiple feature types, it’s possible to generate different
feature types warnings.

In the next example, a set of credit card values are used as the dataset.
The feature type is set to credit_card, and the class that is associated with
it has had some warnings registered. The series.ads.warning() command
generates a dataframe with the warnings.

visa = ["4532640527811543", "4556929308150929", "4539944650919740",
 "4485348152450846", "4556593717607190"]
amex = ["371025944923273", "374745112042294", "340984902710890",
 "375767928645325", "370720852891659"]
invalid = [np.nan, None, "", "123", "abc"]
series = pd.Series(visa + amex + invalid, name='creditcard')
series.ads.feature_type = ['credit_card']
series.ads.warning()

[image: ../../_images/ads_feature_type_warnings_2.png]
There are several things to notice about the generated dataframe. While
the feature type was set to credit_card, the dataframe also lists
string in the feature type column. This is because the default
feature type is string so the feature type warning system also ran
the tests for the string feature type.

The tuple (credit_card, missing) reports two warnings. This is
because each warning handler can perform multiple tests, and report
as many warnings as required. You can see this behavior for the (string,
missing) tuple.

In the preceding example, a Pandas Series was directly used. The more common
approach is to generate warnings by accessing a column in a Pandas dataframe.
For example, df['MyColumn'].ads.warning().

Registration

There are two steps to creating a feature type warning. The first is to
write a function that accepts a Pandas Series, and returns a carefully
crafted dataframe. Once you have the feature type warning handler, the
handler must be registered with ADS.

The output from the .warning() method can
vary depending on the class of object that it is being called on
(dataframe, feature type object, or series). However, there is only
one handler for all these methods so the handler only
has to be registered once to work with all variants of
.warning(). The architecture of ADS takes care of the differences
in the output.

To unregister a feature type warning handler, the use the feature type object
along with the feature type name. The .warning.unregister()
performs the unregistration process.

Register

Once a feature type warning handler has been created, you have to register it
with ADS. Register the handler with one or more feature type objects.
This allows you to create a handler, and then reuse that handler
with any appropriate feature type. For example, you could creste a handler
that warns when data has missing values. Assume that you have a
number of feature types that should never have missing values. This
single handler could be applied to each feature type.

The .warning.register() method on a feature type object is used to
assign the handler to it. The name parameter is the human-readable
name that is used to output warnings, and identifies the source of the
warning. It’s also used to identify the warning in operations like
unregistering it. The handler parameter is the name of the feature
type warning handler that you want to register. The optional
replace parameter replaces a handler that exists and has
the same name.

The next example assumes that a custom feature type that has the
feature type name, credit_card, has been created. It also assumes that
the feature type warning handler, invalid_credit_card_handler, has been
defined. It uses the feature_type_manager.feature_type_object()
method to obtain the feature type object. Lastly, the .warning.register()
is called on the feature type object to register the feature type warning
with ADS.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.register(name='invalid_credit_card',
 handler=invalid_credit_card_handler,
 replace=True)

Using the .registered() method in the warning module, you can
see that the invalid_credit_card handler has been registered:

CreditCard.warning.registered()

[image: ../../_images/ads_feature_type_warnings_4.png]

Unregister

You can remove a feature type warning from a feature type by calling
the the .warning.unregister() method on the associated feature type
object. The .unregister() method accepts the name of the feature
type warning.

The next example assumes that there is a feature type with a
feature type name credit_card, and a warning named high_cardinality.
The code removes the high-cardinality warning, and the remaining
feature type warnings are displayed:

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.unregister('high_cardinality')
CreditCard.warning.registered()

[image: ../../_images/ads_feature_type_warnings_6.png]

 Jobs

Jobs

Oracle Cloud Infrastructure (OCI) Data Science jobs enable you to define and run a repeatable
machine learning task on a fully managed infrastructure, such as
data preparation, model training, hyperparameter optimization,
batch inference, and so on.

	Overview

	Data Science Job

	Run a Data Flow Application

	Run a Git Repo

	Run a Notebook

	Run a Script

	Run a ZIP file or folder

 Overview

Overview

Data Science jobs allow you to run customized tasks outside of
a notebook session. You can have Compute on demand and only pay
for the Compute that you need. With jobs, you can run applications
that perform tasks such as data preparation, model training,
hyperparameter tuning, and batch inference. When the task is complete
the compute automatically terminates. You can use the Logging service to capture
output messages.

Using jobs, you can:

	Run machine learning (ML) or data science tasks outside of your
JupyterLab notebook session.

	Operationalize discrete data science and machine learning tasks,
such as reusable runnable operations.

	Automate your MLOps or CI/CD pipeline.

	Run batch or workloads triggered by events or actions.

	Batch, mini batch, or distributed batch job inference.

	In a JupyterLab notebook session, you can launch long running
tasks or computation intensive tasks in a Data Science job to
keep your notebook free for you to continue your work.

Typically, an ML and data science project is a series of steps
including:

	Access

	Explore

	Prepare

	Model

	Train

	Validate

	Deploy

	Test

[image: Machine Learning Project Steps]
After the steps are completed, you can automate the process of data
exploration, model training, deploying, and testing using jobs. A single
change in the data preparation or model training to experiment with
hyperparameter tunings can be run as a job and independently tested.

Data Science jobs consist of two types of resources: job and job run.

Job

A job is a template that describes the task. It contains elements like the
job artifact, which is immutable. It can’t be modified after being
registered as a Data Science job. A job contains information
about the Compute shape, logging configuration, Block Storage, and other
options. You can configure environment variables can be configured that
are used at run-time by the job run. You can also pass in CLI arguments. This
allows a job run to be customized while using the same job as a template.
You can override the environment variable and CLI parameters in job runs.
Only the job artifact is immutable though the settings can be changed.

Job Run

A job run is an instantiation of a job. In each job run, you can override
some of the job configuration. The most common configurations to change
are the environment variables and CLI arguments. You can
use the same job as a template and launch multiple simultaneous job runs
to parallelize a large task. You can also sequence jobs and
keep the state by writing state information to Object Storage.

For example, you could experiment with how different model classes
perform on the same training data by using the ADSTuner to perform
hyperparameter tuning on each model class. You could do this in parallel
by having a different job run for each class of models. For a given job
run, you could pass an environment variable that identifies the model
class that you want to use. Each model cab write its results to the
Logging service or Object Storage. Then you can run a final
sequential job that uses the best model class, and trains the final
model on the entire dataset.

ADS Jobs

ADS jobs API calls separate the job configurations into infrastructure and runtime.
Infrastructure specifies the configurations of the OCI resources and service for running the job.
Runtime specifies the source code and the software environments for running the job.
These two types of infrastructure are supported:
Data Science job [https://docs.oracle.com/en-us/iaas/data-science/using/jobs-about.htm] and
Data Flow [https://docs.oracle.com/en-us/iaas/data-flow/using/home.htm].

 Data Science Job

Data Science Job

This section shows how you can use the ADS jobs APIs to run OCI Data Science jobs.
You can use similar APIs to Run a OCI DataFlow Application.

Before creating a job, ensure that you have policies configured for Data Science resources, see
About Data Science Policies [https://docs.oracle.com/en-us/iaas/data-science/using/policies.htm].

Job Infrastructure

The Data Science job infrastructure is defined by a DataScienceJob instance.
When creating a job, you specify the compartment ID, project ID, subnet ID, Compute shape,
Block Storage size, log group ID, and log ID in the DataScienceJob instance.
For example:

from ads.jobs import DataScienceJob

infrastructure = (
 DataScienceJob()
 .with_compartment_id("<compartment_ocid>")
 .with_project_id("<project_ocid>")
 .with_subnet_id("<subnet_ocid>")
 .with_shape_name("VM.Standard2.1")
 .with_block_storage_size(50)
 .with_log_group_id("<log_group_ocid>")
 .with_log_id("<log_ocid>")
)

If you are using these API calls in a Data Science
Notebook Session [https://docs.oracle.com/en-us/iaas/data-science/using/manage-notebook-sessions.htm],
and you want to use the same infrastructure configurations as the notebook session,
you can initialize the DataScienceJob with only the logging configurations:

from ads.jobs import DataScienceJob

infrastructure = (
 DataScienceJob()
 .with_log_group_id("<log_group_ocid>")
 .with_log_id("<log_ocid>")
)

In some cases, you may want to override the shape and block storage size.
For example, if you are testing your code in a CPU notebook session, but want to run the job in a GPU VM:

from ads.jobs import DataScienceJob

infrastructure = (
 DataScienceJob()
 .with_shape_name("VM.GPU2.1")
 .with_log_group_id("<log_group_ocid>")
 .with_log_id("<log_ocid>")
)

Data Science jobs support the following shapes:

	Shape Name

	Core Count

	Memory (GB)

	VM.Standard2.1

	1

	15

	VM.Standard2.2

	2

	30

	VM.Standard2.4

	4

	60

	VM.Standard2.8

	8

	120

	VM.Standard2.16

	16

	240

	VM.Standard2.24

	24

	320

	VM.GPU2.1

	12

	72

	VM.GPU3.1

	6

	90

	VM.GPU3.2

	12

	180

	VM.GPU3.4

	24

	360

You can get a list of currently supported shapes by calling DataScienceJob.instance_shapes().

Job Logging

In the preceding examples, both the log OCID and corresponding log group OCID
are specified in the DataScienceJob instance.
If your administrator configured the permission for you to search for logging resources,
you can skip specifying the log group OCID because ADS automatically retrieves it.

If you specify only the log group OCID and no log OCID,
a new Log resource is automatically created within the log group to store the logs,
see ADS Logging.

Job Runtime

A job can have different types of runtime depending on the source code you want to run:

	ScriptRuntime allows you to run Python, Bash, and Java scripts from a single source file (.zip or .tar.gz) or code directory, see Run a Script and Run a ZIP file or folder.

	PythonRuntime allows you to run Python code with additional options, including setting a working directory, adding python paths, and copying output files, see Run a ZIP file or folder.

	NotebookRuntime allows you to run a JupyterLab Python notebook, see Run a Notebook.

	GitPythonRuntime allows you to run source code from a Git repository, see Run from Git.

All of these runtime options allow you to configure a Data Science Conda Environment [https://docs.oracle.com/en-us/iaas/data-science/using/conda_understand_environments.htm]
for running your code. For example, to define a python script as a job runtime with a TensorFlow conda environment you could use:

from ads.jobs import ScriptRuntime

runtime = (
 ScriptRuntime()
 .with_source("oci://bucket_name@namespace/path/to/script.py")
 .with_service_conda("tensorflow26_p37_cpu_v2")
)

You can store your source code in a local file path or location supported by
fsspec [https://filesystem-spec.readthedocs.io/en/latest/], including OCI Object Storage.

You can also use a custom conda environment published to OCI Object Storage by passing the uri to the with_custom_conda() method, for example:

runtime = (
 ScriptRuntime()
 .with_source("oci://bucket_name@namespace/path/to/script.py")
 .with_custom_conda("oci://bucket@namespace/conda_pack/pack_name")
)

For more details on custom conda environment, see
Publishing a Conda Environment to an Object Storage Bucket in Your Tenancy [https://docs.oracle.com/en-us/iaas/data-science/using/conda_publishs_object.htm].

You can also configure the environment variables, command line arguments, and free form tags for runtime:

runtime = (
 ScriptRuntime()
 .with_source("oci://bucket_name@namespace/path/to/script.py")
 .with_service_conda("tensorflow26_p37_cpu_v2")
 .with_environment_variable(ENV="value")
 .with_argument("argument", key="value")
 .with_freeform_tag(tag_name="tag_value")
)

With the preceding arguments, the script is started as python script.py argument --key value.

Define a Job

With runtime and infrastructure, you can define a job and give it a name:

from ads.jobs import Job

job = (
 Job(name="<job_display_name>")
 .with_infrastructure(infrastructure)
 .with_runtime(runtime)
)

If the job name is not specified,
a name is generated automatically based on the name of the job artifact and a time stamp.

Alternatively, a job can also be defined with keyword arguments:

job = Job(
 name="<job_display_name>",
 infrastructure=infrastructure,
 runtime=runtime
)

Create and Run a Job

You can call the create() method of a job instance to create a job.
After the job is created, you can call the run() method to create and start a job run.
The run() method returns a DataScienceJobRun.
You can monitor the job run output by calling the watch() method of the DataScienceJobRun instance:

Create a job
job.create()
Run a job, a job run will be created and started
job_run = job.run()
Stream the job run outputs
job_run.watch()

2021-10-28 17:17:58 - Job Run ACCEPTED
2021-10-28 17:18:07 - Job Run ACCEPTED, Infrastructure provisioning.
2021-10-28 17:19:19 - Job Run ACCEPTED, Infrastructure provisioned.
2021-10-28 17:20:48 - Job Run ACCEPTED, Job run bootstrap starting.
2021-10-28 17:23:41 - Job Run ACCEPTED, Job run bootstrap complete. Artifact execution starting.
2021-10-28 17:23:50 - Job Run IN_PROGRESS, Job run artifact execution in progress.
2021-10-28 17:23:50 - <Log Message>
2021-10-28 17:23:50 - <Log Message>
2021-10-28 17:23:50 - ...

Override Default Job Configurations

When you run job.run(), the job is run with the
default configuration. You may want to override this default
configuration with custom variables.
You can specify a custom job run display name, override command line argument,
add additional environment variables, or free form tags as in this example:

job_run = job.run(
 name="<my_job_run_name>",
 args="new_arg --new_key new_val",
 env_var={"new_env": "new_val"},
 freeform_tags={"new_tag": "new_tag_val"}
)

YAML Serialization

A job instance can be serialized to a YAML file by calling to_yaml(), which returns the YAML as a string.
You can easily share the YAML with others, and reload the configurations by calling from_yaml().
The to_yaml() and from_yaml() methods also take an optional uri argument for saving and loading the YAML file.
This argument can be any URI to the file location supported by
fsspec [https://filesystem-spec.readthedocs.io/en/latest/],
including Object Storage. For example:

Save the job configurations to YAML file
job.to_yaml(uri="oci://bucket_name@namespace/path/to/job.yaml")

Load the job configurations from YAML file
job = Job.from_yaml(uri="oci://bucket_name@namespace/path/to/job.yaml")

Save the job configurations to YAML in a string
yaml_string = job.to_yaml()

Load the job configurations from a YAML string
job = Job.from_yaml("""
kind: job
spec:
 infrastructure:
 kind: infrastructure
 ...
"""")

Here is an example of a YAML file representing the job defined in the preceding examples:

kind: job
spec:
 name: <job_display_name>
 infrastructure:
 kind: infrastructure
 type: dataScienceJob
 spec:
 blockStorageSize: 50
 compartmentId: <compartment_ocid>
 displayName: <job_display_name>
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_ocid>
 logId: <log_ocid>
 projectId: <project_ocid>
 shapeName: VM.Standard2.1
 subnetId: <subnet_ocid>
 runtime:
 kind: runtime
 type: script
 spec:
 conda:
 slug: tensorflow26_p37_cpu_v2
 type: service
 scriptPathURI: oci://bucket_name@namespace/path/to/script.py

ADS Job YAML schema

kind:
 required: true
 type: string
 allowed:
 - job
spec:
 required: true
 type: dict
 schema:
 id:
 required: false
 infrastructure:
 required: false
 runtime:
 required: false
 name:
 required: false
 type: string

Data Science Job Infrastructure YAML Schema

kind:
 allowed:
 - "infrastructure"
 required: true
 type: "string"
spec:
 required: true
 schema:
 blockStorageSize:
 default: 50
 min: 50
 required: false
 type: "float"
 compartmentId:
 required: false
 type: "string"
 displayName:
 required: false
 type: "string"
 id:
 required: false
 type: "string"
 jobInfrastructureType:
 default: "STANDALONE"
 required: false
 type: "string"
 jobType:
 allowed:
 - "DEFAULT"
 required: false
 type: "string"
 logGroupId:
 required: false
 type: "string"
 logId:
 required: false
 type: "string"
 projectId:
 required: false
 type: "string"
 shapeName:
 required: false
 type: "string"
 subnetId:
 required: false
 type: "string"
 type: "dict"
type:
 allowed:
 - "dataScienceJob"
 required: true
 type: "string"

 Run a Data Flow Application

Run a Data Flow Application

Oracle Cloud Infrastructure (OCI) Data Flow [https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm]
is a service for creating and running Spark applications. The following examples
demonstrate how to create and run Data Flow applications using ADS.

Python

To create and run a Data Flow application, you must specify a
compartment and a bucket for storing logs under the same
compartment:

compartment_id = "<compartment_id>"
logs_bucket_uri = "<logs_bucket_uri>"

Ensure that you set up the correct policies. For instance, for
Data Flow to access logs bucket, use a policy like:

ALLOW SERVICE dataflow TO READ objects IN tenancy WHERE target.bucket.name='dataflow-logs'

For more information, see the Data Flow documentation [https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#set_up_admin].

Update oci_profile if you’re not using the default:

oci_profile = "DEFAULT"
config_location = "~/.oci/config"
ads.set_auth(auth="api_key", oci_config_location=config_location, profile=oci_profile)

To create a Data Flow application you need two components:

	DataFlow, a subclass of Infrastructure.

	DataFlowRuntime, a subclass of Runtime.

DataFlow stores properties specific to Data Flow service, such as
compartment_id, logs_bucket_uri, and so on.
You can set them using the with_{property} functions:

	with_compartment_id

	with_configuration

	with_driver_shape

	with_executor_shape

	with_language

	with_logs_bucket_uri

	with_metastore_id (doc [https://docs.oracle.com/en-us/iaas/data-flow/using/hive-metastore.htm])

	with_num_executors

	with_spark_version

	with_warehouse_bucket_uri

For more details, see `DataFlow class documentation <https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/ads.jobs.html#module-ads.jobs.builders.infrastructure.dataflow>`__.

DataFlowRuntime stores properties related to the script to be run, such as the path to the script and
CLI arguments. Likewise all properties can be set using with_{property}.
The DataFlowRuntime properties are:

	with_script_uri

	with_script_bucket

	with_archive_uri (doc [https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_data_flow_library.htm#third-party-libraries])

	with_archive_bucket

For more details, see the runtime class documentation [https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/ads.jobs.html#module-ads.jobs.builders.runtimes.python_runtime].

Since service configurations remain mostly unchanged across multiple experiments, a DataFlow
object can be reused and combined with various DataFlowRuntime parameters to
create applications.

In the following “hello-world” example, DataFlow is populated with compartment_id,
driver_shape, executor_shape, and spark_version.
DataFlowRuntime is populated with script_uri and
script_bucket. The script_uri specifies the path to the script. It can be
local or remote (an Object Storage path). If the path is local, then
script_bucket must be specified additionally because Data Flow
requires a script to be available in Object Storage. ADS
performs the upload step for you, as long as you give the bucket name
or the Object Storage path prefix to upload the script. Either can be
given to script_bucket. For example, either
with_script_bucket("<bucket_name>") or
with_script_bucket("oci://<bucket_name>@<namespace>/<prefix>") is
accepted. In the next example, the prefix is given for script_bucket.

from ads.jobs import DataFlow, DataFlowRun, DataFlowRuntime
from uuid import uuid4

with tempfile.TemporaryDirectory() as td:
 with open(os.path.join(td, "script.py"), "w") as f:
 f.write('''
import pyspark

def main():
 print("Hello World")
 print("Spark version is", pyspark.__version__)

if __name__ == "__main__":
 main()
 ''')
 name = f"dataflow-app-{str(uuid4())}"
 dataflow_configs = DataFlow()\
 .with_compartment_id(compartment_id)\
 .with_logs_bucket_uri(logs_bucket_uri)\
 .with_driver_shape("VM.Standard2.1") \
 .with_executor_shape("VM.Standard2.1") \
 .with_spark_version("3.0.2")
 runtime_config = DataFlowRuntime()\
 .with_script_uri(os.path.join(td, "script.py"))\
 .with_script_bucket(script_prefix)
 df = Job(name=name, infrastructure=dataflow_configs, runtime=runtime_config)
 df.create()

To run this application, you could use:

df_run = df.run()

After the run completes, check the stdout log from the application by running:

print(df_run.logs.application.stdout)

You should this in the log:

Hello World
Spark version is 3.0.2

Data Flow supports adding third-party libraries using a ZIP file, usually called archive.zip, see the Data Flow documentation [https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_data_flow_library.htm#third-party-libraries]
about how to create ZIP files. Similar to scripts, you can specify an archive ZIP for a Data Flow application using with_archive_uri.
In the next example, archive_uri is given as an Object Storage location.
archive_uri can also be local so you must specify with_archive_bucket and follow the same rule as with_script_bucket.

from ads.jobs import DataFlow, DataFlowRun, DataFlowRuntime
from uuid import uuid4

with tempfile.TemporaryDirectory() as td:
 with open(os.path.join(td, "script.py"), "w") as f:
 f.write('''
from pyspark.sql import SparkSession
import click

@click.command()
@click.argument("app_name")
@click.option(
 "--limit", "-l", help="max number of row to print", default=10, required=False
)
@click.option("--verbose", "-v", help="print out result in verbose mode", is_flag=True)
def main(app_name, limit, verbose):
 # Create a Spark session
 spark = SparkSession.builder.appName(app_name).getOrCreate()

 # Load a csv file from dataflow public storage
 df = (
 spark.read.format("csv")
 .option("header", "true")
 .option("multiLine", "true")
 .load(
 "oci://oow_2019_dataflow_lab@bigdatadatasciencelarge/usercontent/kaggle_berlin_airbnb_listings_summary.csv"
)
)

 # Create a temp view and do some SQL operations
 df.createOrReplaceTempView("berlin")
 query_result_df = spark.sql(
 """
 SELECT
 city,
 zipcode,
 CONCAT(latitude,',', longitude) AS lat_long
 FROM berlin
 """
).limit(limit)

 # Convert the filtered Spark DataFrame into JSON format
 # Note: we are writing to the spark stdout log so that we can retrieve the log later at the end of the notebook.
 if verbose:
 rows = query_result_df.toJSON().collect()
 for i, row in enumerate(rows):
 print(f"record {i}")
 print(row)

if __name__ == "__main__":
 main()
 ''')

 name = f"dataflow-app-{str(uuid4())}"
 dataflow_configs = DataFlow()\
 .with_compartment_id(compartment_id)\
 .with_logs_bucket_uri(logs_bucket_uri)\
 .with_driver_shape("VM.Standard2.1") \
 .with_executor_shape("VM.Standard2.1") \
 .with_spark_version("3.0.2")
 runtime_config = DataFlowRuntime()\
 .with_script_uri(os.path.join(td, "script.py"))\
 .with_script_bucket("oci://<bucket>@<namespace>/prefix/path") \
 .with_archive_uri("oci://<bucket>@<namespace>/prefix/archive.zip")
 df = Job(name=name, infrastructure=dataflow_configs, runtime=runtime_config)
 df.create()

You can pass arguments to a Data Flow run as a list of strings:

df_run = df.run(args=["run-test", "-v", "-l", "5"])

You can save the application specification into a YAML file for future
reuse. You could also use the json format.

print(df.to_yaml("sample-df.yaml"))

You can also load a Data Flow application directly from the YAML file saved in the
previous example:

df2 = Job.from_yaml(uri="sample-df.yaml")

Creating a new job and a run:

df_run2 = df2.create().run()

Deleting a job cancels associated runs:

df2.delete()
df_run2.status

You can also load a Data Flow application from an OCID:

df3 = Job.from_dataflow_job(df.id)

Creating a run under the same application:

df_run3 = df3.run()

Now there are 2 runs under the df application:

assert len(df.run_list()) == 2

When you run a Data Flow application, a DataFlowRun object is created.
You can check the status, wait for a run to finish, check its logs
afterwards, or cancel a run in progress. For example:

df_run.status
df_run.wait()

watch is an alias of wait, so you can also call df_run.watch().

There are three types of logs for a run:

	application log

	driver log

	executor log

Each log consists of stdout and stderr. For example, to access stdout
from application log, you could use:

df_run.logs.application.stdout

Then you could check it with:

df_run.logs.application.stderr
df_run.logs.executor.stdout
df_run.logs.executor.stderr

You can also examine head or tail of the log, or download it to a local path. For example,

log = df_run.logs.application.stdout
log.head(n=1)
log.tail(n=1)
log.download(<local-path>)

For the sample script, the log prints first five rows of a sample dataframe in JSON
and it looks like:

record 0
{"city":"Berlin","zipcode":"10119","lat_long":"52.53453732241747,13.402556926822387"}
record 1
{"city":"Berlin","zipcode":"10437","lat_long":"52.54851279221664,13.404552826587466"}
record 2
{"city":"Berlin","zipcode":"10405","lat_long":"52.534996191586714,13.417578665333295"}
record 3
{"city":"Berlin","zipcode":"10777","lat_long":"52.498854933130026,13.34906453348717"}
record 4
{"city":"Berlin","zipcode":"10437","lat_long":"52.5431572633131,13.415091104515707"}

Calling log.head(n=1) returns this:

'record 0'

Calling log.tail(n=1) returns this:

{"city":"Berlin","zipcode":"10437","lat_long":"52.5431572633131,13.415091104515707"}

A link to run the page in the OCI Console is given using the run_details_link
property:

df_run.run_details_link

To list Data Flow applications, a compartment id must be given
with any optional filtering criteria. For example, you can filter by
name of the application:

Job.dataflow_job(compartment_id=compartment_id, display_name=name)

YAML

You can create a Data Flow job directly from a YAML string. You can pass a YAML string
into the Job.from_yaml() function to build a Data Flow job:

kind: job
spec:
 id: <dataflow_app_ocid>
 infrastructure:
 kind: infrastructure
 spec:
 compartmentId: <compartment_id>
 driverShape: VM.Standard2.1
 executorShape: VM.Standard2.1
 id: <dataflow_app_ocid>
 language: PYTHON
 logsBucketUri: <logs_bucket_uri>
 numExecutors: 1
 sparkVersion: 2.4.4
 type: dataFlow
 name: dataflow_app_name
 runtime:
 kind: runtime
 spec:
 scriptBucket: bucket_name
 scriptPathURI: oci://<bucket_name>@<namespace>/<prefix>
 type: dataFlow

Data Flow Infrastructure YAML Schema

kind:
 allowed:
 - infrastructure
 required: true
 type: string
spec:
 required: true
 type: dict
 schema:
 compartmentId:
 required: false
 type: string
 displayName:
 required: false
 type: string
 driverShape:
 required: false
 type: string
 executorShape:
 required: false
 type: string
 id:
 required: false
 type: string
 language:
 required: false
 type: string
 logsBucketUri:
 required: false
 type: string
 metastoreId:
 required: false
 type: string
 numExecutors:
 required: false
 type: integer
 sparkVersion:
 required: false
 type: string
type:
 allowed:
 - dataFlow
 required: true
 type: string

Data Flow Runtime YAML Schema

kind:
 allowed:
 - runtime
 required: true
 type: string
spec:
 required: true
 type: dict
 schema:
 archiveBucket:
 required: false
 type: string
 archiveUri:
 required: false
 type: string
 args:
 nullable: true
 required: false
 schema:
 type: string
 type: list
 conda:
 nullable: false
 required: false
 type: dict
 schema:
 slug:
 required: true
 type: string
 type:
 allowed:
 - service
 required: true
 type: string
 env:
 type: list
 required: false
 schema:
 type: dict
 freeform_tag:
 required: false
 type: dict
 scriptBucket:
 required: false
 type: string
 scriptPathURI:
 required: false
 type: string
type:
 allowed:
 - dataFlow
 required: true
 type: string

 Run a Git Repo

Run a Git Repo

The ADS GitPythonRuntime class allows you to run source code from a Git
repository as a Data Science job. The next example shows how to run a
Pytorch Neural Network Example to train third order polynomial predicting y=sin(x) [https://github.com/pytorch/tutorials/blob/master/beginner_source/examples_nn/polynomial_nn.py].

To configure the GitPythonRuntime, you must specify the source
code url and entrypoint path. Similar to PythonRuntime,
you can specify a service conda environment, environment variables, and
CLI arguments. In this example, the pytorch19_p37_gpu_v1 service
conda environment is used.
Assuming you are running this example in an Data Science notebook session,
only log ID and log group ID need to be configured for the DataScienceJob object,
see Data Science Jobs for more details about configuring the infrastructure.

Python

from ads.jobs import Job, DataScienceJob, GitPythonRuntime

infrastructure = (
 DataScienceJob()
 .with_log_id(<"log_id">)
 .with_log_group_id(<"log_group_id">)
)

runtime = (
 GitPythonRuntime()
 .with_source("https://github.com/pytorch/tutorials.git")
 .with_entrypoint("beginner_source/examples_nn/polynomial_nn.py")
 .with_service_conda("pytorch19_p37_gpu_v1")
)

The default branch from the Git repository is used
unless you specify a different branch or
commit using the .with_source() method if needed.

For a public repository, we recommend the “http://” or “https://” URL.
Authentication may be required for the SSH URL even if the repository is
public.

To use a private repository, you must first save an SSH key
to an OCI Vault [https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Concepts/keyoverview.htm]
as a secret, and provide the secret_ocid to the with_source()
method, see Managing Secret with
Vault [https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingsecrets.htm].
For example, you could use GitHub Deploy
Key [https://docs.github.com/en/developers/overview/managing-deploy-keys#deploy-keys].

The entry point specifies how the source code is invoked.
The .with_entrypiont() has the following arguments:

	path: Required. The relative path for the script, module, or file to start the job.

	func: Optional. The function in the script specified by path to call. If you don’t specify it, then the script specified by path is run as a Python script in a subprocess.

With the GitPythonRuntime class, you can save the output files from
the job run to Object Storage. By default, the source code is cloned to
the ~/Code directory. However, in the next example the files in the example_nn
directory are copied to the Object Storage specified by the output_uri
parameter. The output_uri parameter should have this format:

oci://BUCKET_NAME@BUCKET_NAMESPACE/PREFIX

runtime.with_output(
 output_dir="~/Code/tutorials/beginner_source/examples_nn",
 output_uri="oci://BUCKET_NAME@BUCKET_NAMESPACE/PREFIX"
)

job = (
 Job(name="git_example")
 .with_infrastructure(infrastructure)
 .with_runtime(runtime)
).create()

After the job is created, you can run it, and then monitor the job run
using the .watch() API:

run = job.run().watch()

The GitPythonRuntime also supports these additional configurations:

	The .with_python_path() method allows you to add additional Python paths
to the runtime. By default, the code directory checked out from Git is added
to sys.path. Additional Python paths are appended
before the code directory is appended.

	The .with_argument() method allows you to pass arguments to invoke the
script or function. For running a script, the arguments are passed in as
CLI arguments. For running a function, the list
and dict JSON serializable objects are supported and are passed into the function.

For example:

runtime = (
 GitPythonRuntime()
 .with_source("YOUR_GIT_URL")
 .with_entrypoint(path="YOUR_MODULE_PATH", func="YOUR_FUNCTION")
 .with_service_conda("pytorch19_p37_gpu_v1")
 .with_argument("val", ["a", "b"], key=dict(k="v"))
)

The GitPythonRuntime method updates metadata in the free form tags of the
job run after the job run finishes. The following tags are added
automatically:

	repo: The URL of the Git repository.

	commit: The Git commit ID.

	module: The entry script or module.

	method: The entry function or method.

	outputs: The prefix of the output files in Object Storage.

The new values overwrite any existing tags. If you want to
skip the metadata update, set skip_metadata_update to True when
initializing the runtime:

runtime = GitPythonRuntime(skip_metadata_update=True)

YAML

You could create the preceding example job with the following YAML file:

kind: job
spec:
 infrastructure:
 kind: infrastructure
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log_id>
 type: dataScienceJob
 name: git_example
 runtime:
 kind: runtime
 spec:
 conda:
 slug: pytorch19_p37_gpu_v1
 type: service
 entrypoint: beginner_source/examples_nn/polynomial_nn.py
 outputDir: ~/Code/tutorials/beginner_source/examples_nn
 outputUri: oci://BUCKET_NAME@BUCKET_NAMESPACE/PREFIX
 url: https://github.com/pytorch/tutorials.git
 type: gitPython

GitPythonRuntime YAML Schema

kind:
 allowed:
 - runtime
 required: true
 type: string
spec:
 required: true
 schema:
 args:
 nullable: true
 required: false
 schema:
 type: string
 type: list
 branch:
 nullable: true
 required: false
 type: string
 commit:
 nullable: true
 required: false
 type: string
 codeDir:
 required: false
 type: string
 conda:
 nullable: false
 required: false
 schema:
 slug:
 required: true
 type: string
 type:
 allowed:
 - service
 required: true
 type: string
 type: dict
 entryFunction:
 nullable: true
 required: false
 type: string
 pythonPath:
 nullable: true
 required: false
 type: list
 entrypoint:
 required: false
 type:
 - string
 - list
 env:
 required: false
 schema:
 type: dict
 type: list
 freeform_tag:
 required: false
 type: dict
 outputDir:
 required: false
 type: string
 outputUri:
 required: false
 type: string
 url:
 required: false
 type: string
 type: dict
type:
 allowed:
 - gitPython
 required: true
 type: string

 Run a Notebook

Run a Notebook

In some cases, you may want to run an existing JupyterLab notebook as a
job. You can do this using the NotebookRuntime() object.

The next example show you how to run an the
TensorFlow 2 quick start for beginner [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/quickstart/beginner.ipynb]
notebook from the internet and save the results to OCI Object Storage. The notebook path points to the raw file link from GitHub.
To run the following example, ensure that you have internet access to retrieve the notebook:

Python

from ads.jobs import Job, DataScienceJob, NotebookRuntime

job = (
 Job()
 .with_infrastructure(
 DataScienceJob()
 .with_log_id("<log_id>")
 .with_log_group_id("<log_group_id>")
)
 .with_runtime(
 NotebookRuntime()
 .with_notebook(path="https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/customization/basics.ipynb")
 .with_service_conda(tensorflow26_p37_cpu_v2")
 .with_output("oci://bucket_name@namespace/path/to/dir")
)

job.create()
run = job.run().watch()

After the notebook finishes running, the notebook with results are saved to oci://bucket_name@namespace/path/to/dir.
You can download the output by calling the download() method.

run.download("/path/to/local/dir")

The NotebookRuntime also allows you to use exclusion tags, which lets you exclude cells
from a job run. For example, you could use these tags to do exploratory
data analysis, and then train and evaluate your model in a notebook. Then
you could use that same notebook to only build future models that are trained on a
different dataset. So the job run only has to execute the cells that are
related to training the model, and not the exploratory data analysis or
model evaluation.

You tag the cells in the notebook, and then specify the tags using the .with_exclude_tag()
method. Cells with any matching tags are excluded from the job run.
For example, if you tagged cells with ignore and remove,
you can pass in a list of the two tags to the method and those cells are
excluded from the code that is executed as part of the job run. To tag cells
in a notebook, see Adding tags using notebook interfaces [https://jupyterbook.org/content/metadata.html#adding-tags-using-notebook-interfaces].

job.with_runtime(
 NotebookRuntime()
 .with_notebook("path/to/notebook")
 .with_exclude_tag(["ignore", "remove"])
)

YAML

You could use the following YAML to create the same job:

kind: job
spec:
 infrastructure:
 kind: infrastructure
type: dataScienceJob
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log.id>
 runtime:
 kind: runtime
type: notebook
 spec:
 conda:
 slug: tensorflow26_p37_cpu_v1
 type: service
 notebookPathURI: /path/to/notebook

NotebookRuntime Schema

kind:
 allowed:
 - runtime
 required: true
 type: string
spec:
 type: dict
 required: true
 schema:
 args:
 nullable: true
 required: false
 schema:
 type: string
 type: list
 conda:
 nullable: false
 required: false
 schema:
 slug:
 required: true
 type: string
 type:
 allowed:
 - service
 required: true
 type: string
 type: dict
 env:
 required: false
 schema:
 type: dict
 type: list
 excludeTags:
 required: false
 type: list
 freeform_tag:
 required: false
 type: dict
 notebookPathURI:
 required: false
 type: string
 outputUri:
 required: false
 type: string
type:
 allowed:
 - notebook
 required: true
 type: string

 Run a Script

Run a Script

This example shows you how to create a job running “Hello World” Python scripts.
Although Python scripts are used here, you could also run Bash or Shell scripts.
The Logging service log and log group are defined in the infrastructure.
The output of the script appear in the logs.

Python

Suppose you would like to run the following “Hello World” python script named job_script.py.

print("Hello World")

First, initiate a job with a job name:

from ads.jobs import Job
job = Job(name="Job Name")

Next, you specify the desired infrastructure to run the job. If
you are in a notebook session, ADS can automatically fetch the
infrastructure configurations and use them for the job. If you aren’t
in a notebook session or you want to customize the infrastructure,
you can specify them using the methods from the DataScienceJob class:

from ads.jobs import DataScienceJob

job.with_infrastructure(
 DataScienceJob()
 .with_log_id("<log_id>")
 .with_log_group_id("<log_group_id>")
)

In this example, it is a Python script so the ScriptRuntime() class is used to define the
name of the script using the .with_source() method:

from ads.jobs import ScriptRuntime
job.with_runtime(
 ScriptRuntime().with_source("job_script.py")
)

Finally, you create and run the job, which gives you access to the
job_run.id:

job.create()
job_run = job.run()

Additionally, you can acquire the job run using the OCID:

from ads.jobs import DataScienceJobRun
job_run = DataScienceJobRun.from_ocid(job_run.id)

The .watch() method is useful to monitor the progress of the job run:

job_run.watch()

After the job has been created and runs successfully, you can find
the output of the script in the logs if you configured logging.

YAML

You could also initialize a job directly from a YAML string.
For example, to create a job identical to the preceding example, you
could simply run the following:

job = Job.from_string(f"""
kind: job
spec:
 infrastructure:
 kind: infrastructure
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log_id>
 type: dataScienceJob
 name: <resource_name>
 runtime:
 kind: runtime
 spec:
 scriptPathURI: job_script.py
 type: python
""")

Command Line Arguments

If the Python script that you want to run as a job requires CLI arguments,
use the .with_argument() method to pass the arguments to the job.

Python

Suppose you want to run the following python script named job_script_argument.py:

import sys
print("Hello " + str(sys.argv[1]) + " and " + str(sys.argv[2]))

This example runs a job with CLI arguments:

job = Job()
job.with_infrastructure(
 DataScienceJob()
 .with_log_id("<log_id>")
 .with_log_group_id("<log_group_id>")
)

The CLI argument can be passed in using `with_argument` when defining the runtime
job.with_runtime(
 ScriptRuntime()
 .with_source("job_script_argument.py")
 .with_argument("<first_argument>", "<second_argument>")
)

job.create()
job_run = job.run()

After the job run is created and run, you can use the .watch() method to monitor
its progress:

job_run.watch()

This job run prints out Hello <first_argument> and <second_argument>.

YAML

You can define a job with a YAML string. In order to define a job identical
to the preceding job, you could use the following before running job.create() and job.run():

job = Job.from_yaml(f"""
kind: job
spec:
 infrastructure:
 kind: infrastructure
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log_id>
 type: dataScienceJob
 runtime:
 kind: runtime
 spec:
 args:
 - <first_argument>
 - <second_argument>
 scriptPathURI: job_script_argument.py
 type: python
""")

Environment Variables

Similarly, if the script you want to run requires environment
variables, you also pass them in using the
.with_environment_variable() method. The key-value pair of the environment
variable are passed in using the .with_environment_variable() method,
and are accessed in the Python script using the os.environ dictionary.

Python

Suppose you want to run the following python script named job_script_env.py:

import os
import sys
print("Hello " + os.environ["KEY1"] + " and " + os.environ["KEY2"])""")

This example runs a job with environment variables:

job = Job()
job.with_infrastructure(
 DataScienceJob()
 .with_log_group_id(<"log_group_id">)
 .with_log_id(<"log_id">)
)

job.with_runtime(
 ScriptRuntime()
 .with_source("job_script_env.py")
 .with_environment_variable(KEY1="<first_value>", KEY2="<second_value>")
)
job.create()
job_run = job.run()

You can watch the progress of the job run using the .watch() method:

job_run.watch()

This job run print sout Hello <first_value> and <second_value>.

YAML

The next example shows the equivalent way to create a job from a YAML string:

job = Job.from_yaml(f"""
kind: job
spec:
 infrastructure:
 kind: infrastructure
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log_id>
 type: dataScienceJob
 name: null
 runtime:
 kind: runtime
 spec:
 env:
 - name: KEY1
 value: <first_value>
 - name: KEY2
 value: <second_value>
 scriptPathURI: job_script_env.py
 type: python
""")

ScriptRuntime YAML Schema

kind:
 allowed:
 - runtime
 required: true
 type: string
spec:
 required: true
 schema:
 args:
 nullable: true
 required: false
 schema:
 type: string
 type: list
 conda:
 nullable: false
 required: false
 schema:
 slug:
 required: true
 type: string
 type:
 allowed:
 - service
 required: true
 type: string
 type: dict
 env:
 required: false
 schema:
 type: dict
 type: list
 freeform_tag:
 required: false
 type: dict
 scriptPathURI:
 required: true
 type: string
 entrypoint:
 required: false
 type: string
 type: dict
type:
 allowed:
 - script
 required: true
 type: string

 Run a ZIP file or folder

Run a ZIP file or folder

ScriptRuntime

The ScriptRuntime class is designed for you to define job artifacts and configurations supported by OCI Data Science jobs natively.
It can be used with any script types that is supported by the OCI Data Science jobs, including a ZIP or compressed tar file or folder.
See Preparing Job Artifacts [https://docs.oracle.com/en-us/iaas/data-science/using/jobs-artifact.htm] for more details.
In the job run, the working directory is the user’s home directory. For example /home/datascience.

Python

If you are in a notebook session, ADS can automatically fetch the
infrastructure configurations, and use them in the job. If you aren’t
in a notebook session or you want to customize the infrastructure,
you can specify them using the methods in the DataScienceJob class.

With the ScriptRuntime, you can pass in a path to a ZIP file or directory.
For a ZIP file, the path can be any URI supported by
fsspec [https://filesystem-spec.readthedocs.io/en/latest/],
including OCI Object Storage.

You must specify the entrypoint, which is the relative path from the ZIP file or
directory to the script starting your program. Note that the entrypoint contains the
name of the directory, since the directory itself is also zipped as the job artifact.

from ads.jobs import Job, DataScienceJob, ScriptRuntime

job = (
 Job()
 .with_infrastructure(
 DataScienceJob()
 .with_log_id("<log_id>")
 .with_log_group_id("<log_group_id>")
)
 .with_runtime(
 ScriptRuntime()
 .with_source("path/to/zip_or_dir", entrypoint="zip_or_dir/main.py")
 .with_service_conda("pytorch19_p37_cpu_v1")
)
)

Create the job with OCI
job.create()
Run the job and stream the outputs
job_run = job.run().watch()

YAML

You could use the following YAML example to create the same job with ScriptRuntime:

kind: job
spec:
 infrastructure:
 kind: infrastructure
 type: dataScienceJob
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log_id>
 runtime:
 kind: runtime
 type: script
 spec:
 conda:
 slug: pytorch19_p37_cpu_v1
 type: service
 entrypoint: zip_or_dir/main.py
 scriptPathURI: path/to/zip_or_dir

PythonRuntime

The PythonRuntime class allows you to run Python code with ADS enhanced features like configuring the working directory and Python path.
It also allows you to copy the output files to OCI Object Storage. This is especially useful for Python code involving multiple files and packages in the job artifact.

The PythonRuntime uses an ADS generated driver script as the entry point for the job run. It performs additional
operations before and after invoking your code. You can examine the driver script by downloading the job artifact from the OCI Console.

Python

Relative to ScriptRunTime the PythonRuntime has 3 additional methods:

	.with_working_dir(): Specify the working directory to use when running a job. By default, the working directory is also added to the Python paths. This should be a relative path from the parent of the job artifact directory.

	.with_python_path(): Add one or more Python paths to use when running a job. The paths should be relative paths from the working directory.

	.with_output(): Specify the output directory and a remote URI (for example, an OCI Object Storage URI) in the job run. Files in the output directory are copied to the remote output URI after the job run finishes successfully.

Following is an example of creating a job with PythonRuntime:

from ads.jobs import Job, DataScienceJOb, PythonRuntime

job = (
 Job()
 .with_infrastructure(
 DataScienceJob()
 .with_log_id(<"log_id">)
 .with_log_group_id(<"log_group_id">)
)
 .with_runtime(
 PythonRuntime()
 .with_service_conda("pytorch19_p37_cpu_v1")
 # The job artifact directory is named "zip_or_dir"
 .with_source("local/path/to/zip_or_dir", entrypoint="zip_or_dir/my_package/entry.py")
 # Change the working directory to be inside the job artifact directory
 # Working directory a relative path from the parent of the job artifact directory
 # Working directory is also added to Python paths
 .with_working_dir("zip_or_dir")
 # Add an additional Python path
 # The "my_python_packages" folder is under "zip_or_dir" (working directory)
 .with_python_path("my_python_packages")
 # Files in "output" directory will be copied to OCI object storage once the job finishes
 # Here we assume "output" is a folder under "zip_or_dir" (working directory)
 .with_output("output", "oci://bucket_name@namespace/path/to/dir")
)
)

YAML

You could use the following YAML to create the same job with PythonRuntime:

kind: job
spec:
 infrastructure:
 kind: infrastructure
 type: dataScienceJob
 spec:
 jobInfrastructureType: STANDALONE
 jobType: DEFAULT
 logGroupId: <log_group_id>
 logId: <log_id>
 runtime:
 kind: runtime
 type: python
 spec:
 conda:
 slug: pytorch19_p37_cpu_v1
 type: service
 entrypoint: zip_or_dir/my_package/entry.py
 scriptPathURI: path/to/zip_or_dir
 workingDir: zip_or_dir
 outputDir: zip_or_dir/output
 outputUri: oci://bucket_name@namespace/path/to/dir
 pythonPath:
 - "zip_or_dir/python_path"

PythonRuntime YAML Schema

kind:
 allowed:
 - runtime
 required: true
 type: string
spec:
 required: true
 schema:
 args:
 nullable: true
 required: false
 schema:
 type: string
 type: list
 conda:
 nullable: false
 required: false
 schema:
 slug:
 required: true
 type: string
 type:
 allowed:
 - service
 required: true
 type: string
 type: dict
 env:
 required: false
 schema:
 type: dict
 type: list
 freeform_tag:
 required: false
 type: dict
 scriptPathURI:
 required: true
 type: string
 entrypoint:
 required: false
 type: string
 outputDir:
 required: false
 type: string
 outputUri:
 required: false
 type: string
 workingDir:
 required: false
 type: string
 pythonPath:
 required: false
 type: list
 type: dict
type:
 allowed:
 - script
 required: true
 type: string

 Loading Data

Loading Data

	Connecting to Data Sources

	Connecting to Data Sources With Legacy DatasetFactory

	Various Format Types with Legacy DatasetFactory

	Specify Data Types

	Supported Formats

 Connecting to Data Sources

Connecting to Data Sources

You can load data into ADS in several different ways from Oracle Cloud Infrastructure Object Storage, cx_Oracle, or S3. Following are some examples.

Begin by loading the required libraries and modules:

import ads
import numpy as np
import pandas as pd
from ads.common.auth import default_signer

Object Storage

To load a dataframe from Object Storage using the API keys, you can use the following example, replacing the angle bracketed content with the location and name of your file:

ads.set_auth(auth="api_key", oci_config_location="~/.oci/config", profile="DEFAULT")
bucket_name = <bucket-name>
file_name = <file-name>
namespace = <namespace>
df = pd.read_csv(f"oci://{bucket_name}@{namespace}/{file_name}", storage_options=default_signer())

For a list of pandas functions to read different file format, please refer to the Pandas documentation [https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html].

To load a dataframe from Object Storage using the resource principal method, you can use the following example, replacing the angle bracketed content with the location and name of your file:

ads.set_auth(auth='resource_principal')
bucket_name = <bucket-name>
file_name = <file-name>
namespace = <namespace>
df = pd.read_csv(f"oci://{bucket_name}@{namespace}/{file_name}", storage_options=default_signer())

Local Storage

To load a dataframe from a local source, use functions from pandas directly:

df = pd.read_csv("/path/to/data.data")

Oracle Database

[image: cx_Oracle Logo]
When using the Oracle ADB [https://www.oracle.com/database/] with Python the most common representation of tabular data is a Pandas dataframe [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html]. When you’re in a dataframe, you can perform many operations from visualization to persisting in a variety of formats.

Oracle ADB to Pandas

The Pandas read_sql(...) function is a general, database independent approach that uses the SQLAlchemy - Object Relational Mapper [https://www.sqlalchemy.org/] to arbitrate between specific database types and Pandas.

Read SQL query or database table into a dataframe.

This function is a convenience wrapper around read_sql_table and read_sql_query (for backward compatibility). It delegates to the specific function depending on the provided input. A SQL query is routed to read_sql_query, while a database table name is routed to read_sql_table.

ADS (2.3.1+) (found in the “Data Exploration and Manipulation for CPU V2”conda environment) recommends using the ADS provided drop-in alternative. This can be up to 15 times faster than Pandas.read_sql() because it bypasses the ORM, and is written to take advantage of being specific for the Oracle ADB.

Use the Pandas ADS accessor drop-in replacement, pd.DataFrame.ads.read_sql(...), instead of using pd.read_sql.

Example

connection_parameters = {
 "user_name": "<username>",
 "password": "<password>",
 "service_name": "<service_name_{high|med|low}>",
 "wallet_location": "/full/path/to/my_wallet.zip",
}
import pandas as pd
import ads

simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
 "SELECT * FROM SH.SALES",
 connection_parameters=connection_parameters,
)

read of a SQL query into a dataframe with a bind variable. Use bind variables
rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(
 """
 SELECT
 *
 FROM
 SH.SALES
 WHERE
 ROWNUM <= :max_rows
 """,
 bind_variables={
 max_rows : 100
 }
 ,
 connection_parameters=connection_parameters,
)

Oracle Database to Pandas (Connecting Without Wallet File)

Available with ADS v2.5.6 and greater

If your database connection doesn’t require a wallet file, you can connect to the database by specifying host/port/sid/service name.

Example

connection_parameters = {
 "user_name": "<username>",
 "password": "<password>",
 "service_name": "<service_name>",
 "host": "<database host name>",
 "port": "<database port number>""
}
import pandas as pd
import ads

simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
 "SELECT * FROM SH.SALES",
 connection_parameters=connection_parameters,
)

read of a SQL query into a dataframe with a bind variable. Use bind variables
rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(
 """
 SELECT
 *
 FROM
 SH.SALES
 WHERE
 ROWNUM <= :max_rows
 """,
 bind_variables={
 max_rows : 100
 }
 ,
 connection_parameters=connection_parameters,
)

Performance

The performance is limited by three things:

	Generational latency: How long the database takes to return rows, use of indexes and writing efficient SQL mitigates this performance bottleneck.

	Network saturation: Once the network is saturated, data can’t be delivered between the database and notebook environment any faster. OCI networking is very fast and this isn’t usually a concern. One exception is when the network path goes over VPN or other more complex routing topologies.

	CPU latency in the notebook: Python has to collect the byte stream delivered by the database into Python data types before being promoted to Numpy objects for Pandas. Additionally, there is a cryptographic CPU overhead because the data in transit is secured with public key infrastructure (PKI).

Large result sets

If a database query returns more rows than the memory of the client permits, you have a a couple of easy options. The simplest is to use a larger client shape, along with increased compute performance because larger shapes come with more RAM. If that’s not an option, then you can use the pd.DataFrame.ads.read_sql mixin in chunk mode, where the result is no longer a Pandas dataframe it is an iterator over a sequence of dataframes. You could use this read a large data set and write it to Object storage or a local file system with the following example:

for i, df in enumerate(pd.DataFrame.ads.read_sql(
 "SELECT * FROM SH.SALES",
 chunksize=100000 # rows per chunk,
 connection_parameters=connection_parameters,
))
 # each df will contain up to 100000 rows (chunksize)
 # to write the data to object storage use oci://bucket#namespace/part_{i}.csv"
 df.to_csv(f"part_{i}.csv")

Very large result sets

If the data exceeds what’s practical in a notebook, then the next step is to use the Data Flow service [https://www.oracle.com/big-data/data-flow/] to partition the data across multiple nodes and handle data of any size up to the size of the cluster.

Pandas to Oracle Database

Typically, you would do this using df.to_sql. However, this uses Oracle Resource Manager to collect data and is less efficient than code that has been optimized for a specific database.

Instead, use the Pandas ADS accessor mixin.

With a dfdataframe, writing this to the database is as simple as:

df.ads.to_sql(
 "MY_TABLE",
 connection_parameters=connection_parameters, # Should contain wallet location if you are connecting to ADB
 if_exists="replace"
)

The resulting data types (if the table was created by ADS as opposed to inserting into an existing table), are governed by the following:

	Pandas

	Oracle

	bool

	NUMBER(1)

	int16

	INTEGER

	int32

	INTEGER

	int64

	INTEGER

	float16

	FLOAT

	float32

	FLOAT

	float64

	FLOAT

	datetime64

	TIMESTAMP

	string

	VARCHAR2 (Maximum length of the actual data.)

When a table is created, the length of any VARCHAR2 column is computed from the longest string in the column. The ORM defaults to CLOB data, which is not correct or efficient. CLOBS are stored efficiently by the database, but the c API to query them works differently. The non-LOB columns are returned to the client through a cursor, but LOBs are handled differently resulting in an additional network fetch per row, per LOB column. ADS deals with this by creating the correct data type, and setting the correct VARCHAR2 length.

MySQL

Available with ADS v2.5.6 and greater

To load a dataframe from a MySQL database, you must set engine=mysql in pd.DataFrame.ads.read_sql.

Example

connection_parameters = {
 "user_name": "<username>",
 "password": "<password>",
 "host": "<database host name>",
 "port": "<database port number>",
 "database": "<database name>"
}
import pandas as pd
import ads

simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(
 "SELECT * FROM EMPLOYEE",
 connection_parameters=connection_parameters,
 engine="mysql"
)

read of a SQL query into a dataframe with a bind variable. Use bind variables
rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(
 """
 SELECT
 *
 FROM
 EMPLOYEE
 WHERE
 emp_no <= ?
 """,
 bind_variables=(1000,)
 ,
 connection_parameters=connection_parameters,
 engine="mysql"
)

To save the dataframe dfto MySQL, use df.ads.to_sql API with engine=mysql

df.ads.to_sql(
 "MY_TABLE",
 connection_parameters=connection_parameters,
 if_exists="replace",
 engine="mysql"
)

The resulting data types (if the table was created by ADS as opposed to inserting into an existing table), are governed by the following:

	Pandas

	MySQL

	bool

	NUMBER(1)

	int16

	INTEGER

	int32

	INTEGER

	int64

	INTEGER

	float16

	FLOAT

	float32

	FLOAT

	float64

	FLOAT

	datetime64

	DATETIME (Format: %Y-%m-%d %H:%M:%S)

	string

	VARCHAR (Maximum length of the actual data.)

HTTP(S) Sources

To load a dataframe from a remote web server source, use pandas directly and specify the URL of the data:

df = pd.read_csv('https://example.com/path/to/data.csv')

Converting Pandas DataFrame to ADSDataset

To convert a pandas dataframe to ADSDataset, pass the pandas.DataFrame object directly into the ADS DatasetFactory.open method:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.read_csv('/path/some_data.csv) # load data with Pandas

use open...

ds = DatasetFactory.open(df) # construct **ADS** Dataset from DataFrame

alternative form...

ds = DatasetFactory.from_dataframe(df)

an example using Pandas to parse data on the clipboard as a CSV and construct an ADS Dataset object
this allows easily transfering data from an application like Microsoft Excel, Apple Numbers, etc.

ds = DatasetFactory.from_dataframe(pd.read_clipboard())

use Pandas to query a SQL database:

from sqlalchemy import create_engine
engine = create_engine('dialect://user:pass@host:port/schema', echo=False)
df = pd.read_sql_query('SELECT * FROM mytable', engine, index_col = 'ID')
ds = DatasetFactory.from_dataframe(df)

Using PyArrow

ADS supports reading files into PyArrow dataset directly via ocifs. ocifs is installed as ADS dependencies.

import ocifs
import pyarrow.dataset as ds
bucket_name = <bucket_name>
namespace = <namespace>
path = <path>
fs = ocifs.OCIFileSystem(**default_signer())
ds = ds.dataset(f"{bucket_name}@{namespace}/{path}/", filesystem=fs)

 Connecting to Data Sources With Legacy DatasetFactory

Connecting to Data Sources With Legacy DatasetFactory

You can load data into ADS in several different ways from Oracle Cloud Infrastructure Object Storage, cx_Oracle, or S3. Following are some examples.

Begin by loading the required libraries and modules:

import ads
import numpy as np
import pandas as pd

from ads.dataset.dataset_browser import DatasetBrowser
from ads.dataset.factory import DatasetFactory

Object Storage

To open a dataset from Object Storage using the resource principal method, you can use the following example, replacing the angle bracketed content with the location and name of your file:

import ads
import os

from ads.dataset.factory import DatasetFactory

ads.set_auth(auth='resource_principal')
bucket_name = <bucket-name>
file_name = <file-name>
namespace = <namespace>
storage_options = {'config':{}, 'tenancy': os.environ['TENANCY_OCID'], 'region': os.environ['NB_REGION']}
ds = DatasetFactory.open(f"oci://{bucket_name}@{namespace}/{file_name}", storage_options=storage_options)

To open a dataset from Object Storage using the Oracle Cloud Infrastructure configuration file method, include the location of the file using this format oci://<bucket_name>@<namespace>/<file_name> and modify the optional parameter storage_options. Insert:

	the path to your Oracle Cloud Infrastructure configuration file [https://docs.cloud.oracle.com/en-us/iaas/Content/API/SDKDocs/cliconfigure.htm],

	and the profile name you want to use.

For example:

ds = DatasetFactory.open("oci://<bucket_name>@<namespace>/<file_name>", storage_options = {
 "config": "~/.oci/config",
 "profile": "DEFAULT"
})

Local Storage

To open a dataset from a local source, use DatasetFactory.open and specify the path of the data file:

ds = DatasetFactory.open("/path/to/data.data", format='csv', delimiter=" ")

Oracle Database

[image: cx_Oracle Logo]
To connect to Oracle Databases from Python, you use the cx_Oracle package that conforms to the Python database API specification.

You must have the client credentials and connection information to connect to the database. The client credentials include the wallet, which is required for all types of connections. Use these steps to work with ADB and wallet files:

	From the Console, go to the Oracle Cloud Infrastructure ADW or ATP instance page that you want to load the dataset from, and then click DB Connection.

	Click Download Wallet.

	You have to enter a password. This password is used for some ADB connections, but not the ones that are used in the notebook.

	Create a folder for your wallet in the notebook environment (<path_to_wallet_folder>).

	Upload your wallet files into <path_to_wallet_folder> folder using the Jupyterlab Upload Files button.

	Open the sqlnet.ora file from the wallet files, and then configure the METHOD_DATA to be: METHOD_DATA = (DIRECTORY="<path_to_wallet_folder>")

	Set the env variable, TNS_ADMIN. TNS_ADMIN, to point to the wallet you want to use.

In this example a Python dictionary, creds is used to store the creditionals. However, it is poor security practice to store this
information in a notebook. The notebook ads-examples/ADB_working_with.ipynb gives an example of how to store them in Block Storage.

creds = {}
creds['tns_admin'] = <path_to_wallet_folder>
creds['sid'] = <your SID>
creds['user'] = <database username>
creds['password'] = <database password>

Once your Oracle client is setup, you can use cx_Oracle directly with Pandas as in this example:

import pandas as pd
import cx_Oracle
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']
with cx_Oracle.connect(creds['user'], creds['password'], creds['sid']) as ora_conn:
 df = pd.read_sql('''
 SELECT ename, dname, job, empno, hiredate, loc
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 ORDER BY ename
 ''', con=ora_conn)

You can also use cx_Oracle within ADS by creating a connection string:

os.environ['TNS_ADMIN'] = creds['tns_admin']
from ads.dataset.factory import DatasetFactory
uri = 'oracle+cx_oracle://' + creds['user'] + ':' + creds['password'] + '@' + creds['sid']
ds = DatasetFactory.open(uri, format="sql", table=table, index_col=index_col)

Autonomous Database

[image: Oracle ADB Logo]
Oracle has two configurations of Autonomous Databases. They are the Autonomous Data Warehouse (ADW) and the Autonomous Transaction Processsing (ATP) database. Both are fully autonomous databases that scale elastically, deliver fast query performance, and require minimal database administration.

Note

To access ADW [https://www.oracle.com/database/adw-cloud.html], review Setup for ADB in Configuration. It shows you how to get the client credentials (wallet) and set up the proper environment variable.

After the notebook environment has been configured to access ADW, you can use ADS to:

	Loading Data from ADB

	Querying Data from ADB

	Training Models with ADB

	Updating ADB Tables with Model Predictions

Loading Data from ADB

After you have stored the ADB username, password, and database name (SID) as variables, you can build the URI as your connection source.

uri = 'oracle+cx_oracle://' + creds['user'] + ':' + creds['password'] + '@' + creds['sid']

You can use ADS to query a table from your database, and then load that table as an ADSDataset object through DatasetFactory.
When you open DatasetFactory, specify the name of the table you want to pull using the table variable for a given table. For SQL expressions, use the table parameter also. For example, (`table=”SELECT * FROM sh.times WHERE rownum <= 30”`).

os.environ['TNS_ADMIN'] = creds['tns_admin']
ds = DatasetFactory.open(uri, format="sql", table=table, target='label')

Querying Data from ADB

	Query using Pandas

This example shows you how to query data using Pandas and sqlalchemy [https://www.sqlalchemy.org/] to read data from ADB:

from sqlalchemy import create_engine
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']
engine = create_engine(uri)
df = pd.read_sql('SELECT * from <TABLENAME>', con=engine)

You can convert the pd.DataFrame into ADSDataset using the DatasetFactory.from_dataframe() function.

ds = DatasetFactory.from_dataframe(df)

These two examples run a simple query on ADW data. With read_sql_query you can use SQL expressions not just for tables, but also to limit the number of rows and to apply conditions with filters, such as (where).

ds = pd.read_sql_query('SELECT * from <TABLENAME>', uri)

ds = pd.read_sql_query('SELECT * FROM emp WHERE ROWNUM <= 5', uri)

	Query using cx_Oracle

You can also query data from ADW using cx_Oracle. Use the cx_Oracle 7.0.0 version with ADS. Ensure that you change the dummy <TABLENAME> placeholder to the actual table name you want to query data from, and the dummy <COLNAME> placeholder to the column name that you want to select:

import
import pandas as pd
import numpy as np
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']
connection = cx_Oracle.connect(creds['user'], creds['password'], creds['sid'])
cursor = connection.cursor()
results = cursor.execute("SELECT * from <TABLENAME>")

data = results.fetchall()
df = pd.DataFrame(np.array(data))

ds = DatasetFactory.from_dataframe(df)

results = cursor.execute('SELECT <COLNAME> from <TABLENAME>').fetchall()

Don’t forget to close the cursor and connection using the close method:

cursor.close()
connection.close()

Training Models with ADB

After you load your data from ADB, the ADSDataset object is created, which allows you to build models using AutoML.

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider

train, test = ds.train_test_split()
model, baseline = AutoML(train, provider= OracleAutoMLProvider()).train(model_list=["LGBMClassifier"])

Updating ADB Tables with Model Predictions

To add predictions to a table, you can either update an existing table, or create a new table with the added predictions. There are many ways to do this. One way is to use the model to update a CSV file, and then use Oracle SQL*Loader or SQL*Plus.

This example adds predictions programmatically using cx_Oracle. It uses executemany to insert rows as tuples created using the model’s predict method:

ds = DatasetFactory.open("iris.csv")

create_table = '''CREATE TABLE IRIS_PREDICTED (,
 sepal_length number,
 sepal_width number,
 petal_length number,
 petal_width number,
 SPECIES VARCHAR2(20),
 yhat VARCHAR2(20),
)'''

connection = cx_Oracle.connect(creds['user'], creds['password'], creds['sid'])
cursor = connection.cursor()
cursor.execute(create_table)

ds_res.to_sql('predicted_iris', con=engine, index=False, if_exists="append")\

rows = [tuple(x) for x in ds_res.values]

cursor.executemany("""
 insert into IRIS_PREDICTED
 (sepal_length, sepal_width, petal_length, petal_width, SPECIES, yhat)
 values (:1, :2, :3, :4, :5, :6)""",
 rows
)

connection.commit()
cursor.close()
connection.close()

For some models, you could also use predict_proba to get an array of predictions and their confidence probability.

Amazon S3

You can open Amazon S3 public or private files in ADS. For private files, you must pass the right credentials through the ADS storage_options dictionary.If you have large S3 files, then you benefit from an increased blocksize.

ds = DatasetFactory.open("s3://bucket_name/iris.csv", storage_options = {
 'key': 'aws key',
 'secret': 'aws secret,
 'blocksize': 1000000,
 'client_kwargs': {
 "endpoint_url": "https://s3-us-west-1.amazonaws.com"
 }
})

HTTP(S) Sources

To open a dataset from a remote web server source, use DatasetFactory.open() and specify the URL of the data:

ds = DatasetFactory.open('https://example.com/path/to/data.csv', target='label')

DatasetBrowser

DatasetBrower allows easy access to datasets from reference libraries and index websites, such as scikit-learn. To see the supported libraries, use the list() function:

DatasetBrowser.list()

['web', 'sklearn', 'seaborn', 'R']

To see which dataset is available from scikit-learn, use:

sklearn = DatasetBrowser.sklearn()
sklearn.list()

['boston', 'breast_cancer', 'diabetes', 'iris', 'wine', 'digits']

Datasets are provided as a convenience. Datasets are considered Third Party Content and are not considered Materials under Your agreement with Oracle applicable to the Services. Review the dataset license [https://github.com/scikit-learn/scikit-learn/blob/master/COPYING].

To explore one of the datasets, use open() specifying the name of the dataset:

ds = sklearn.open('wine')

 Various Format Types with Legacy DatasetFactory

Various Format Types with Legacy DatasetFactory

You can load data with different formats into DatasetFactory, see Loading Data in Loading Data. Following are some examples.

ARFF

You can load ARFF file into DatasetFactory. The file format is recognized from the file name. You can load the file from internet:

ds = DatasetFactory.open('https://*example.com/path/to/some_data.arff*')

Array

You can convert an array into a Pandas DataFrame and then open it with DatasetFactory:

generated_data_arr = [["ID", "Name", "GPA"], [1, "Bob", 3.7], [2, "Sam", 4.3], [3, "Erin", 2.6]]
generated_df1 = pd.DataFrame(generated_data_arr[1:], columns=generated_data_arr[0])
generated_ds1 = DatasetFactory.open(generated_df1)

Delimited Files

CSV and TSV are the most common delimited files. However, files can have other forms of delimitation. To read them with the DatasetFactory.open() method, the delimiter parameter must be given with the delimiting value. DatasetFactory.open() considers all delimited files as CSV so the format=csv or format=csv parameter must also be specified even though the delimiter is not a comma or tab. DatasetFactory.open() attempts to determine the column names from the first line of the file. Alternatively, the column_names option can be used to specify them.

In this example, a file is created that is delimited with a vertical bar (|), and then read in with the DatasetFactory.open() method.

Create a delimited file with a '|' as a separator
file = tempfile.NamedTemporaryFile()
for i in range(5):
 for j in range(7):
 term = '|' if j != 6 else '\n'
 file.write(bytes('{}.{}'.format(i, j) + term, 'utf-8'))
file.flush()

Print the raw file
file.seek(0)
for line in file:
 print(line.decode("utf-8"))

Read in the delimited file and specify the column names.
ds = DatasetFactory.open(file.name, delimiter='|', format='csv', column_names=['a','b','c','d','e','f'])
file.close()
ds.head()

CSV

You can load a csv file into Dataset Factory using open():

ds = DatasetFactory.open("data/multiclass_fk_10k.csv")

Note

If your dataset does not include a header, then DatasetFactory assumes that each feature is named according to the corresponding column from your first data-point. This feature naming may be undesirable and could lead to subtle bugs appearing. Many CSVs use spaces for readability, which can lead to trouble when trying to set your target variable within DatasetFactory.open().

The work around for this is to pass header=None to DatasetFactory:

ds = DatasetFactory.open("sample_data.csv", header=None)

All of your columns are given integer names beginning with 1.

TSV

You can open a tsv or a file with any arbitrary separation key with DatasetFactory, using open(). This is an example of a tsv file being generated and opening it with DatasetFactory:

f = open("tmp_random_ds99.tsv","w+")
f.write('1 \t 2 \t 3 \t 4 \t 5 \t 6 \n 1.1 \t 2.1 \t 3.1 \t 4.1 \t 5.1 \t 6.1')
f.close()

ds = DatasetFactory.open("tmp_random_ds99.tsv", column_names=['a','b','c','d','e','f'])

Dictionary

You can convert a dictionary into a Pandas DataFrame and then open it with DatasetFactory:

generated_data_dict = {"ID": [1.1, 2.0, 3.0],
 "Name": ["Bob", "Sam", "Erin"],
 "GPA": [3.7, 4.3, 2.6]}
generated_df2 = pd.DataFrame(generated_data_dict)
generated_ds2 = DatasetFactory.open(generated_df2)

Excel xls and xlsx

Data scientists often have to work with Excel files as a data source. If the file extension is .xlsx, then DatasetFactory.open() automatically processes it as an Excel file. If not, the format=xlsx can be used. By default, the first sheet in the file is read in. This behavior can be modified with the sheetname parameter. It accepts the sheet number (it is zero-indexed) or a string with the name of the sheet. DatasetFactory.open() reads in all columns that have values. This behavior can be modified with the usecols parameter. It accepts a list of column numbers to be read in, such as usecols=[1, 3, 5] or it can accept a range as a string, usecols=A:C.

Create the Excel file to read in. Put the data on a sheet called 'wine'
file = tempfile.NamedTemporaryFile()
writer = pd.ExcelWriter(file.name, engine='xlsxwriter')
DatasetBrowser.sklearn().open('wine').to_pandas().to_excel(writer, sheet_name='wine')
writer.save()

Read in the Excel file and clean up
ds = DatasetFactory.open(file.name, format='xlsx', sheetname='wine', usecols="A:C")
file.close()
ds.head()

HDF

You can load an HDF file into DatasetFactory. This example builds an HDF file, and then opens it with DatasetFactory:

[ds_loc] = ds.to_hdf("tmp_random_ds99.h5", key='df')
ds_copy = DatasetFactory.open(ds_loc, key='df')

JSON

JSON files are supported by DatasetFactory.open() as long as the data can be restructured into a rectangular form. There are two supported formats of JSON that are called orientations. The orientation is given by orient=index or orient=records.

For the index orientation, there is a single JSON object. The format is:

{
 <index>: <value>,
 <index>: <value>
}

For example:

{
 "946684800000": {"id": 982, "name": "Yvonne", "x": -0.3289461521, "y": -0.4301831275},
 "946684801000": {"id": 1031, "name": "Charlie", "x": 0.9002882524, "y": -0.2144513329}
}

For the records format, there is a collection of JSON objects. No index value is given and there is no comma between records. The format is:

{<key>: <value>, <key>: <value>}
{<key>: <value>, <key>: <value>}

For example:

{"id": 982, "name": "Yvonne", "x": -0.3289461521, "y": -0.4301831275}
{"id": 1031, "name": "Charlie", "x": 0.9002882524, "y": -0.2144513329}

In this example, a JSON file is created then read back in with DatasetFactory.open(). If the file extension ends in .json, then the method loads it as a JSON file. If this is not the case, then set format=json.

Create the JSON file that is to be read
[file] = DatasetBrowser.sklearn().open('wine').to_json(path.join(tempfile.mkdtemp(), "wine.json"),
 orient='records')

Read in the JSON file
ds = DatasetFactory.open(file, format='json', orient='records')
ds.head()

Pandas

You can pass the pandas.DataFrame object directly into the ADS DatasetFactory.open method:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.read_csv('/path/some_data.csv) # load data with Pandas

use open...

ds = DatasetFactory.open(df) # construct **ADS** Dataset from DataFrame

alternative form...

ds = DatasetFactory.from_dataframe(df)

an example using Pandas to parse data on the clipboard as a CSV and construct an ADS Dataset object
this allows easily transfering data from an application like Microsoft Excel, Apple Numbers, etc.

ds = DatasetFactory.from_dataframe(pd.read_clipboard())

use Pandas to query a SQL database:

from sqlalchemy import create_engine
engine = create_engine('dialect://user:pass@host:port/schema', echo=False)
df = pd.read_sql_query('SELECT * FROM mytable', engine, index_col = 'ID')
ds = DatasetFactory.from_dataframe(df)

You can also use a Pandas.DataFrame in the same way. More Pandas information [https://pandas.pydata.org/].

Parquet

You can read Parquet files in ADS. This example builds a Parquet folder, and then opens it with DatasetFactory:

ds.to_parquet("tmp_random_ds99")

ds_copy = DatasetFactory.open("tmp_random_ds99", format='parquet')

Specify Data Types

When you open a dataset, ADS detects data types in the dataset. The ADS semantic dtypes assigned to features in dataset, can be:

	categorical

	continuous

	datetime

	ordinal

ADS semantic dtypes are based on ADS low-level dtypes. They match with the Pandas dtypes ‘object’, ‘int64’, ‘float64’, ‘datetime64’, ‘category’, and so on. When you use an open() statement for a dataset, ADS detects both its semantic and low-level data types. This example specifies the low-level data type, and then ADS detects its semantic type:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.DataFrame({
 'numbers': [5.0, 6.0, 8.0, 5.0],
 'years': [2007, 2008, 2008, 2009],
 'target': [1, 2, 3, 3]
})

ds = DatasetFactory.open(
 df,
 target = 'numbers',
 types = {'numbers': 'int64'}
)

You can inspect low level and semantic ADS dtypes with the feature_types property:

print out detailed information on each column
ds.feature_types

print out ADS "semantic" dtype of a column
print(ds.feature_types['numbers']['type'])

print out ADS "low-level" dtype of a column
print(ds.feature_types['numbers']['low_level_type'])

ordinal
int64

You can also get the summary information on a dataset, including its feature details in a notebook output cell with show_in_notebook:

ds.show_in_notebook()

Use numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] or Pandas dtypes [https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#dtypes] in types parameter to specify your data type. When you update a type, ADS changes both the semantic and the low-level types.

You can either specify a semantic or a low-level data type for types. This example shows how to load a dataset with various types of data:

ds = DatasetFactory.open(
 df,
 target = 'years',
 types = {'years': 'datetime'}
)
print(ds.feature_types['years']['type'])
print(ds.feature_types['years']['low_level_type'])

datetime
datetime64[ns]

ds = DatasetFactory.open(
 df,
 target = 'target',
 types = {'target': 'categorical'}
)
print(ds.feature_types['target']['type'])
print(ds.feature_types['target']['low_level_type'])

categorical
category

You can find more examples about how to change column data types in Changing Data Types of Columns.

 Supported Formats

Supported Formats

You can load datasets into ADS, either locally or from network file systems.

You can open datasets with DatasetFactory, DatasetBrowser or pandas. DatasetFactory allows datasets to be loaded into ADS.

DatasetBrowser supports opening the datasets from web sites and libraries, such as scikit-learn directly into ADS.

When you open a dataset in DatasetFactory, you can get the summary statistics, correlations, and visualizations of the dataset.

ADS Supports:

	Data Sources

	Oracle Cloud Infrastructure Object Storage

	Oracle Database with cx_Oracle

	Autonomous Databases: ADW and ATP

	Hadoop Distributed File System

	Amazon S3

	Google Cloud Service

	Microsoft Azure

	Blob

	MongoDB

	NoSQL DB instances

	Elastic Search instances

	HTTP and HTTPs Sources

	Your local files

	Data Formats

	Pandas.DataFrame, Dask.DataFrame

	Array, Dictionary

	Comma Separated Values (CSV)

	Tab Separated Values (TSV)

	Parquet

	Javascript Object Notation (JSON)

	XML

	xls, xlsx (Excel)

	LIBSVM

	Hierarchical Data Format 5 (HDF5)

	Apache server log files

	HTML

	Avro

	Attribute-Relation File Format (ARFF)

	Data Types

	Text Types (str)

	Numeric Types (int, float)

	Boolean Types (bool)

ADS Does Not Support:

	Data Sources

	Data that you don’t have permissions to.

	Data Formats

	Text Files

	DOCX

	PDF

	Raw Images

	SAS

	Data Types

	Sequence Types (list, tuple, range)

	Mapping Types (dict)

	Set Types (set)

For reading text files, DOCX and PDF, see “Text Extraction” section.

 Logging

Logging

The Oracle Cloud Infrastructure (OCI) Logging service [https://docs.oracle.com/en-us/iaas/Content/Logging/Concepts/loggingoverview.htm]
is a highly scalable and fully managed single pane of glass for all the logs in your tenancy.
Logging provides access to logs from OCI resources, such as jobs [https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/jobs/index.html]
and model deployments [https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/model_deployment/model_deployment.html]

ADS provides the APIs to simplify the creation, retrieval, and deletion of log groups and custom log resources.

Creating a log group requires a display name and compartment OCID. The compartment OCID is not needed if you are running
the code in a Data Science notebook session.

from ads.common.oci_logging import OCILogGroup

Create a new log group
compartment_id is optional if running in a Data Science notebook session.
log_group = OCILogGroup(
 display_name="<your_log_group_name>",
 compartment_id="<your_compartment_ocid>"
).create()

Get the log group OCID
log_group_ocid = log_group.id

Create a custom log in the log group
log = log_group.create_log(display_name="<your_log_name>")

Get the log OCID
log_ocid = log.id

Delete a single log resource
log.delete()

Delete the log group and the log resource in the log group
log_group.delete()

Get a existing log group by OCID
log_group = OCILogGroup.from_ocid("<log_group_ocid>")

Get a list of existing log resources in a log group
A list of ads.common.oci_logging.OCILog objects will be returned
log_group.list_logs()

Get the last 50 log messages as a list
log.tail(limit=50)

Stream the log messages to terminal or screen
This block sthe main process until user interruption.
log.stream()

 Model Catalog

Model Catalog

The model catalog provides a method to track, and immutably store models.
The model catalog allows organizations to maintain the provenance of models
during all phases of a model’s lifecycle. This documentation demonstrates CRUD
(create, read, update, delete) operations on models. It contains details
on how to prepare model artifacts, and save models into the model catalog.
It also showcases methods used to list, load, and delete models from the model
catalog.

A model artifact includes the model, metadata about the model, input, and
output schema, and a script to load the model and make predictions.
These model artifacts can be shared among data scientists, tracked for
provenance, reproduced, and deployed.

Datasets are provided as a convenience. Datasets are considered third party content
and are not considered materials under your agreement with Oracle applicable to
the services. The oracle_classification_dataset1 dataset is distributed
under the [UPL license](oracle_data/UPL.txt)

First, import the needed libraries:

import ads
import logging
import os
import tempfile
import warnings

from ads.catalog.model import ModelCatalog
from ads.common.model import ADSModel
from ads.common.model_export_util import prepare_generic_model
from ads.common.model_metadata import (MetadataCustomCategory,
 UseCaseType,
 Framework)
from ads.dataset.factory import DatasetFactory
from ads.feature_engineering.schema import Expression, Schema
from os import path
from sklearn.ensemble import RandomForestClassifier

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)
warnings.filterwarnings('ignore')

Introduction to the Model Catalog

The purpose of the model catalog is to provide a managed and centralized
storage space for models. It ensures that model artifacts are immutable
and allows data scientists to share models, and reproduce them as
needed.

The model catalog can be accessed directly in a notebook session with
ADS. Alternatively, the Oracle Cloud Infrastructure (OCI) Console can be
used by going to the Data Science Projects page and selecting the
project, then click on the Models link. The Models page shows the
model artifacts that are in the model catalog for a given project.

After a model and its artifacts are stored in the model catalog, they
become available for other data scientists if they have the correct
permissions.

Data scientists can:

	List, read, download, and load models from the catalog to their own notebook sessions.

	Download the model artifact from the catalog, and run the model on their laptop or some other machine.

	Deploy the model artifact as a model deployment [https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm].

	Document the model use case and algorithm using taxonomy metadata.

	Add custom metadata that describe the model.

	Document the model provenance including the resources and tags used to create the model (notebook session), and the code used in training.

	Document the input data schema, and the returned inference schema.

	Run introspection tests on the model artifact to ensure that common model artifact errors are flagged. Thus, they can be remediated before the model is saved to the catalog.

The ADS SDK automatically captures some of the metadata for you.
It captures provenance, taxonomy, and some custom metadata. It also
runs the model introspection tests.

A model can be saved to the model catalog using the generic
approach or the ADSModel approach:

	The generic approach creates a Generic Model artifact using
.prepare_generic_model(), and saves it to the model catalog.

	The ADSModel approach prepares an artifact from the ADSModel object,
and saves it to the model catalog using the .prepare() method.
ADSModel objects are typically created from the AutoML engine.
Data scientists can also convert models trained with other machine learning
libraries into an ADSModel object (using the .from_estimator() method).

Notes:

	ADS and ADSModel can only be used within the OCI family of services. If you want to use the model outside of those services, then use the generic approach to create a model artifact.

	The generic model approach is agnostic to the type of model, and deployment method. The ADSModel artifact only supports the most common model libraries. For information on the supported libraries supported, see the ADS documentation [https://docs.cloud.oracle.com/iaas/tools/ads-sdk/latest/] .

	The ADSModel model artifact allows access to the full suite of ADS features.

	The model catalog is agnostic as to which approach was used to create the model artifact.

Preparing a Model Artifact

A model artifact is a ZIP archive that contains the score.py, runtime.yaml files, and other files
needed to load and run the model in a different notebook session.

There are two approaches to prepare a model artifact. The approach you take
depends on where the model is to be deployed and if the model class is supported
by ADSModel. The following diagram outlines the decision making process to use
to determine which approach is best for your use case.

If you choose the ADSModel approach, then the .prepare() method is used
to create the template model artifacts. For most use cases, the template
files don’t need to be modified and are sufficient for model deployment.
This allows for rapid development though there are a few constraints.

The generic model approach allows for the most flexibility in deploying a
model and the supported models. You use the .prepare_generic_model() method
to create a model artifact template. This template must be customized for each
model.

No matter which approach you choose, the end result is a model artifact
that can be stored in the model catalog.

[image: ../../_images/diagram_model.png]

Preparing an ADSModel

The steps to prepare an ADSModel model include training an ADSModel,
and then preparing the model artifacts. Optionally, the model artifacts can
be customized and reloaded from disk. After you complete these steps, the
model artifacts are ready to be stored in the model catalog.

Train an ADSModel

The oracle_classification_dataset1 dataset is used to build a Random Forest
classifier using the RandomForestClassifier class. This class is supported
by the ADSModel class. The specifics of the dataset features are not important
for this example. The feature engineering is done automatically using
the .auto_transform() method. The value to predict, that is the target,
is class. The data is also split into training and test sets. The test set
is used to make predictions.

The RandomForestClassifier object is converted to into an
ADSModel using the .from_estimator() method.

Load the dataset
ds_path = path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "oracle_classification_dataset1_150K.csv")

ds = DatasetFactory.open(ds_path, target="class")

Data preprocessing
transformed_ds = ds.auto_transform(fix_imbalance=False)
train, test = transformed_ds.train_test_split(test_size=0.15)

Build the model and convert it to an ADSModel object
rf_clf = RandomForestClassifier(n_estimators=10).fit(train.X.values, train.y.values)
rf_model = ADSModel.from_estimator(rf_clf)

Prepare the Model Artifact

To prepare the model artifact, the .prepare() method is used.
This method returns a ModelArtifact object, and also writes a
number of model artifact files to disk. The only required argument
to the .prepare() method is the local path to store the model artifact files in.

The output of the next example lists the temporary directory used for the
model artifacts, and the files that compose the artifact.

Note:

	ADS automatically captures the provenance metadata, most of the taxonomy metadata, and a series of custom metadata.

	UseCaseType in metadata_taxonomy can’t be automatically populated. One way to populate the use case is to pass use_case_type to the prepare method.

	Model introspection is automatically triggered.

Prepare the model artifacts
path_to_ADS_model_artifact = tempfile.mkdtemp()
rf_model_artifact = rf_model.prepare(path_to_ADS_model_artifact, use_case_type=UseCaseType.BINARY_CLASSIFICATION,
 force_overwrite=True, data_sample=test, data_science_env=True,
 fn_artifact_files_included=False)

List the template files
print("Model Artifact Path: {}\n\nModel Artifact Files:".format(path_to_ADS_model_artifact))
for file in os.listdir(path_to_ADS_model_artifact):
 if path.isdir(path.join(path_to_ADS_model_artifact, file)):
 for file2 in os.listdir(path.join(path_to_ADS_model_artifact, file)):
 print(path.join(file,file2))
 else:
 print(file)

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json', 'model.onnx', '.model-ignore', 'input_schema.json']

Data Schema

The data schema provides a definition of the format and nature of the data
that the model expects. It also defines the output data from the model
inference. The .populate_schema() method accepts the parameters,
data_sample or X_sample, and y_sample. When using these parameters,
the model artifact gets populates the input and output data schemas.

The .schema_input and .schema_output properties are Schema objects
that define the schema of each input column and the output.
The Schema object contains these fields:

	description: Description of the data in the column.

	domain: A data structure that defines the domain of the data.
That is, what are the restrictions on the data and summary statistics
of its distribution.

	constraints: A data structure that is a list of expression
objects that defines the constraints of the data.

	expression: A string representation of an expression that
can be evaluated by the language corresponding to the value
provided in language attribute. The default value for
language is Python.

	expression: A must use string.Template format for
specifying the expression. $x is used to represent the
variable.

	language: The default value is python. Only python
is supported.

	stats: A set of summary statistics that defines the
distribution of the data. These are determined using the feature
type statistics as defined in ADS.

	values: A description of the values of the data.

	dtype: Pandas data type

	feature_type: The primary feature type as defined by ADS.

	name: Name of the column.

	required: Boolean value indicating if a value is always required.

- description: Number of matching socks in your dresser drawer.
 domain:
 constraints:
 - expression: ($x <= 10) and ($x > 0)
 language: python
 - expression: $x in [2, 4, 6, 8, 10]
 language: python
 stats:
 count: 465.0
 lower quartile: 3.2
 mean: 6.3
 median: 7.0
 sample maximum: 10.0
 sample minimum: 2.0
 standard deviation: 2.5
 upper quartile: 8.2
 values: Natural even numbers that are less than or equal to 10.
 dtype: int64
 feature_type: EvenNatural10
 name: sock_count
 required: true

Calling .schema_input or .schema_output shows the schema in a
YAML format.

Alternatively, you can check the output_schema.json file for the
content of the schema_output:

with open(path.join(path_to_ADS_model_artifact, "output_schema.json"), 'r') as f:
 print(f.read())

{"schema": [{"dtype": "int64", "feature_type": "Integer", "name": "class", "domain": {"values": "Integer", "stats": {"count": 465.0, "mean": 0.5225806451612903, "standard deviation": 0.5000278079030275, "sample minimum": 0.0, "lower quartile": 0.0, "median": 1.0, "upper quartile": 1.0, "sample maximum": 1.0}, "constraints": []}, "required": true, "description": "class"}]}

Alternative Ways of Generating the Schema

You can directly populate the schema by calling
populate_schema():

rf_model_artifact.populate_schema(X_sample=test.X, y_sample=test.y)

You can also load your schema from a JSON or YAML file:

tempdir = tempfile.mkdtemp()
schema = '''
{"schema": [{
 "dtype": "int64",
 "feature_type": "Category",
 "name": "class",
 "domain": {
 "values": "Category type.",
 "stats": {
 "count": 465.0,
 "unique": 2},
 "constraints": [
 {"expression": "($x <= 1) and ($x >= 0)", "language": "python"},
 {"expression": "$x in [0, 1]", "language": "python"}]},
 "required": true,
 "description": "target to predict."}]}
'''

with open(path.join(tempdir, "schema.json"), 'w') as f:
 f.write(schema)

rf_model_artifact.schema_output = Schema.from_file(os.path.join(tempdir, 'schema.json'))

Update the Schema

You can update the fields in the schema:

rf_model_artifact.schema_output['class'].description = 'target variable'
rf_model_artifact.schema_output['class'].feature_type = 'Category'

You can specify a constraint for your data using Expression, and call
evaluate to check if the data satisfies the constraint:

rf_model_artifact.schema_input['col01'].domain.constraints.append(Expression('($x < 20) and ($x > -20)'))

0 is between -20 and 20, so evaluate should return True:

rf_model_artifact.schema_input['col01'].domain.constraints[0].evaluate(x=0)

True

Taxonomy Metadata

Taxonomy metadata includes the type of the model, use case type, libraries,
framework, and so on. This metadata provides a way of documenting the schema
of the model.
The UseCaseType, FrameWork, FrameWorkVersion, Algorithm,
and Hyperparameters are fixed taxonomy metadata. These fields are automatically
populated when the .prepare() method is called. You can also manually update the
values of those fields.

	UseCaseType: The machine learning problem associated with the
Estimator class. The UseCaseType.values() method returns
the most current list. This is a list of allowed values.:

	UseCaseType.ANOMALY_DETECTION

	UseCaseType.BINARY_CLASSIFICATION

	UseCaseType.CLUSTERING

	UseCaseType.DIMENSIONALITY_REDUCTION

	UseCaseType.IMAGE_CLASSIFICATION

	UseCaseType.MULTINOMIAL_CLASSIFICATION

	UseCaseType.NER

	UseCaseType.OBJECT_LOCALIZATION

	UseCaseType.OTHER

	UseCaseType.RECOMMENDER

	UseCaseType.REGRESSION

	UseCaseType.SENTIMENT_ANALYSIS

	UseCaseType.TIME_SERIES_FORECASTING

	UseCaseType.TOPIC_MODELING

	FrameWork: The FrameWork of the estimator object.
You can get the list of allowed values using Framework.values():

	FrameWork.BERT

	FrameWork.CUML

	FrameWork.EMCEE

	FrameWork.ENSEMBLE

	FrameWork.FLAIR

	FrameWork.GENSIM

	FrameWork.H2O

	FrameWork.KERAS

	FrameWork.LIGHTgbm

	FrameWork.MXNET

	FrameWork.NLTK

	FrameWork.ORACLE_AUTOML

	FrameWork.OTHER

	FrameWork.PROPHET

	FrameWork.PYOD

	FrameWork.PYMC3

	FrameWork.PYSTAN

	FrameWork.PYTORCH

	FrameWork.SCIKIT_LEARN

	FrameWork.SKTIME

	FrameWork.SPACY

	FrameWork.STATSMODELS

	FrameWork.TENSORFLOW

	FrameWork.TRANSFORMERS

	FrameWork.WORD2VEC

	FrameWork.XGBOOST

	FrameWorkVersion: The framework version of the estimator object.
For example, 2.3.1.

	Algorithm: The model class.

	Hyperparameters: The hyperparameters of the estimator object.

You can’t add or delete any of the fields, or mutate the key of those fields.

You can populate the use_case_type by passing it in the .prepare()
method. Or you can set and update it directly.

rf_model_artifact.metadata_taxonomy['UseCaseType'].value = UseCaseType.BINARY_CLASSIFICATION

Update metadata_taxonomy

Update any of the taxonomy fields with allowed values:

rf_model_artifact.metadata_taxonomy['FrameworkVersion'].value = '0.24.2'
rf_model_artifact.metadata_taxonomy['UseCaseType'].update(value=UseCaseType.BINARY_CLASSIFICATION)

You can view the metadata_taxonomy in the dataframe format by
calling to_dataframe:

rf_model_artifact.metadata_taxonomy.to_dataframe()

[image: ../../_images/metadata_taxonomy.png]
Or you can view it directly in a YAML format:

rf_model_artifact.metadata_taxonomy

data:
- key: FrameworkVersion
 value: 0.24.2
- key: ArtifactTestResults
 value:
 runtime_env_path:
 category: conda_env
 description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set
 error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must
 have a value.
 success: true
 value: oci://licence_checker@ociodscdev/conda_environments/cpu/Oracle Database/1.0/database_p37_cpu_v1.0
 runtime_env_python:
 category: conda_env
 description: Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set
 to a value of 3.6 or higher
 error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION
 must be set to a value of 3.6 or higher.
 success: true
 value: 3.7.10
 runtime_env_slug:
 category: conda_env
 description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG is set
 error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG must
 have a value.
 success: true
 value: database_p37_cpu_v1.0
 runtime_env_type:
 category: conda_env
 description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is set to
 a value in (published, data_science)
 error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE must
 be set to published or data_science.
 success: true
 value: published
 runtime_path_exist:
 category: conda_env
 description: If MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science and MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG
 is set, check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is
 correct.
 error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does
 not exist.
 runtime_slug_exist:
 category: conda_env
 description: If MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science, check that
 the slug listed in MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG exists.
 error_msg: In runtime.yaml, the value of the key INFERENCE_ENV_SLUG is slug_value
 and it doesn't exist in the bucket bucket_url. Ensure that the value INFERENCE_ENV_SLUG
 and the bucket url are correct.
 runtime_version:
 category: runtime.yaml
 description: Check that field MODEL_ARTIFACT_VERSION is set to 3.0
 error_msg: In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.
 success: true
 runtime_yaml:
 category: Mandatory Files Check
 description: Check that the file "runtime.yaml" exists and is in the top level
 directory of the artifact directory
 error_msg: The file 'runtime.yaml' is missing.
 success: true
 score_load_model:
 category: score.py
 description: Check that load_model() is defined
 error_msg: Function load_model is not present in score.py.
 success: true
 score_predict:
 category: score.py
 description: Check that predict() is defined
 error_msg: Function predict is not present in score.py.
 success: true
 score_predict_arg:
 category: score.py
 description: Check that all other arguments in predict() are optional and have
 default values
 error_msg: All formal arguments in the predict function must have default values,
 except that 'data' argument.
 success: true
 score_predict_data:
 category: score.py
 description: Check that the only required argument for predict() is named "data"
 error_msg: The predict function in score.py must have a formal argument named
 'data'.
 success: true
 score_py:
 category: Mandatory Files Check
 description: Check that the file "score.py" exists and is in the top level directory
 of the artifact directory
 error_msg: The file 'score.py' is missing.
 key: score_py
 success: true
 score_syntax:
 category: score.py
 description: Check for Python syntax errors
 error_msg: 'There is Syntax error in score.py: '
 success: true
- key: Framework
 value: scikit-learn
- key: UseCaseType
 value: binary_classification
- key: Algorithm
 value: RandomForestClassifier
- key: Hyperparameters
 value:
 bootstrap: true
 ccp_alpha: 0.0
 class_weight: null
 criterion: gini
 max_depth: null
 max_features: auto
 max_leaf_nodes: null
 max_samples: null
 min_impurity_decrease: 0.0
 min_impurity_split: null
 min_samples_leaf: 1
 min_samples_split: 2
 min_weight_fraction_leaf: 0.0
 n_estimators: 10
 n_jobs: null
 oob_score: false
 random_state: null
 verbose: 0
 warm_start: false

Custom Metadata

Update your custom metadata using the key, value,
category, and description fields. The key, and value fields are
required.

You can see the allowed values for custom metadata category using MetadataCustomCategory.values():

	MetadataCustomCategory.PERFORMANCE

	MetadataCustomCategory.TRAINING_PROFILE

	MetadataCustomCategory.TRAINING_AND_VALIDATION_DATASETS

	MetadataCustomCategory.TRAINING_ENVIRONMENT

	MetadataCustomCategory.OTHER

Add New Custom Metadata

To add a new custom metadata, call .add():

rf_model_artifact.metadata_custom.add(key='test', value='test', category=MetadataCustomCategory.OTHER, description='test', replace=True)

Update Custom Metadata

Use the .update() method to update the fields of a specific key ensuring that
you pass all the values you need in the update:

rf_model_artifact.metadata_custom['test'].update(value='test1', description=None, category=MetadataCustomCategory.TRAINING_ENV)

Or you can set it directly:

rf_model_artifact.metadata_custom['test'].value = 'test1'
rf_model_artifact.metadata_custom['test'].description = None
rf_model_artifact.metadata_custom['test'].category = MetadataCustomCategory.TRAINING_ENV

You can view the custom metadata in the dataframe by calling
.to_dataframe():

rf_model_artifact.metadata_custom.to_dataframe()

[image: ../../_images/custom_metadata.png]
Or you can view the custom metadata in YAML format by calling
.metadata_custom:

rf_model_artifact.metadata_custom

data:
- category: Training Environment
 description: The conda env where model was trained
 key: CondaEnvironment
 value: database_p37_cpu_v1.0
- category: Training Environment
 description: null
 key: test
 value: test1
- category: Training Environment
 description: The env type, could be published conda or datascience conda
 key: EnvironmentType
 value: published
- category: Training Environment
 description: The list of files located in artifacts folder
 key: ModelArtifacts
 value: score.py, runtime.yaml, onnx_data_transformer.json, model.onnx, .model-ignore
- category: Training Environment
 description: The slug name of the conda env where model was trained
 key: SlugName
 value: database_p37_cpu_v1.0
- category: Training Environment
 description: The oci path of the conda env where model was trained
 key: CondaEnvironmentPath
 value: oci://licence_checker@ociodscdev/conda_environments/cpu/Oracle Database/1.0/database_p37_cpu_v1.0
- category: Other
 description: ''
 key: ClientLibrary
 value: ADS
- category: Training Profile
 description: The model serialization format
 key: ModelSerializationFormat
 value: onnx

When the combined total size of metadata_custom and
metadata_taxonomy exceeds 32000 bytes, an error occurs when
you save the model to the model catalog. You can save the
metadata_custom and metadata_taxonomy to the artifacts folder:

rf_model_artifact.metadata_custom.to_json_file(path_to_ADS_model_artifact)

You can also save individual items from the custom and taxonomy
metadata:

rf_model_artifact.metadata_taxonomy['Hyperparameters'].to_json_file(path_to_ADS_model_artifact)

If you already have the training or validation dataset saved in
Object Storage and want to document this information in this model
artifact object, you can add that information into metadata_custom:

rf_model_artifact.metadata_custom.set_training_data(path='oci://bucket_name@namespace/train_data_filename', data_size='(200,100)')
rf_model_artifact.metadata_custom.set_validation_data(path='oci://bucket_name@namespace/validation_data_filename', data_size='(100,100)')

Modify the Model Artifact Files

With ADSModel approach, the model is saved in ONNX format as model.onnx.
There are a number of other files that typically don’t need to be modified though you could.

Update score.py

The score.py file has two methods, .load_model() and
.predict(). The .load_model() method deserializes the model and
returns it. The .predict() method accepts data and a model
(optional), and returns a dictionary of predicted results. The most
common use case for changing the score.py file is to add preprocessing and
postprocessing steps to the predict() method. The model artifact
files that are on disk are decoupled from the ModelArtifact object
that is returned by the .prepare() method. If changes are made to
the model artifact files, you must run the .reload() method to get the changes.

The next example retrieves the contents of the score.py file.

with open(path.join(path_to_ADS_model_artifact, "score.py"), 'r') as f:
 print(f.read())

import json
import numpy as np
import onnxruntime as rt
import os
import pandas as pd
from functools import lru_cache
from sklearn.preprocessing import LabelEncoder

model_name = 'model.onnx'
transformer_name = 'onnx_data_transformer.json'

"""
 Inference script. This script is used for prediction by scoring server when schema is known.
"""

@lru_cache(maxsize=10)
def load_model(model_file_name=model_name):
 """
 Loads model from the serialized format

 Returns

 model: an onnxruntime session instance
 """
 model_dir = os.path.dirname(os.path.realpath(__file__))
 contents = os.listdir(model_dir)
 if model_file_name in contents:
 return rt.InferenceSession(os.path.join(model_dir, model_file_name))
 else:
 raise Exception('{0} is not found in model directory {1}'.format(model_file_name, model_dir))

def predict(data, model=load_model()):
 """
 Returns prediction given the model and data to predict

 Parameters

 model: Model session instance returned by load_model API
 data: Data format as expected by the onnxruntime API

 Returns

 predictions: Output from scoring server
 Format: {'prediction':output from model.predict method}

 """
 from pandas import read_json, DataFrame
 from io import StringIO
 X = read_json(StringIO(data)) if isinstance(data, str) else DataFrame.from_dict(data)
 model_dir = os.path.dirname(os.path.realpath(__file__))
 contents = os.listdir(model_dir)
 # Note: User may need to edit this
 if transformer_name in contents:
 onnx_data_transformer = ONNXTransformer.load(os.path.join(model_dir, transformer_name))
 X, _ = onnx_data_transformer.transform(X)
 else:
 onnx_data_transformer = None

 onnx_transformed_rows = []
 for name, row in X.iterrows():
 onnx_transformed_rows.append(list(row))
 input_data = {model.get_inputs()[0].name: onnx_transformed_rows}

 pred = model.run(None, input_data)
 return {'prediction':pred[0].tolist()}

class ONNXTransformer(object):
 """
 This is a transformer to convert X [Dataframe like] and y [array like] data into Onnx
 readable dtypes and formats. It is Serializable, so it can be reloaded at another time.

 Usage:
 >>> from ads.common.model_export_util import ONNXTransformer
 >>> onnx_data_transformer = ONNXTransformer(task="classification")
 >>> train_transformed = onnx_data_transformer.fit_transform(train.X, train.y)
 >>> test_transformed = onnx_data_transformer.transform(test.X, test.y)

 Parameters

 task: str
 Either "classification" or "regression". This determines if y should be label encoded
 """

 def __init__(self, task=None):
 self.task = task
 self.cat_impute_values = {}
 self.cat_unique_values = {}
 self.label_encoder = None
 self.dtypes = None
 self._fitted = False

 def _handle_dtypes(self, X):
 # Data type cast could be expensive doing it in for loop
 # Especially with wide datasets
 # So cast the numerical columns first, without loop
 # Then impute categorical columns
 dict_astype = {}
 for k, v in zip(X.columns, X.dtypes):
 if v in ['int64', 'int32', 'int16', 'int8'] or 'float' in str(v):
 dict_astype[k] = 'float32'
 _X = X.astype(dict_astype)
 for k in _X.columns[_X.dtypes != 'float32']:
 # SimpleImputer is not available for strings in ONNX-ML specifications
 # Replace NaNs with the most frequent category
 self.cat_impute_values[k] = _X[k].value_counts().idxmax()
 _X[k] = _X[k].fillna(self.cat_impute_values[k])
 # Sklearn's OrdinalEncoder and LabelEncoder don't support unseen categories in test data
 # Label encode them to identify new categories in test data
 self.cat_unique_values[k] = _X[k].unique()
 return _X

 def fit(self, X, y=None):
 _X = self._handle_dtypes(X)
 self.dtypes = _X.dtypes
 if self.task == 'classification' and y is not None:
 # Label encoding is required for SVC's onnx converter
 self.label_encoder = LabelEncoder()
 y = self.label_encoder.fit_transform(y)

 self._fitted = True
 return self

 def transform(self, X, y=None):
 assert self._fitted, 'Call fit_transform first!'
 # Data type cast could be expensive doing it in for loop
 # Especially with wide datasets
 # So cast the numerical columns first, without loop
 # Then impute categorical columns
 _X = X.astype(self.dtypes)
 for k in _X.columns[_X.dtypes != 'float32']:
 # Replace unseen categories with NaNs and impute them
 _X.loc[~_X[k].isin(self.cat_unique_values[k]), k] = np.nan
 # SimpleImputer is not available for strings in ONNX-ML specifications
 # Replace NaNs with the most frequent category
 _X[k] = _X[k].fillna(self.cat_impute_values[k])

 if self.label_encoder is not None and y is not None:
 y = self.label_encoder.transform(y)

 return _X, y

 def fit_transform(self, X, y=None):
 return self.fit(X, y).transform(X, y)

 def save(self, filename, **kwargs):
 export_dict = {
 "task": {"value": self.task, "dtype": str(type(self.task))},
 "cat_impute_values": {"value": self.cat_impute_values, "dtype": str(type(self.cat_impute_values))},
 "cat_unique_values": {"value": self.cat_unique_values, "dtype": str(type(self.cat_unique_values))},
 "label_encoder": {"value": {
 "params": self.label_encoder.get_params() if
 hasattr(self.label_encoder, "get_params") else {},
 "classes_": self.label_encoder.classes_.tolist() if
 hasattr(self.label_encoder, "classes_") else []},
 "dtype": str(type(self.label_encoder))},
 "dtypes": {"value": {"index": list(self.dtypes.index), "values": [str(val) for val in self.dtypes.values]}
 if self.dtypes is not None else {},
 "dtype": str(type(self.dtypes))},
 "_fitted": {"value": self._fitted, "dtype": str(type(self._fitted))}
 }
 with open(filename, 'w') as f:
 json.dump(export_dict, f, sort_keys=True, indent=4, separators=(',', ': '))

 @staticmethod
 def load(filename, **kwargs):
 # Make sure you have pandas, numpy, and sklearn imported
 with open(filename, 'r') as f:
 export_dict = json.load(f)
 try:
 onnx_transformer = ONNXTransformer(task=export_dict['task']['value'])
 except Exception as e:
 print(f"No task set in ONNXTransformer at {filename}")
 raise e
 for key in export_dict.keys():
 if key not in ["task", "label_encoder", "dtypes"]:
 try:
 setattr(onnx_transformer, key, export_dict[key]["value"])
 except Exception as e:
 print(f"Warning: Failed to reload from {filename} to OnnxTransformer.")
 raise e
 onnx_transformer.dtypes = pd.Series(data=[np.dtype(val) for val in export_dict["dtypes"]["value"]["values"]], index=export_dict["dtypes"]["value"]["index"])
 le = LabelEncoder()
 le.set_params(**export_dict["label_encoder"]["value"]["params"])
 le.classes_ = np.asarray(export_dict["label_encoder"]["value"]["classes_"])
 onnx_transformer.label_encoder = le
 return onnx_transformer

Update the requirements.txt File

The .prepare() method automatically encapsulates the notebook’s
Python libraries and their versions in the requirements.txt file. This
ensures that the model’s dependencies can be reproduced. Generally, this
file doesn’t need to be modified.

If you install custom libraries in a notebook, then you must update the requirements.txt
file. You can update the file by calling pip freeze, and
storing the output into the file. The command in the next example captures all
of the packages that are installed. It is likely that only a few
of them are required by the model. However, using the command ensures that all of
the required packages are present on the system to run the model. We recommend
that you update this list to include only what is required if the model is going
into a production environment. Generally, you don’t need to modify the requirements.txt file.

os.system("pip freeze > '{}'".format(path.join(path_to_ADS_model_artifact, "backup-requirements.txt")))

Reloading the Model Artifact

The model artifacts on disk are decoupled from the ModelArtifact object. Any changes
made on disk must be incorporated back into the ModelArtifact object using the .reload() method:

rf_model_artifact.reload()

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json', 'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']

After the changes made to the model artifacts and those artifacts are incorporated
back into the ModelArtifact object, you can use it to make predictions.
If there weren’t any changes made to the model artifacts on disk, then the
ModelArtifact object can be used directly.

This example problem is a binary classification problem. Therefore, the predict()
function returns a 1 if the observation is predicted to be in the class that is defined
as true. Otherwise, it returns a zero. The next example uses the .predict() method on the
ModelArtifact object to make predictions on the test data.

rf_model_artifact.predict(data=test.X.iloc[:10, :], model=rf_model_artifact.load_model())

{'prediction': [1, 0, 1, 1, 0, 0, 0, 1, 1, 0]}

Model Introspection

The .intropect() method runs some sanity checks on the runtime.yaml, and
score.py files. This is to help you identify potential errors that might occur
during model deployment. It checks fields such as environment path, validates
the path’s existence on the Object Storage, checks if the .load_model(), and .predict()
functions are defined in score.py, and so on. The result of model introspection
is automatically saved to the taxonomy metadata and model artifacts.

rf_model_artifact.introspect()

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json', 'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']

[image: ../../_images/introspection.png]
Reloading model artifacts automatically invokes model introspection.
However, you can invoke introspection manually by calling rf_model_artifact.introspect():

The ArtifactTestResults field is populated in metadata_taxonomy when
instrospect is triggered:

rf_model_artifact.metadata_taxonomy['ArtifactTestResults']

key: ArtifactTestResults
value:
 runtime_env_path:
 category: conda_env
 description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set
 ...

Preparing a Generic Model

The steps to prepare a generic model are basically the same as those for the
ADSModel approach. However, there are a few more details that you have to specify.
The first step is to train a model. It doesn’t have to be based on the ADSModel
class. Next, the model has to be serialized and the model artifacts prepared.
Preparing the model artifacts includes running the .prepare_generic_model() method,
then editing the score.py file, and optionally the requirements file. Then you
load it back from disk with the .reload() command. After you complete these steps,
the model artifacts are ready to be stored in the model catalog.

Train a Generic Model

The next example uses a Gamma Regressor Model (Generalized Linear Model with a Gamma
distribution and a log link function) from sklearn. ADSModel doesn’t support
this class of model so the generic model approach is used.

from sklearn import linear_model
gamma_reg_model = linear_model.GammaRegressor()
train_X = [[1, 2], [2, 3], [3, 4], [4, 3]]
train_y = [19, 26, 33, 30]
gamma_reg_model.fit(train_X, train_y)

GammaRegressor()

gamma_reg_model.score(train_X, train_y)

0.7731843906027439

test_X = [[1, 0], [2, 8]]
gamma_reg_model.predict(test_X)

array([19.483558 , 35.79588532])

Serialize the Model and Prepare the Model Artifact

To prepare the model artifact, the model must be serialized. In this
example, the joblib serializer is used to write the file
model.onnx. The .prepare_generic_model() method is used to
create the model artifacts in the specified folder. This consists of a
set of template files, some of which need to be customized.

The call to .prepare_generic_model() returns a ModelArtifact
object. This is the object that is used to bundle the model, and model
artifacts together. It is also used to interact with the model catalog.

The next example serializes the model and prepares the model artifacts. The
output is a listing of the temporary directory used for the model
artifacts, and the files that comprise the artifact.

The .prepare_generic_model() and .prepare() methods allow you to
set some of the metadata. When you pass in sample data using data_sample
or X_sample and y_sample, the schema_input, schema_output are automatically
populated. The metadata_taxonomy is populated when the variable model is passed.
You can define the use case type with the use_case_type parameter.

prepare the model artifact template
path_to_generic_model_artifact = tempfile.mkdtemp()
generic_model_artifact = prepare_generic_model(path_to_generic_model_artifact,
 model=gamma_reg_model,
 X_sample=train_X,
 y_sample=train_y,
 fn_artifact_files_included=False,
 force_overwrite=True,
 data_science_env=True,
)

Serialize the model
import cloudpickle
with open(path.join(path_to_generic_model_artifact, "model.pkl"), "wb") as outfile:
 cloudpickle.dump(gamma_reg_model, outfile)

List the template files
print("Model Artifact Path: {}\n\nModel Artifact Files:".format(path_to_generic_model_artifact))
for file in os.listdir(path_to_generic_model_artifact):
 if path.isdir(path.join(path_to_generic_model_artifact, file)):
 for file2 in os.listdir(path.join(path_to_generic_model_artifact, file)):
 print(path.join(file,file2))
 else:
 print(file)

Model Artifact Path: /tmp/tmpesx7aa_f

Model Artifact Files:
output_schema.json
score.py
runtime.yaml
model.pkl
input_schema.json

The metadata_taxonomy, metadata_custom, schema_input and
schema_output are popuated:

generic_model_artifact.metadata_taxonomy.to_dataframe()

[image: ../../_images/generic_taxonomy.png]
generic_model_artifact.metadata_custom.to_dataframe()

[image: ../../_images/generic_custom.png]
Modify the Model Artifact Files

The generic model approach provides a template that you must customize for
your specific use case. Specifically, the score.py and requirements.txt
files must be updated.

Update score.py

Since the generic model approach is agnostic to the model and
the serialization method being used, you must provide information
about the model. The score.py file provides the load_model()
and predict() functions that you have to update.

The load_model() function takes no parameters and returns the deserialized
model object. The template code gives an example of how to do this for the most
common serialization method. However, the deserialization method that you use must
complement the serialization method used..

The score.py file also contains a templated function called
predict(). This method takes any arbitrary data object and an
optional model and returns a dictionary of predictions. The role of this
method is to make predictions based on new data. The method can be
written to perform any pre-prediction and post-prediction operations
that are needed. These would be tasks such as feature engineering the
raw input data and logging predictions results.

The next example prints out the contents of the score.py file:

with open(path.join(path_to_generic_model_artifact, "score.py"), 'r') as f:
 print(f.read())

import json
import os
from cloudpickle import cloudpickle
from functools import lru_cache

model_name = 'model.pkl'

"""
 Inference script. This script is used for prediction by scoring server when schema is known.
"""

@lru_cache(maxsize=10)
def load_model(model_file_name=model_name):
 """
 Loads model from the serialized format

 Returns

 model: a model instance on which predict API can be invoked
 """
 model_dir = os.path.dirname(os.path.realpath(__file__))
 contents = os.listdir(model_dir)
 if model_file_name in contents:
 with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), model_file_name), "rb") as file:
 return cloudpickle.load(file)
 else:
 raise Exception('{0} is not found in model directory {1}'.format(model_file_name, model_dir))

def pre_inference(data):
 """
 Preprocess data

 Parameters

 data: Data format as expected by the predict API of the core estimator.

 Returns

 data: Data format after any processing.

 """
 return data

def post_inference(yhat):
 """
 Post-process the model results

 Parameters

 yhat: Data format after calling model.predict.

 Returns

 yhat: Data format after any processing.

 """
 return yhat

def predict(data, model=load_model()):
 """
 Returns prediction given the model and data to predict

 Parameters

 model: Model instance returned by load_model API
 data: Data format as expected by the predict API of the core estimator. For eg. in case of sckit models it could be numpy array/List of list/Pandas DataFrame

 Returns

 predictions: Output from scoring server
 Format: {'prediction': output from model.predict method}

 """
 features = pre_inference(data)
 yhat = post_inference(
 model.predict(features)
)
 return {'prediction': yhat}

 The next example updates the score.py file to support the gamma regression
 model. The .load_model() method was updated to use the joblib.load()
 function to read in the model and deserialize it. The .predict() method
 was modified so that it makes calls to the _handle_input() and
 _handle_output() methods. This allows the .predict() method to do
 arbitrary operations before and after the prediction.

score = '''
import json
import os
from cloudpickle import cloudpickle

model_name = 'model.pkl'

def load_model(model_file_name=model_name):
 """
 Loads model from the serialized format

 Returns

 model: a model instance on which predict API can be invoked
 """
 model_dir = os.path.dirname(os.path.realpath(__file__))
 contents = os.listdir(model_dir)
 if model_file_name in contents:
 with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), model_file_name), "rb") as file:
 return cloudpickle.load(file)
 else:
 raise Exception('{0} is not found in model directory {1}'.format(model_file_name, model_dir))

def predict(data, model=load_model()):
 """
 Returns prediction given the model and data to predict

 Parameters

 model: Model instance returned by load_model API
 data: Data format as expected by the predict API of the core estimator. For eg. in case of sckit models it could be numpy array/List of list/Panda DataFrame

 Returns

 predictions: Output from scoring server
 Format: {'prediction':output from model.predict method}

 """

 # from pandas import read_json, DataFrame
 # from io import StringIO
 # X = read_json(StringIO(data)) if isinstance(data, str) else DataFrame.from_dict(data)
 return {'prediction':model.predict(data).tolist()}
'''

with open(path.join(path_to_generic_model_artifact, "score.py"), 'w') as f:
 f.write(score)

Reloading the Model Artifact

The model artifacts on disk are decoupled from the ModelArtifact object.
Any changes you make on disk must be incorporated back into the ModelArtifact
object using the .reload() method.

Note: ModelSerializationFormat in metadata_custom is populated when
model_file_name is passed in to .reload().

generic_model_artifact.reload(model_file_name='model.pkl')

After the changes are made to the model artifacts, and those changes have been
incorporated back into the ModelArtifact object, it can be used to
make predictions. When the .predict() method is used, there is no need for
the preprocessing to be done before calling .predict(). This is because the
preprocessing steps have been coded into the score.py file. The advantage of
this is that the preprocessing is coupled with the model and not the code that
is calling the .predict() method so the code is more maintainable.

data = [[3, 4], [4, 5]]
generic_model_artifact.model.predict(data).tolist()

[29.462982553823185, 33.88604047807801]

Save the Model Artifact to the Model Catalog

You use the ModelArtifact object to store the model artifacts in the model catalog.
Saving the model artifact requires the OCID [https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm]
for the compartment and project that you want to store it in. Model artifacts can be
stored in any project that you have access to. However, the most common use case is to
store the model artifacts in the same compartment and project that the notebook session
belongs to. There are environmental variables in the notebook session that contain this
information. The NB_SESSION_COMPARTMENT_OCID and PROJECT_OCID environment variables
contain both compartment and project OCIDs that are associated with the notebook session.

Metadata can also be stored with the model artifacts. If the notebook is under Git
version control, then the .save() method automatically captures the relevant information
so that there is a link between the code used to create the model and the model artifacts.
The .save() method doesn’t save the notebook or commit any changes. You have to save it
before storing the model in the model catalog. Use the ignore_pending_changes parameter
to control changes. The model catalog also accepts a description, display name, a path to
the notebook used to train the model, tags, and more.

The .save() method returns a Model object that is a connection
to the model catalog for the model that was just saved. It contains
information about the model catalog entry such as the OCID, the metadata
provided to the catalog, the user that stored the model, and so on.

You can use the auth optional parameter to specify the preferred
authentication method.

You can save the notebook session OCID to the provenance metadata by specifying the
training_id in the .save() method. This validates the existence of the notebook session
in the project and the compartment. The timeout optional parameter controls both connection and
read timeout for the client and the value is returned in seconds. By default, the .save() method
doesn’t perform a model introspection because this is normally done during the model artifact
debugging stage. However, setting ignore_introspection to False causes model introspection to be
performed during the save operation.

You can also save model tags by specifying optional freeform_tags and defined_tags parameters in the .save() method.
The defined_tags is automatically populated with oracle-tags by default. You can also create and manage your own tags [https://docs.oracle.com/en-us/iaas/Content/Tagging/Tasks/managingtagsandtagnamespaces.htm].

Saving the model artifact to the model catalog:
mc_model = rf_model_artifact.save(project_id=os.environ['PROJECT_OCID'],
 compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID'],
 training_id=os.environ['NB_SESSION_OCID'],
 display_name="RF Classifier",
 description="A sample Random Forest classifier",
 ignore_pending_changes=True,
 timeout=100,
 ignore_introspection=False,
 freeform_tags={"key" : "value"}
)
mc_model

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json', 'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']

artifact:/tmp/saved_model_7869b70a-b59c-4ce2-b0e5-86f533cad0f3.zip

[image: ../../_images/save.png]
Information about the model can also be found in the Console on the Projects page in the Models section.
It should look similar to this:

[image: ../../_images/model_catalog_save.png]

List Models in the Model Catalog

The ModelCatalog object is used to interact with the model catalog. This
class allows access to all models in a compartment. Using this class, entries
in the model catalog can be listed, deleted, and downloaded. It also provides
access to specific models so that the metadata can be updated, and the model
can be activated and deactivated.

When model artifacts are saved to the model catalog, they are associated with
a compartment and a project. The ModelCatalog provides access across projects
and all model catalog entries in a compartment are accessible. When creating a
ModelCatalog object, the compartment OCID must be provided. For most use cases,
you will want to access the model catalog associated with the compartment that the
notebook is in. The NB_SESSION_COMPARTMENT_OCID environment variable provides the
compartment OCID associated with the current notebook. The compartment_id parameter
is optional. When it is not specified, the compartment for the current notebook is used.

The .list_models() method returns a list of entries in the model catalog as
a ModelSummaryList object. By default, it only returns the entries that are active.
The parameter include_deleted=True can override this behaviour and return all entries.

Create a connection to the current compartment's model catalog
mc = ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID'])

Get a list of the entries in the model catalog
mc_list = mc.list_models(include_deleted=False)
mc_list

[image: ../../_images/list_model.png]
The .filter() method accepts a boolean vector and returns a ModelSummaryList
object that has only the selected entries. You can combine it with a lambda function
to provide an arbitrary selection of models based on the properties of the ModelSummaryList.
The next example uses this approach to select only entries that are in the current notebook’s project:

mc_list.filter(lambda x: x.project_id == os.environ['PROJECT_OCID'])

[image: ../../_images/list_model.png]
The ModelSummaryList object can be treated as a list of Model objects.
An individual compartment can be accessed by providing an index value. In addition,
the components of the Model object can be accessed as attributes of the object.
The next example iterates over the list of models, and prints the model name if the
model is in an active state. If the model is not active, an error occurs.

for i in range(len(mc_list)):
 try:
 print(mc_list[i].display_name)
 except:
 pass

RF Classifier
...

A Pandas dataframe representation of a ModelSummaryList object can be accessed
with the df attribute. Using the dataframe representation standard Pandas operations
can be used. The next example sorts entries by the creation time in ascending order.

df = mc_list.df
df.sort_values('time_created', axis=0)

[image: ../../_images/sorted_model.png]
The .list_model_deployment() method returns a list of
oci.resource_search.models.resource_summary.ResourceSummary objects.
The model_id optional parameter is used to return only the details
of the specified model.

mc.list_model_deployment(model_id=mc_model.id)

Download a Model Artifact

Use .download_model() of the ModelCatalog to retrieve a model artifact from
the model catalog. You can use the process to change the model artifacts, or make
the model accessible for predictions. While some of the model artifact metadata is mutable,
the model and scripts are immutable. When you make changes, you must save the model artifacts
back to the model catalog as a new entry.

The .download_model() method requires a model OCID value and a target directory
for the artifact files. This method returns a ModelArtifact object. You can use it
to make predictions by calling the .predict() method. If you update the model artifact,
you have to call the .reload() method to synchronize the changes on disk with the
ModelArtifact object. Then you can save the model artifact can as a new entry into
the model catalog with the .save() method.

In the next example, the model that was stored in the model catalog is downloaded.
The resulting ModelArtifact object is then used to make predictions.

Download the model that was saved to the model catalog, if it exists
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:
 download_path = tempfile.mkdtemp()
 dl_model_artifact = mc.download_model(mc_model.id, download_path, force_overwrite=True)
 dl_model_artifact.reload(model_file_name='model.onnx')
 print(dl_model_artifact.predict(data=test.X, model=dl_model_artifact.load_model()))

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json', 'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']
{'prediction': [1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0]}

Retrieve a Model from the Model Catalog

The .get_model() method of the ModelCatalog class allows for an entry
in the model catalog to be retrieved. The returned object is a Model object.
The difference between .get_model() and .download_model() is that the .download_model()
returns a ModelArtifact object, and the .get_model() returns the Model object.
The Model object allows for interaction with the entry in the model catalog where the
ModelArtifact allows interaction with the model and its artifacts.

In the next example, the model that was stored in the model catalog is
retrieved. The .get_model() method requires the OCID of the entry in
the model catalog.

if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:
 retrieved_model = mc.get_model(mc_model.id)
 retrieved_model.show_in_notebook()

[image: ../../_images/retrieved.png]
Models can also be retrieved from the model catalog by indexing the
results from the .list_models() method. In the next example,
the code iterates through all of the entries in the model catalog and
looks for the entry that has an OCID that matches the model that was
previously stored in the model catalog the this notebook. If it finds
it, the model catalog information is displayed.

is_found = False
for i in range(len(mc_list)):
 try:
 if mc_list[i].id == mc_model.id:
 mc_list[i].show_in_notebook()
 is_found = True
 except:
 pass
if not is_found:
 print("The model was not found. Could it be disabled?")

[image: ../../_images/retrieved.png]

Working with Metadata

Metadata is stored with the model artifacts and this data can be
accessed using the Model object.

These are the metadata attributes:

	id: Model OCID

	compartment_id: Compartment OCID. It’s possible to move a model
catalog entry to a new compartment.

	project_id: Project OCID. Each model catalog entry belongs to a
compartment and project.

	display_name: Name to be displayed on the Models page. Names don’t have to be unique.

	description: A detailed description of the model artifact.

	lifecycle_state: The state of the model. It can be ACTIVE or
INACTIVE.

	time_created: The date and time that the model artifacts were
stored in the model catalog.

	created_by: The OCID of the account that created the model
artifact.

	freeform_tags: User applied tags.

	defined_tags: Tags created by the infrastructure.

	user_name: User name of the account that created the entry.

	provenance_metadata: Information about the:

	git_branch: Git branch.

	git_commit: Git commit hash.

	repository_url: URL of the git repository.

	script_dir: The directory of the training script.

	training_script: The filename of the training script.

	metadata_taxonomy: Model taxonomy metadata.

	metadata_custom: Customizable metadata.

	schema_input: Input schema. However, this field can’t be
updated.

	schema_output: Output schema. However, this field can’t be
updated.

The provenance_metadata attribute returns a
ModelProvenance [https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/data_science/models/oci.data_science.models.ModelProvenance.html#oci.data_science.models.ModelProvenance]
object. This object has the attributes to access the metadata.

Access Metadata

The .show_in_notebook() method prints a table of the metadata.
Individual metadata can be accessed as an attribute of the Model
object. For example, the model description can be accessed with the
description attribute.

The next example accesses and prints several attributes and also displays the
.show_in_notebook() output:

Print the defined tags in a nice format
print("defined tags attribute")
def print_dict(dictionary, level=0):
 for key in dictionary:
 value = dictionary[key]
 print('\t'*level, end='')
 if isinstance(value, dict):
 print("Key: {}".format(key))
 print_dict(value, level+1)
 else:
 print("Key: {}, Value: {}".format(key, value))
print_dict(mc_model.defined_tags)

Print the user_name
print("\nUser name: {}".format(mc_model.user_name))

Print the provenance_metadata
print("\nTraining script: {}".format(mc_model.provenance_metadata.training_script))

Show in notebook
mc_model.show_in_notebook()

defined tags attribute

User name: user@company.tld

Training script: None

[image: ../../_images/retrieved.png]
The metadata_custom attribute of the Model object is of the same
of type as the one in ModelArtifact object. A call to
.to_dataframe() allows you to view it in dataframe format or in YAML :.

mc_model.metadata_custom.to_dataframe()

[image: ../../_images/custom_metadata.png]
It works the same way for metadata_taxonomy:

mc_model.metadata_taxonomy.to_dataframe()

[image: ../../_images/metadata_taxonomy.png]

Update Metadata

Model artifacts are immutable but the metadata is mutable.
Metadata attributes can be updated in the Model object. However,
those changes aren’t made to the model catalog until you call the .commit() method.

In the next example, the model’s display name and description are updated.
These changes are committed, and then the model is retrieved from the
model catalog. The metadata is displayed to demonstrate that it was
changed.

Only the display_name, description, freeform_tags,
defined_tags, metadata_custom, and metadata_taxonomy can be
updated.

Update some metadata
mc_model.display_name = "Update Display Name"
mc_model.description = "This description has been updated"
mc_model.freeform_tags = {'isUpdated': 'True'}
if 'CondaEnvironmentPath' in mc_model.metadata_custom.keys:
 mc_model.metadata_custom.remove('CondaEnvironmentPath')

mc_model.metadata_custom['test'].description = 'test purpose.'
mc_model.metadata_taxonomy['Hyperparameters'].value = {
 'ccp_alpha': 0.0,
 'class_weight': None,
 'criterion': 'gini',
 'max_depth': None,
 'max_features': 'auto',
 'max_leaf_nodes': None,
 'max_samples': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n_estimators': 10
 }
assert 'CondaEnvironmentPath' not in mc_model.metadata_custom.keys
mc_model.commit()

Retrieve the updated model from the model catalog
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:
 retrieved_model = mc.get_model(mc_model.id)
 retrieved_model.show_in_notebook()

[image: ../../_images/updated.png]

Activating and Deactivating a Model Catalog Entry

Entries in the model catalog can be set as active or inactive. An inactive model
is similar to archiving it. The model artifacts aren’t deleted, but deactivated entries
aren’t returned in default queries. The .deactivate() method of a Model object sets
a flag in the Model object that it’s inactive. However, you have to call the .commit()
method to update the model catalog to deactivate the entry.

The opposite of .deactivate() is the .activate() method. It flags a Model
object as active, and you have to call the .commit() method to update the model catalog.

In the next example, the model that was stored in the model catalog
in this notebook is set as inactive. The lifecycle_state shows it as
INACTIVE.

mc_model.deactivate()
mc_model.commit()
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:
 retrieved_model = mc.get_model(mc_model.id)
 retrieved_model.show_in_notebook()

[image: ../../_images/updated.png]
You can activate the model by calling the .activate() method
followed by .commit(). In this example, the lifecycle_state is
now ACTIVE:

mc_model.activate()
mc_model.commit()
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:
 retrieved_model = mc.get_model(mc_model.id)
 retrieved_model.show_in_notebook()

[image: ../../_images/updated.png]

Deleting a Model Catalog Entry

The .delete_model() method of the ModelCatalog class is used to delete entries
from the model catalog. It takes the model artifact’s OCID as a parameter. After you
delete a model catalog entry, you can’t restore it. You can only download the model
artifact to store it as a backup.

The .delete_model() method returns True if the model was
deleted. Repeated calls to .delete_model() also return True. If the
supplied OCID is invalid or the system fails to delete the model catalog
entry, it returns False.

The difference between .deactive() and .delete() is that .deactivate()
doesn’t remove the model artifacts. It marks them as inactive, and the models
aren’t listed when the .list_models() method is called. The .delete()
method permanently deletes the model artifact.

In the next example, the model that was stored in the model catalog as part
of this notebook is deleted.

mc.delete_model(mc_model.id)

 Model Deployment

Model Deployment

	Overview

	Accessing

	Attributes

	Delete

	Deploy

	Inventory

	Logs

	Predict

	Properties

	State

	Update

 Overview

Overview

Model deployments are a managed resource within the Oracle Cloud Infrastructure (OCI) Data Science service.
They allow you to deploy machine learning models as web applications (HTTP endpoints). They provide real-time
predictions and enables you to quickly productionalize your models.

The ads.model.deployment module allows you to deploy models using the
Data Science service. This module is built on top of the oci Python SDK. It is designed to
simplify data science workflows.

A model artifact [https://docs.oracle.com/en-us/iaas/data-science/using/models-prepare-artifact.htm]
is a ZIP archive of the files necessary to deploy your model. The model artifact contains the
score.py [https://docs.oracle.com/en-us/iaas/data-science/using/model_score_py.htm] file. This file
has the Python code that is used to load the model and perform predictions. The model artifact also contains
the runtime.yaml [https://docs.oracle.com/en-us/iaas/data-science/using/model_runtime_yaml.htm] file.
This file is used to define the conda environment used by the model deployment.

ADS supports deploying a model artifact from the Data Science
model catalog [https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/modelcatalog/modelcatalog.html],
or the URI of a directory that can be in the local block storage or in Object Storage.

You can integrate model deployments with the
OCI Logging service [https://docs.oracle.com/en-us/iaas/data-science/using/log-about.htm#jobs_about__mod-dep-logs].
The system allows you to store access and prediction logs ADS provides APIs to simplify the interaction with the Logging service, see
ADS Logging.

The ads.model.deployment module provides the following classes, which are
used to deploy and manage the model.

	ModelDeployer: It creates a new deployment. It is also used to delete, list, and update existing deployments.

	ModelDeployment: Encapsulates the information and actions for an existing deployment.

	ModelDeploymentProperties: Stores the properties used to deploy a model.

 Accessing

Accessing

When a model is deployed the .deploy() method of the ModelDeployer class will return a ModelDeployment object. This object can be used to interact with the actual model deployment. However, if the model has already been deployed, it is possible to obtain a ModelDeployment object. Use the .get_model_deployment() method when the model deployment OCID is known.

The next code snippet creates a new ModelDeployment object that has access
to the created model deployment.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
existing_deployment = deployer.get_model_deployment(model_deployment_id="<MODEL_DEPLOYMENT_OCID>")

 Attributes

Attributes

The ModelDeployment class has a number of attributes that are assigned by the system. They
provide a mechanism to determine the state of the model deployment, the URI to make predictions,
the model deployment OCID, etc.

In the following code snippets, the variable deployment is a ModelDeployment object.
This object can be obtained from a call to .deploy() or .get_model_deployment().

OCID

The .model_deployment_id of the ModelDeployment class specifies
the OCID of the model deployment.

deployment.model_deployment_id

State

You can determine the state of the model deployment using the
.current_state enum attribute of a ModelDeployment object.
This returns an enum object and the string value can be determined with
.current_state.name. It will have values like ‘ACTIVE’, ‘INACTIVE’, and ‘FAILED’.

In the following code snippets, the variable deployment is a ModelDeployment object.
This object can be obtained from a call to .deploy() or .get_model_deployment().

deployment.current_state.name

URL

The URL of the model deployment to use to make predictions
using an HTTP request. The request is made to the URL given in the .url attribute of the
ModelDeployment class. You can make HTTP requests to this endpoint
to have the model make predictions, see the Predict section and
Invoking a Model Deployment [https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-invoke.htm]
documentation for details.

deployment.url

 Delete

Delete

A model deployment can be deleted using a ModelDeployer or ModelDeployment objects.

When a model deployment is deleted, it deletes the load balancer
instances associated with it. However, it doesn’t
delete other resources like log group, log, or model.

ModelDeployer

The ModelDeployer instance has a .delete() method for deleting a model deployment
when give its OCID.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployer.delete(model_deployment_id=deployment_id)

ModelDeployment

If you have a ModelDeployment object, you can use the .delete() method
to delete the model that is associated with that object. The
optional wait_for_completion parameter accepts a Boolean and
determines if the process is blocking or not.

In the following code snippets, the variable deployment is a ModelDeployment object.
This object can be obtained from a call to .deploy() or .get_model_deployment().

deployment = deployment.delete(wait_for_completion=True)

 Deploy

Deploy

The .deploy() method of the ModelDeployer class is used to create a model deployment.
It has the following parameters:

	max_wait_time: The timeout limit, in seconds, for the deployment process to wait until it is active. Defaults to 1200 seconds.

	poll_interval: The interval between checks of the deployment status in seconds. Defaults to 30 seconds.

	wait_for_completion: Blocked process until the deployment has been completed. Defaults to True.

There are two ways to use the .deploy() method. You can create a ModelDeploymentProperties object and
pass that in, or you can define the model deployment properties using the .deploy() method.

Using ModelDeploymentProperties

After a ModelDeploymentProperties object is created, then you use model_deployment_properties
to deploy a model as in this example:

from ads.model.deployment import ModelDeployer, ModelDeploymentProperties

model_deployment_properties = ModelDeploymentProperties(
 "<oci://your_bucket@your_namespace/path/to/dir>"
).with_prop(
 'display_name', "Model Deployment Demo using ADS"
).with_prop(
 "project_id", "<PROJECT_OCID>"
).with_prop(
 "compartment_id", "<COMPARTMENT_OCID>"
).with_logging_configuration(
 "<ACCESS_LOG_GROUP_OCID>", "<ACCESS_LOG_OCID>", "<PREDICT_LOG_GROUP_OCID>", "<PREDICT_LOG_OCID>"
).with_instance_configuration(
 config={"INSTANCE_SHAPE":"VM.Standard2.1", "INSTANCE_COUNT":"1",'bandwidth_mbps':10}
)
deployer = ModelDeployer()
deployment = deployer.deploy(model_deployment_properties)

Without Using ModelDeploymentProperties

Depending on your use case, it might be more convenient to skip the
creation of a ModelDeploymentProperties object and create the model
deployment directly using the .deploy() method. You can do this by
passing the using keyword arguments instead of
ModelDeploymentProperties. You specify the model deployment
properties as parameters in the .deploy() method.

You define the model deployment properties using the following parameters:

	access_log_group_id: Log group OCID for the access logs. Required when access_log_id is specified.

	access_log_id: Custom logger OCID for the access logs. Required when access_log_group_id is specified.

	bandwidth_mbps: The bandwidth limit on the load balancer in Mbps. Optional.

	compartment_id: Compartment OCID that the model deployment belongs to.

	defined_tags: A dictionary of defined tags to be attached to the model deployment. Optional.

	description: A description of the model deployment. Optional.

	display_name: A name that identifies the model deployment in the Console.

	freeform_tags: A dictionary of freeform tags to be attached to the model deployment. Optional.

	instance_count: The number of instances to deploy.

	instance_shape: The instance compute shape to use. For example, “VM.Standard2.1”

	model_id: Model OCID that is used in the model deployment.

	predict_log_group_id: Log group OCID for the predict logs. Required when predict_log_id is specified.

	predict_log_id: Custom logger OCID for the predict logs. Required when predict_log_group_id is specified.

	project_id: Project OCID that the model deployment will belong to.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployment = deployer.deploy(
 model_id="<MODEL_OCID>",
 display_name="Model Deployment Demo using ADS",
 instance_shape="VM.Standard2.1",
 instance_count=1,
 project_id="<PROJECT_OCID>",
 compartment_id="<COMPARTMENT_OCID>",
 # The following are optional
 access_log_group_id="<ACCESS_LOG_GROUP_OCID>",
 access_log_id="<ACCESS_LOG_OCID>",
 predict_log_group_id="<PREDICT_LOG_GROUP_OCID>",
 predict_log_id="<PREDICT_LOG_OCID>"
)

 Inventory

Inventory

List

The .list_deployments() method of the ModelDeployer class returns
a list of ModelDeployment objects. The optional
compartment_id parameter limits the search to a specific compartment. By
default, it uses the same compartment that the notebook is in. The
optional status parameter limits the returned
ModelDeployment objects to those model deployments that have the
specified status. Values for the status parameter would be ‘ACTIVE’,
‘INACTIVE’, or ‘FAILED’.

The code snippet obtains a list of active deployments in the
compartment specified by compartment_id, and prints the display name.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
for active in deployer.list_deployments(status="ACTIVE", compartment_id=compartment_id):
 print(active.properties.display_name)

Show

The .show_deployments() method is a helper function that works the
same way as the .list_deployments() method except it returns a dataframe of the results.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployer.show_deployments(compartment_id=compartment_id, status="ACTIVE")

 Logs

Logs

The model deployment process creates a set of workflow logs. Optionally, you can also configure the Logging service to capture access and predict logs.

In the following code snippets, the variable deployment is a ModelDeployment object.
This object can be obtained from a call to .deploy() or .get_model_deployment().

Access/Predict

The .show_logs() and .logs() methods in the ModelDeployment class exposes
the predict and access logs. The parameter log_type
accepts predict and access to specify which logs to return. When it’s
not specified, the access logs are returned. The parameters
time_start and time_end restrict the logs to time periods
between those entries. The limit parameter limits the number of log
entries that are returned.

Logs are not collected in real-time. Therefore, it is possible that logs have
been emitted by the model deployment but are not currently available with the
.logs() and .show_logs() methods.

logs

This method returns a list of dictionaries where each element of the list
is a log entry. Each element of the dictionary is a key-value pair from the log.

deployment.logs(log_type="access", limit=10)

show_logs

This method returns a dataframe where each row represents a log entry.

deployment.show_logs(log_type="access", limit=10)

Workflow

The .list_workflow_logs() provides a list of dictionaries that define
the steps that were used to deploy the model. These are referred to as the workflow logs.

deployment.list_workflow_logs()

[{
 "message": "Creating compute resource configuration.",
 "timestamp": "2021-04-21T20:45:27.609000+00:00"
 },
 {
 "message": "Creating compute resources.",
 "timestamp": "2021-04-21T20:45:30.237000+00:00"
 },
 {
 "message": "Creating load balancer.",
 "timestamp": "2021-04-21T20:45:33.076000+00:00"
 },
 {
 "message": "Compute resources are provisioned.",
 "timestamp": "2021-04-21T20:46:46.876000+00:00"
 },
 {
 "message": "Load balancer is provisioned.",
 "timestamp": "2021-04-21T20:53:54.764000+00:00"
 }]

 Predict

Predict

Predictions can be made by calling the HTTP endpoint associated with the model
deployment. The ModelDeployment object url attribute
specifies the endpoint. You could also use the
ModelDeployment object with the .predict() method. The format of
the data that is passed to the HTTP endpoint depends on the setup of
the model artifact. The default setup is to pass in a Python dictionary
that has been converted to a JSON data structure. The first level
defines the feature names. The second level uses an identifier for the
observation (for example, row in the dataframe), and the value associated with
it. Assuming the model has features F1, F2, F3, F4, and F5, then
the observations are identified by the values 0, 1, and 2 and the data would look like this:

	Index

	F1

	F2

	F3

	F4

	F5

	0

	11

	12

	13

	14

	15

	1

	21

	22

	23

	24

	25

	2

	31

	32

	33

	34

	35

The Python dictionary representation would be:

test = {
 'F1': { 0: 11, 1: 21, 2: 31},
 'F2': { 0: 12, 1: 22, 2: 32},
 'F3': { 0: 13, 1: 23, 2: 33},
 'F4': { 0: 14, 1: 24, 2: 34},
 'F5': { 0: 15, 1: 25, 2: 35}
}

You can use the ModelDeployment object to call the HTTP endpoint. The returned
result is the predictions for the three observations.

deployment.predict(test)

{'prediction': [0, 2, 0]}

 Properties

Properties

ModelDeploymentProperties

The ModelDeploymentProperties class is a container to store model deployment properties. String
properties are set using the .with_prop() method. You use it to assemble properties such as the
display name, project OCID, and compartment OCID. The .with_access_log() and .with_predict_log()
methods define the logging properties. Alternatively, you could use the
.with_logging_configuration() helper method to define the predict and access
log properties using a single method. The .with_instance_configuration()
method defines the instance shape, count, and bandwidth.
Initializing ModelDeploymentProperties requires a model_id or model_uri.
The model_id is the model OCID from the model catalog.

from ads.model.deployment import ModelDeploymentProperties

model_deployment_properties = ModelDeploymentProperties(
 "<MODEL_OCID>"
).with_prop(
 'display_name', "Model Deployment Demo using ADS"
).with_prop(
 "project_id", "<PROJECT_OCID>"
).with_prop(
 "compartment_id", "<COMPARTMENT_OCID>"
).with_logging_configuration(
 "<ACCESS_LOG_GROUP_OCID>", "<ACCESS_LOG_OCID>", "<PREDICT_LOG_GROUP_OCID>", "<PREDICT_LOG_OCID>"
).with_instance_configuration(
 config={"INSTANCE_SHAPE":"VM.Standard2.1", "INSTANCE_COUNT":"1",'bandwidth_mbps':10}
)

Alternatively, you could specify a model_uri instead of a model_id. The
model_uri is the path to the directory containing the model artifact. This can be a local path or
the URI of Object Storage. For example, oci://your_bucket@your_namespace/path/to/dir.

model_deployment_properties = ModelDeploymentProperties(
 "<oci://your_bucket@your_namespace/path/to/dir>"
)

properties Attribute

The ModelDeployment class has a number of attributes that provide
information about the deployment. The properties attribute contains
information about the model deployment’s properties that are related to the information
that is stored in the model’s ModelDeploymentProperties object. This object has all of the
attributes of the Data Science model deployment model [https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/data_science/models/oci.data_science.models.ModelDeployment.html#oci.data_science.models.ModelDeployment].

The most commonly used properties are:

	category_log_details: A model object that contains the OCIDs for the access and predict logs.

	compartment_id: Compartment ID of the model deployment.

	created_by: OCID of the user that created the model deployment.

	defined_tags: System defined tags.

	description: Description of the model deployment.

	display_name: Name of the model that is displayed in the Console.

	freeform_tags: User-defined tags.

	model_id: OCID of the deployed model.

	project_id: OCID of the project the model deployment belongs to.

To access these properties use the .properties accessor on a ModelDeployment object.
For example, to determine the OCID of the project that a model deployment is associated with,
use the command:

deployment.properties.project_id

 State

State

ModelDeployer

The .get_model_deployment_state() method of the ModelDeployer
class accepts a model deployment OCID and returns an enum state. This is
a convenience method to obtain the model deployment state when the model
deployment OCID is known.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployer.get_model_deployment_state(model_deployment_id="<MODEL_DEPLOYMENT_OCID>").name

'ACTIVE'

ModelDeployment

You can determine the state of the model deployment using the
current_state.name attribute of a ModelDeployment object.
This returns a string with values like ‘ACTIVE’, ‘INACTIVE’, and ‘FAILED’.

In the following code snippets, the variable deployment is a ModelDeployment object.
This object can be obtained from a call to .deploy() or .get_model_deployment().

deployment.current_state.name

 Update

Update

The .update() method of the ModelDeployment class is used to make
changes to a deployed model. This method accepts the same parameters as
the .deploy() method. Check out the
Editing Model Deployments [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_manage.htm] for a
list of what properties can be updated.

A common use case is to change the underlying model that is deployed. In the following code snippets, the variable deployment is a ModelDeployment object.
This object can be obtained from a call to .deploy() or .get_model_deployment().

deployment.update(model_id="<NEW_MODEL_OCID>")

Or, you could update the instance shape with:

deployment.update(
 model_deployment_properties.with_instance_configuration(
 dict(instance_shape="VM.Standard2.1")
)
)

 Model Evaluation

Model Evaluation

	Overview

	Binary Classification

	New to Release 2.6b0

	Multiclass Classification

	Regression

 Overview

Overview

With the ever-growing suite of models at the disposal of data scientists, the problems with selecting a model have grown similarly. ADS offers the Evaluation Class, a
collection of tools, metrics, and charts concerned with the contradistinction of several models.

After working hard to architect and train your model, it’s important to understand how it performs across a series of benchmarks. Evaluation is a set of functions that convert
the output of your test data into an interpretable, standardized series of scores and charts. From the accuracy of the ROC curve and residual QQ plots.

Evaluation can help machine learning developers to:

	Quickly compare models across several industry-standard metrics.

	For example, what’s the accuracy, and F1-Score of my binary classification model?

	Discover where a model is failing to feedback into future model development.

	For example, while accuracy is high, precision is low, which is why the examples I care about are failing.

	Increase understanding of the trade-offs of various model types.

Evaluation can help users of machine learning algorithms to:

	Understand visually and numerically where the model is likely to perform well, and where it is likely to fail.

	For example, model A performs well when the weather is clear, but is much more uncertain during inclement conditions.

There are three types of ADS Evaluators, binary classifier, multiclass classifier, and regression.

 Binary Classification

Binary Classification

Binary Classification is a type of modeling wherein the output is binary. For example, Yes or No, Up or Down, 1 or 0. These models are a special case of multiclass classification so have specifically catered metrics.

The prevailing metrics for evaluating a binary classification model are accuracy, hamming loss, kappa score, precision, recall, \(F_1\) and AUC. Most information about binary classification uses a few of these metrics to speak to the importance of the model.

	Accuracy: The proportion of predictions that were correct. It is generally converted to a percentage where 100% is a perfect classifier. An accuracy of 50% is random (for a balanced dataset) and an accuracy of 0% is a perfectly wrong classifier.

	Hamming Loss: The proportion of predictions that were incorrectly classified and is equivalent to \(1-accuracy\). This means a Hamming Loss of 0 is a perfect classifier. A score of 0.5 is a random classifier (for a balanced dataset), and 1 is a perfectly incorrect classifier.

	Kappa Score: Cohen’s kappa coefficient is a statistic that measures inter-annotator agreement. This function computes Cohen’s kappa, a score that expresses the level of agreement between two annotators on a classification problem. It is defined as:

\[\kappa = (p_o - p_e) / (1 - p_e)\]

\(p_o\) is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio).
\(p_e\) is the expected agreement when both annotators assign labels randomly.
\(p_e\) is estimated using a per-annotator empirical prior over the class labels.

	Precision: The proportion of the True class that were predicted to be True and are actually in the True class \(\frac{TP}{TP + FP}\). This is also known as Positive Predictive Value (PPV). A precision of 1.0 is perfect precision, 0.0 is bad precision. However, the precision of a random classifier varies highly based on the nature of the data and to a lesser extent a bad precision.

	Recall: This is the proportion of the True class predictions that were correctly predicted over the number of True predictions (correct or incorrect) \(\frac{TP}{TP + FN}\). This is also known as True Positive Rate (TPR) or Sensitivity. A recall of 1.0 is perfect recall, 0.0 is bad recall. however, the recall of a random classifier varies highly based on the nature of the data and to a lesser extent a bad recall.

	\(\mathbf{F_1}\) Score: There is generally a trade-off between the precision and recall and the \(F_1\) score is a metric that combines them into a single number. The \(F_1\) Score is the harmonic mean of precision and recall:

\[F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}\]

Therefore a perfect \(F_1\) score is 1.0. That is, the classifier has perfect precision and recall. The worst \(F_1\) score is 0.0. The \(F_1\) score of a random classifier is heavily dependent on the nature of the data.

	AUC: Area Under the Curve (AUC) refers to the area under an ROC curve. This is a numerical way to summarize the robustness of a model to its discrimination threshold. The AUC is computed by integrating the area under the ROC curve. It is akin to the probability that your model scores better on results to which it accredits a higher score. Thus 1.0 is a perfect score, 0.5 is the average score of a random classifier, and 0.0 is a perfectly backward scoring classifier.

The prevailing charts and plots for binary classification are the Precision-Recall Curve, the ROC curve, the Lift Chart, the Gain Chart, and the Confusion Matrix. These are inter-related with the previously described metrics and are commonly used in the binary classification literature.

	Precision-Recall Curve

	ROC curve

	Lift Chart

	Gain Chart

	Confusion Matrix

This code snippet demonstrates how to generate the above metrics and charts. The data has to be split into a testing and training set with the features in X_train and X_test and the responses in y_train ond y_test.

lr_clf = LogisticRegression(random_state=0, solver='lbfgs',
 multi_class='multinomial').fit(X_train, y_train)

rf_clf = RandomForestClassifier(n_estimators=10).fit(X_train, y_train)

from ads.common.model import ADSModel
bin_lr_model = ADSModel.from_estimator(lr_clf, classes=[0,1])
bin_rf_model = ADSModel.from_estimator(rf_clf, classes=[0,1])

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

evaluator = ADSEvaluator(test, models=[bin_lr_model, bin_rf_model], training_data=train)

To use the ADSEvaluator the standard sklearn models into ADSModels.

The ADSModel class in the ADS package has a from_estimator function that takes as input a fitted estimator and converts it into an ADSModel object. With classification, the class labels also need to be provided. The ADSModel object is used for evaluation by the ADSEvaluator object.

To show all of the metrics in a table, run:

evaluator.metrics

[image: ../../_images/binary_eval_metrics.png]

Evaluator Metrics (repr)

To show all of the charts, run:

evaluator.show_in_notebook(perfect=True)

[image: ../../_images/binary_lift_gain_chart.png]

Lift & Gain Chart

[image: ../../_images/binary_PR_ROC_curve.png]

PR & ROC Curves

[image: ../../_images/binary_normalized_confusion_matrix.png]

Normalized Confusion Matrix

Important parameters:

	If perfect is set to True, ADS plots a perfect classifier for comparison in Lift and Gain charts.

	If baseline is set to True, ADS won’t include a baseline for the comparison of various plots.

	If use_training_data is set True, ADS plots the evaluations of the training data.

	If plots contain a list of plot types, ADS plots only those plot types.

This code snippet demonstrates how to add a custom metric, a \(F_2\) score, to the evaluator.

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

from sklearn.metrics import fbeta_score
def F2_Score(y_true, y_pred):
 return fbeta_score(y_true, y_pred, 2)
evaluator.add_metrics([F2_Score], ["F2 Score"])
evaluator.metrics

New to Release 2.6b0

Fairness Metrics will be automatically generated for any feature specifed in the protected_features argument to the ADSEvaluator object. The added metrics are:

	Equal Odds: For each of the protected_features specified, Equal Odds is a ratio between the positive rates for each class within that feature. The closer this value is to 1, the less biased the model and data are with respect to the feature, F. In other terms, for a binary feature F with classes A and B, Equal Odds is calculated using the following formula:

\[\frac{P(\hat{y}=1 | Y=y,F=A)}{P(\hat{y}=1 | Y=y,F=B)}\]

	Equal Opportunity: For each of the protected_features specified, Equal Opportunity is a ratio between the true positive rates for each class within that feature. The closer this value is to 1, the less biased the model is with respect to the feature F. In other terms, for a binary feature F with classes A and B, Equal Opportunity is calculated using the following formula:

\[\frac{P(\hat{y}=1 | Y=1,F=A)}{P(\hat{y}=1 | Y=1,F=B)}\]

	Statistical Parity: For each of the protected_features specified, Statistical Parity is a ratio between the prediction rates for each class within that feature. The closer this value is to 1, the less biased the model and data are with respect to the feature F. In other terms, for a binary feature F with classes A and B, Statistical Parity is calculated using the following formula:

\[\frac{P(\hat{y} | F=A)}{P(\hat{y} | F=B)}\]

	The following plots are added to explain the fairness metrics above:
	
	Equal Opportunity Bar Chart: True Positive Rate bar chart by protected feature class

	Equal Odds Bar Chart: False Positive Rate bar chart by protected feature class

	Statistical Parity Bar Chart: Number of positive predictions by protected feature class

Important New Parametes:

	If protected_features contains a list of column names in data.X, ADS will generate fairness metrics for each of those columns.

 Multiclass Classification

Multiclass Classification

Multiclass Classification is a type of modeling wherein the output is discrete. For example, an integer 1-10, an animal at the zoo,
or a primary color. These models have a specialized set of charts and metrics for their evaluation.

The prevailing metrics for evaluating a multiclass classification model are:

	Accuracy: The proportion of predictions that were correct. It is generally converted to a percentage where 100% is a perfect classifier. For a balanced dataset, an accuracy of \(\frac{100\%}{k}\) where \(k\) is the number of classes, is a random classifier. An accuracy of 0% is a perfectly wrong classifier.

	Hamming Loss: The proportion of predictions that were incorrectly classified and is equivalent to \(1-accuracy\). This means a Hamming loss score of 0 is a perfect classifier. A score of \(\frac{k-1}{k}\) is a random classifier for a balanced dataset, and 1.0 is a perfectly incorrect classifier.

	Kappa Score: Cohen’s kappa coefficient is a statistic that measures inter-annotator agreement. This function computes
Cohen’s kappa, a score that expresses the level of agreement between two annotators on a classification problem. It is defined as:

\[\kappa = (p_o - p_e) / (1 - p_e)\]

\(p_o\) is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio).
\(p_e\) is the expected agreement when both annotators assign labels randomly.
\(p_e\) is estimated using a per-annotator empirical prior over the class labels.

	Precision (weighted, macro or micro): This is the proportion of a class that was predicted to be in a given class and are actually in that class. In multiclass classification, it is common to report the precision for each class and this is called the per-class precision. It is computed using the same approach use in binary classification. For example, \(\frac{TP}{TP + FP}\), but only the class under consideration is used. A value of 1 means that the classifier was able to perfectly predict, for that class. A value of 0 means that the classifier was never correct, for that class. There are three other versions of precision that are used in multiclass classification and they are weighted, macro and micro-precision. Weighted precision, \(P_w\), combines the per-class precision by the number of true labels in a class:

\[P_w = W_1 P_1 + \cdots + W_n P_n\]

\(W_i\) is the proportion of the true labels in class i
\(P_i\) is the per-class precision for the \(i^{th}\) class

The macro-precision, \(P_m\), is the mean of all the per-class, \(P_i\), precisions.

\[P_m = \frac{1}{n} \sum_{i} P_i\]

The micro-precision, \(P_{\mu}\), is the same as the accuracy, micro-recall, and micro \(F_1\).

	Recall (weighted, macro or micro): This is the proportion of the True class predictions that were correctly predicted over the number of True predictions (correct or incorrect) \(\frac{TP}{TP + FN}\). This is also known as the True Positive Rate (TPR) or Sensitivity. In multiclass classification, it is common to report the recall for each class and this is called the micro-recall. It is computed using the same approach as in the case of binary classification, but is reported for each class. A recall of 1 is perfect recall, 0 is “bad” recall.

As with precision, there are three other versions of recall that are used in multiclass classification. They are weighted, macro and micro-recall. The definitions are the same except the per-class recall replaces the per-class precision in the preceding equations.

	\(\mathbf{F_1}\) Score (weighted, macro or micro): There is generally a trade-off between the precision and recall and the \(F_1\) score is a metric that combines them into a single number. The per-class \(F_1\) score is the harmonic mean of precision and recall:

\[F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}\]

As with precision, there are a number of other versions of \(F_1\) that are used in multiclass classification. The micro and weighted \(F_1\) is computed the same as with precision, but with the per-class \(F_1\) replacing the per-class precision. However, the macro \(F_1\) is computed a little differently. The precision and recall are computed by summing the TP, FN, and FP across all classes, and then using them in the standard formulas.

Generally, several of these metrics are used in combination to describe the performance of a multiclass classification model.

The prevailing charts and plots for multiclass classification are the Precision-Recall Curve, the ROC curve, the Lift Chart, the Gain Chart, and the Confusion Matrix. These are inter-related with preceding metrics, and are common across most multiclass classification literature.

For multiclass classification you can view the following using show_in_notebook():

	confusion_matrix: A matrix of the number of actual versus predicted values for each class, see [Read More] [https://en.wikipedia.org/wiki/Confusion_matrix].

	pr_curve: A plot of a precision versus recall (the proportion of positive class predictions that were correct versus
the proportion of positive class objects that were correctly identified), see [Read More] [https://en.wikipedia.org/wiki/Precision_and_recall].

	roc_curve: A plot of a true positive rate versus a false positive rate (recall vs the proportion of negative class objects that were identified incorrectly), see [Read More] [https://en.wikipedia.org/wiki/Receiver_operating_characteristic].

	precision_by_label: Consider one label as a positive class and rest as negative. Compute precision for each, precision numbers in this example, see [Read More] [https://en.wikipedia.org/wiki/Precision_(statistics)].

	recall_by_label: Consider one label as a positive class and rest as negative. Compute recall for each, recall numbers in this example, [Read More] [https://en.wikipedia.org/wiki/Precision_and_recall].

	f1_by_label: Harmonic mean of precision_by_label and recall_by_label. Compute f1 for each, f1 scores in this example, see [Read More] [https://en.wikipedia.org/wiki/F1_score]

	jaccard_by_label: Computes the similarity for each label distribution, see [Read More] [https://en.wikipedia.org/wiki/Jaccard_index].

To generate all of these metrics and charts for a list of multiclass classification models on the test dataset test`, you can run the following:

lr_clf = LogisticRegression(random_state=0, solver='lbfgs',
 multi_class='multinomial').fit(X_train, y_train)
rf_clf = RandomForestClassifier(n_estimators=10).fit(X_train, y_train)

from ads.common.model import ADSModel
lr_model = ADSModel.from_estimator(lr_clf, classes=[0,1,2])
rf_model = ADSModel.from_estimator(rf_clf, classes=[0,1,2])

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

multi_evaluator = ADSEvaluator(test, models=[lr_model, rf_model])

To use ADSEvaluator, models have to be converted into ADSModel types.

The ADSModel class in the ADS package has a from_estimator function that takes as input a fitted estimator and converts it into an ADSModel object. With classification, you have to pass the class labels in the class argument too. The ADSModel object is used for evaluation using the ADSEvaluator object.

To show all of the metrics in a table, run:

evaluator.metrics

[image: ../../_images/multiclass_eval_metrics.png]

Evaluator Metrics (repr)

evaluator.show_in_notebook()

[image: ../../_images/multiclass_confusion_matrix.png]

Multiclass Confusion Matrix

[image: ../../_images/multiclass_ROC_curve.png]

Multiclass ROC Curve

[image: ../../_images/multiclass_PR_curve.png]

Multiclass PR Curve

[image: ../../_images/multiclass_precision_by_label.png]

Multiclass Precision By Label

[image: ../../_images/multiclass_F1_by_label.png]

Multiclass F1 By Label

[image: ../../_images/multiclass_jaccard_by_label.png]

Multiclass Jaccard By Label

Multiclass classification includes the following:

	accuracy: The number of correctly classified examples divided by total examples.

	hamming_loss: 1 - accuracy

	precision_weighted: The weighted average of precision_by_label. Weights are proportional to the number of true instances for each label.

	precision_micro: Global precision. Calculated by using global true positives and false positives.

	recall_weighted: The weighted average of recall_by_label. Weights are proportional to the number of true instances for each label.

	recall_micro: Global recall. Calculated by using global true positives and false negatives.

	f1_weighted: The weighted average of f1_by_label. Weights are proportional to the number of true instances for each label.

	f1_micro: Global f1. It can be calculated by using the harmonic mean of precision_micro and recall_micro.

All of these metrics can be computed directly from the confusion matrix.

If the preceding metrics don’t include the specific metric you want to use, maybe an F2 score, simply add it to your evaluator object as in this example:

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

from sklearn.metrics import fbeta_score
def F2_Score(y_true, y_pred):
 return fbeta_score(y_true, y_pred, 2)
evaluator.add_metrics([F2_Score], ["F2 Score"])
evaluator.metrics

 Regression

Regression

Regression is a type of modeling wherein the output is continuous. For example, price, height, sales, length. These models have their own specific metrics that help to benchmark the model. How close is close enough?

The prevailing metrics for evaluating a regression model are:

	R-squared: Also known as the coefficient of determination. It is the proportion in the data of the variance that is explained by the model, see [Read More] [https://en.wikipedia.org/wiki/Coefficient_of_determination].

	Explained variance score: The variance of the model’s predictions. The mean of the squared difference between the predicted values and the true mean of the data, see [Read More] [https://en.wikipedia.org/wiki/Explained_variation].

	Mean squared error (MSE): The mean of the squared difference between the true values and predicted values, see [Read More] [https://en.wikipedia.org/wiki/Mean_squared_error].

	Root mean squared error (RMSE): The square root of the mean squared error, see [Read More] [https://en.wikipedia.org/wiki/Root-mean-square_deviation].

	Mean absolute error (MAE): The mean of the absolute difference between the true values and predicted values, see [Read More] [https://en.wikipedia.org/wiki/Mean_absolute_error].

	mean residuals: The mean of the difference between the true values and predicted values, see [Read More] [https://en.wikipedia.org/wiki/Errors_and_residuals].

The prevailing charts and plots for regression are:

	Observed vs. predicted: A plot of the observed, or actual values, against the predicted values output by the models.

	Residuals QQ: The quantile-quantile plot, shows the residuals and quantiles of a standard normal distribution. It should be close to a straight line for a good model.

	Residuals vs. predicted: A plot of residuals versus predicted values. This should not carry a lot of structure in a good model.

	Residuals vs observed: A plot of residuals vs observed values. This should not carry a lot of structure in a good model.

This code snippet demonstrates how to generate the above metrics and charts. The data has to be split into a testing and training set with the features in X_train and X_test and the responses in y_train and y_test.

lin_reg = LinearRegression().fit(X_train, y_train)
lasso_reg = Lasso(alpha=0.1).fit(X_train, y_train)

from ads.common.model import ADSModel
lin_reg_model = ADSModel.from_estimator(lin_reg)
lasso_reg_model = ADSModel.from_estimator(lasso_reg)

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

evaluator = ADSEvaluator(test, models=[lin_reg_model, lasso_reg_model])

To show all of the metrics in a table, run:

evaluator.metrics

[image: ../../_images/regression_eval_metrics.png]

Evaluator Metrics (repr)

To show all of the charts, run:

evaluator.show_in_notebook()

[image: ../../_images/regression_observed_vs_predicted.png]

Observed vs Predicted

[image: ../../_images/regression_residual_qq.png]

Residual Q-Q Plot

[image: ../../_images/regression_residual_vs_predicted.png]

Residual vs Predicted

[image: ../../_images/regression_residual_vs_observed.png]

Residual vs Observed

This code snippet demonstrates how to add a custom metric, Number Correct, to the evaluator.

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

def num_correct(y_true, y_pred):
 return sum(y_true == y_pred)
evaluator.add_metrics([num_correct], ["Number Correct"])
evaluator.metrics

 Model Explainability

Model Explainability

Machine learning and deep learning are becoming ubiquitous due to:

	The ability to solve complex problems in a variety of different domains.

	The growth in the performance and efficiency of modern computing resources.

	The widespread availability of large amounts of data.

However, as the size and complexity of problems continue to increase, so does the complexity of the machine learning algorithms applied to these problems. The inherent and growing complexity of machine learning algorithms limits the ability to understand what the model has learned or why a given prediction was made, acting as a barrier to the adoption of machine learning. Additionally, there may be legal or regulatory requirements to be able to explain the outcome of a prediction from a machine learning model, resulting in the use of biased models at the cost of accuracy.

Machine learning explainability (MLX) is the process of explaining and interpreting machine learning and deep learning models.

MLX can help machine learning developers to:

	Better understand and interpret the model’s behavior.

	Which features does the model consider important?

	What is the relationship between the feature values and the target predictions?

	Debug and improve the quality of the model.

	Did the model learn something unexpected?

	Does the model generalize or did it learn something specific to the training dataset?

	Increase trust in the model and confidence in deploying the model.

MLX can help users of machine learning algorithms to:

	Understand why the model made a certain prediction.

	Why was my bank loan denied?

Some useful terms for MLX:

	Explainability: The ability to explain the reasons behind a machine learning model’s prediction.

	Interpretability: The level at which a human can understand the explanation.

	Global Explanations: Understand the general behavior of a machine learning model as a whole.

	Local Explanations: Understand why the machine learning model made a specific prediction.

	WhatIf Explanations: Understand how changes in the value of features affects the model’s prediction.

	Model-Agnostic Explanations: Explanations treat the machine learning model and feature pre-processing as a black box, instead of using properties from the model to guide the explanation.

The ADS explanation module provides interpretable, model-agnostic, local and global explanations.

These explanation techniques in ADS are described and include examples:

	Global Explainers
	Feature Permutation Importance Explanations
	Overview

	Description

	Interpretation

	Examples

	References

	Feature Dependence Explanations
	Overview

	Description

	Interpretation

	Examples

	References

	Accumulated Local Effects
	Overview

	Description

	Interpretation

	Examples

	Disadvantages

	References

	Local Explainers
	Enhanced Local Interpretable Model-Agnostic Explanations
	Overview

	Description

	Interpretation

	Example

	References

	WhatIf Explainer
	Description

	Example

 Global Explainers

Global Explainers

Global explanations help to understand the model’s general behavior.

There are multiple forms of global explanations. For example, global explanations:

	Can identify the important features that the model considers when making its predictions.

	Highlight the relationship between different feature values and the model’s predictions.

	Present the instances that are most influential towards the prediction of a given class and value.

Supported global explanation techniques:

	Feature Permutation Importance Explanations
	Overview

	Description

	Interpretation

	Examples

	References

	Feature Dependence Explanations
	Overview

	Description

	Interpretation

	Examples

	References

	Accumulated Local Effects
	Overview

	Description

	Interpretation

	Examples

	Disadvantages

	References

 Feature Permutation Importance Explanations

Feature Permutation Importance Explanations

Overview

Feature permutation importance is a model-agnostic global explanation method that provides insights into a machine learning model’s behavior. It estimates and ranks feature importance based on the impact each feature has on the trained machine learning model’s predictions.

Description

Feature permutation importance measures the predictive value of a feature for any black box estimator, classifier, or regressor. It does this by evaluating how the prediction error increases when a feature is not available. Any scoring metric can be used to measure the prediction error. For example, \(F_1\) for classification or R2 for regression. To avoid actually removing features and retraining the estimator for each feature, the algorithm randomly shuffles the feature values effectively adding noise to the feature. Then, the prediction error of the new dataset is compared with the prediction error of the original dataset. If the model heavily relies on the column being shuffled to accurately predict the target variable, this random re-ordering causes less accurate predictions. If the model does not rely on the feature for its predictions, the prediction error remains unchanged.

The following summarizes the main steps in computing feature permutation importance explanations:

	Start with a trained machine learning model.

	Calculate the baseline prediction error on the given dataset. For example, train dataset or test dataset.

	For each feature:

	Randomly shuffle the feature column in the given dataset.

	Calculate the prediction error on the shuffled dataset.

	Store the difference between the baseline score and the shuffled dataset score as the feature importance. For example, baseline score - shuffled score.

	Repeat the preceding three steps multiple times then report the average. Averaging mitigates the effects of random shuffling.

	Rank the features based on the average impact each feature has on the model’s score. Features that have a larger impact on the score when shuffled are assigned higher importance than features with minimal impact on the model’s score.

	In some cases, randomly permuting an unimportant feature can actually have a positive effect on the model’s prediction so the feature’s contribution to the model’s predictions is effectively noise. In the feature permutation importance visualizations, ADS caps any negative feature importance values at zero.

Interpretation

Feature permutation importance explanations generate an ordered list of features along with their importance values. Interpreting the output of this algorithm is straightforward. Features located at higher ranks have more impact on the model predictions. Features at lower ranks have less impact on the model predictions. Additionally, the importance values represent the relative importance of features.

The output supports three types of visualizations. They are all based on the same data but present the data differently for various use cases:

	Bar chart ('bar'): The bar chart shows the model’s view of the relative feature importance. The x-axis highlights feature importance. A longer bar indicates higher importance than a shorter bar. Each bar also shows the average feature importance value along with the standard deviation of importance values across all iterations of the algorithm (mean importance +/- standard deviation*). Negative importance values are capped at zero. The y-axis shows the different features in the relative importance order. The top being the most important, and the bottom being the least important.

	Box plot ('box_plot'): The detailed box plot shows the feature importance values across the iterations of the algorithm. These values are used to compute the average feature importance and the corresponding standard deviations shown in the bar chart. The x-axis shows the impact that permuting a given feature had on the model’s prediction score. The y-axis shows the different features in the relative importance order. The top being the most important, and the bottom being the least important. The minimum, first quartile, median, third quartile, and a maximum of the feature importance values across different iterations of the algorithm are shown by each box.

	Detailed scatter plot ('detailed'): The detailed bar chart shows the feature importance values for each iteration of the algorithm. These values are used to compute the average feature importance values and the corresponding standard deviations shown in the bar chart. The x-axis shows the impact that permuting a given feature had on the model’s prediction score. The y-axis shows the different features in the relative importance order. The top being the most important, and the bottom being the least important. The color of each dot in the graph indicates the quality of the permutation for this iteration, which is computed by measuring the correlation of the permuted feature column relative to the original feature colum. For example, how different is the permuted feature column versus the original feature column.

Examples

This example generates and visualizes a global Feature Permutation Importance explanation on the Titanic dataset (https://www.openml.org/d/40945). The model is constructed using the ADS OracleAutoMLProvider (selected model: XGBClassifier). However, the ADS model explainers work with any model (classifier or regressor) that is wrapped in an ADSModel object.

from ads.dataset.factory import DatasetFactory
from os import path
import requests

Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):
 # fetch sand save some data
 print('fetching data from web...', end=" ")
 # Data source: https://www.openml.org/d/40945
 r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
 with open(titanic_data_file, 'wb') as fd:
 fd.write(r.content)
 print("Done")
ds = DatasetFactory.open(
 titanic_data_file, target="survived").set_positive_class(True)
ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
 'body', 'home.dest'])
ds = ds[ds['age'] != '?'].astype({'age': 'float64'})
ds = ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

Build the model using AutoML. 'model' is a subclass of type ADSModel.
Note that the ADSExplainer below works with any model (classifier or
regressor) that is wrapped in an ADSModel
import logging
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

Create the ADS explainer object, which is used to construct global
and local explanation objects. The ADSExplainer takes as input the
model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
explainer = ADSExplainer(test, model, training_data=train)

With ADSExplainer, create a global explanation object using
the MLXGlobalExplainer provider
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
global_explainer = explainer.global_explanation(
 provider=MLXGlobalExplainer())

A summary of the global feature permutation importance algorithm and
how to interpret the output can be displayed with
global_explainer.feature_importance_summary()

Compute the global Feature Permutation Importance explanation
importances = global_explainer.compute_feature_importance()

ADS supports multiple visualizations for the global Feature
Permutation Importance explanations (see "Interpretation" above)

Simple bar chart highlighting the average impact on model score
across multiple iterations of the algorithm
importances.show_in_notebook()

[image: ../../_images/ads_mlx_titanic_pi_bar.png]
Box plot highlighting the mean, median, quartiles, and min/max
impact on model score across multiple iterations of the algorithm
importances.show_in_notebook('box_plot')

[image: ../../_images/ads_mlx_titanic_pi_box.png]
Detailed scatter plot highlighting the individual impacts on
model score across multiple iterations of the algorithm
importances.show_in_notebook('detailed')

[image: ../../_images/ads_mlx_titanic_pi_scatter.png]
The raw explanaiton data used to generate the visualizations, as well
as the runtime performance information can be extracted with
importances.get_diagnostics()

[image: ../../_images/ads_mlx_titanic_pi_diagnostics.png]

References

	perutation importance [https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html]

	feature importance [https://christophm.github.io/interpretable-ml-book/feature-importance.html]

	Vanderbilt Biostatistics - titanic data [http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html]

 Feature Dependence Explanations

Feature Dependence Explanations

Overview

Feature Dependence Explanations (PDP and ICE) are model-agnostic global explanation methods that evaluate the relationship between feature values and model target predictions.

Description

PDP and ICE highlight the marginal effect that specific features have on the predictions of a machine learning model. These explanation methods visualize the effects that different feature values have on the model’s predictions.

These are the main steps in computing PDP or ICE explanations:

	Start with a trained machine learning model.

	Select a feature to explain (for example, one of the important features identified in the global feature permutation importance explanations.)

	Using the selected feature’s value distribution extracted from the training dataset, ADS selects multiple different values from the feature’s distribution to evaluate. The number of values to use and the range of the feature’s distribution to consider are configurable.

	ADS replaces every sample in the provided dataset with the same feature value from the feature distribution and computes the model inference on the augmented dataset. This process is repeated for all of the selected values from the feature’s distribution. If N different values are selected from the feature’s distribution, this process results in N different datasets. Each with the selected feature having the same value for all samples in the corresponding dataset. The model inference then generates N different model predictions, each with M values (one for each sample in the augmented dataset.)

	For ICE, the model predictions for each augmented sample in the provided dataset are considered separately when the selected feature’s value is replaced with a value from the feature distribution. This results in N x M different values.

	For PDP, the average model prediction is computed across all augmented dataset samples. This results in N different values (each an average of M predictions).

The preceding is an example of one-feature PDP and ICE explanations. PDP also supports two-feature explanations while ICE only supports one feature. The main steps of the algorithm are the same though the explanation is computed on two features instead of one.

	Select two features to explain.

	ADS computes the cross-product of values selected from the feature distributions to generate a list of different value combinations for the two selected features. For example, assuming we have selected N values from the feature distribution for each feature:
[(\(X_{1}^{1}\), \(X_{2}^{1}\)),
(\(X_{1}^{1}\), \(X_{2}^{2}\)), \(\dots\),
(\(X_{1}^{1}\), \(X_{2}^{N-1}\)),
(\(X_{1}^{1}\), \(X_{2}^{N}\)),
(\(X_{1}^{2}\), \(X_{2}^{1}\)),
(\(X_{1}^{2}\), \(X_{2}^{2}\)), \(\dots\),
(\(X_{1}^{N}\), \(X_{2}^{N-1}\)),
(\(X_{1}^{N}\), \(X_{2}^{N}\))]

	For each feature value combination, ADS replaces every sample in the provided set with these two feature values and computes the model inference on the augmented dataset. There are M different samples in the provided dataset and N different values for each selected feature. This results in \(N^{2}\) predictions from the model, each an average of M predictions.

Interpretation

PDP

	One-feature

	Continuous or discrete numerical features: Visualized as line graphs, each line represents the average prediction from the model (across all samples in the provided dataset) when the selected feature is replaced with the given value. The x-axis shows the selected feature values and the y-axis shows the predicted target (e.g., the prediction probability for classification tasks and the raw predicted values for regression tasks).

	Categorical features: Visualized as vertical bar charts. Each bar represents the average prediction from the model (across all samples in the provided dataset) when the selected feature is replaced with the given value. The x-axis shows the different values for the selected feature and the y-axis shows the predicted target (e.g., the prediction probability for classification tasks and the raw predicted values for regression tasks).

	Two-feature

	Visualized as a heat map. The x and y-axis both show the selected feature values. The heat map color represents the average
prediction from the model (across all samples in the provided dataset) when the selected features are replaced with the corresponding values.

ICE

	Continuous or discrete numerical features: Visualized as line graphs. While PDP shows the average prediction across all samples in the provided dataset, ICE plots every sample from the provided dataset (when the selected feature is replaced with the given value) separately. The x-axis shows the selected feature values and the y-axis shows the predicted target (for example, the prediction probability for classification tasks and the raw predicted values for regression tasks). The median value can be plotted to highlight the trend. The ICE plots can also be centered around the first prediction from the feature distribution (for example, each prediction subtracts the predicted value from the first sample).

	Categorical features: Visualized as violin plots. The x-axis shows the different values for the selected feature and the y-axis shows the predicted target (for example, the prediction probability for classification tasks and the raw predicted values for regression tasks).

Both PDP and ICE visualizations display the feature value distribution from the training dataset on the corresponding axis. For example, the one-feature line graphs, bar charts, and violin plots show the feature value distribution on the x-axis. The heat map shows the feature value distributions on the respective x-axis or y-axis.

Examples

The following example generates and visualizes global partial dependence plot (PDP) and Individual Conditional Expectation (ICE) explanations on the Titanic dataset (https://www.openml.org/d/40945). The model is constructed using the ADS OracleAutoMLProvider (selected model: XGBClassifier), however, the ADS model explainers work with any model (classifier or regressor) that is
wrapped in an ADSModel object.

from ads.dataset.factory import DatasetFactory
from os import path
import requests

Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):
 # fetch sand save some data
 print('fetching data from web...', end=" ")
 # Data source: https://www.openml.org/d/40945
 r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
 with open(titanic_data_file, 'wb') as fd:
 fd.write(r.content)
 print("Done")
ds = DatasetFactory.open(
 titanic_data_file, target="survived").set_positive_class(True)
ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
 'body', 'home.dest'])
ds = ds[ds['age'] != '?'].astype({'age': 'float64'})
ds = ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

Build the model using AutoML. 'model' is a subclass of type ADSModel.
Note that the ADSExplainer below works with any model (classifier or
regressor) that is wrapped in an ADSModel
import logging
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

Create the ADS explainer object, which is used to construct
global and local explanation objects. The ADSExplainer takes
as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
explainer = ADSExplainer(test, model, training_data=train)

With ADSExplainer, create a global explanation object using
the MLXGlobalExplainer provider
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
global_explainer = explainer.global_explanation(
 provider=MLXGlobalExplainer())

A summary of the global partial feature dependence explanation
algorithm and how to interpret the output can be displayed with
global_explainer.partial_dependence_summary()

Compute the 1-feature PDP on the categorical feature, "sex",
and numerical feature, "age"
pdp_sex = global_explainer.compute_partial_dependence("sex")
pdp_age = global_explainer.compute_partial_dependence(
 "age", partial_range=(0, 1))

ADS supports PDP visualizations for both 1-feature and 2-feature
Feature Dependence explanations, and ICE visualizations for 1-feature
Feature Dependence explanations (see "Interpretation" above)

Visualize the categorical feature PDP for the True (Survived) label
pdp_sex.show_in_notebook(labels=True)

[image: ../../_images/ads_mlx_titanic_pdp_sex.png]
Visualize the numerical feature PDP for the True (Survived) label
pdp_age.show_in_notebook(labels=True)

[image: ../../_images/ads_mlx_titanic_pdp_age.png]
Compute the 2-feature PDP on the categorical feature, "pclass", and
numerical feature, "age"
pdp_pclass_age = global_explainer.compute_partial_dependence(
 ['pclass', 'age'], partial_range=(0, 1))
pdp_pclass_age.show_in_notebook(labels=True)

[image: ../../_images/ads_mlx_titanic_pdp_pclass_age.png]
Visualize the ICE plot for the categorical feature, "sex"
pdp_sex.show_in_notebook(mode='ice', labels=True)

[image: ../../_images/ads_mlx_titanic_ice_sex.png]
Visualize the ICE plot for the numerical feature, "age", and center
around the first prediction (smallest age)
pdp_age.show_in_notebook(mode='ice', labels=True, centered=True)

[image: ../../_images/ads_mlx_titanic_ice_age.png]
The raw explanation data used to generate the visualizations, as well
as the runtime performance information can be extracted with
pdp_age.get_diagnostics()

[image: ../../_images/ads_mlx_titanic_pdp_age_diagnostics.png]
The explanation can also be returned as Pandas.DataFrame with
pdp_age.as_dataframe()

[image: ../../_images/ads_mlx_titanic_pdp_age_dataframe.png]

References

	Partial Dependence Plot [https://christophm.github.io/interpretable-ml-book/pdp.html]

	Vanderbilt Biostatistics - titanic data [http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html]

 Accumulated Local Effects

Accumulated Local Effects

Overview

Similar to Partial Dependence Plots (PDP), Accumulated Local Effects (ALE) is a model-agnostic global explanation method that evaluates the relationship between feature values and target variables. However, in the event that features are highly correlated, PDP may include unlikely combinations of feature values in the average prediction calculation due to the independent manipulation of feature values across the marginal distribution. This lowers the trust in the PDP explanation when features have strong correlation. Unlike PDP, ALE handles feature correlations by averaging and accumulating the difference in predictions across the conditional distribution, which isolates the effects of the specific feature. This comes at the cost of requiring a larger number of observations and a near uniform distribution of those observations so that the conditional distribution can be reliably determined.

Description

ALE highlights the effects that specific features have on the predictions of a machine learning model by partially isolating the effects of other features. Therefore, it tends to be robust against correlated features. The resulting ALE explanation is centered around the mean effect of the feature, such that the main feature effect is compared relative to the average prediction of the data.

Correlated features can negatively affect the quality of many explanation techniques. Specifically, many challenges arise when the black-box model is used to make predictions on unlikely artificial data. That is data that that fall outside of the expected data distribution but are used in an explaination because they are not independent and the technique is not sensitive to this possibility. This can occur, for example, when the augmented data samples are not generated according the feature correlations or the effects of other correlated features are included in the evaluation of the feature of interest. Consequently, the resulting explanations may be misleading. In the context of PDP, the effect of a given feature may be heavily biased by the interactions with other features.

To address the issues associated with correlated features, ALE:

	Uses the conditional distribution of the feature of interest to generate augmented data. This tends to create more realistic data that using marginal distribution. This helps to ensure that evaluated feature values, e.g., xi, are only compared with instances from the dataset that have similar values to xi.

	Calculates the average of the differences in model predictions over the augmented data, instead of the average of the predictions themselves. This helps to isolate the effect of the feature of interest. For example, assuming we are evaluating the effect of a feature at value xi, ALE computes the average of the difference in model predictions of the values in the neigborhood of xi. That is, that observation within xi ±ϵ that meet the conditional requirement. This helps to reduce the effects of correlated features.

The following example demonstrates the challenges with accurately evaluating the effect of a feature on a model’s predictions when features are highly correlated. Let us assume that features x1 and x2 are highly correlated. We can artifically construct x2 by starting with x1 and adding a small amount of random noise. Further assume that the target value is the product of these two features (e.g., y = x1 * x2). Since x1 and x2 are almost identical, the target value has a quadratic relationship with them.
A decision tree is trained on this dataset. Then different explanation techniques, PDP (first column), ICE (second column), and ALE (third column), are used to evaluate the effect of the features on the model predictions. Features x1 and x2 are evaluated in the first and second row, respectively. The following image demostrates that PDP is unable to accurately identify the expected relationship due to the assumption that the features are not correlated. An examination of the ICE plots reviels the quadratic relationship between the features and the target. However, the when taking as an aggrigate, this effect disappears. In contrast, ALE is able to properly capture the isolated effect of each feature, highlighting the quadratic relationship.

[image: ../../_images/ads_mlx_ale.png]
The following summarizes the steps in computing ALE explanation (note: MLX supports one-feature ALE):

	Start with a trained model.

	Select a feature to explain (for example, one of the important features identified in the global feature importance explanations).

	Compute the intervals of the selected feature to define the upper and lower bounds used to compute the difference in model predictions when the feature is increased or decreased.

	Numerical features: using the selected feature’s value distribution extracted from the train dataset, MLX selects multiple different intervals from the feature’s distribution to evaluate (e.g., based on percentiles). The number of intervals to use and the range of the feature’s distribution to consider are configurable.

	Categorical features: since ALE computes the difference in model predictions between an increase and decrease in a feature’s value, features must have some notion of order. This can be challenging for categorical features, as there may not be a notion of order (e.g., eye color). To address this, MLX estimates the order of categorical feature values based on a categorical feature encoding technique. MLX provides multiple different encoding techniques based on the input data (e.g., distance_similarity: computes a similarity matrix between all categorical feature values and the other feature values, and orders based on similarity. Target-based approaches estimate the similarity/order based on the relationship of categorical feature values with the target variable. The supported techniques include, target encoding, target, James-Stein encoding, jamesstein, Generalized Linear Mixed Model encoding, glmm, M-estimate encoding, mestimate, and Weight of Evidence encoding, woe. The categorical feature value order is then used to compute the upper (larger categorical value) and lower (smaller categorical value) bounds for the selected categorical feature.

	For each interval, MLX approximates the conditional distribution by identifying the samples that are in the neighborhood of the sample of interest. It then calculates the difference in the model prediction when the selected feature’s value of the samples is replaced by the upper and lower limits of the interval. If N different intervals are selected from the feature’s distribution, this process results in 2N different augmented datasets It is 2N as each selected feature of the sample are replaced with the upper and lower limits of the interval. The model inference then generates 2N different model predictions, which are used to calculate the N differences.

	The prediction differences within each interval are averaged and accumulated in order, such that the ALE of a feature value that lies in the k-th interval is the sum of the effects of the first through the k-th interval.

	Finally, the accumulated feature effects at each interval is centered, such that the mean effect is zero.

Interpretation

	Continuous or discrete numerical features: Visualized as line graphs. Each line represents the change in the model prediction when the selected feature has the given value compared to the average prediction. For example, an ALE value of ±b at xj = k indicates that when the value of feature j is equal to k, the model prediction is higher/lower by b compared to the average prediction. The x-axis shows the selected feature values and the y-axis shows the delta in the target prediction variable relative to the average prediction (e.g., the prediction probability for classification tasks and the raw predicted values for regression tasks).

	Categorical features: Visualized as vertical bar charts. Each bar represents the change in the model prediction when the selected feature has the given value compared to the average prediction. The interpretation of the value of the bar is similar to continuous features. The x-axis shows the different categorical values for the selected feature and the y-axis shows the change in the predicted value relative to the average prediction. This would be the prediction probability for classification tasks and the raw predicted values for regression tasks.

Examples

The following is a purposefully extreme, but realistic, example that demonstrates the effects of highly correlated features on PDP and ALE explanations. The data set has three columns, x1, x2 and y.

	x1 is generated from a uniform distribution with a range of [-5, 5].

	x2 is x1 with some noise. x1 and x2 are highly correlated for illustration purposes.

	y is our target which is generated from an interaction term of x1 * x2 and x2.

This model is trained using a Sklearn RegressorMixin model and wrapped in an ADSModel object. Please note that the ADS model explainers work with any model that is wrapped in an ADSModel object.

import numpy as np
import pandas as pd
from ads.dataset.factory import DatasetFactory
from ads.common.model import ADSModel
from sklearn.base import RegressorMixin

x1 = (np.random.rand(500) - 0.5) * 10
x2 = x1 + np.random.normal(loc=0, scale=0.5, size=500)
y = x1 * x2

correlated_df = pd.DataFrame(np.stack((x1, x2, y), axis=1), columns=['x1', 'x2', 'y'])
correlated_ds = DatasetFactory.open(correlated_df, target='y')

correlated_train, _ = correlated_ds.train_test_split(test_size=0)

class CorrelatedRegressor(RegressorMixin):
 '''
 implement the true model
 '''
 def fit(self, X=None, y=None):
 self.y_bar_ = X.iloc[:, 0].to_numpy() * X.iloc[:, 1].to_numpy() + X.iloc[:, 1].to_numpy()

 def predict(self, X=None):
 return X.iloc[:, 0].to_numpy() * X.iloc[:, 1].to_numpy() + X.iloc[:, 1].to_numpy()

train a RegressorMixin model
Note that the ADSExplainer below works with any model (classifier or
regressor) that is wrapped in an ADSModel
correlated_regressor = CorrelatedRegressor()
correlated_regressor.fit(correlated_train.X, correlated_train.y)

Build ads models from ExtraTrees regressor
correlated_model = ADSModel.from_estimator(correlated_regressor, name="TrueModel")

Create the ADS explainer object, which is used to construct
global and local explanation objects. The ADSExplainer takes
as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
correlated_explainer = ADSExplainer(correlated_train, correlated_model, training_data=correlated_train)

With ADSExplainer, create a global explanation object using
the MLXGlobalExplainer provider
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
correlated_global_explainer = correlated_explainer.global_explanation(provider=MLXGlobalExplainer())

A summary of the global accumulated local effects explanation
algorithm and how to interpret the output
correlated_global_explainer.accumulated_local_effects_summary()

compute a PDP between x1 and the target, y
pdp_x1 = correlated_global_explainer.compute_partial_dependence("x1")
pdp_x1.show_in_notebook()

[image: ../../_images/ads_mlx_ale_pdp_x1.png]
The PDP plot shows a rug plot of the actual x1 values along the x-axis and the relationship between x1 and y appears as a line. However, it is known that the true relationship is not linear. y is the product of x1 and x2. Since x2 nearly identical to x1, effectively the relationship between x1 and y is quadratic.
The high level of correlation between x1 and x2 violates one of the assumptions of the PDP. As demonstrated, the bias created by this correlation results in a poor representation of the global relationship between x1 and y.

Compute the ALE on x1
ale_x1 = correlated_global_explainer.compute_accumulated_local_effects("x1")
ale_x1.show_in_notebook()

[image: ../../_images/ads_mlx_ale_x1.png]
In comparison, the ALE plot does not have as strong a requirement that the features are uncorrelated. As such, there is very little bias introduced when they are. The following ALE plot demonstrates that it is able to accurately represent the relationship between x1 and y as being quadratic. This is due to the fact that ALE uses the conditional distribution of these two features. This can be thought of as only using those instances where the values of x1 and x2 are close.

In general, ALE plots are unbiased with correlated features as they use conditional probabilities. The PDP method uses the marginal probability and that can introduce a bias when there are highly correlated features. The advantage is that when the data is not rich enough to adequately determine all of the conditional probabilities or when the features are not highly correlated, it can be an effective method to assess the global impact of a feature in a model.

Disadvantages

There is an increased computational cost for performing an ALE analysis because of the large number of models that need to be computed relative to PDP. On a small dataset, this is generally not an issue. However, on larger datasets it can be. It is possible to parallelize the process and to also compute it in a distributed manner.

The main disadvantage comes from the problem of sparsity of data. There needs to be sufficient number of observations in each neighborhood that is used in order to make a reasonable estimation. Even with large dataset this can be problematic if the data is not uniformly sampled, which is rarely the case. Also, with higher dimensionality the problem is made increasingly more difficult because of this curse of dimensionality.

Depending on the class of model that is being use, it is common practice to remove highly correlated features. In this cases there is some rational to using a PDP for interpretation. However, if there is correlation in the data and the sampling of the data is suitable for an ALE analysis, it may be the preferred approach.

References

	Accumulated Local Effects (ALE) Plot [https://christophm.github.io/interpretable-ml-book/ale.html]

	Apley, Daniel W., and Jingyu Zhu. Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468 (2016)

 Local Explainers

Local Explainers

Local explanations target specific predictions from the machine learning model. The goal is to understand why the model made a particular prediction.

There are multiple different forms of local explanations, such as feature attribution explanations and examplar-based explanations. ADS
currently supports local feature attribution explanations. They help to identify the most important features leading towards a given prediction.

While a given feature might be important for the model in general, the values in a particular sample may cause certain features to have
a larger impact on the model’s predictions than others. Furthermore, given the feature values in a specific sample, local explanations can also estimate the contribution that each feature had towards or against a target prediction. For example, does the current value of the feature have a positive or negative effect on the prediction probability of the target class? Does the feature increase or decrease the predicted regression target value?

Supported local explanation techniques:

	Enhanced Local Interpretable Model-Agnostic Explanations
	Overview

	Description

	Interpretation

	Example

	References

 Enhanced Local Interpretable Model-Agnostic Explanations

Enhanced Local Interpretable Model-Agnostic Explanations

Overview

A model-agnostic local explanation method that provides insights into why a machine learning model made a specific prediction.

Description

ADS provides an enhanced version of Local Interpretable Model-Agnostic Explanations (LIME), which improves on the explanation quality, performance, and interpretability. The key idea behind LIME is that while the global behavior of a machine learning model might be very complex, the local behavior may be much simpler. In ADS, local refers to the behavior of the model on similar samples. LIME tries to approximate the local behavior of the complex machine learning model through the use of a simple, inherently interpretable surrogate model. For example, a linear model. If the surrogate model is able to accurately approximate the complex model’s local behavior, ADS
can generate a local explanation of the complex model from the interpretable surrogate model. For example, when data is centered and scaled the magnitude and sign of the coefficients in a linear model indicate the contribution each feature has towards the target variable.

The predictions from complex machine learning models are challenging to explain and are generally considered as a black box. As such, ADS refers to the model to be explained as the black box model. ADS supports classification and regression models on tabular or text-based datasets (containing a single text-based feature).

The main steps in computing a local explanation for tabular datasets are:

	Start with a trained machine learning model (the black box model).

	Select a specific sample to explain (xexp).

	Randomly generate a large sample space in a nearby neighborhood around xexp. The sample space is generated based on the feature distributions from the training dataset. Each sample is then weighted based on its distance from xexp to give higher weight to samples that are closer to xexp. ADS provides several enhancements, over the standard algorithm, to improve the quality and locality of the sample generation and weighting methods.

	Using the black box model, generate a prediction for each of the randomly generated local samples. For classification tasks, compute the prediction probabilities (for example, predict_proba()). For regression tasks, compute the predicted regression value (for example, predict()).

	Fit a linear surrogate model on the predicted values from the black box model on the local generated sample space. If the surrogate model is able to accurately match the output of the black box model (referred to as surrogate model fidelity), the surrogate model can act as a proxy for explaining the local behavior of the black box model. For classification tasks, the surrogate model is a linear regression model fit on the prediction probabilities of the black box model. Consequently, for multinomial classification tasks, a separate surrogate model is required to explain each class. In that case, the explanation indicates if a feature contributes towards the specified class or against the specified class (for example, towards one of the other N classes). For regression tasks, the surrogate model is a linear regression model fit on the predicted regression values from the black box model.

	There are two available techniques for fitting the surrogate model:

	Use the features directly:

The raw (normalized) feature values are used to fit the linear surrogate model directly. This results in a normal linear model.
A positive coefficient indicates that when the feature value increases, the target variable increases. A negative coefficient
indicates that when a feature value increases, the target variable decreases. Categorical features are converted to binary values. A
value of 1 indicates that the feature in the generated sample has the same value as xexp and a value of 0 indicates that the feature in the generated sample has a different value than xexp.

	Translate the features to an interpretable feature space:

Continuous features are converted to categorical features by discretizing the feature values (for example, quartiles, deciles, and
entropy-based). Then, all features are converted to binary values. A value of 1 indicates that the feature in the generated sample has the same value as xexp (for example, the same categorical value or the continuous feature falls in the same bin) and a value of 0 indicates that the feature in the generated sample has a different value than xexp (for example, a ifferent categorical value or the continuous feature falls in a different bin). The interpretation of the linear model here is a bit different from the regression model. A positive coefficient indicates that when a feature has the same value as xexp (for example, the same category), the feature increased the prediction output from the black box model. Similarly, negative coefficients indicate that when a feature has the same value as xexp, the feature decreased the prediction output from the black box model. This does not say what happens when the feature is in a different category than xexp. It only provides information when the specific feature has the same value as xexp and if it positively or negatively impacts the
black box model’s prediction.

	The explanation is an ordered list of feature importances extracted from the coefficients of the linear surrogate model. The
magnitude of the coefficients indicates the relative feature importance and the sign indicates whether the feature has a positive or negative impact on the black box model’s prediction.

	The algorithm is similar to text-based datasets. The main difference is in the random local sample space generation. Instead of randomly generating samples based on the feature distributions, a large number of local samples are generated by randomly removing subsets of words from the text sample. Each of the randomly generated samples is converted to a binary vector-based on the existence of a word. For example, the original sample to explain, xexp, contains 1s for every word. If the randomly generated sample has the same word as xexp, it is a value of 1. If the word has been removed in the randomly generated sample, it is a value of 0. In this case, the linear surrogate model evaluates the behavior of the model when the word is there or not.

Additionally, an upper bound can be set on the number of features to include in the explanation (for example, explain the top-N most important features). If the specified number of features is less than the total number of features, a simple feature selection method is applied prior to fitting the linear surrogate model. The black box model is still evaluated on all features, but the surrogate model is only fits on the subset of features.

Interpretation

ADS provides multiple enhancements to the local visualizations from LIME. The explanation is presented as a grid containing information about the black box model, information about the local explainer, and the actual local explanation. Each row in the grid is described as:

	Model (first row)

	The left column presents information about the black box model and the model’s prediction. For example, the type of the black box model, the true label/value for the selected sample to explain, the predicted value from the black box model, and the prediction probabilities (classification) or prediction values (regression).

	The right column displays the sample to explain. For tabular datasets, this is a table showing the feature names and corresponding values for this sample. For text datasets, this shows the text sample to explain.

	Explainer (second row)

	The left column presents the explainer configuration parameters, such as the underlying local explanation algorithm used (for example, LIME), the type of surrogate model (for example, linear), the number of randomly generated local samples (for example, 5000) to train the local surrogate model (\(N_t\)), whether continuous features were discretized or not.

	The right column provides a legend describing how to interpret the model explanations.

	Explanations (remaining rows)

	For classification tasks, a local explanation can be generated for each of the target labels (since the surrogate model is fit to the prediction probabilities from the black box model). For binary classification, the explanation for one class will mirror the other. For multinomial classification, the explanations describe how each feature contributes towards or against the specified target class. If the feature contributes against the specified target class (for example, decreases the prediction probability), it increases the prediction probability of one or more other target classes. The explanation for each target class is shown as a
separate row in the Explanation section.

	The Feature Importances section presents the actual local explanation. The explanation is visualized as a horizontal bar chart of feature importance values, ordered by relative feature importance. Features with larger bars (top) are more important than features with shorter bars (bottom). Positive feature importance values (to the right) indicate that the feature increases the prediction target value. Negative feature importance values (to the left) indicate that the feature decreases the prediction target value. Depending on whether continuous features are discretized or not changes the interpretation of this value (for example, whether the specific feature value indicates a positive/negative attribution, or whether an increase/decrease in the feature value indicates a positive/negative attribution). If the features are discretized, the corresponding range is included. The feature importance value is shown beside each bar. This can either be the raw coefficient taken from the linear surrogate model or can be normalized such that all importance values sum to one. For text datasets, the explanation is visualized as a word cloud. Important words that have a large positive contribution towards a given prediction (for example, increase the prediction value) are shown larger than unimportant words that have a less positive impact on the target prediction.

	The Explanation Quality section presents information about the quality of the explanation. It is further broken down into two sections:

	Sample Distance Distributions

This section presents the sample distributions used to train (\(N_t\)) and evaluate (\(N_{v_\#}\)) the local surrogate model based on the distances (Euclidean) of the generated samples from the sample to explain. This highlights the locality of generated sample spaces where the surrogate model (explainer) is trained and evaluated. The distance distribution from the sample to explain for the actual dataset used to train the black box model, Train, is also shown. This highlights the locality of \(N_t\) relative to the entire train dataset. For the generated evaluation sample spaces (\(N_{v_\#}\)), the sample space is generated based on a percentile value of the distances in Train relative to the sample to explain. For example, \(N_{v_4}\) is generated with the maximum distance being limited to the 4th percentile of the distances in train from the sample to explain.

	Evaluation Metrics

This section presents the fidelity of the surrogate model relative to the black box model on the randomly generated sample spaces used to fit and evaluate the surrogate model. In other words, this section evaluates how accurately the surrogate model approximates the local behavior of the complex black box model. Multiple different regression and classification metrics are supported. For classification tasks, ADS supports both regression and classification metrics. Regression metrics are computed on the raw prediction probabilities between the surrogate model and the black box model. For classification metrics, the prediction probabilities are converted to the corresponding target labels and are compared between the surrogate model and the black box
model. Explanations for regression tasks only support regression metrics. Supported regression metrics: MSE, RMSE (default), R2, MAPE, SMAPE, Two-Sample Kolmogorov-Smirnov Test, Pearson Correlation (default), and Spearman Correlation. Supported classification metrics: \(F_1\), Accuracy, Recall, and ROC_AUC.

	Performance

Explanation time in seconds.

Example

This example generates and visualizes local explanations on the Titanic dataset (https://www.openml.org/d/40945). The model is constructed using the ADS OracleAutoMLProvider (selected model: XGBClassifier). However, the ADS model explainers work with any model (classifier or regressor) that is wrapped in an ADSModel object.

from ads.dataset.factory import DatasetFactory
from os import path
import requests

Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):
 # fetch sand save some data
 print('fetching data from web...', end=" ")
 # Data source: https://www.openml.org/d/40945
 r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
 with open(titanic_data_file, 'wb') as fd:
 fd.write(r.content)
 print("Done")
ds = DatasetFactory.open(
 titanic_data_file, target="survived").set_positive_class(True)
ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
 'body', 'home.dest'])
ds = ds[ds['age'] != '?'].astype({'age': 'float64'})
ds = ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

Build the model using AutoML. 'model' is a subclass of type ADSModel.
Note that the ADSExplainer below works with any model (classifier or
regressor) that is wrapped in an ADSModel
import logging
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

Create the ADS explainer object, which is used to construct
global and local explanation objects. The ADSExplainer takes
as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
explainer = ADSExplainer(test, model, training_data=train)

With ADSExplainer, create a local explanation object using
the MLXLocalExplainer provider
from ads.explanations.mlx_local_explainer import MLXLocalExplainer
local_explainer = explainer.local_explanation(
 provider=MLXLocalExplainer())

A summary of the local explanation algorithm and how to interpret
the output can be displayed with
local_explainer.summary()

Select a specific sample (instance/row) to generate a local
explanation for
sample = 13

Compute the local explanation on our sample from the test set
explanation = local_explainer.explain(test.X.iloc[sample:sample+1],
 test.y.iloc[sample:sample+1])

Visualize the explanation for the label True (Survived). See
the "Interpretation" section above for more information
explanation.show_in_notebook(labels=True)

[image: ../../_images/ads_mlx_titanic_local.png]
The raw explanaiton data used to generate the visualizations, as well
as the runtime performance information can be extracted with
explanation.get_diagnostics()

[image: ../../_images/ads_mlx_titanic_local_diagnostics.png]

References

	Why Should I Trust You? Explaining the Predictions of Any Classifier [https://arxiv.org/pdf/1602.04938.pdf]

	LIME [https://christophm.github.io/interpretable-ml-book/lime.html]

	Vanderbilt Biostatistics - titanic data [http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html]

 WhatIf Explainer

WhatIf Explainer

Description

The WhatIf explainer tool helps to understand how changes in an observation affect a model’s prediction. Use it to explore a model’s behavior on a single observation or the entire dataset by asking “what if” questions.

The WhatIf explainer has the following methods:

	explore_predictions: Explore the relationship between feature values and the model predictions.

	explore_sample: Modify the values in an observation and see how the prediction changes.

Example

In this example, a WhatIf explainer is created, and then the explore_predictions(), and explore_sample() methods are demonstrated. A tree-based model is used to make predictions on the Boston housing dataset.

from ads.common.model import ADSModel
from ads.dataset.dataset_browser import DatasetBrowser
from ads.dataset.label_encoder import DataFrameLabelEncoder
from ads.explanations.explainer import ADSExplainer
from ads.explanations.mlx_whatif_explainer import MLXWhatIfExplainer
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import LabelEncoder
import logging
import warnings

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)
warnings.filterwarnings('ignore')

ds = DatasetBrowser.sklearn().open("boston").set_target("target")
train, test = ds.train_test_split(test_size=0.2)

X_boston = train.X.copy()
y_boston = train.y.copy()

le = DataFrameLabelEncoder()
X_boston = le.fit_transform(X_boston)

Model Training
ensemble_regressor = ExtraTreesRegressor(n_estimators=245, random_state=42)
ensemble_regressor.fit(X_boston, y_boston)
model = ADSModel.from_estimator(make_pipeline(le, ensemble_regressor), name="ExtraTreesRegressor")

Build a WhatIf Explainer
explainer = ADSExplainer(test, model, training_data=train)
whatif_explainer = explainer.whatif_explanation(provider=MLXWhatIfExplainer())

The Sample Explorer method, explore_sample(), opens a GUI that has a single observation. The values of that sample can then be changed. By clicking Run Inference, the model computes the prediction with the updated feature values. The interface shows the original values and the values that have been changed.

example_sample() accepts the row_idx parameter that specifies the index of the observation that is to be evaluated. The default is zero (0). The features parameter lists the feature names that are shown in the interface. By default, it displays all features. For datasets with a large number of features, this can be cumbersome so the max_features parameter can be used to display only the first n features.

The following command opens the Sample Explorer. Change the values then click Run Inference to see how the prediction changes.

whatif_explainer.explore_sample()

[image: ../../_images/ads_mlx_boston_whatif_explore_sample.png]
The Predictions Explorer method, explore_predictions(), allows the exploration of model predictions across either the marginal distribution (1-feature) or the joint distribution (2-features).

The method explore_predictions() has several optional parameters including:

	x: (str, optional) Feature column on x-axis. The default is None.

	y: (str, optional) Feature column or model prediction column on the y-axis, by default it is the target.

	label: (str or int, optional) Target label or target class name to explore only for classification problems. The default is None.

	plot_type: (str, optional) Type of plot. For classification problems the valid options are ‘scatter’, ‘box’, or ‘bar’. For a regression problem, the valid options are ‘scatter’ or ‘box’. The default is ‘scatter’.

	discretization: (str, optional) Discretization method applies the x-axis if the feature x is continuous. The valid options are ‘quartile’, ‘decile’, or ‘percentile’. The default is None.

When only x is set, the chart shows the relationship between the features x and the target y.

whatif_explainer.explore_predictions(x='AGE')

[image: ../../_images/ads_mlx_boston_whatif_explore_predictions_1.png]
If features are specified for both x and y, the plot uses color to indicate the value of the target.

whatif_explainer.explore_predictions(x='AGE', y='CRIM')

[image: ../../_images/ads_mlx_boston_whatif_explore_predictions_2.png]
whatif_explainer.explore_predictions(x='RAD', plot_type='box', discretization='decile')

[image: ../../_images/ads_mlx_boston_whatif_explore_predictions_3.png]

 Model Serialization

Model Serialization

	Overview

	Quick Start

	AutoMLModel

	GenericModel

	LightGBMModel

	PyTorchModel

	SklearnModel

	TensorFlowModel

	XGBoostModel

 Overview

Overview

Training a great model can take a lot of work. Getting that model into production should be quick and easy. ADS has a set of classes that take your model and push it to production with a few quick steps.

The first step is to create a model serialization object. This object wraps your model and has a number of methods to assist in deploying it. There are different model classes for different model classes. For example, if you have a PyTorch model you would use the PyTorchModel class. If you have a TensorFlow model you would use the TensorFlowModel class. ADS has model serialization for many different model classes. However, it is not feasible to have a model serialization class for all model types. Therefore, the GenericModel can be used for any class that has a .predict() method.

After creating the model serialization object, the next step is to use the .prepare() method to create the model artifacts. The score.py file is created and it is customized to your model class. You may still need to modify it for your specific use case but this is generally not required. The .prepare() method also can be used to store metadata about the model, code used to create the model, input and output schema, and much more.

If you make changes to the score.py file, call the .verify() method to confirm that the load_model() and predict() functions in this file are working. This speeds up your debugging as you do not need to deploy a model to test it.

The .save() method is then used to store the model in the model catalog. A call to the .deploy() method creates a load balancer and the instances needed to have an HTTPS access point to perform inference on the model. Using the .predict() method, you can send data to the model deployment endpoint and it will return the predictions.

[image: ../../_images/flow.png]

 Quick Start

Quick Start

Deployment Examples

The following sections provide sample code to create and deploy a model.

AutoMLModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

import tempfile
import logging
import warnings
from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.dataset.dataset_browser import DatasetBrowser
from ads.model.framework.automl_model import AutoMLModel

ds = DatasetBrowser.sklearn().open("wine").set_target("target")
train, test = ds.train_test_split(test_size=0.1, random_state = 42)

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train(
 model_list=['LogisticRegression', 'DecisionTreeClassifier'],
 random_state = 42,
 time_budget = 500
)

artifact_dir = tempfile.mkdtemp()
automl_model = AutoMLModel(estimator=model, artifact_dir=artifact_dir)
automl_model.prepare(inference_conda_env="generalml_p37_cpu_v1",
 training_conda_env="generalml_p37_cpu_v1",
 use_case_type=UseCaseType.BINARY_CLASSIFICATION,
 X_sample=test.X,
 force_overwrite=True)
automl_model.verify(test.X.iloc[:10])
model_id = automl_model.save(display_name='Demo AutoMLModel model')
deploy = automl_model.deploy(display_name='Demo AutoMLModel deployment')
automl_model.predict(test.X.iloc[:10])
automl_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

GenericModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.generic_model import GenericModel

class Toy:
 def predict(self, x):
 return x ** 2
estimator = Toy()

model = GenericModel(estimator=estimator, artifact_dir=tempfile.mkdtemp())
model.summary_status()
model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
model.verify(2)
model_id = model.save()
model.deploy()
model.predict(2)
model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

LightGBMModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

import lightgbm as lgb
import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.framework.lightgbm_model import LightGBMModel
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
train = lgb.Dataset(X_train, label=y_train)
param = {
 'objective': 'multiclass', 'num_class': 3,
}
lightgbm_estimator = lgb.train(param, train)
lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_dir=tempfile.mkdtemp())
lightgbm_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
lightgbm_model.verify(X_test)
model_id = lightgbm_model.save()
model_deployment = lightgbm_model.deploy()
lightgbm_model.predict(X_test)
lightgbm_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

PyTorchModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

import tempfile
import torch
import torchvision
from ads.catalog.model import ModelCatalog
from ads.model.framework.pytorch_model import PyTorchModel

torch_estimator = torchvision.models.resnet18(pretrained=True)
torch_estimator.eval()

create fake test data
test_data = torch.randn(1, 3, 224, 224)

artifact_dir = tempfile.mkdtemp()
torch_model = PyTorchModel(torch_estimator, artifact_dir=artifact_dir)
torch_model.prepare(inference_conda_env="generalml_p37_cpu_v1")

Update ``score.py`` by constructing the model class instance first.
added_line = """
import torchvision
the_model = torchvision.models.resnet18()
"""
with open(artifact_dir + "/score.py", 'r+') as f:
 content = f.read()
 f.seek(0, 0)
 f.write(added_line.rstrip('\r\n') + '\n' + content)

continue to save and deploy the model.
torch_model.verify(test_data)
model_id = torch_model.save()
model_deployment = torch_model.deploy()
torch_model.predict(test_data)
torch_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

SklearnModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.framework.sklearn_model import SklearnModel
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
sklearn_estimator = LogisticRegression()
sklearn_estimator.fit(X_train, y_train)

sklearn_model = SklearnModel(estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp())
sklearn_model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
sklearn_model.verify(X_test)
model_id = sklearn_model.save()
model_deployment = sklearn_model.deploy()
sklearn_model.predict(X_test)
sklearn_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

TensorFlowModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

from ads.catalog.model import ModelCatalog
from ads.model.framework.tensorflow_model import TensorFlowModel
import tempfile
import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

tf_estimator = tf.keras.models.Sequential(
 [
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation="relu"),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10),
]
)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
tf_estimator.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
tf_estimator.fit(x_train, y_train, epochs=1)

tf_model = TensorFlowModel(tf_estimator, artifact_dir=tempfile.mkdtemp())
tf_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
tf_model.verify(x_test[:1])
model_id = tf_model.save()
model_deployment = tf_model.deploy()
tf_model.predict(x_test[:1])
tf_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

XGBoostModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then delete the deployment.

import tempfile
import xgboost as xgb
from ads.catalog.model import ModelCatalog
from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
xgboost_estimator = xgb.XGBClassifier()
xgboost_estimator.fit(X_train, y_train)
xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tempfile.mkdtemp())
xgboost_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
xgboost_model.verify(X_test)
model_id = xgboost_model.save()
model_deployment = xgboost_model.deploy()
xgboost_model.predict(X_test)
xgboost_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

Logging

Model deployments have the option to log access and prediction traffic. The access log, logs requests to the model deployment endpoint. The prediction logs record the predictions that the model endpoint made. Logs must belong to a log group.

The following example uses the OCILogGroup class to create a log group and two logs (access and predict). When a model is being deployed, the OCIDs of these resources are passed to the .deploy() method.

There are several methods to access the logs. These include command-line tools, such as oci. Or they can be accessed in the OCI Console. The following example uses the .show_logs() method and also uses the access and predict log objects in the model_deployment module to access them.

import tempfile
from ads.common.oci_logging import OCILogGroup
from ads.model.generic_model import GenericModel

Create a log group and logs
log_group = OCILogGroup(display_name="Model Deployment Log Group").create()
access_log = log_group.create_log("Model Deployment Access Log")
predict_log = log_group.create_log("Model Deployment Predict Log")

Create a generic model that will be deployed
class Toy:
 def predict(self, x):
 return x ** 2

model = Toy()

Deploy the model
model = GenericModel(estimator=model, artifact_dir=tempfile.mkdtemp())
model.summary_status()
model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
model.verify(2)
model.save()
model.deploy(
 deployment_log_group_id=log_group.id,
 deployment_access_log_id=access_log.id,
 deployment_predict_log_id=predict_log.id,
)

Make a prediction and view the logs
model.predict(2)
model.model_deployment.show_logs(log_type="predict")
model.model_deployment.show_logs(log_type="access")
model.model_deployment.access_log.tail()
model.model_deployment.predict_log.tail()

 AutoMLModel

AutoMLModel

Overview

The AutoMLModel class in ADS is designed to rapidly get your AutoML model into production. The .prepare() method creates the model artifacts needed to deploy the model without you having to configure it or write code. The .prepare() method serializes the model and generates a runtime.yaml and a score.py file that you can later customize.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

The following steps take your trained AutoML model and deploy it into production with a few lines of code.

Creating an Oracle Labs AutoML Model

Create an OracleAutoMLProvider object and use it to define how an Oracle Labs AutoML model is trained.

import logging
from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.dataset.dataset_browser import DatasetBrowser

ds = DatasetBrowser.sklearn().open("wine").set_target("target")
train, test = ds.train_test_split(test_size=0.1, random_state = 42)

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train(
 model_list=['LogisticRegression', 'DecisionTreeClassifier'],
 random_state = 42, time_budget = 500)

Initialize

Instantiate an AutoMLModel() object with an AutoML model. Each instance accepts the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: (Callable): Trained AutoML model.

	properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several
customized files that are used to run the model once it is deployed. These include:

	input_schema.json: A JSON file that defines the nature of the feature data. It includes information about the features. This includes metadata such as the data type, name, constraints, summary statistics, and feature type.

	model.pkl: The default file name of the serialized model. You can change the file name with the model_file_name attribute. By default, the model is stored in a pickle file. To save your file in an ONNX format, use the as_onnx parameter.

	output_schema.json: A JSON file that defines the dependent variable. This file includes metadata for the dependent variable, such as the data type, name, constraints, summary statistics, and feature type.

	runtime.yaml: This file contains information needed to set up the runtime environment on the deployment server. It includes information about the conda environment used to train the model, the environment for deploying the model, and the Python version to use.

	score.py: This script contains the load_model() and predict() functions. The load_model() function understands the format of the saved model and loads it into memory. The predict() function makes inferences for the deployed model. You can add hooks to perform operations before and after the inference. You can also modify this script with your specifics.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing model provenance information.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data (Union[dict, str]): The data is used to test if deployment works in the local environment.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Any: JSON serializable data to used for making inferences.

The .predict() and .verify() methods take the same data formats. You must ensure that the data passed into and returned by the predict() function in the score.py file is JSON serializable.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.framework.automl_model import AutoMLModel

model = AutoMLModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.pkl",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.automl_model import AutoMLModel

model = AutoMLModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.pkl",
 artifact_dir="/folder_store_artifact")

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Example

import logging
import tempfile

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.common.model_metadata import UseCaseType
from ads.dataset.dataset_browser import DatasetBrowser
from ads.model.framework.automl_model import AutoMLModel
from ads.catalog.model import ModelCatalog

ds = DatasetBrowser.sklearn().open("wine").set_target("target")
train, test = ds.train_test_split(test_size=0.1, random_state = 42)

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train(
 model_list=['LogisticRegression', 'DecisionTreeClassifier'],
 random_state = 42,
 time_budget = 500
)

artifact_dir = tempfile.mkdtemp()
automl_model = AutoMLModel(estimator=model, artifact_dir=artifact_dir)
automl_model.prepare(
 inference_conda_env="generalml_p37_cpu_v1",
 training_conda_env="generalml_p37_cpu_v1",
 use_case_type=UseCaseType.BINARY_CLASSIFICATION,
 X_sample=test.X,
 force_overwrite=True,
 training_id=None
)
automl_model.verify(test.X.iloc[:10])
model_id = automl_model.save(display_name='Demo AutoMLModel model')
deploy = automl_model.deploy(display_name='Demo AutoMLModel deployment')
automl_model.predict(test.X.iloc[:10])
automl_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 GenericModel

GenericModel

Overview

The GenericModel class in ADS provides an efficient way to serialize almost any model class. This section demonstrates how to use the GenericModel class to prepare model artifacts, verify models, save models to the model catalog, deploy models, and perform predictions on model deployment endpoints.

The GenericModel class works with any unsupported model framework that has a .predict() method. For the most common model classes such as scikit-learn, XGBoost, LightGBM, TensorFlow, and PyTorch, and AutoML, we recommend that you use the ADS provided, framework-specific serializations models. For example, for a scikit-learn model, use SKLearnmodel. For other models, use the GenericModel class.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

These simple steps take your trained model and will deploy it into production with just a few lines of code.

Initialize

Instantiate a GenericModel() object by giving it any model object. It accepts the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: (Callable): Trained model.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	serialize: (bool, optional): Defaults to True. If True the model will be serialized into a pickle file. If False, you must set the model_file_name in the .prepare() method, serialize the model manually, and save it in the artifact_dir. You will also need to update the score.py file to work with this model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model after it is deployed. These files include:

	input_schema.json: A JSON file that defines the nature of the feature data. It includes information about the features. This includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	model.pkl: This is the default filename of the serialized model. It can be changed with the model_file_name attribute. By default, the model is stored in a pickle file. The parameter as_onnx can be used to save it in the ONNX format.

	output_schema.json: A JSON file that defines the nature of the dependent variable. This includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	runtime.yaml: This file contains information that is needed to set up the runtime environment on the deployment server. It has information about which conda environment was used to train the model, and what environment should be used to deploy the model. The file also specifies what version of Python should be used.

	score.py: This script contains the load_model() and predict() functions. The load_model() function understands the format the model file was saved in and loads it into memory. The predict() function is used to make inferences in a deployed model. There are also hooks that allow you to perform operations before and after inference. You are able to modify this script to fit your specific needs.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing model provenance information.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data (Union[dict, str, tuple, list]). The data is used to test if the deployment works in the local environment.

In GenericModel, data serialization is not supported. This means that you must ensure that you pass in JSON serializable data to the .verify() and .predict() methods. Or you could implement data serialization and deserialization in the score.py file.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Union[dict, str, tuple, list]: JSON serializable data used for making inferences.

The .predict() and .verify() methods take the same data formats.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.generic_model import GenericModel

model = GenericModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.pkl",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import GenericModel

model = GenericModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.pkl",
 artifact_dir=tempfile.mkdtemp())

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Example

By default, the GenericModel serializes to a pickle file. The following example, the user creates a model. In the prepare step, the user saves the model as a pickle file with the name toy_model.pkl. Then the user verifies the model, saves it to the model catalog, deploys the model and makes a prediction. Finally, the user deletes the model deployment and then deletes the model.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.generic_model import GenericModel

class Toy:
 def predict(self, x):
 return x ** 2
model = Toy()

generic_model = GenericModel(estimator=model, artifact_dir=tempfile.mkdtemp())
generic_model.summary_status()
generic_model.prepare(
 inference_conda_env="dataexpl_p37_cpu_v3",
 model_file_name="toy_model.pkl",
 force_overwrite=True
)
generic_model.verify(2)
model_id = generic_model.save()
generic_model.deploy()
generic_model.predict(2)
generic_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 LightGBMModel

LightGBMModel

Overview

The LightGBMModel class in ADS is designed to allow you to rapidly get a LightGBM model into production. The .prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

The following steps take your trained LightGBM model and deploy it into production with a few lines of code.

The LightGBMModel module in ADS supports serialization for models generated from both the Training API [https://lightgbm.readthedocs.io/en/latest/Python-API.html#training-api] using lightgbm.train() and the Scikit-Learn API [https://lightgbm.readthedocs.io/en/latest/Python-API.html#scikit-learn-api] using lightgbm.LGBMClassifier(). Both of these interfaces are defined by LightGBM [https://lightgbm.readthedocs.io/en/latest/].

The Training API in LightGBM contains training and cross-validation routines. The Dataset class is an internal data structure that is used by LightGBM when using the lightgbm.train() method. You can also create LightGBM models using the Scikit-Learn Wrapper interface. The LightGBMModel class handles the differences between the LightGBM Training and SciKit-Learn APIs seamlessly.

Create Training API and Scikit-Learn Wrapper LightGBM Models

In the following several code snippets you will prepare the data and train LightGBM models. In the first snippet, the data will be prepared. This will involved loading a dataset, splitting it into dependent and independent variables and into test and training sets. The data will be encoded and a preprocessing pipeline will be defined. In the second snippet, the LightGBM Training API will be used to train the model. In the third and final code snippet, the Scikit-Learn Wrapper interface is used to create another LightGBM model.

import lightgbm as lgb
import pandas as pd
import os

from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():
 if col.dtypes == "object":
 categorical_cols.append(col.name)
 else:
 numerical_cols.append(col.name)

categorical_transformer = Pipeline(
 steps=[('encoder', OrdinalEncoder())]
)

Build a pipeline
preprocessor = ColumnTransformer(
 transformers=[('cat', categorical_transformer, categorical_cols)]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)

X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

Create a LightGBM model using the Training API.

dtrain = lgb.Dataset(X_train_transformed, label=y_train_transformed)
dtest = lgb.Dataset(X_test_transformed, label=y_test_transformed)

model_train = lgb.train(
 params={'num_leaves': 31, 'objective': 'binary', 'metric': 'auc'},
 train_set=dtrain, num_boost_round=10)

Create a LightGBM model using the Scikit-Learn Wrapper interface.

model = lgb.LGBMClassifier(
 n_estimators=100, learning_rate=0.01, random_state=42
)
model.fit(
 X_train_transformed,
 y_train_transformed,
)

Initialize

Instantiate a LightGBMModel() object with a LightGBM model. Each instance accepts the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: (Callable): Trained LightGBM model using the Training API or the Scikit-Learn Wrapper interface.

	properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model after it is deployed. These files include:

	input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	model.joblib: This is the default filename of the serialized model for Training API. For sklearn API, the default file name is model.joblib. You can change it with the model_file_name attribute. By default, the model is stored in a joblib.txt file. You can use the as_onnx parameter to save in the file in ONNX format, and the model name defaults to model.onnx.

	output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	runtime.yaml: This file contains information that is needed to set up the runtime environment on the deployment server. It has information about what conda environment was used to train the model and what environment to use to deploy the model. The file also specifies what version of Python should be used.

	score.py: This script contains the load_model() and predict() functions. The load_model() function understands the format the model file was saved in and loads it into memory. The .predict() method is used to make inferences in a deployed model. There are also hooks that allow you to perform operations before and after inference. You can modify this script to fit your specific needs.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing model provenance information.

To serialize the model to ONNX format, set the as_onnx parameter to True. You can provide the initial_types parameter, which is a Python list describing the variable names and types. Alternatively, the system tries to infer this information from the data in the X_sample parameter. X_sample only supports List, Numpy array, or Pandas dataframe. Dataset class isn’t supported because this format can’t convert into JSON serializable format, see the ONNX documentation [http://onnx.ai/sklearn-onnx/api_summary.html].

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

When using the Scikit-Learn Wrapper interface, the .prepare() method accepts any parameters that skl2onnx.convert_sklearn accepts. When using the Training API, the .prepare() method accepts any parameters that onnxmltools.convert_lightgbm accepts.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data: Any: Data used to test if deployment works in local environment.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Any: JSON serializable data used for making inferences.

The .predict() and .verify() methods take the same data format. You must ensure that the data passed into and returned by the predict() function in the score.py file is JSON serializable.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.framework.lightgbm_model import LightGBMModel

model = LightGBMModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.joblib",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.lightgbm_model import LightGBMModel

model = LightGBMModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.joblib",
 artifact_dir=tempfile.mkdtemp())

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Example

import lightgbm as lgb
import pandas as pd
import os
import tempfile

from ads.catalog.model import ModelCatalog
from ads.model.framework.lightgbm_model import LightGBMModel
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

Load data
df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():
 if col.dtypes == "object":
 categorical_cols.append(col.name)
 else:
 numerical_cols.append(col.name)

categorical_transformer = Pipeline(
 steps=[
 ('encoder', OrdinalEncoder())
]
)

Build a pipeline
preprocessor = ColumnTransformer(
 transformers=[
 ('cat', categorical_transformer, categorical_cols)
]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)
X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

LightGBM Scikit-Learn API
model = lgb.LGBMClassifier(
 n_estimators=100, learning_rate=0.01, random_state=42
)
model.fit(
 X_train_transformed,
 y_train_transformed,
)

Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
lightgbm_model = LightGBMModel(estimator=model, artifact_dir=artifact_dir)
lightgbm_model.prepare(
 inference_conda_env="generalml_p37_cpu_v1",
 training_conda_env="generalml_p37_cpu_v1",
 X_sample=X_train_transformed[:10],
 as_onnx=False,
 force_overwrite=True,
)
lightgbm_model.verify(X_test_transformed[:10])['prediction']
model_id = lightgbm_model.save()
lightgbm_model.deploy()
lightgbm_model.predict(X_test_transformed[:10])['prediction']
lightgbm_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 PyTorchModel

PyTorchModel

Overview

The PyTorchModel class in ADS is designed to allow you to rapidly get a PyTorch model into production. The .prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

The following steps take your trained PyTorch model and deploy it into production with a few lines of code.

Create a PyTorch Model

Load a ResNet18 [https://arxiv.org/pdf/1512.03385.pdf] model and put it into evaluation mode.

import torch
import torchvision

model = torchvision.models.resnet18(pretrained=True)
model.eval()

Initialize

Instantiate a PyTorchModel() object with a PyTorch model. Each instance accepts the following parameters:

	artifact_dir: str. Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: Callable. Any model object generated by the PyTorch framework.

	properties: (ModelProperties, optional). Defaults to None. The ModelProperties object required to save and deploy model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model after it is deployed. These files include:

	input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	model.pt: This is the default filename of the serialized model. It can be changed with the model_file_name attribute. By default, the model is stored in a PyTorch file. The parameter as_onnx can be used to save it in the ONNX format.

	output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	runtime.yaml: This file contains information that is needed to set up the runtime environment on the deployment server. It has information about which conda environment was used to train the model, and what environment should be used to deploy the model. The file also specifies what version of Python should be used.

	score.py: This script contains the load_model() and predict() functions. The load_model function understands the format the model file was saved in, and loads it into memory. The .predict() method is used to make inferences in a deployed model. There are also hooks that allow you to perform operations before and after inference. You are able to modify this script to fit your specific needs.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing model provenance information. The PyTorch framework serialization only saves the model parameters. Thus, you must update the score.py file to construct the model class instance first before loading model parameters in the predict() function of score.py.

The .prepare() method prepares and saves the score.py file, serializes the model and runtime.yaml file using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env paramaters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	dynamic_axes: (dict, optional): Defaults to None. Optional in ONNX serialization. Specify axes of tensors as dynamic (i.e. known only at run-time).

	input_names: (List[str], optional): Defaults to ["input"]. Optional in an ONNX serialization. It is an ordered list of names to assign to the input nodes of the graph.

	onnx_args: (tuple or torch.Tensor, optional): Required when as_onnx=True in an ONNX serialization. Contains model inputs such that onnx_model(onnx_args) is a valid invocation of the model.

	output_names: (List[str], optional): Defaults to ["output"]. Optional in an ONNX serialization. It is an ordered list of names to assign to the output nodes of the graph.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data: Any: Data expected by the predict API in the score.py file. For the PyTorch serialization method, data can be in type dict, str, list, np.ndarray, or torch.tensor. For the ONNX serialization method, data has to be JSON serializable or np.ndarray.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Any: Data expected by the predict API in the score.py file. For the PyTorch serialization method, data can be in type dict, str, list, np.ndarray, or torch.tensor. For the ONNX serialization method, data has to be JSON serializable or np.ndarray.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.framework.pytorch_model import PyTorchModel

model = PyTorchModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.pt",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.pytorch_model import PyTorchModel

model = PyTorchModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.pt",
 artifact_dir=tempfile.mkdtemp())

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Example

import tempfile
import torchvision
from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.pytorch_model import PyTorchModel

Load the PyTorch Model
model = torchvision.models.resnet18(pretrained=True)
model.eval()

Prepare the model
artifact_dir = tempfile.mkdtemp()
pytorch_model = PyTorchModel(model, artifact_dir=artifact_dir)
pytorch_model.prepare(
 inference_conda_env="generalml_p37_cpu_v1",
 training_conda_env="generalml_p37_cpu_v1",
 use_case_type=UseCaseType.IMAGE_CLASSIFICATION,
 as_onnx=False,
 force_overwrite=True,
)

Update ``score.py`` by constructing the model class instance first.
added_line = """
import torchvision
the_model = torchvision.models.resnet18()
"""
with open(artifact_dir + "/score.py", 'r+') as f:
 content = f.read()
 f.seek(0, 0)
 f.write(added_line.rstrip('\r\n') + '\n' + content)

test_data will need to be defined based on the image requirements of ResNet18

Deploy the model, test it and clean up.
pytorch_model.verify(test_data)
model_id = pytorch_model.save()
pytorch_model.deploy()
pytorch_model.predict(test_data)
pytorch_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 SklearnModel

SklearnModel

Overview

The SklearnModel class in ADS is designed to allow you to rapidly get a Scikit-learn model into production. The .prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

The following steps take your trained scikit-learn model and deploy it into production with a few lines of code.

Create a Scikit-learn Model

import pandas as pd
import os

from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import OrdinalEncoder, LabelEncoder
from sklearn.model_selection import train_test_split

ds_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_attrition.csv")
df = pd.read_csv(ds_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

Data Preprocessing
for i, col in X.iteritems():
 col.replace("unknown", "", inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

Label encode the y values
le = LabelEncoder()
y_train = le.fit_transform(y_train)
y_test = le.transform(y_test)

Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():
 if col.dtypes == "object":
 categorical_cols.append(col.name)
 else:
 numerical_cols.append(col.name)

categorical_transformer = Pipeline(steps=[
 ('encoder', OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-999))
])
preprocessor = ColumnTransformer(
 transformers=[('cat', categorical_transformer, categorical_cols)]
)

ml_model = RandomForestClassifier(n_estimators=100, random_state=0)
model = Pipeline(
 steps=[('preprocessor', preprocessor),
 ('model', ml_model)
])

model.fit(X_train, y_train)

Initialize

Instantiate a SklearnModel() object with an Scikit-learn model. Each instance accepts the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: (Callable): Trained Scikit-learn model or Scikit-learn pipeline.

	properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model after it is deployed. These files include:

	input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	model.joblib: This is the default filename of the serialized model. It can be changed with the model_file_name attribute. By default, the model is stored in a joblib file. The parameter as_onnx can be used to save it in the ONNX format.

	output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	runtime.yaml: This file contains information that is needed to set up the runtime environment on the deployment server. It has information about which conda environment was used to train the model, and what environment should be used to deploy the model. The file also specifies what version of Python should be used.

	score.py: This script contains the load_model() and predict() functions. The load_model() function understands the format the model file was saved in and loads it into memory. The .predict() method is used to make inferences in a deployed model. There are also hooks that allow you to perform operations before and after inference. You can modify this script to fit your specific needs.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data: Any: Data used to test if deployment works in local environment.

In SklearnModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dictionary, string, list, np.ndarray, pd.core.series.Series, and pd.core.frame.DataFrame. Not all these objects are JSON serializable, however, support to automatically serializes and deserialized is provided.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Any: JSON serializable data used for making inferences.

In SklearnModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dictionary, string, list, np.ndarray, pd.core.series.Series, and pd.core.frame.DataFrame. Not all these objects are JSON serializable, however, support to automatically serializes and deserialized is provided.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.framework.sklearn_model import SklearnModel

model = SklearnModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.joblib",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.sklearn_model import SklearnModel

model = SklearnModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.pkl",
 artifact_dir=tempfile.mkdtemp())

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Examples

import pandas as pd
import os
import tempfile

from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.sklearn_model import SklearnModel
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import OrdinalEncoder, LabelEncoder
from sklearn.model_selection import train_test_split

ds_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_attrition.csv")
df = pd.read_csv(ds_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

Data Preprocessing
for i, col in X.iteritems():
 col.replace("unknown", "", inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():
 if col.dtypes == "object":
 categorical_cols.append(col.name)
 else:
 numerical_cols.append(col.name)

categorical_transformer = Pipeline(steps=[
 ('encoder', OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-999))
])
preprocessor = ColumnTransformer(
 transformers=[
 ('cat', categorical_transformer, categorical_cols)
])

ml_model = RandomForestClassifier(n_estimators=100, random_state=0)
model = Pipeline(
 steps=[('preprocessor', preprocessor),
 ('model', ml_model)
])

model.fit(X_train, y_train_transformed)

Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
sklearn_model = SklearnModel(estimator=model, artifact_dir= artifact_dir)
sklearn_model.prepare(
 inference_conda_env="generalml_p37_cpu_v1",
 training_conda_env="generalml_p37_cpu_v1",
 use_case_type=UseCaseType.BINARY_CLASSIFICATION,
 as_onnx=False,
 X_sample=X_test,
 y_sample=y_test_transformed,
 force_overwrite=True,
)
sklearn_model.verify(X_test.head(2))
model_id = sklearn_model.save()
sklearn_model.deploy()
sklearn_model.predict(X_test.head(2))
sklearn_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 TensorFlowModel

TensorFlowModel

Overview

The TensorFlowModel class in ADS is designed to allow you to rapidly get a TensorFlow model into production. The .prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

The following steps take your trained TensorFlow model and deploy it into production with a few lines of code.

Create a TensorFlow Model

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential(
 [
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation="relu"),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10),
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=1)

Initialize

Instantiate a TensorFlowModel() object with a TensorFlow model. Each instance accepts the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: Callable: Any model object generated by the TensorFlow framework.

	properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model after it is deployed. These files include:

	input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	model.h5: This is the default filename of the serialized model. You can change it with the model_file_name attribute. By default, the model is stored in an h5 file. You can use the as_onnx parameter to save it in the ONNX format.

	output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	runtime.yaml: This file contains information that is needed to set up the runtime environment on the deployment server. It has information about which conda environment was used to train the model, and what environment should be used to deploy the model. The file also specifies what version of Python should be used.

	score.py: This script contains the load_model() and predict() functions. The load_model() function understands the format the model file was saved in, and loads it into memory. The .predict() method is used to make inferences in a deployed model. There are also hooks that allow you to perform operations before and after inference. You are able to modify this script to fit your specific needs.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data: Any: Data used to test if deployment works in local environment.

In TensorFlowModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dictionary, string, list, np.ndarray, and tf.python.framework.ops.EagerTensor. Not all these objects are JSON serializable, however, support to automatically serializes and deserialized is provided.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Any: JSON serializable data used for making inferences.

In TensorFlowModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dictionary, string, list, np.ndarray, and tf.python.framework.ops.EagerTensor. Not all these objects are JSON serializable, however, support to automatically serializes and deserialized is provided.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.framework.tensorflow_model import TensorFlowModel

model = TensorFlowModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.joblib",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.tensorflow_model import TensorFlowModel

model = TensorFlowModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.tf",
 artifact_dir=tempfile.mkdtemp())

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Example

import tempfile
import tensorflow as tf

from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.tensorflow_model import TensorFlowModel

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential(
 [
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation="relu"),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10),
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=1)

Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
tensorflow_model = TensorFlowModel(estimator=model, artifact_dir= artifact_dir)
tensorflow_model.prepare(
 inference_conda_env="generalml_p37_cpu_v1",
 training_conda_env="generalml_p37_cpu_v1",
 use_case_type=UseCaseType.MULTINOMIAL_CLASSIFICATION,
 X_sample=x_test,
 y_sample=y_test,
)

tensorflow_model.verify(x_test[:1])
model_id = tensorflow_model.save()
tensorflow_model_deployment = model.deploy()
tensorflow_model.predict(x_test[:1])
tensorflow_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 XGBoostModel

XGBoostModel

Overview

The XGBoostModel class in ADS is designed to allow you to rapidly get a XGBoost model into production. The .prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

The following steps take your trained XGBoost model and deploy it into production with a few lines of code.

The XGBoostModel module in ADS supports serialization for models generated from both the Learning API [https://xgboost.readthedocs.io/en/stable/python/python_api.html#module-xgboost.training] using xgboost.train() and the Scikit-Learn API [https://xgboost.readthedocs.io/en/stable/python/python_api.html#module-xgboost.sklearn] using xgboost.XGBClassifier(). Both of these interfaces are defined by XGBoost [https://xgboost.readthedocs.io/en/stable/index.html].

Create Learning API and Scikit-Learn Wrapper XGBoost Models

In the following several code snippets you will prepare the data and train XGBoost models. In the first snippet, the data will be prepared. This will involved loading a dataset, splitting it into dependent and independent variables and into test and training sets. The data will be encoded and a preprocessing pipeline will be defined. In the second snippet, the XGBoost Learning API will be used to train the model. In the third and final code snippet, the Scikit-Learn Wrapper interface is used to create another XGBoost model.

import pandas as pd
import os
import tempfile
import xgboost as xgb

from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():
 if col.dtypes == "object":
 categorical_cols.append(col.name)
 else:
 numerical_cols.append(col.name)

categorical_transformer = Pipeline(
 steps=[('encoder', OrdinalEncoder())]
)

Build a pipeline
preprocessor = ColumnTransformer(
 transformers=[('cat', categorical_transformer, categorical_cols)]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)

X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

Create an XGBoost model using the Learning API.

dtrain = xgb.DMatrix(X_train_transformed, y_train_transformed)
dtest = xgb.DMatrix(X_test_transformed, y_test_transformed)

model_learn = xgb.train(
 params = {"learning_rate": 0.01, "max_depth": 3},
 dtrain = dtrain,
)

Create an XGBoost model using the Scikit-Learn Wrapper interface.

model = xgb.XGBClassifier(
 n_estimators=100, max_depth=3, learning_rate=0.01, random_state=42,
 use_label_encoder=False
)
model.fit(
 X_train_transformed,
 y_train_transformed,
)

Initialize

Instantiate a XGBoostModel() object with an XGBoost model. Each instance accepts the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	estimator: (Callable): Trained XGBoost model either using the Learning API or the Scikit-Learn Wrapper interface.

	properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: ../../_images/summary_status.png]

Model Deployment

Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model after it is deployed. These files include:

	input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	model.json: This is the default filename of the serialized model. It can be changed with the model_file_name attribute. By default, the model is stored in a JSON file. You can use the as_onnx parameter to save in ONNX format, and the model name defaults to model.onnx.

	output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

	runtime.yaml: This file contains information needed to set up the runtime environment on the deployment server. It has information about what conda environment was used to train the model and what environment to use to deploy the model. The file also specifies what version of Python should be used.

	score.py: This script contains the load_model() and predict() functions. The load_model() function understands the format the model file was saved in and loads it into memory. The .predict() method is used to make inferences in a deployed model. There are also hooks that allow you to perform operations before and after inference. You can modify this script to fit your specific needs.

To create the model artifacts you use the .prepare() method. There are a number of parameters that allow you to store model provenance information.

To serialize the model to ONNX format, set the as_onnx parameter to True. You can provide the initial_types parameter, which is a Python list describing the variable names and types. Alternatively, the service tries to infer this information from the data in the X_sample parameter. X_sample supports List, Numpy array or Pandas dataframe. DMatrix class is not supported because this format can’t convert into a JSON serializable format, see the ONNX docs [http://onnx.ai/sklearn-onnx/api_summary.html].

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

When using the Scikit-Learn Wrapper interface, the .prepare() method accepts any parameter that skl2onnx.convert_sklearn accepts. When using the Learning API, the .prepare() method accepts any parameter that onnxmltools.convert_xgboost accepts.

Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

	data: Any: Data used to test if deployment works in a local environment.

Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

	data: Any: JSON serializable data used for making inferences.

The .predict() and .verify() methods take the same data formats. You must ensure that the data passed into and returned by the predict() function in the score.py file is JSON serializable.

Loading

You can restore serialization models either from model artifacts or from models in the model catalog. This section provides details on how to restore serialization models.

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

from ads.model.framework.xgboost_model import XGBoostModel

model = XGBoostModel.from_model_artifact(
 uri="/folder_to_your/artifact.zip",
 model_file_name="model.joblib",
 artifact_dir="/folder_store_artifact"
)

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.xgboost_model import XGBoostModel

model = XGBoostModel.from_model_catalog(model_id="ocid1.datasciencemodel.oc1.iad.amaaaa....",
 model_file_name="model.json",
 artifact_dir=tempfile.mkdtemp())

Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

Example

import pandas as pd
import os
import tempfile
import xgboost as xgb

from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():
 if col.dtypes == "object":
 categorical_cols.append(col.name)
 else:
 numerical_cols.append(col.name)

categorical_transformer = Pipeline(
 steps=[('encoder', OrdinalEncoder())]
)

Build a pipeline
preprocessor = ColumnTransformer(
 transformers=[('cat', categorical_transformer, categorical_cols)]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)

X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

XGBoost Scikit-Learn API
model = xgb.XGBClassifier(
 n_estimators=100, learning_rate=0.01, random_state=42,
 use_label_encoder=False
)
model.fit(X_train_transformed, y_train_transformed)

Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
xgboost_model = XGBoostModel(estimator=model, artifact_dir=artifact_dir)
xgboost_model.prepare(
 inference_conda_env="generalml_p37_cpu_v1",
 training_conda_evn="generalml_p37_cpu_v1",
 use_case_type=UseCaseType.BINARY_CLASSIFICATION,
 X_sample=X_test_transformed,
 y_sample=y_test_transformed,
)
xgboost_model.verify(X_test_transformed[:10])['prediction']
model_id = xgboost_model.save()
xgboost_model.deploy()
xgboost_model.predict(X_test_transformed[:10])['prediction']
xgboost_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)

 Model Training

Model Training

	Oracle AutoML

	Keras

	scikit-learn

	XGBoost

	ADSTuner

Oracle AutoML

[image: Oracle Logo]
Oracle AutoML automates the machine learning experience. It replaces the laborious and time consuming tasks of the data scientist whose workflow is as follows:

	Select a model from a large number of viable candidate models.

	For each model, tune the hyperparameters.

	Select only predictive features to speed up the pipeline and reduce over fitting.

	Ensure the model performs well on unseen data (also called generalization).

[image: ../../_images/motivation.png]
Oracle AutoML automates this workflow and provides you with an optimal model given a time budget. In addition to incorporating these typical machine learning workflow steps, Oracle AutoML is also optimized
to produce a high quality model very efficiently. You can achieve this with the following:

	Scalable design: All stages in the Oracle AutoML pipeline exploit both internode and intranode parallelism, which improves scalability and reduces runtime.

	Intelligent choices reduce trials in each stage: Algorithms and parameters are chosen based on dataset characteristics. This ensures that the selected model is accurate and is efficiently selected. You can achieve this using meta learning throughout the pipeline. Meta learning is used in:

	Algorithm selection to choose an optimal model class.

	Adaptive sampling to identify the optimal set of samples.

	Feature selection to determine the ideal feature subset.

	Hyperparameter optimization.

The following topics detail the Oracle AutoML pipeline and individual stages of the pipeline:

	The Oracle AutoML Pipeline
	Algorithm Selection

	Adaptive Sampling

	Feature Selection

	Hyperparameter Tuning

	Building a Classifier using OracleAutoMLProvider
	Setup

	Load the Census Income Dataset

	Create an instance of OracleAutoMLProvider

	Train a model

	Provide a Specific Model List

	Specify a Different Scoring Metric

	Specify a User Defined Scoring Function

	Specify a Time Budget

	Specify a Minimum Feature List

	Compare Different Models

Keras

Keras is an open source neural network library. It can run on top of TensorFlow, Theano, and Microsoft Cognitive Toolkit. By default, Keras uses TensorFlow as the backend. Keras is written in Python, but it has support for R and PlaidML, see About Keras [https://keras.io/about/].

These examples examine a binary classification problem predicting churn. This is a common type of problem that can be solved using Keras, Tensorflow, and scikit-learn.

If the data is not cached, it is pulled from github, cached, and then loaded.

from os import path
import numpy as np
import pandas as pd
import requests

import logging
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)

churn_data_file = '/tmp/churn.csv'
if not path.exists(churn_data_file):
 # fetch sand save some data
 print('fetching data from web...', end =" ")
 r = requests.get('oci://hosted-ds-datasets@hosted-ds-datasets/churn/dataset.csv')
 with open(churn_data_file, 'wb') as fd:
 fd.write(r.content)
 print("Done")

df = pd.read_csv(churn_data_file)

Keras needs to be imported and scikit-learn needs to be imported to generate metrics. Most of the data preprocessing and modeling can be done using the ADS library. However, the following example demonstrates how to do
these tasks with external libraries:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, roc_auc_score

from keras.models import Sequential
from keras.layers import Dense

The first step is data preparation. From the pandas.DataFrame, you extract the X and Y-values as numpy arrays. The feature selection is performed manually. The next step is feature encoding using sklearn LabelEncoder. This converts categorical variables into ordinal values (‘red’, ‘green’, ‘blue’ –> 0, 1, 2) to be compatible with Keras. The data is then split using a 80/20 ratio. The training is performed on 80% of the data. Model testing is performed on the remaining 20% of the data to evaluate how well the model generalizes.

feature_name = ['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary']

response_name = ['Exited']
data = df[[val for sublist in [feature_name, response_name] for val in sublist]].copy()

Encode the category columns
for col in ['Geography', 'Gender']:
 data.loc[:, col] = LabelEncoder().fit_transform(data.loc[:, col])

Do an 80/20 split for the training and test data
train, test = train_test_split(data, test_size=0.2, random_state=42)

Scale the features and split the features away from the response
sc = StandardScaler() # Feature Scaling
X_train = sc.fit_transform(train.drop('Exited', axis=1).to_numpy())
X_test = sc.transform(test.drop('Exited', axis=1).to_numpy())
y_train = train.loc[:, 'Exited'].to_numpy()
y_test = test.loc[:, 'Exited'].to_numpy()

The following shows the neural network architecture. It is a sequential model with an input layer with 10 nodes. It has two hidden layers with 255 densely connected nodes and the ReLu activation function. The output layer has a single node with a sigmoid activation function because the model is doing binary classification. The optimizer is Adam and the loss function is binary cross-entropy. The model is optimized on the accuracy metric. This takes several minutes to run.

keras_classifier = Sequential()
keras_classifier.add(Dense(units=255, kernel_initializer='uniform', activation='relu', input_dim=10))
keras_classifier.add(Dense(units=255, kernel_initializer='uniform', activation='relu'))
keras_classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid'))
keras_classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

keras_classifier.fit(X_train, y_train, batch_size=10, epochs=25)

To evaluate this model, you could use sklearn or ADS.

This example uses sklearn:

y_pred = keras_classifier.predict(X_test)
y_pred = (y_pred > 0.5)

cm = confusion_matrix(y_test, y_pred)
auc = roc_auc_score(y_test, y_pred)

print("confusion_matrix:\n", cm)
print("roc_auc_score", auc)

This example uses the ADS evaluator package:

from ads.common.model import ADSModel
from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

eval_test = MLData.build(X = pd.DataFrame(sc.transform(test.drop('Exited', axis=1)), columns=feature_name),
 y = pd.Series(test.loc[:, 'Exited']),
 name = 'Test Data')
eval_train = MLData.build(X = pd.DataFrame(sc.transform(train.drop('Exited', axis=1)), columns=feature_name),
 y = pd.Series(train.loc[:, 'Exited']),
 name = 'Training Data')
clf = ADSModel.from_estimator(keras_classifier, name="Keras")
evaluator = ADSEvaluator(eval_test, models=[clf], training_data=eval_train)

Scikit-Learn

The sklearn pipeline can be used to build a model on the same churn dataset that was used in the Keras section. The pipeline allows the model to contain multiple stages and transformations. Typically, there are pipeline stages for feature encoding, scaling, and so on. In this pipeline example, a LogisticRegression estimator is used:

from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

pipeline_classifier = Pipeline(steps=[
 ('clf', LogisticRegression())
])

pipeline_classifier.fit(X_train, y_train)

You can evaluate this model using sklearn or ADS.

XGBoost

XGBoost is an optimized, distributed gradient boosting library designed to be efficient, flexible, and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides parallel tree boosting (also known as Gradient Boosting Decision Tree, Gradient Boosting Machines [GBM]) and can be used to solve a variety of data science applications. The unmodified code runs on several distributed environments (Hadoop, SGE, andMPI) and can processes billions of observations, see the XGBoost Documentation [https://xgboost.readthedocs.io/en/latest/].

Import XGBoost with:

from xgboost import XGBClassifier

xgb_classifier = XGBClassifier(nthread=1)
xgb_classifier.fit(eval_train.X, eval_train.y)

From the three estimators, we create three ADSModel objects. A Keras classifier, a sklearn pipeline with a single LogisticRegression stage, and an XGBoost model:

from ads.common.model import ADSModel
from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLDataa

keras_model = ADSModel.from_estimator(keras_classifier)
lr_model = ADSModel.from_estimator(lr_classifier)
xgb_model = ADSModel.from_estimator(xgb_classifier)

evaluator = ADSEvaluator(eval_test, models=[keras_model, lr_model, xgb_model], training_data=eval_train)
evaluator.show_in_notebook()

ADSTuner

In addition to the other services for training models, ADS includes a hyperparameter tuning framework called ADSTuner.

ADSTuner supports using several hyperparameter search strategies that plug into common model architectures like sklearn.

ADSTuner further supports users defining their own search spaces and strategies. This makes ADSTuner functional and useful with any ML library that doesn’t include hyperparameter tuning.

First, import the packages:

import category_encoders as ce
import lightgbm
import logging
import numpy as np
import os
import pandas as pd
import pytest
import sklearn
import xgboost

from ads.hpo.stopping_criterion import *
from ads.hpo.distributions import *
from ads.hpo.search_cv import ADSTuner, NotResumableError

from lightgbm import LGBMClassifier
from sklearn import preprocessing
from sklearn.compose import ColumnTransformer
from sklearn.datasets import load_iris, load_boston
from sklearn.decomposition import PCA
from sklearn.ensemble import AdaBoostRegressor, AdaBoostClassifier
from sklearn.impute import SimpleImputer
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.metrics import make_scorer, f1_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif
from xgboost import XGBClassifier

This is an example of running the ADSTuner on a support model SGD from sklearn:

model = SGDClassifier() ##Initialize the model
X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
tuner = ADSTuner(model, cv=3) ## cv is cross validation splits
tuner.search_space() ##This is the default search space
tuner.tune(X_train, y_train, exit_criterion=[NTrials(10)])

ADSTuner generates a tuning report that lists its trials, best performing hyperparameters, and performance statistics with:

[image: ../../_images/adstuner.png]
You can use tuner.best_score to get the best score on the scoring metric used (accessible as``tuner.scoring_name``)
The best selected parameters are obtained with tuner.best_params and the complete record of trials with tuner.trials

If you have further compute resources and want to continue hyperparameter optimization on a model that has already been optimized, you can use:

tuner.resume(exit_criterion=[TimeBudget(5)], loglevel=logging.NOTSET)
print('So far the best {} score is {}'.format(tuner.scoring_name, tuner.best_score))
print("The best trial found was number: " + str(tuner.best_index))

ADSTuner has some robust visualization and plotting capabilities:

tuner.plot_best_scores()
tuner.plot_intermediate_scores()
tuner.search_space()
tuner.plot_contour_scores(params=['penalty', 'alpha'])
tuner.plot_parallel_coordinate_scores(params=['penalty', 'alpha'])
tuner.plot_edf_scores()

These commands produce the following plots:

[image: ../../_images/contourplot.png]
[image: ../../_images/empiricaldistribution.png]
[image: ../../_images/intermediatevalues.png]
[image: ../../_images/optimizationhistory.png]
[image: ../../_images/parallelcoordinate.png]
ADSTuner supports custom scoring functions and custom search spaces. This example uses a different model:

model2 = LogisticRegression()
tuner = ADSTuner(model2,
 strategy = {
 'C': LogUniformDistribution(low=1e-05, high=1),
 'solver': CategoricalDistribution(['saga']),
 'max_iter': IntUniformDistribution(500, 1000, 50)},
 scoring=make_scorer(f1_score, average='weighted'),
 cv=3)
tuner.tune(X_train, y_train, exit_criterion=[NTrials(5)])

ADSTuner doesn’t support every model. The supported models are:

	‘Ridge’,

	‘RidgeClassifier’,

	‘Lasso’,

	‘ElasticNet’,

	‘LogisticRegression’,

	‘SVC’,

	‘SVR’,

	‘LinearSVC’,

	‘LinearSVR’,

	‘DecisionTreeClassifier’,

	‘DecisionTreeRegressor’,

	‘RandomForestClassifier’,

	‘RandomForestRegressor’,

	‘GradientBoostingClassifier’,

	‘GradientBoostingRegressor’,

	‘XGBClassifier’,

	‘XGBRegressor’,

	‘ExtraTreesClassifier’,

	‘ExtraTreesRegressor’,

	‘LGBMClassifier’,

	‘LGBMRegressor’,

	‘SGDClassifier’,

	‘SGDRegressor’

The AdaBoostRegressor model is not supported. This is an example of a custom strategy to use with this model:

model3 = AdaBoostRegressor()
X, y = load_boston(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
tuner = ADSTuner(model3, strategy={'n_estimators': IntUniformDistribution(50, 100)})
tuner.tune(X_train, y_train, exit_criterion=[TimeBudget(5)])

Finally, ADSTuner supports sklearn pipelines:

df, target = pd.read_csv(os.path.join('~', 'advanced-ds', 'tests', 'vor_datasets', 'vor_titanic.csv')), 'Survived'
X = df.drop(target, axis=1)
y = df[target]

numeric_features = X.select_dtypes(include=['int64', 'float64', 'int32', 'float32']).columns
categorical_features = X.select_dtypes(include=['object', 'category', 'bool']).columns

y = preprocessing.LabelEncoder().fit_transform(y)

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.3, random_state=42)

num_features = len(numeric_features) + len(categorical_features)

numeric_transformer = Pipeline(steps=[
 ('num_imputer', SimpleImputer(strategy='median')),
 ('num_scaler', StandardScaler())
])

categorical_transformer = Pipeline(steps=[
 ('cat_imputer', SimpleImputer(strategy='constant', fill_value='missing')),
 ('cat_encoder', ce.woe.WOEEncoder())
])

preprocessor = ColumnTransformer(
 transformers=[
 ('num', numeric_transformer, numeric_features),
 ('cat', categorical_transformer, categorical_features)
]
)

pipe = Pipeline(
 steps=[
 ('preprocessor', preprocessor),
 ('feature_selection', SelectKBest(f_classif, k=int(0.9 * num_features))),
 ('classifier', LogisticRegression())
]
)

def customerize_score(y_true, y_pred, sample_weight=None):
 score = y_true == y_pred
 return np.average(score, weights=sample_weight)

score = make_scorer(customerize_score)
ads_search = ADSTuner(
 pipe,
 scoring=score,
 strategy='detailed',
 cv=2,
 random_state=42
)
ads_search.tune(X=X_train, y=y_train, exit_criterion=[NTrials(20)])

Notebook Example: Hyperparameter Optimization with ADSTuner

Overview:

A hyperparameter is a parameter that is used to control a learning
process. This is in contrast to other parameters that are learned in the
training process. The process of hyperparameter optimization is to
search for hyperparameter values by building many models and assessing
their quality. This notebook provides an overview of the ADSTuner
hyperparameter optimization engine. ADSTuner can optimize any
estimator object that follows the scikit-learn
API [https://scikit-learn.org/stable/modules/classes.html].

Objectives:

	Introduction

	Synchronous Tuning with Exit Criterion Based on Number of Trials

	Asynchronously Tuning with Exit Criterion Based on Time Budget

	Inspecting the Tuning Trials

	Defining a Custom Search Space and Score

	Changing the Search Space Strategy

	Optimizing a scikit-learn Pipeline()

	References

Important:

Placeholder text for required values are surrounded by angle brackets
that must be removed when adding the indicated content. For example,
when adding a database name to database_name = "<database_name>"
would become database_name = "production".

Datasets are provided as a convenience. Datasets are considered third
party content and are not considered materials under your agreement with
Oracle applicable to the services. The iris dataset is distributed under
the BSD
license [https://github.com/scikit-learn/scikit-learn/blob/master/COPYING].

import category_encoders as ce
import lightgbm
import logging
import numpy as np
import os
import pandas as pd
import sklearn
import time

from ads.hpo.stopping_criterion import *
from ads.hpo.distributions import *
from ads.hpo.search_cv import ADSTuner, State

from sklearn import preprocessing
from sklearn.compose import ColumnTransformer
from sklearn.datasets import load_iris, load_boston
from sklearn.decomposition import PCA
from sklearn.impute import SimpleImputer
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.metrics import make_scorer, f1_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif

Introduction

Hyperparameter optimization requires a model, dataset, and an
ADSTuner object to perform the search.

ADSTuner() Performs a hyperparameter search using
cross-validation [https://en.wikipedia.org/wiki/Cross-validation_(statistics)].
You can specify the number of folds you want to use with the cv
parameter.

The ADSTuner() needs a search space to tune the hyperparameters in
so you use the strategy parameter. This parameter can be set in two
ways. You can specify detailed search criteria or you can use the
built-in defaults. For the supported model classes, ADSTuner
provides perfunctoryand detailed search spaces that are
optimized for the class of model that is being used. The perfunctory
option is optimized for a small search space so that the most important
hyperparameters are tuned. Generally, this option is used early in your
search as it reduces the computational cost and allows you to assess the
quality of the model class that you are using. The detailed search
space instructs ADSTuner to cover a broad search space by tuning
more hyperparameters. Typically, you would use it when you have
determined what class of model is best suited for the dataset and type
of problem you are working on. If you have experience with the dataset
and have a good idea of what the best hyperparameter values are, you can
explicitly specify the search space. You pass a dictionary that defines
the search space into the strategy.

The parameter storage takes a database URL. For example,
sqlite:////home/datascience/example.db. When storage is set to
the default value None, a new sqlite database file is created
internally in the tmp folder with a unique name. The name format is
sqlite:////tmp/hpo_*.db. study_name is the name of this study
for this ADSTuner object. One ADSTuner object only has one
study_name. However, one database file can be shared among different
ADSTuner objects. load_if_exists controls whether to load an
existing study from an existing database file. If False, it raises a
DuplicatedStudyError when the study_name exists.

The loglevel parameter controls the amount of logging information
displayed in the notebook.

This notebook uses the scikit-learn SGDClassifer() model and the
iris dataset. This model object is a regularized linear model with
stochastic gradient
descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent]
(SGD) used to optimize the model parameters.

The next cell creates the SGDClassifer() model, initialize san
ADSTuner object, and loads the iris data.

tuner = ADSTuner(SGDClassifier(), cv=3, loglevel=logging.WARNING)
X, y = load_iris(return_X_y=True)

 The Oracle AutoML Pipeline

The Oracle AutoML Pipeline

An AutoML Pipeline consists of these four main stages:

[image: ../../_images/pipeline.png]
The stages operate in sequence:

Contents

	The Oracle AutoML Pipeline

	Algorithm Selection

	Adaptive Sampling

	Feature Selection

	Hyperparameter Tuning

Algorithm Selection

With a given dataset and a prediction task, the goal is to identify the algorithm that maximizes the model score. This best algorithm is not always intuitive and simply picking a complex model is suboptimal for many use cases. The ADS algorithm selection stage is designed to rank algorithms based on their estimated predictive performance on the given dataset.

[image: ../../_images/algorithm_selection.png]
For a given dataset, the algorithm selection process is as follows:

	Extract relevant dataset characteristics, such as dataset shape, feature correlations, and appropriate meta-features.

	Invoke specialized score-prediction metamodels that were learned to predict algorithm performance across a wide variety of datasets and domains.

	Rank algorithms based on their predicted performance.

	Select the optimal algorithm.

Adaptive Sampling

Adaptive sampling iteratively subsamples the dataset and evaluates each sample to obtain a score for a specific algorithm. The goal is to find the smallest sample size that adequately represents the full dataset. It is used in subsequent pipeline stages without sacrificing the quality of the model.

[image: ../../_images/adaptive_sampling.png]
The adaptive sampling process is as follows:

	For a given algorithm and dataset, identify a representative sample.

	Leverage meta-learning to predict algorithm performance on the given sample.

	Iterate until the score converges.

	The identified sample is then used for subsequent stages of the AutoML Pipeline.

Feature Selection

The feature selection stage aims to select a subset of features that are highly predictive of the target. This speeds up model training without loss of predictive performance. The ADS feature selection approach leverages meta-learning to intelligently identify the optimal feature subset for a given algorithm and dataset. The high level process is:

[image: ../../_images/feature_selection.png]
For a given dataset, the feature selection process is as follows:

	Obtain the dataset meta-features, similar to those obtained in the algorithm selection stage.

	Rank all features using multiple ranking algorithms. Feature rankings are ordered lists of features from most to least important.

	For each feature ranking, the optimal feature subset is identified.

	Algorithm performance is predicted by leveraging meta-learning on a given feature subset.

	Iterating over multiple feature subsets, the optimal subset is determined.

Hyperparameter Tuning

The hyperparameter tuning stage determines the optimal values for the model’s hyperparameters. Generally, tuning is the most time-consuming stage of an AutoML pipeline. Therefore, the hyperparameter tuning process is designed with efficiency and scalability as first-order requirements. The ADS tuning strategy is summarized as:

[image: ../../_images/tuning.png]

 Building a Classifier using OracleAutoMLProvider

Building a Classifier using OracleAutoMLProvider

To demonstrate the OracleAutoMLProvider API, this example builds a classifier using the OracleAutoMLProvider tool for the public Census Income dataset. The
dataset is a binary classification dataset and more details about the dataset are found at https://archive.ics.uci.edu/ml/datasets/Adult.
Various options provided by the Oracle AutoML tool are explored allowing you to exercise control over the AutoML training process. The different models trained by Oracle AutoML
are then evaluated.

Setup

Load the necessary modules:

%matplotlib inline
%load_ext autoreload
%autoreload 2

import gzip
import pickle
import logging
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from ads.dataset.factory import DatasetFactory
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
from ads.evaluations.evaluator import ADSEvaluator

plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams['font.size'] = 15
sns.set(color_codes=True)
sns.set(font_scale=1.5)
sns.set_palette("bright")
sns.set_style("whitegrid")

Load the Census Income Dataset

Start by reading in the dataset from UCI. The dataset is not properly formatted, the separators have spaces between them, and the test set has a corrupt row at the top. These options are specified to
the Pandas CSV reader. The dataset has already been pre-split into training and test sets. The training set is used to create a
Machine Learning model using Oracle AutoML, and the test set is used to evaluate the model’s performance on unseen data.

column_names = [
 'age',
 'workclass',
 'fnlwgt',
 'education',
 'education-num',
 'marital-status',
 'occupation',
 'relationship',
 'race',
 'sex',
 'capital-gain',
 'capital-loss',
 'hours-per-week',
 'native-country',
 'income',
]

df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data',
 names=column_names, sep=',\s*', na_values='?')
test_df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test',
 names=column_names, sep=',\s*', na_values='?', skiprows=1)

Retrieve some of the values in the data:

df.head()

Adult
 :header-rows: 1

	age

	workclass

	fnlwgt

	education

	education-num

	marital-status

	occupation

	relationship

	race

	sex

	capital-gain

	capital-loss

	hours-per-week

	native-country

	income_level

	39

	State-gov

	77516

	Bachelors

	13

	Never-married

	Adm-clerical

	Not-in-family

	White

	Male

	2174

	0

	40

	United-States

	<=50K

	50

	Self-emp-not-inc

	83311

	Bachelors

	13

	Married-civ-spouse

	Exec-managerial

	Husband

	White

	Male

	0

	0

	13

	United-States

	<=50K

	38

	Private

	215646

	HS-grad

	9

	Divorced

	Handlers-cleaners

	Not-in-family

	White

	Male

	0

	0

	40

	United-States

	<=50K

	53

	Private

	234721

	11th

	7

	Married-civ-spouse

	Handlers-cleaners

	Husband

	Black

	Male

	0

	0

	40

	United-States

	<=50K

	28

	Private

	338409

	Bachelors

	13

	Married-civ-spouse

	Prof-specialty

	Wife

	Black

	Female

	0

	0

	40

	Cuba

	<=50K

	37

	Private

	284582

	Masters

	14

	Married-civ-spouse

	Exec-managerial

	Wife

	White

	Female

	0

	0

	40

	United-States

	<=50K

The Adult dataset contains a mix of numerical and string data, making it a challenging problem to train machine learning models on.

pd.DataFrame({'Data type': df.dtypes}).T

Adult Data Types

	age

	workclass

	fnlwgt

	education

	education-num

	marital-status

	occupation

	relationship

	race

	sex

	capital-gain

	capital-loss

	hours-per-week

	native-country

	income_level

	int64

	object

	int64

	object

	int64

	object

	object

	object

	object

	object

	int64

	int64

	int64

	object

	object

The dataset is also missing many values, further adding to its complexity. The Oracle AutoML solution automatically handles missing
values by intelligently dropping features with too many missing values, and filling in the remaining missing values based on the feature type.

pd.DataFrame({'% missing values': df.isnull().sum() * 100 / len(df)}).T

Adult Data Types

	
	age

	workclass

	fnlwgt

	education

	education-num

	marital-status

	occupation

	relationship

	race

	sex

	capital-gain

	capital-loss

	hours-per-week

	native-country

	income_level

	% missing values

	0.0

	5.638647

	0.0

	0.0

	0.0

	0.0

	5.660146

	0.0

	0.0

	0.0

	0.0

	0.0

	0.0

	0.0

	0.0

Visualize the distribution of the target variable in the training data.

target_col = 'income'
sns.countplot(x="income", data=df)

[image: ../../_images/output_15_1.png]
The test set has a different set of labels from the training set. The test set labels have an extra period (.) at the end causing incorrect scoring.

print(df[target_col].unique())
print(test_df[target_col].unique())

['<=50K' '>50K']
['<=50K.' '>50K.']

Remove the trailing period (.) from the test set labels.

test_df[target_col] = test_df[target_col].str.rstrip('.')
print(test_df[target_col].unique())

['<=50K' '>50K']

Convert the Pandas dataframes to ADSDataset to use with ADS APIs.

train = DatasetFactory.open(df).set_target(target_col)
test = DatasetFactory.open(test_df).set_target(target_col)

If the data is not already pre-split into train and test sets, you can split it with the train_test_split() or train_validation_test_split() method. This example of loading the data and splitting it into an 80%/20% train and test set.

ds = DatasetFactory.open("path/data.csv").set_target('target')
train, test = ds.train_test_split(test_size=0.2)

Splitting the data into train, validation, and test returns three data subsets. If you don’t specify the test and validation sizes, the data is split 80%/10%/10%. This example assigns a 70%/15%/15% split:

data_split = ds.train_validation_test_split(
 test_size=0.15,
 validation_size=0.15
)
train, validation, test = data_split
print(data_split) # print out shape of train, validation, test sets in split

Create an instance of OracleAutoMLProvider

The Oracle AutoML solution automatically provides a tuned machine learning pipeline that best models the given a training dataset and prediction task at hand. The dataset can be any supervised prediction
task. For example, classification or regression where the target can be a simple binary or a multi-class value or a real valued column in a table, respectively.

The Oracle AutoML solution is selected using the OracleAutoMLProvider object that delegates model training to the AutoML package.

AutoML consists four main modules:

	Algorithm Selection - Identify the right algorithm for a given dataset, choosing from:

	AdaBoostClassifier

	DecisionTreeClassifier

	ExtraTreesClassifier

	KNeighborsClassifier

	LGBMClassifier

	LinearSVC

	LogisticRegression

	RandomForestClassifier

	SVC

	XGBClassifier

	Adaptive Sampling - Choose the right subset of samples for evaluation while trying to balance classes at the same time.

	Feature Selection - Choose the right set of features that maximize score for the chosen algorithm.

	Hyperparameter Tuning - Find the right model parameters that maximize score for the given dataset.

All these modules are readily combined into a simple AutoML pipeline that automates the entire machine learning process with minimal user input and interaction.

The OracleAutoMLProvider class supports two arguments:

	n_jobs: Specifies the degree of parallelism for Oracle AutoML. -1 (the default) means that AutoML uses all available cores.

	loglevel: The verbosity of output for Oracle AutoML. Can be specified using the Python logging module, see https://docs.python.org/3/library/logging.html#logging-levels.

Create an OracleAutoMLProvider object that uses all available cores and disable any logging.

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)

Train a model

The AutoML API is quite simple to work with. Create an instance of Oracle AutoML (oracle_automl). Then the training data is passed to the fit() function that does the following:

	Preprocesses the training data.

	Identifies the best algorithm.

	Identifies the best set of features.

	Identifies the best set of hyperparameters for this data.

A model is then generated that can be used for prediction tasks. ADS uses the roc_auc scoring metric to evaluate the performance of this model on unseen data (X_test).

oracle_automl = AutoML(train, provider=ml_engine)
automl_model1, baseline = oracle_automl.train()

 AUTOML

 AutoML Training (OracleAutoMLProvider)...

 Training complete (66.81 seconds)

 	Training Dataset size
 	(32561, 14)

 	Validation Dataset size
 	None

 	CV
 	5

 	Target variable
 	income

 	Optimization Metric
 	roc_auc

 	Initial number of Features
 	14

 	Selected number of Features
 	9

 	Selected Features
 	[age, workclass, education, education-num, occupation, relationship, capital-gain, capital-loss, hours-per-week]

 	Selected Algorithm
 	LGBMClassifier

 	End-to-end Elapsed Time (seconds)
 	66.81

 	Selected Hyperparameters
 	{'boosting_type': 'gbdt', 'class_weight': None, 'learning_rate': 0.1, 'max_depth': 8, 'min_child_weight': 0.001, 'n_estimators': 100, 'num_leaves': 31, 'reg_alpha': 0, 'reg_lambda': 0}

 	Mean Validation Score
 	0.923

 	AutoML n_jobs
 	64

 	AutoML version
 	0.3.1

Adult
 :header-rows: 1

	Rank based on Performance

	Algorithm

	#Samples

	#Features

	Mean Validation Score

	Hyperparameters

	CPU Time

	2

	LGBMClassifier_HT

	32561

	9

	0.9230

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: ‘balanced’, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	5.7064

	3

	LGBMClassifier_HT

	32561

	9

	0.9230

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.0012000000000000001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	4.0975

	4

	LGBMClassifier_HT

	32561

	9

	0.9230

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.0011979297617518694, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	3.1736

	5

	LGBMClassifier_HT

	32561

	9

	0.9227

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001, ‘n_estimators’: 127, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	5.9078

	6

	LGBMClassifier_HT

	32561

	9

	0.9227

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	3.9490

	…

	…

	…

	…

	…

	…

	…

	188

	LGBMClassifier_FRanking_FS

	32561

	1

	0.7172

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	1.5153

	189

	LGBMClassifier_AVGRanking_FS

	32561

	1

	0.7081

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	1.5611

	190

	LGBMClassifier_RFRanking_FS

	32561

	2

	0.7010

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	2.9917

	191

	LGBMClassifier_AdaBoostRanking_FS

	32561

	1

	0.5567

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	1.7886

	192

	LGBMClassifier_RFRanking_FS

	32561

	1

	0.5190

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	2.0109

During the Oracle AutoML process, a summary of the optimization process is printed:

	Information about the training data.

	Information about the AutoML Pipeline. For example,the selected features that AutoML found to be most predictive in the training data, the selected algorithm that was the best choice for this data, and the model hyperparameters for the selected algorithm.

	A summary of the different trials that AutoML performs in order to identify the best model.

The Oracle AutoML Pipeline automates much of the data science process, trying out many different machine learning parameters quickly in a parallel fashion. The model provides a print_trials API to output
all the different trials performed by Oracle AutoML. The API has two arguments:

	max_rows: Specifies the total number of trials that are printed. By default, all trials are printed.

	sort_column: Column to sort results by. Must be one of:

	Algorithm

	#Samples

	#Features

	Mean Validation Score

	Hyperparameters

	CPU Time

oracle_automl.print_trials(max_rows=20, sort_column='Mean Validation Score')

:header-rows: 1

	Rank based on Performance

	Algorithm

	#Samples

	#Features

	Mean Validation Score

	Hyperparameters

	CPU Time

	2

	LGBMClassifier_HT

	32561

	9

	0.9230

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: ‘balanced’, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	5.7064

	3

	LGBMClassifier_HT

	32561

	9

	0.9230

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.0012000000000000001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	4.0975

	4

	LGBMClassifier_HT

	32561

	9

	0.9230

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.0011979297617518694, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	3.1736

	5

	LGBMClassifier_HT

	32561

	9

	0.9227

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001, ‘n_estimators’: 127, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	5.9078

	6

	LGBMClassifier_HT

	32561

	9

	0.9227

	{‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

	3.9490

	…

	…

	…

	…

	…

	…

	…

	188

	LGBMClassifier_FRanking_FS

	32561

	1

	0.7172

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	1.5153

	189

	LGBMClassifier_AVGRanking_FS

	32561

	1

	0.7081

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	1.5611

	190

	LGBMClassifier_RFRanking_FS

	32561

	2

	0.7010

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	2.9917

	191

	LGBMClassifier_AdaBoostRanking_FS

	32561

	1

	0.5567

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	1.7886

	192

	LGBMClassifier_RFRanking_FS

	32561

	1

	0.5190

	{‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’: 0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

	2.0109

ADS also provides the ability to visualize the results of each stage of the AutoML pipeline. The following plot shows the scores predicted by algorithm selection for each algorithm. The horizontal line shows the average score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are colored teal. You can see that the LightGBM classifier achieved the highest predicted score (orange bar) and is chosen for subsequent stages of the pipeline.

oracle_automl.visualize_algorithm_selection_trials()

[image: ../../_images/output_30_0.png]
After algorithm selection, adaptive sampling aims to find the smallest dataset sample that can be created without compromising
validation set score for the algorithm chosen (LightGBM).

Note

If you have fewer than 1000 datapoints in your dataset, adaptive sampling is not ran and visualizations are not generated.

oracle_automl.visualize_adaptive_sampling_trials()

[image: ../../_images/output_32_0.png]
After finding a sample subset, the next goal of Oracle AutoML is to find a relevant feature subset that maximizes score for the chosen algorithm. Oracle AutoML feature selection follows an intelligent search strategy. It looks at various possible feature rankings and subsets, and identifies that smallest feature subset that does not compromise on score for the chosen algorithm ExtraTreesClassifier). The orange line shows the optimal number of features chosen by feature selection (9 features - [age, workclass, education, education-num, occupation, relationship, capital-gain, capital-loss, hours-per-week]).

oracle_automl.visualize_feature_selection_trials()

[image: ../../_images/output_34_0.png]
Hyperparameter tuning is the last stage of the Oracle AutoML pipeline It focuses on improving the chosen algorithm’s score on the reduced dataset (given by adaptive sampling and feature selection). ADS uses a novel algorithm to search across many hyperparamter dimensions. Convergence is automatic when optimal hyperparameters are identified. Each trial in the following graph represents a particular hyperparamter combination for the selected model.

oracle_automl.visualize_tuning_trials()

[image: ../../_images/output_36_0.png]

 Profiling

Profiling

Overview

With Dask, you can profile the compute graph and also visualize the profiler output. The Bokeh extension for JupyterLab lets you render those visualization within your notebook. For more details, see Dask Profiling [https://docs.dask.org/en/latest/diagnostics-local.html].

ADS provides you a decorator that leverages the Dask profiler to help you visualize the CPU and memory utilization of supported operations.

How to Profile

Here is an example of how to profile the DatasetFactory.open operation:

from ads.common.analyzer import resource_analyze
from ads.dataset.factory import DatasetFactory

@resource_analyze
def fetch_data():
 ds = DatasetFactory.open("/home/datascience/ads-examples/oracle_data/orcl_attrition.csv", target="Attrition").set_positive_class('Yes')
 return ds

ds = fetch_data()

A graph is rendered on the notebook:

[image: DS CPU and Memory Usage]

 Projects

Projects

Projects is a resource of the Data Science service, and ADS provides an interface to perform operations on the projects.

Listing Projects

List projects by providing a compartment OCID, and then using the list_projects() method. Before listing the projects, you must first create or have instances of the Project Catalog object.

compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
pc.list_projects()

This is an example of the output table:

[image: ../../_images/project_list.png]

Reading a Project Metadata

From the project list, obtain the OCID of a project that you want to retrieve by using get_project().

compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
my_project = pc.get_project(pc.list_projects()[0].id)

Creating a Project

Using the ProjectCatalog object, create a project by calling the create_project() method and specifying the compartment id.

compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
new_project = pc.create_project(display_name='new_project',
 description='this is a test project',
 compartment_id=compartment_id)

Updating a Project

Projects can be updated in a similar way as models. You must call the commit() function, to push the changes to the project catalog.

new_project.description = 'a new description'
new_project.display_name = 'a new name from ads'
new_project.commit()

Deleting a Project

Projects can be deleted by specifying the project id.

compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
pc.delete_project(new_project.id)

 Secrets

Secrets

	Overview

	Autonomous Database

	Oracle Big Data Service

	Oracle Database Connection without a Wallet File

	MySQL

	Auth Token

 Overview

Overview

Services such as OCI Database and Streaming require users to provide credentials. These credentials must be safely accessed at runtime. OCI Vault [https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Concepts/keyoverview.htm] provides a mechanism for safe storage and access of secrets. SecretKeeper uses Vault as a backend to store and retrieve the credentials. The data structure of the credentials varies from service to service. There is a SecretKeeper specific to each data structure.

These classes are provided:

	ADBSecretKeeper - Stores credentials for Autonomous Transaction Processing and Autonomous Data Warehouse.

	AuthTokenSecretKeeper - Stores Auth Token or Access Token string. This could be an Auth Token to use to connect to Streaming, Github, and so on.

Quick Start

Autonomous Database

Saving Credentials:

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

connection_parameters={
 "user_name":"admin",
 "password":"<your_password>",
 "service_name":"service_high",
 "wallet_location":"/home/datascience/Wallet_--------.zip"
}

ocid_vault = "ocid1.vault.oc1..<unique_ID>"
ocid_master_key = "ocid1.key.oc1..<unique_ID>"
ocid_mycompartment = "ocid1.compartment.oc1..<unique_ID>"

adw_keeper = ADBSecretKeeper(vault_id=ocid_vault,
 key_id=ocid_master_key,
 compartment_id=ocid_mycompartment,
 **connection_parameters)

Store the credentials without storing the wallet file
adw_keeper.save("adw_employee_att2",
 "My DB credentials",
 freeform_tags={"schema":"emp"},
 save_wallet=True
)
print(adw_keeper.secret_id)

'ocid1.vaultsecret.oc1..<unique_ID>'

Loading Credentials:

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret("ocid1.vaultsecret.oc1..<unique_ID>") as adw_creds2:
 import pandas as pd
 df2 = pd.DataFrame.ads.read_sql("select JOBFUNCTION, ATTRITION from ATTRITION_DATA", connection_parameters=adw_creds2)
 print(df2.head(2))

	
	JOBFUNCTION

	ATTRITION

	0

	Product Management

	No

	1

	Software Developer

	No

Oracle Database Connection without a Wallet File

Saving Credentials:

import ads
from ads.secrets.oracledb import OracleDBSecretKeeper

vault_id = "ocid1.vault.oc1..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={
 "user_name":"<your user name>",
 "password":"<your password>",
 "service_name":"service_name",
 "host":"<db host>",
 "port":"<db port>",
}

oracledb_keeper = OracleDBSecretKeeper(vault_id=vault_id,
 key_id=key_id,
 **connection_parameters)

oracledb_keeper.save("oracledb_employee", "My DB credentials", freeform_tags={"schema":"emp"})
print(oracledb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret.oc1..<unique_ID>'

Loading Credentials:

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(source=secret_id) as oracledb_creds:
 import pandas as pd
 df2 = pd.DataFrame.ads.read_sql("select JOBFUNCTION, ATTRITION from ATTRITION_DATA", connection_parameters=oracledb_creds)
 print(df2.head(2))

	
	JOBFUNCTION

	ATTRITION

	0

	Product Management

	No

	1

	Software Developer

	No

MySQL

Saving Credentials:

import ads
from ads.secrets.mysqldb import MySQLDBSecretKeeper

vault_id = "ocid1.vault.oc1..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={
 "user_name":"<your user name>",
 "password":"<your password>",
 "host":"<db host>",
 "port":"<db port>",
 "database":"<database>",
}

mysqldb_keeper = MySQLDBSecretKeeper(vault_id=vault_id,
 key_id=key_id,
 **connection_parameters)

mysqldb_keeper.save("mysqldb_employee", "My DB credentials", freeform_tags={"schema":"emp"})
print(mysqldb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret.oc1..<unique_ID>'

Loading Credentials:

import ads
from ads.secrets.mysqldb import MySQLDBSecretKeeper
ads.set_auth('resource_principal') # If using resource principal authentication

with MySQLDBSecretKeeper.load_secret(source=secret_id) as mysqldb_creds:
 import pandas as pd
 df2 = pd.DataFrame.ads.read_sql("select JOBFUNCTION, ATTRITION from ATTRITION_DATA", connection_parameters=mysqldb_creds)
 print(df2.head(2))

	
	JOBFUNCTION

	ATTRITION

	0

	Product Management

	No

	1

	Software Developer

	No

Auth Tokens

Saving Credentials

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

ocid_vault = "ocid1.vault.oc1..<unique_ID>"
ocid_master_key = "ocid1.key.oc1..<unique_ID>"
ocid_mycompartment = "ocid1.compartment.oc1..<unique_ID>"

authtoken2 = AuthTokenSecretKeeper(
 vault_id=ocid_vault,
 key_id=ocid_master_key,
 compartment_id=ocid_mycompartment,
 auth_token="<your_auth_token>"
).save(
 "my_xyz_auth_token2",
 "This is my key for git repo xyz",
 freeform_tags={"gitrepo":"xyz"}
)
print(authtoken2.secret_id)

'ocid1.vaultsecret.oc1..<unique_ID>'

Loading Credentials

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(source="ocid1.vaultsecret.oc1..<unique_ID>",
) as authtoken:
 import os
 print(f"Credentials inside `authtoken` object: {authtoken}")

Credentials inside `authtoken` object: {'auth_token': '<your_auth_token>'}

Big Data Service

Saving Credentials

import ads
import fsspec
import os

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, refresh_ticket, krbcontext

ads.set_auth('resource_principal')

principal = "<your_principal>"
hdfs_host = "<your_hdfs_host>"
hive_host = "<your_hive_host>"
hdfs_port = <your_hdfs_port>
hive_port = <your_hive_port>
vault_id = "ocid1.vault.oc1.iad.*********"
key_id = "ocid1.key.oc1.iad.*********"

secret = BDSSecretKeeper(
 vault_id=vault_id,
 key_id=key_id,
 principal=principal,
 hdfs_host=hdfs_host,
 hive_host=hive_host,
 hdfs_port=hdfs_port,
 hive_port=hive_port,
 keytab_path=keytab_path,
 kerb5_path=kerb5_path
)

saved_secret = secret.save(name="your_bds_config_secret_name",
 description="your bds credentials",
 freeform_tags={"schema":"emp"},
 defined_tags={},
 save_files=True)

Loading Credentials

from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

with BDSSecretKeeper.load_secret(saved_secret.secret_id, keytab_dir="~/path/to/save/keytab_file/") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 hive_cursor = hive.connect(host=cred["hive_host"],
 port=cred["hive_port"],
 auth='KERBEROS',
 kerberos_service_name="hive").cursor()

 Autonomous Database

Autonomous Database

To connect to Autonomous Database you need the following:

	user name

	password

	service name

	wallet file [https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-DED75E69-C303-409D-9128-5E10ADD47A35]

The ADBSecretKeeper class saves the ADB credentials to the OCI Vault service.

Saving Credentials

Prerequisites

	OCID of the vault created in the OCI Console.

	OCID of the master key to use for encrypting the secret content stored inside the vault.

	OCID of the compartment where the vault resides. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

ADBSecretKeeper

ADBSecretKeeper uses following parameter:

	user_name: str. The user name to be stored.

	password: str. The password of the database.

	service_name: str. Set the service name of the database.

	wallet_location: str. Path to the wallet ZIP file.

	vault_id: str. OCID of the vault.

	key_id: str. OCID of the master key used for encrypting the secret.

	compartment_id: str. OCID of the compartment where the vault is located. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

ADBSecretKeeper.save

ADBSecretKeeper.save API serializes and stores the credentials to Vault using the following parameters:

	name (str) – Name of the secret when saved in Vault.

	description (str) – Description of the secret when saved in Vault.

	freeform_tags (dict, optional). Default None. Free form tags to use for saving the secret in the OCI Console.

	defined_tags (dict, optional.). Default None. Save the tags under predefined tags in the OCI Console.

	save_wallet (bool, optional.). Default False. If set to True, then the wallet file is serialized.

When stored without the wallet information, the secret content has following information:

	user_name

	password

	service_name

To store wallet file content, set save_wallet to True. The wallet content is stored by extracting all the
files from the wallet ZIP file, and then each file is stored in the vault as a secret. The list of OCIDs corresponding
to each file along with username, password, and service name is stored in a separate secret.
The secret corresponding to each file content has following information:

	filename

	content of the file

A meta secret is created to save the username, password, service name, and the secret ids of the files within the wallet file. It has following attributes:

	user_name

	password

	wallet_file_name

	wallet_secret_ids

The wallet file is reconstructed when ADBSecretKeeper.load_secret is called using the OCID of the meta secret.

Examples

Saving a Secret Without Saving the Wallet File

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

connection_parameters={
 "user_name":"admin",
 "password":"<your_password>",
 "service_name":"service_high",
 "wallet_location":"/home/datascience/Wallet_--------.zip"
}

ocid_vault = "ocid1.vault.oc1..<unique_ID>"
ocid_master_key = "ocid1.key.oc1..<unique_ID>"
ocid_mycompartment = "ocid1.compartment.oc1..<unique_ID>"

adw_keeper = ADBSecretKeeper(vault_id=ocid_vault,
 key_id=ocid_master_key,
 compartment_id=ocid_mycompartment,
 **connection_parameters)

Store the credentials without storing the wallet file
adw_keeper.save("adw_employee_att2", "My DB credentials", freeform_tags={"schema":"emp"})
print(adw_keeper.secret_id)

'ocid1.vaultsecret.oc1..<unique_ID>'

Saving a Secret with the Wallet File

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

connection_parameters={
 "user_name":"admin",
 "password":"<your_password>",
 "service_name":"service_high",
 "wallet_location":"/home/datascience/Wallet_--------.zip"
}

ocid_vault = "ocid1.vault.oc1..<unique_ID>"
ocid_master_key = "ocid1.key.oc1..<unique_ID>"
ocid_mycompartment = "ocid1.compartment.oc1..<unique_ID>"

adw_keeper = ADBSecretKeeper(vault_id=ocid_vault,
 key_id=ocid_master_key,
 compartment_id=ocid_mycompartment,
 **connection_parameters)

Set `save_wallet`=True to save wallet file

adw_keeper.save("adw_employee_att2",
 "My DB credentials",
 freeform_tags={"schema":"emp"},
 save_wallet=True
)

print(adw_keeper.secret_id)

'ocid1.vaultsecret.oc1..<unique_ID>'

You can save the vault details in a file for later reference or using it within your code using export_vault_details
API calls. The API currently enables you to export the information as a YAML file or a JSON file.

adw_keeper.export_vault_details("my_db_vault_info.json", format="json")

To save as a YAML file:

adw_keeper.export_vault_details("my_db_vault_info.yaml", format="yaml")

Loading Credentials

Prerequisite

	OCID of the secret stored in vault.

ADBSecretKeeper.load_secret

ADBSecretKeeper.load_secret API deserializes and loads the credentials from Vault. You could use this API in one of
the following ways -

Using a with statement:

with ADBSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>') as adwsecret:
 print(adwsecret['user_name'])

Without using a with statement:

adwsecretobj = ADBSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>')
adwsecret = adwsecretobj.to_dict()
print(adwsecret['user_name'])

load_secret takes following parameters -

	source: Either the file that was exported from export_vault_details or the OCID of the secret

	format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

	export_env: Default is False. If set to True, the credentials are exported as environment variable when used with
the with operator.

	export_prefix: The default name for environment variable is user_name, password, service_name, and wallet_location. You
can add a prefix to avoid name collision

	auth: Provide overriding authorization information if the authorization information is different from the ads.set_auth setting.

	wallet_dir: Optional. Directory path where the wallet zip file will be saved after the contents are retrieved from Vault. If wallet content is not available in the provided secret OCID, this attribute is ignored.

	wallet_location: Optional. Path to the local wallet zip file. If vault secret does not have wallet file content, set this variable so that it will be available in the exported credential. If provided, this path takes precedence over the wallet file informat in the secret.

If the wallet file was saved in the vault, then the ZIP file of the same name is created by load_secret. By default the ZIP file is created in the working directory
To update the location, you can set the directory path with wallet_dir.

Examples

Access Credentials with a With Statement

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>"
) as adw_creds2:
 print (adw_creds2["user_name"]) # Prints the user name

print (adw_creds2["user_name"]) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Contextually Export Credentials as an Environment Variable Using a With Statement

To expose credentials as an environment variable, set export_env=True. The following keys are exported:

	Secret attribute

	Environment Variable Name

	user_name

	user_name

	password

	password

	service_name

	service_name

	wallet_location

	wallet_location

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 export_env=True
):
 print(os.environ.get("user_name")) # Prints the user name

print(os.environ.get("user_name")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Avoiding Name Collision with Your Existing Environment Variables

You can avoid name collision by setting a prefix string using export_prefix along with export_env=True. For example, if you set prefix as myprocess,
then the keys are exported as:

	Secret attribute

	Environment Variable Name

	user_name

	myprocess.user_name

	password

	myprocess.password

	service_name

	myprocess.service_name

	wallet_location

	myprocess.wallet_location

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 export_env=True,
 export_prefix="myprocess"
):
 print(os.environ.get("myprocess.user_name")) # Prints the user name

print(os.environ.get("myprocess.user_name")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Setting wallet location when wallet file is not part of the stored vault secret

To specify a local wallet ZIP file, set the path to the ZIP file with wallet_location:

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 wallet_location="path/to/my/local/wallet.zip"
) as adw_creds2:
 print (adw_creds2["wallet_location"]) # Prints `path/to/my/local/wallet.zip`

print (adw_creds2["wallet_location"]) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

 Oracle Big Data Service

Oracle Big Data Service

Available with ADS v2.5.10 and greater

To connect to Oracle Big Data Service(BDS) you need the following:

	principal: The unique identity to which Kerberos can assign tickets. It will be used to generate the kerberos ticket.

	kerb5 config file: krb5.conf file which can be copied from /etc/krb5.conf from the master node of the BDS cluster. It will be used to generate the kerberos ticket.

	keytab file: The principal’s keytab file which can be downloaded from the master node of the BDS cluster. It will be used to generate the kerberos ticket.

	hdfs host: hdfs host name which will be used to connect to the hdfs file system.

	hdfs port: hdfs port which will be used to connect to the hdfs file system.

	hive host: hive host name which will be used to connect to the Hive Server.

	hive port: hive port which will be used to connect to the Hive Server.

The BDSSecretKeeper class saves the BDS credentials to the OCI Vault service.

Saving Credentials

Prerequisites

	OCID of the vault created in the OCI Console.

	OCID of the master key to use for encrypting the secret content stored inside the vault.

	OCID of the compartment where the vault resides. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

BDSSecretKeeper

You can also save the connection parameters as well as the files needed to configure the kerberos
authentication into vault. This will allow you to use repetitively in
different notebook sessions, machines, and Jobs.

BDSSecretKeeper requires the following fields:

	principal: str. The unique identity to which Kerberos can assign tickets.

	hdfs_host: str. The hdfs host name from the bds cluster.

	hive_host: str. The hive host name from the bds cluster.

	hdfs_port: str. The hdfs port from the bds cluster.

	hive_port: str. The hive port from the bds cluster.

	kerb5_path: str. The krb5.conf file path.

	keytab_path: str. The path to the keytab file.

	vault_id: str. OCID of the vault.

	key_id: str. OCID of the master key used for encrypting the secret.

	compartment_id: str. OCID of the compartment where the vault is located. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

BDSSecretKeeper.save

BDSSecretKeeper.save API serializes and stores the credentials to Vault using the following parameters:

	name (str) – Name of the secret when saved in Vault.

	description (str) – Description of the secret when saved in Vault.

	freeform_tags (dict, optional). Default None. Free form tags to use for saving the secret in the OCI Console.

	defined_tags (dict, optional.). Default None. Save the tags under predefined tags in the OCI Console.

	save_files (bool, optional.). Default True. If set to True, then the keytab and kerb5 config files are serialized and saved.

Examples

Saving a Secret With the Keytab and kerb5 config Files

import ads
import fsspec
import os

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, refresh_ticket, krbcontext

ads.set_auth('resource_principal')

principal = "<your_principal>"
hdfs_host = "<your_hdfs_host>"
hive_host = "<your_hive_host>"
hdfs_port = <your_hdfs_port>
hive_port = <your_hive_port>
vault_id = "ocid1.vault.oc1.iad.*********"
key_id = "ocid1.key.oc1.iad.*********"

secret = BDSSecretKeeper(
 vault_id=vault_id,
 key_id=key_id,
 principal=principal,
 hdfs_host=hdfs_host,
 hive_host=hive_host,
 hdfs_port=hdfs_port,
 hive_port=hive_port,
 keytab_path=keytab_path,
 kerb5_path=kerb5_path
)

saved_secret = secret.save(name="your_bds_config_secret_name",
 description="your bds credentials",
 freeform_tags={"schema":"emp"},
 defined_tags={},
 save_files=True)

Saving a Secret Without Saving the Keytab and kerb5 config File

import ads
import fsspec
import os

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, refresh_ticket, krbcontext

ads.set_auth('resource_principal')

principal = "<your_principal>"
hdfs_host = "<your_hdfs_host>"
hive_host = "<your_hive_host>"
hdfs_port = <your_hdfs_port>
hive_port = <your_hive_port>
vault_id = "ocid1.vault.oc1.iad.*********"
key_id = "ocid1.key.oc1.iad.*********"

bds_keeper = BDSSecretKeeper(
 vault_id=vault_id,
 key_id=key_id,
 principal=principal,
 hdfs_host=hdfs_host,
 hive_host=hive_host,
 hdfs_port=hdfs_port,
 hive_port=hive_port,
 keytab_path=keytab_path,
 kerb5_path=kerb5_path
)

saved_secret = bds_keeper.save(name="your_bds_config_secret_name",
 description="your bds credentials",
 freeform_tags={"schema":"emp"},
 defined_tags={},
 save_files=False)

print(saved_secret.secret_id)

'ocid1.vaultsecret.oc1..<unique_ID>'

Loading Credentials

Prerequisite

	OCID of the secret stored in vault.

BDSSecretKeeper.load_secret

BDSSecretKeeper.load_secret API deserializes and loads the credentials from Vault. You could use this API in one of
the following ways -

Using a with statement:

with BDSSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>') as bdssecret:
 print(bdssecret['hdfs_host'])

Without using a with statement:

bdssecretobj = BDSSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>')
bdssecret = bdssecretobj.to_dict()
print(bdssecret['hdfs_host'])

load_secret takes following parameters -

	source: Either the file that was exported from export_vault_details or the OCID of the secret

	format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

	export_env: Default is False. If set to True, the credentials are exported as environment variable when used with
the with operator.

	export_prefix: The default name for environment variable is user_name, password, service_name, and wallet_location. You
can add a prefix to avoid name collision

	auth: Provide overriding authorization information if the authorization information is different from the ads.set_auth setting.

	keytab_dir: Optional. Directory path where the keytab ZIP file is saved after the contents are retrieved from the vault. If the keytab content is not available in the specified secret OCID, then this attribute is ignored.

If the keytab and kerb5 configuration files were saved in the vault, then a keytab and kerb5 configuration file of the same name is created by load_secret. By default, the keytab file is created in the keytab_path specified in the secret.
To update the location, set the directory path with key_dir. However, the kerb5 configuration file is always saved in the “~/.bds_config/krb5.conf” path.

Note that keytab and kerb5 configuration files are saved only when the
content is saved into the vault.

After you load and save the configuration parameters files, you can
call the krbcontext context manager to create a Kerberos ticket.

Examples

Access Credentials Using a With Statement

To specify a local keytab file, set the path to the ZIP file with wallet_location:

from pyhive import hive

with BDSSecretKeeper.load_secret(saved_secret.secret_id, keytab_dir="~/path/to/save/keytab_file/") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 hive_cursor = hive.connect(host=cred["hive_host"],
 port=cred["hive_port"],
 auth='KERBEROS',
 kerberos_service_name="hive").cursor()

Now you can query the data from Hive:

hive_cursor.execute("""
 select *
 from your_db.your_table
 limit 10
""")

import pandas as pd
pd.DataFrame(hive_cursor.fetchall(), columns=[col[0] for col in hive_cursor.description])

Access Credentials Without Using a With Statement

Loading from secret id:

bdssecretobj = BDSSecretKeeper.load_secret(saved_secret.secret_id)
bdssecret = bdssecretobj.to_dict()
print(bdssecret)

Loading from a JSON file:

bdssecretobj = BDSSecretKeeper.load_secret(source="./my_bds_vault_info.json", format="json")
bdssecretobj.to_dict()

Loading from a YAML file:

bdssecretobj = BDSSecretKeeper.load_secret(source="./my_bds_vault_info.yaml", format="yaml")
bdssecretobj.to_dict()

 Oracle Database Connection without a Wallet File

Oracle Database Connection without a Wallet File

To connect to an Oracle Database you need the following:

	user name

	password

	hostname

	service name or sid

	port. Default is 1521

The OracleDBSecretKeeper class saves the Oracle Database credentials to the OCI Vault service.

Saving Credentials

Prerequisites

	OCID of the vault created in the OCI Console.

	OCID of the master key to use for encrypting the secret content stored inside vault.

	OCID of the compartment where the vaut resides. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

OracleDBSecretKeeper

OracleDBSecretKeeper uses following parameter:

	user_name: str. The user name to be stored.

	password: str. The password of the database.

	service_name: (str, optional). The service name of the database.

	sid: (str, optional). The SID of the database if the service name is not available.

	host: str. The hostname of the database.

	port: (str, optional). Default 1521. Port number of the database service.

	dsn: (str, optional). The DSN string if available.

	vault_id: str. OCID of the vault.

	key_id: str. OCID of the master key used for encrypting the secret.

	compartment_id: str. OCID of the compartment where the vault is located. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

OracleDBSecretKeeper.save

OracleDBSecretKeeper.save API serializes and stores the credentials to Vault using the following parameters:

	name (str) – Name of the secret when saved in the vault.

	description (str) – Description of the secret when saved in the vault.

	freeform_tags (dict, optional) – Freeform tags to use when saving the secret in the OCI Console.

	defined_tags (dict, optional.) – Save the tags under predefined tags in the OCI Console.

The secret content has following information -

	user_name

	password

	host

	port

	service_name

	sid

	dsn

Examples

Saving Database credentials

import ads
from ads.secrets.oracledb import OracleDBSecretKeeper

vault_id = "ocid1.vault.oc1..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={
 "user_name":"<your user name>",
 "password":"<your password>",
 "service_name":"service_name",
 "host":"<db host>",
 "port":"<db port>",
}

oracledb_keeper = OracleDBSecretKeeper(vault_id=vault_id,
 key_id=key_id,
 **connection_parameters)

oracledb_keeper.save("oracledb_employee", "My DB credentials", freeform_tags={"schema":"emp"})
print(oracledb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret.oc1..<unique_ID>'

You can save the vault details in a file for later reference or using it within your code using export_vault_details
API calls. The API currently enables you to export the information as a YAML file or a JSON file.

oracledb_keeper.export_vault_details("my_db_vault_info.json", format="json")

To save as a YAML file:

oracledb_keeper.export_vault_details("my_db_vault_info.yaml", format="yaml")

Loading Credentials

Prerequisite

	OCID of the secret stored in vault.

OracleDBSecretKeeper.load_secret

OracleDBSecretKeeper.load_secret API deserializes and loads the credentials from the vault. You could use this API in one of
the following ways -

Using a with statement:

with OracleDBSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>') as oracledb_secret:
 print(oracledb_secret['user_name']

Without using a with statement:

oracledb_secretobj = OracleDBSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>')
oracledb_secret = oracledb_secretobj.to_dict()
print(oracledb_secret['user_name'])

load_secret takes following parameters -

	source: Either the file that was exported from export_vault_details or the OCID of the secret

	format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

	export_env: Default is False. If set to True, the credentials are exported as environment variable when used with
the with operator.

	export_prefix: The default name for environment variable is user_name, password, service_name, and wallet_location. You
can add a prefix to avoid name collision

	auth: Provide overriding authorization information if the authorization information is different from the ads.set_auth setting.

Examples

Access Credentials with a With Statement

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>"
) as oracledb_creds2:
 print (oracledb_creds2["user_name"]) # Prints the user name

print (oracledb_creds2["user_name"]) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Contextually Export Credentials as an Environment Variable Using a With Statement

To expose credentials as an environment variable, set export_env=True. The following keys are exported:

	Secret attribute

	Environment Variable Name

	user_name

	user_name

	password

	password

	host

	host

	port

	port

	service user_name

	service_name

	sid

	sid

	dsn

	dsn

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 export_env=True
):
 print(os.environ.get("user_name")) # Prints the user name

print(os.environ.get("user_name")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Avoiding Name Collision with Your Existing Environment Variables

You can avoid name collision by setting a prefix string using export_prefix along with export_env=True. For example, if you set prefix as myprocess,
then the keys are exported as:

	Secret attribute

	Environment Variable Name

	user_name

	myprocess.user_name

	password

	myprocess.password

	host

	myprocess.host

	port

	myprocess.port

	service user_name

	myprocess.service_name

	sid

	myprocess.sid

	dsn

	myprocess.dsn

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 export_env=True,
 export_prefix="myprocess"
):
 print(os.environ.get("myprocess.user_name")) # Prints the user name

print(os.environ.get("myprocess.user_name")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

 MySQL

MySQL

To connect to an Oracle Database, you need the following:

	user name

	password

	hostname

	port, the default is 3306

The MySQLDBSecretKeeper class saves the Oracle Database credentials to the OCI Vault service.

Saving Credentials

Prerequisites

	OCID of the vault created in the OCI Console.

	OCID of the master key to use for encrypting the secret content stored inside the vault.

	OCID of the compartment where the vault resides. This defaults to the compartment of the notebook session when
used in a Data Science notebook session.

MySQLDBSecretKeeper

You can use the following parameters with MySQLDBSecretKeeper:

	user_name: str. The user name to be stored.

	password: str. The password of the database.

	host: str. The hostname of the database.

	port: (str, optional). Default 3306. Port number of the database service.

	database: (str, optional). The database name if available.

	vault_id: str. OCID of the vault.

	key_id: str. OCID of the master key used for encrypting the secret.

	compartment_id: str. OCID of the compartment where the vault is located. Defaults to the compartment of the notebook session when
used in a Data Science notebook session.

MySQLDBSecretKeeper.save

MySQLDBSecretKeeper.save API serializes and stores the credentials to the vault using the following parameters:

	name (str) – Name of the secret when saved in the vault.

	description (str) – Description of the secret when saved in the vault.

	freeform_tags (dict, optional) – Freeform tags to be used for saving the secret in the OCI Console.

	defined_tags (dict, optional.) – Save the tags under predefined tags in the OCI Console.

The secret content has the following options:

	user_name

	password

	host

	port

	database

Examples

Saving DB credentials

import ads
from ads.secrets.mysqldb import MySQLDBSecretKeeper

vault_id = "ocid1.vault.oc1..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={
 "user_name":"<your user name>",
 "password":"<your password>",
 "service_name":"service_name",
 "host":"<db host>",
 "port":"<db port>",
}

mysqldb_keeper = MySQLDBSecretKeeper(vault_id=vault_id,
 key_id=key_id,
 **connection_parameters)

mysqldb_keeper.save("mysqldb_employee", "My DB credentials", freeform_tags={"schema":"emp"})
print(mysqldb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret.oc1..<unique_ID>'

You can save the vault details in a file for later reference, or use it in your code using export_vault_details
API calls. The API currently enables you to export the information as a YAML file or a JSON file.

mysqldb_keeper.export_vault_details("my_db_vault_info.json", format="json")

To save as a YAML file:

mysqldb_keeper.export_vault_details("my_db_vault_info.yaml", format="yaml")

Loading Credentials

Prerequisite

	OCID of the secret stored in the Vault service.

MySQLDBSecretKeeper.load_secret

MySQLDBSecretKeeper.load_secret API deserializes and loads the credentials from the vault. You could use this API in one of
the following ways:

Using a with statement:

with MySQLDBSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>') as mysqldb_secret:
 print(mysqldb_secret['user_name']

Without using a with statement:

mysqldb_secretobj = MySQLDBSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>')
mysqldb_secret = mysqldb_secretobj.to_dict()
print(mysqldb_secret['user_name'])

load_secret takes following parameters:

	source: Either the file that was exported from export_vault_details, or the OCID of the secret.

	format: (Optional) If source is a file, then this value must be json or yaml depending on the file format.

	export_env: The default is False. If set to True, the credentials are exported as environment variabled when used with
the with operator.

	export_prefix: The default name for environment variable is user_name, password, service_name. and wallet_location. You
can add a prefix to avoid name collision.

	auth: Provide overriding auth information if the auth information is different from the ads.set_auth setting.

Examples

Access Credentials with a With Statement

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.mysqldb import MySQLDBSecretKeeper

with MySQLDBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>"
) as mysqldb_creds2:
 print (mysqldb_creds2["user_name"]) # Prints the user name

print (mysqldb_creds2["user_name"]) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Contextually Export Credentials as an Environment Variable Using a With Statement

To expose credentials as an environment variable, set export_env=True. The following keys are exported:

	Secret attribute

	Environment Variable Name

	user_name

	user_name

	password

	password

	host

	host

	port

	port

	database

	database

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.mysqldb import MySQLDBSecretKeeper

with MySQLDBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 export_env=True
):
 print(os.environ.get("user_name")) # Prints the user name

print(os.environ.get("user_name")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Avoiding Name Collision with Your Existing Environment Variables

You can avoid name collision by setting a prefix string using export_prefix along with export_env=True. For example, if you set prefix as myprocess,
then the keys are exported as:

	Secret attribute

	Environment Variable Name

	user_name

	myprocess.user_name

	password

	myprocess.password

	host

	myprocess.host

	port

	myprocess.port

	database

	myprocess.database

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.mysqldb import MySQLDBSecretKeeper

with MySQLDBSecretKeeper.load_secret(
 "ocid1.vaultsecret.oc1..<unique_ID>",
 export_env=True,
 export_prefix="myprocess"
):
 print(os.environ.get("myprocess.user_name")) # Prints the user name

print(os.environ.get("myprocess.user_name")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

 Auth Token

Auth Token

AuthTokenSecretKeeper helps you to save the Auth Token or Access Token string to the OCI Vault service.

Saving Credentials

Prerequisite

	OCID of the Vault created on OCI console

	OCID of the master key that will be used for encrypting the secret content stored inside Vault

	OCID of the compartment where the Vault resides. This will be defaulted to the compartment of the Notebook session, if
used within a OCI Data Science notebook session.

AuthTokenSecretKeeper

AuthTokenSecretKeeper takes following constructor parameter -

	auth_token: str. Provide the Auth Token or Access Token string to be stored

	vault_id: str. ocid of the vault

	key_id: str. ocid of the master key used for encrypting the secret

	compartment_id: (str, optional). Default is None. ocid of the compartment where the vault is located. This will be defaulted to the compartment of the Notebook session, if
used within a OCI Data Science notebook session.

AuthTokenSecretKeeper.save

AuthTokenSecretKeeper.save API serializes and stores the credentials to Vault. It takes following parameters -

	name (str) – Name of the secret when saved in the vault.

	description (str) – Description of the secret when saved in the vault.

	freeform_tags (dict, optional) – Freeform tags to use when saving the secret in the OCI Console.

	defined_tags (dict, optional.) – Save the tags under predefined tags in the OCI Console.

The secret content has following information -

	auth_token

Examples

Saving Auth Token string

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

ocid_vault = "ocid1.vault.oc1...<unique_ID>"
ocid_master_key = "ocid1.key.oc1..<unique_ID>"
ocid_mycompartment = "ocid1.compartment.oc1..<unique_ID>"

authtoken2 = AuthTokenSecretKeeper(
 vault_id=ocid_vault,
 key_id=ocid_master_key,
 compartment_id=ocid_mycompartment,
 auth_token="<your_auth_token>"
).save(
 "my_xyz_auth_token2",
 "This is my key for git repo xyz",
 freeform_tags={"gitrepo":"xyz"}
)
print(authtoken2.secret_id)

You can save the vault details in a file for later reference or using it within your code using export_vault_details
API. The API currently let us export the information as a yaml file or a json file.

authtoken2.export_vault_details("my_db_vault_info.json", format="json")

To save as a yaml file

authtoken2.export_vault_details("my_db_vault_info.yaml", format="yaml")

Loading Credentials

Prerequisite

	OCID of the secret stored in OCI Vault.

AuthTokenSecretKeeper.load_secret

AuthTokenSecretKeeper.load_secret API deserializes and loads the credentials from Vault. You could use this API in one of
the following ways -

Option 1: Using with statement

with AuthTokenSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>') as authtoken:
 print(authtoken['user_name']

Option 2: Without using with statement.

authtoken = AuthTokenSecretKeeper.load_secret('ocid1.vaultsecret.oc1..<unique_ID>')
authtokendict = authtoken.to_dict()
print(authtokendict['user_name'])

load_secret takes following parameters -

	source: Either the file that was exported from export_vault_details or the OCID of the secret

	format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

	export_env: Default is False. If set to True, the credentials are exported as environment variable when used with
the with operator.

	export_prefix: The default name for environment variable is user_name, password, service_name, and wallet_location. You
can add a prefix to avoid name collision

	auth: Provide overriding authorization information if the authorization information is different from the ads.set_auth setting.

Examples

Access credentials within With Statement

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(source="ocid1.vaultsecret.oc1...<unique_ID",
) as authtoken:
 import os
 print(f"Credentials inside `authtoken` object: {authtoken}")

Credentials inside `authtoken` object: {'auth_token': '<your_auth_token>'}

Contextually export credentials as environment variable using With statement

To expose credentials through environment variable, set export_env=True. The following keys are exported -

	Secret attribute

	Environment Variable Name

	auth_token

	auth_token

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper
import os

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(
 source="ocid1.vaultsecret.oc1...<unique_ID>",
 export_env=True
):
 print(os.environ.get("auth_token")) # Prints the auth token

print(os.environ.get("auth_token")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

Avoding name collision with your existing environment variables

Name collision can be avoided by providing a prefix string through export_prefix along with export_env=True. Example, if you set prefix as kafka
The keys are exported as -

	Secret attribute

	Environment Variable Name

	auth_token

	kafka.auth_token

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper
import os

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(
 source="ocid1.vaultsecret.oc1...<unique_ID>",
 export_env=True,
 export_prefix="kafka"
):
 print(os.environ.get("kafka.auth_token")) # Prints the auth token

print(os.environ.get("kafka.auth_token")) # Prints nothing. The credentials are cleared from the dictionary outside the ``with`` block

 String

String

Data scientists need to be able to quickly and easily manipulate
strings. The Accelerated Data Science (ADS) SDK provides an enhanced
string class, called ADSString. It adds functionality like regular
expression (RegEx) matching and natural language processing (NLP)
parsing. The class can be expanded by registering custom plugins so that
you can process a string in a way that it fits your specific needs. For
example, you can register the OCI Language service plugin to bind
functionalities from the Language service to ADSString.

import ads
import spacy

from ads.feature_engineering.adsstring.oci_language import OCILanguage
from ads.feature_engineering.adsstring.string import ADSString

Overview

Text analytics uses a set of powerful tools to understand the content of
unstructured data, such as text. It’s becoming an increasingly more
important tool in feature engineering as product reviews, media content,
research papers, and more are being mined for their content. In many
data science areas, such as marketing analytics, the use of unstructured
text is becoming as popular as structured data. This is largely due to
the relatively low cost of collection of the data. However, the downside
is the complexity of working with the data. To work with unstructured
that you need to clean, summarize, and create features from it before
you create a model. The ADSString class provides tools that allow
you to quickly do this work. More importantly, you can expand the tool
to meet your specific needs.

Regular Expression Matching

Text documents are often parsed looking for specific patterns to extract
information like emails, dates, times, web links, and so on. This
pattern matching is often done using RegEx, which is hard to write,
modify, and understand. Custom written RegEx often misses the edge
cases. ADSString provides a number of common RegEx patterns so
that your work is simplified. You can use the following patterns:

	credit_card: Credit card number.

	dates: Dates in a variety of standard formats.

	email: Email address.

	ip: IP addresses, versions IPV4 and IPV6.

	link: Text that appears to be a link to a website.

	phone_number_US: USA phone numbers including those with
extensions.

	price: Text that appears to be a price.

	ssn: USA social security number.

	street_address: Street address.

	times: Text that appears to be a time and less than 24 hours.

	zip_code: USA zip code.

The preceding ADSString properties return an array with each pattern
that in matches. The following examples demonstrate how to extract email
addresses, dates ,and links from the text. Note that the
text is extracted as is. For example, the dates aren’t converted to a
standard format. The returned value is the text as it is represented in
the input text. Use the datetime.strptime() method to convert the
date to a date time stamp.

s = ADSString("Get in touch with my associates john.smith@example.com and jane.johnson@example.com to schedule")
s.email

['john.smith@example.com', 'jane.johnson@example.com']

s = ADSString("She is born on Jan. 19th, 2014 and died 2021-09-10")
s.date

['Jan. 19th, 2014', '2021-09-10']

s = ADSString("Follow the link www.oracle.com to Oracle's homepage.")
s.link

['www.oracle.com']

NLP Parsing

ADSString also supports NLP parsing and is backed by
Natural Language Toolkit (NLTK) [https://www.nltk.org/] or spaCy [https://spacy.io/].
Unless otherwise specified, NLTK is used by default. You can extract
properties, such as nouns, adjectives, word counts, parts of speech
tags, and so on from text with NLP.

The ADSString class can have one backend enabled at a time. What
properties are available depends on the backend, as do the results of
calling the property. The following examples provide an overview of the
available parsers, and how to use them. Generally, the parser supports
the adjective, adverb, bigram, noun, pos,
sentence, trigram, verb, word, and word_count base
properties. Parsers can support additional parsers.

Natural Language Toolkit Backend

NLTK is a powerful platform for processing human language data. It
supports all the base properties and in addition stem and
token. The stem property returns a list of all the stemmed
tokens. It reduces a token to its word stem that affixes to suffixes
and prefixes, or to the roots of words that is the lemma. The
token property is similar to the word property, except it
returns non-alphanumeric tokens and doesn’t force tokens to be
lowercase.

The following example use a sample of text about Larry Ellison to
demonstrate the use of the NLTK properties.

test_text = """
 Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
 investor, and philanthropist who is a co-founder, the executive chairman and
 chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
 listed by Forbes magazine as the fourth-wealthiest person in the United States
 and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
 increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
 largest island in the United States, Lanai in the Hawaiian Islands with a
 population of just over 3000.
 """.strip()
ADSString.nlp_backend("nltk")
s = ADSString(test_text)

s.noun[1:5]

['Joseph', 'Ellison', 'August', 'business']

s.adjective

['American', 'chief', 'fourth-wealthiest', 'largest', 'Hawaiian']

s.word[1:5]

['joseph', 'ellison', 'born', 'august']

By taking the difference between token and word, the token set
contains non-alphanumeric tokes, and also the uppercase version of words.

list(set(s.token) - set(s.word))[1:5]

['Oracle', '1944', '41st', 'fourth-wealthiest']

The stem property takes the list of words and stems them. It
produces morphological variations of a word’s root form. The following
example stems some words, and shows some of the stemmed words that were
changed.

list(set(s.stem) - set(s.word))[1:5]

['fortun', 'technolog', 'increas', 'popul']

Part of Speech Tags

Part of speech (POS) is a category in which a word is assigned based
on its syntactic function. POS depends on the language. For English,
the most common POS are adjective, adverb, conjunction, determiner,
interjection, noun, preposition, pronoun, and verb. However, each POS
system has its own set of POS tags that vary based on their respective
training set. The NLTK parsers produce the following POS tags:

	CC: coordinating conjunction

	CD: cardinal digit

	DT: determiner

	
	EX: existential there; like “there is” ; think of it like “there
	exists”

	FW: foreign word

	IN: preposition/subordinating conjunction

	JJ: adjective; “big”

	JJR: adjective, comparative; “bigger”

	JJS: adjective, superlative; “biggest”

	LS: list marker 1)

	MD: modal could, will

	NN: noun, singular; “desk”

	NNS: noun plural; “desks”

	NNP: proper noun, singular; “Harrison”

	NNPS: proper noun, plural; “Americans”

	PDT: predeterminer; “all the kids”

	POS: possessive ending; “parent’s”

	PRP: personal pronoun; I, he, she

	PRP$: possessive pronoun; my, his, hers

	RB: adverb; very, silently

	RBR: adverb; comparative better

	RBS: adverb; superlative best

	RP: particle; give up

	TO: to go; “to” the store.

	UH: interjection; errrrrrrrm

	VB: verb, base form; take

	VBD: verb, past tense; took

	VBG: verb, gerund/present participle; taking

	VBN: verb, past participle; taken

	VBP: verb, singular present; non-3d take

	VBZ: verb, 3rd person singular present; takes

	WDT: wh-determiner; which

	WP: wh-pronoun; who, what

	WP$: possessive wh-pronoun; whose

	WRB: wh-adverb; where, when

s.pos[1:5]

[image: Listing of Part-of-Speech tags]

spaCy

spaCy is in an advanced NLP toolkit. It helps you understand what the
words mean in context, and who is doing what to whom. It helps you
determine what companies and products are mentioned in a document. The
spaCy backend is used to parses the adjective, adverb,
bigram, noun, pos, sentence, trigram, verb,
word, and word_count base properties. It also supports the
following additional properties:

	entity: All entities in the text.

	entity_artwork: The titles of books, songs, and so on.

	
	entity_location: Locations, facilities, and geopolitical entities,
	such as countries, cities, and states.

	entity_organization: Companies, agencies, and institutions.

	entity_person: Fictional and real people.

	entity_product: Product names and so on.

	lemmas: A rule-based estimation of the roots of a word.

	
	tokens: The base tokens of the tokenization process. This is
	similar to word, but it includes non-alphanumeric
values and the word case is preserved.

If the spacy module is installed ,you can change the
NLP backend using the ADSString.nlp_backend('spacy') command.

ADSString.nlp_backend("spacy")
s = ADSString(test_text)

s.noun[1:5]

['magnate', 'investor', 'philanthropist', 'co']

s.adjective

['American', 'executive', 'chief', 'fourth', 'wealthiest', 'largest']

s.word[1:5]

['Joseph', 'Ellison', 'born', 'August']

You can identify all the locations that are mentioned in the text.

s.entity_location

['the United States', 'the Hawaiian Islands']

Also, the organizations that were mentioned.

s.entity_organization

['CTO', 'Oracle Corporation', 'Forbes', 'Lanai']

Part of Speech Tags

The POS tagger in spaCy uses a smaller number of categories. For
example, spaCy has the ADJ POS for all adjectives, while NLTK has
JJ to mean an adjective. JJR refers to a comparative adjective,
and JJS refers to a superlative adjective. For fine grain analysis
of different parts of speech, NLTK is the preferred backend. However,
spaCy’s reduced category set tends to produce fewer errors,at the cost
of not being as specific.

The spaCy parsers produce the following POS tags:

	ADJ: adjective; big, old, green, incomprehensible, first

	ADP: adposition; in, to, during

	ADV: adverb; very, tomorrow, down, where, there

	AUX: auxiliary; is, has (done), will (do), should (do)

	CONJ: conjunction; and, or, but

	CCONJ: coordinating conjunction; and, or, but

	DET: determiner; a, an, the

	INTJ: interjection; psst, ouch, bravo, hello

	NOUN: noun; girl, cat, tree, air, beauty

	NUM: numeral; 1, 2017, one, seventy-seven, IV, MMXIV

	PART: particle; ’s, not,

	PRON: pronoun; I, you, he, she, myself, themselves, somebody

	PROPN: proper noun; Mary, John, London, NATO, HBO

	PUNCT: punctuation; ., (,), ?

	SCONJ: subordinating conjunction; if, while, that

	SYM: symbol; $, %, §, ©, +, −, ×, ÷, =, :), 😝

	VERB: verb; run, runs, running, eat, ate, eating

	X: other; sfpksdpsxmsa

	SPACE: space

s.pos[1:5]

[image: Listing of Part-of-Speech tags]

Plugin

One of the most powerful features of ADSString is that you can
expand and customize it. The .plugin_register() method allows you to
add properties to the ADSString class. These plugins can be provided
by third-party providers or developed by you. This section
demonstrates how to connect the to the Language service, and how to
create a custom plugin.

OCI Language Services

The Language
service [https://docs.oracle.com/iaas/language/using/overview.htm]
provides pretrained models that provide sophisticated text analysis at
scale.

The Language service contains these pretrained language processing
capabilities:

	Aspect-Based Sentiment Analysis: Identifies aspects from the
given text and classifies each into positive, negative, or neutral
polarity.

	Key Phrase Extraction: Extracts an important set of phrases from
a block of text.

	Language Detection: Detects languages based on the given text,
and includes a confidence score.

	Named Entity Recognition: Identifies common entities, people,
places, locations, email, and so on.

	Text Classification: Identifies the document category and
subcategory that the text belongs to.

Those are accessible in ADS using the OCILanguage plugin.

ADSString.plugin_register(OCILanguage)

Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis can be used to gauge the mood or the
tone of the text.

The aspect-based sentiment analysis (ABSA) supports fine-grained
sentiment analysis by extracting the individual aspects in the input
document. For example, a restaurant review “The driver was really
friendly, but the taxi was falling apart.” contains positive sentiment
toward the taxi driver aspect. Also, it has a strong negative sentiment
toward the service mechanical aspect of the taxi. Classifying the
overall sentiment as negative would neglect the fact that the taxi
driver was nice.

ABSA classifies each of the aspects into one of the three polarity
classes, positive, negative, mixed, and neutral. With the predicted
sentiment for each aspect. It also provides a confidence score for each
of the classes and their corresponding offsets in the input. The range
of the confidence score for each class is between 0 – 1, and the
cumulative scores of all the three classes sum to 1.

In the next example, the sample sentence is analyzed. The two aspects,
taxi cab and driver, have their sentiments determined. It defines the
location of the aspect by giving its offset position in the text, and
the length of the aspect in characters. It also gives the text that
defines the aspect along with the sentiment scores and which sentiment
is dominant.

t = ADSString("The driver was really friendly, but the taxi was falling apart.")
t.absa

[image: Results of Aspect-Based Sentiment analysis]

Named Entity Recognition

Named entity recognition (NER) detects named entities in text. The NER
model uses NLP, which uses machine learning to find predefined named
entities. This model also provides a confidence score for each entity and
is a value from 0 - 1. The returned data is the text of the entity, its
position in the document, and its length. It also identifies the type of
entity, a probability score that it is an entity of the stated type.

The following are the supported entity types:

	DATE: Absolute or relative dates, periods, and date range.

	EMAIL: Email address.

	EVENT: Named hurricanes, sports events, and so on.

	
	FAC: Facilities; Buildings, airports, highways, bridges, and so
	on.

	GPE: Geopolitical entity; Countries, cities, and states.

	IPADDRESS: IP address according to IPv4 and IPv6 standards.

	LANGUAGE: Any named language.

	
	LOCATION: Non-GPE locations, mountain ranges, and bodies of
	water.

	MONEY: Monetary values, including the unit.

	NORP: Nationalities, religious, and political groups.

	ORG: Organization; Companies, agencies, institutions, and so on.

	PERCENT: Percentage.

	PERSON: People, including fictional characters.

	PHONE_NUMBER: Supported phone numbers.

	(“GB”) - United Kingdom

	(“AU”) - Australia

	(“NZ”) - New Zealand

	(“SG”) - Singapore

	(“IN”) - India

	(“US”) - United States

	PRODUCT: Vehicles, tools, foods, and so on (not services).

	QUANTITY: Measurements, as weight or distance.

	TIME: Anything less than 24 hours (time, duration, and so on).

	URL: URL

The following example lists the named entities in the “Lawrence Joseph
Ellison…” test_text. The output gives the named entity, its
location, and offset position in the text. It also gives a probability and
score that this text is actually a named entity along with the type.

s = ADSString(test_text)
s.ner

[image: Results of Named entity recognition]

Key Phrase Extraction

Key phrase (KP) extraction is the process of extracting the words with
the most relevance, and expressions from the input text. It helps
summarize the content and recognizes the main topics. The KP extraction
finds insights related to the main points of the text. It understands
the unstructured input text, and returns keywords and KPs. The KPs
consist of subjects and objects that are being talked about in the
document. Any modifiers, like adjectives associated with these subjects
and objects, are also included in the output. Confidence scores for each
key phrase that signify how confident the algorithm is that the
identified phrase is a KP. Confidence scores are a value from 0 - 1.

The following example determines the key phrases and the importance of
these phrases.

s.key_phrase

[image: Results of Key phrase (KP) extraction]

Language Detection

The language detection tool identifies which natural language the input
text is in. If the document contains more than one language, the results
may not be what you expect. Language detection can help make customer
support interactions more personable and quicker. Customer service
chatbots can interact with customers based on the language of their
input text and respond accordingly. If a customer needs help with a
product, the chatbot server can field the corresponding language product
manual, or transfer it to a call center for the specific language.

The following is a list of some of the supported languages:

	Afrikaans

	Albanian

	Arabic

	Armenian

	Azerbaijani

	Basque

	Belarusian

	Bengali

	Bosnian

	Bulgarian

	Burmese

	Cantonese

	Catalan

	Cebuano

	Chinese

	Croatian

	Czech

	Danish

	Dutch

	Eastern Punjabi

	Egyptian Arabic

	English

	Esperanto

	Estonian

	Finnish

	French

	Georgian

	German

	Greek

	Hebrew

	Hindi

	Hungarian

	Icelandic

	Indonesian

	Irish

	Italian

	Japanese

	Javanese

	Kannada

	Kazakh

	Korean

	Kurdish (Sorani)

	Latin

	Latvian

	Lithuanian

	Macedonian

	Malay

	Malayalam

	Marathi

	Minangkabau

	Nepali

	Norwegian (Bokmal)

	Norwegian (Nynorsk)

	Persian

	Polish

	Portuguese

	Romanian

	Russian

	Serbian

	Serbo-Croatian

	Slovak

	Slovene

	Spanish

	Swahili

	Swedish

	Tagalog

	Tamil

	Telugu

	Thai

	Turkish

	Ukrainian

	Urdu

	Uzbek

	Vietnamese

	Welsh

The next example determines the language of the text, the ISO
639-1 [https://en.wikipedia.org/wiki/ISO_639-1] language code, and a
probability score.

s.language_dominant

[image: Results of language detection]

Text Classification

Text classification analyses the text and identifies categories for the
content with a confidence score. Text classification uses NLP techniques
to find insights from textual data. It returns a category from a set of
predefined categories. This text classification uses NLP and relies on
the main objective lies on zero-shot learning. It classifies text with
no or minimal data to train. The content of a collection of documents is
analyzed to determine common themes.

The next example classifies the text and gives a probability score that the
text is in that category.

s.text_classification

[image: Results of text classification analysis]

Custom Plugin

You can bind additional properties to ADSString using custom
plugins. This allows you to create custom text processing extensions. A
plugin has access to the self.string property in ADSString
class. You can define functions that perform a transformation on the
text in the object. All functions defined in a plugin are bound to
ADSString and accessible across all objects of that class.

Assume that your text is
"I purchased the gift on this card 4532640527811543 and the dinner on 340984902710890"
and you want to know what credit cards were used. The .credit_card
property returns the entire credit card number. However, for privacy
reasons you don’t what the entire credit card number, but the last four
digits.

To solve this problem, you can create the class CreditCardLast4 and
use the self.string property in ADSString to access the text
associated with the object. It then calls the .credit_card method to
get the credit card numbers. Then it parses this to return the last four
characters in each credit card.

The first step is to define the class that you want to bind to
ADSString. Use the @property decorator and define a property
function. This function only takes self. The self.string is
accessible with the text that is defined for a given object. The
property returns a list.

class CreditCardLast4:
 @property
 def credit_card_last_4(self):
 return [x[len(x)-4:len(x)] for x in ADSString(self.string).credit_card]

After the class is defined, it must be registered with ADSString
using the .register_plugin() method.

ADSString.plugin_register(CreditCardLast4)

Take the text and make it an ADSString object, and call the
.credit_card_last_4 property to obtain the last four digits of the
credit cards that were used.

creditcard_numbers = "I purchased the gift on this card 4532640527811543 and the dinner on 340984902710890"
s = ADSString(creditcard_numbers)
s.credit_card_last_4

['1543', '0890']

ADSString is Still a String

While ADSString expands your feature engineering capabilities, it
can still be treated as a str object. Any standard operation on
str is preserved in ADSString. For instance, you can convert it
to lowercase:

hello_world = "HELLO WORLD"
s = ADSString(hello_world)
s.lower()

'hello world'

You could split a text string.

s.split()

['HELLO', 'WORLD']

You can use all the str methods, such as the .replace() method,
to replace text.

s.replace("L", "N")

'HENNO WORND'

You can perform a number of str manipulation operations, such as
.lower() and .upper() to get an ADSString object back.

isinstance(s.lower().upper(), ADSString)

True

While a new ADSString object is created with str manipulation
operations, the equality operation holds.

s.lower().upper() == s

True

The equality operation even holds between ADSString objects (s)
and str objects (hello_world).

s == hello_world

True

 Text Extraction

Text Extraction

The Accelerated Data Science (ADS) SDK provides a text extraction
module. This module allows you to convert files such as PDF, and
Microsoft Word files into plain text. The data is stored in Pandas
dataframes and therefore it can easily be manipulated and saved. The text
extraction module allows you to read files of various file formats, and convert them
into different formats that can be used for text manipulation. The
most common DataLoader commands are desmonstrated, and some
advanced features, such as defining custom backend and file processor.

First, import the needed libraries:

import ads
import fsspec
import oci
import os
import pandas as pd
import shutil
import time
import tempfile

from ads.text_dataset.backends import Base
from ads.text_dataset.dataset import TextDatasetFactory as textfactory
from ads.text_dataset.extractor import FileProcessor, FileProcessorFactory
from ads.text_dataset.options import Options
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split

ads.set_debug_mode()
ads.set_auth("resource_principal")

Introduction

Text extraction is the process of extracting text from one document and
converting it into another form, typically plain text. For example, you
can extract the body of text from a PDF document that has figures,
tables, images, and text. The process can also be used to extract metadata
about the document. Generally, text extraction takes a corpus of documents
and returns the extracted text in a structured format. In the ADS text
extraction module, that format is a Pandas dataframe.

The Pandas dataframe has a record in each row. That record can be an entire
document, a sentence, a line of text, or some other unit of text. In the
examples, you explore using a row to indicate a line of text and an
entire document.
.

The ADS text extraction module supports:

	Input formats: text, pdf and docx or doc.

	Output formats: Use pandas for Pandas dataframe, or cudf for
a cuDF dataframe.

	Backends: Apache Tika [https://tika.apache.org/] (default) and
pdfplumber [https://github.com/jsvine/pdfplumber] (for PDF).

	Source location: local block volume, and in cloud storage such as the
Oracle Cloud Infrastructure (OCI) Object Storage.

	Options to extract metadata.

You can manipulate files through the DataLoader object. Some of the
most common commands are:

	.read_line(): Read files line-by-line. Each line corresponds to a
record in the corpus.

	.read_text(): Read files where each file corresponds to a record
in the corpus.

	.convert_to_text(): Convert document to text and then save them
as plain text files.

	.metadata_all() and .metadata_schema(): Extract metadata from
each file.

Configuring the Input Data Source

The OCI Data Science service has a corpus of text documents that are used
in the examples. This corpus is stored in a publically accessible OCI Object
Storage bucket. The following variables define the Object Storage namespace
and the bucket name. You can update these variables to point at your Object
Storage bucket, but you might also have to change some of the code in the
examples so that the keys are correct.

namespace = 'bigdatadatasciencelarge'
bucket = 'hosted-ds-datasets'

Load a Corpus

The TextDatasetFactory, which is aliased to textfactory in this
notebook, provides access to the DataLoader, and FileProcessor
objects. The DataLoader is a file format-specific object for reading
in documents such as PDF and Word documents. Internally, a data loader
binds together a file system interface (in this case
fsspec [https://filesystem-spec.readthedocs.io/en/latest/]) for opening
files. The FileProcessor object is used to convert these files into plain
text. It also has an engine object to control the output format. For a
given DataLoader object, you can customize both the FileProcessor
and engine.

Generally, the first step in reading a corpus of documents is to obtain a
DataLoader object. For example, TextDatasetFactory.format('pdf')
returns a DataLoader for PDFs. Likewise, you can get a Word document
loaders by passing in docx or doc. You can choose an engine that
controls how the data is returned. The default engine is a Python
generator. If you want to use the data as a dataframe, then use the
.engine() method. A call to .engine('pandas') returns the data
as a Pandas dataframe. On a GPU machine, you can use cuDF dataframes with
a call to .engine('cudf').

The .format() method controls the backend with Apache Tika [https://tika.apache.org/]
and pdfplumber [https://github.com/jsvine/pdfplumber] being builtin.
In addition, you can write your own backend and plug it into the system.
This allows you complete control over the backend. The file processor
is used to actually process a specific file format.

To obtain a DataLoader object, call the use the .format() method
on textfactory. This returns a DataLoader object that can
then be configured with the .backend(), .engine(), and
.options() methods. The .backend() method is used to define
which backend is to manage the process of parsing the corpus. If this is
not specified then a sensible default backend is chosen based on the
file format that is being processed. The .engine() method is used to
control the output format of the data. If it is not specified, then an
iterator is returned. The .options() method is used to add extra
fields to each record. These would be things such as the filename, or
metadata about the file. There are more details about this and the other
configuration methods in the examples.

Read a Dataset

In this example you create a DataLoader object by calling
textfactory.format('pdf'). This DataLoader object is configured
to read PDF documents. You then change the backend to use
pdfplumber [https://github.com/jsvine/pdfplumber] with the method
.backend('pdfplumber'). It’s easier to work with the results
if they are in a dataframe. So, the method .engine('pandas')
returns a Pandas dataframe.

AFter you have the DataLoader object configured, you process the
corpus. In this example, the corpus is a single
PDF file. It is read from a publicly accessible OCI Object Storage
bucket. The .read_line() method is used to read in the corpus where
each line of the document is treated as a record. Thus, each row in the
returned dataframe is a line of text from the corpus.

dl = textfactory.format('pdf').backend('pdfplumber').engine('pandas')
df = dl.read_line(
 f'oci://{bucket}@{namespace}/pdf_sample/paper-0.pdf',
 storage_options={"config": {}},
)
df.head()

[image: ../../_images/sec_read_dataset.png]

Corpus Read Options

Typically, you want to treat each line of a document or each
document as a record. The method .read_line() processes a corpus,
and return each line in the documents as a text string. The method
.read_text() treats each document in the corpus as a record.

Both the .read_line() and .read_text() methods parse the corpus,
convert it to text ,and reads it into memory. The
.convert_to_text() method does the same processing as
.read_text(), but it outputs the plain text to files. This allows
you to post-process the data without having to again convert the raw
documents into plain text documents, which can be an expensive process.

Each document can have a custom set of metadata that describes the
document. The .metadata_all() and .metadata_schema()
methods allow you to access this metadata. Metadata is represented as a
key-value pair. The .metadata_all() returns a set of key-value pairs
for each document. The .metadata_schema() returns what keys are used
in defining the metadata. This can vary from document to document and
this method creates a list of all observed keys. You use this to
understand what metadata is available in the corpus.

The .read_line() Method

The .read_line() method allows you to read a corpus
line-by-line. In other words, each line in a file corresponds to one
record. The only required argument to this method is path. It sets
the path to the corpus, and it can contain a glob pattern. For example,
oci://{bucket}@{namespace}/pdf_sample/**.pdf,
'oci://{bucket}@{namespace}/20news-small/**/[1-9]*', or
/home/datascience/<path-to-folder>/[A-Za-z]*.docx are all valid
paths that contain a glob pattern for selecting multiple files. The
path parameter can also be a list of paths. This allows for reading
files from different file paths.

The optional parameter udf stands for a user-defined function. This
parameter can be a callable Python object, or a regular expression
(RegEx). If it is a callable Python object, then the function must accept
a string as an argument and returns a tuple. If the parameter is a RegEx,
then the returned values are the captured RegEx patterns. If there is no
match, then the record is ignored. This is a convenient method to
selectively capture text from a corpus. In either case, the udf is
applied on the record level, and is a powerful tool for data
transformation and filtering.

The .read_line() method has the following arguments:

	df_args: Arguments to pass to the engine. It only applies to
Pandas and cuDF dataframes.

	n_lines_per_file: Maximal number of lines to read from a single
file.

	path: The path to the corpus.

	storage_options: Options that are necessary for connecting to OCI
Object Storage.

	total_lines: Maximal number of lines to read from all files.

	udf: User-defined function for data transformation and filtering.

Example: Python Callable udf

In the next example, a lambda function is used to create a Python callable
object that is passed to the udf parameter. The lambda function
takes a line and splits it based on white space to tokens. It then
counts the number of tokens ,and returns a tuple where the first element
is the token count and the second element is the line itself.

The df_args parameter is used to change the column names into
user-friendly values.

dl = textfactory.format('docx').engine('pandas')
df = dl.read_line(
 path=f'oci://{bucket}@{namespace}/docx_sample/*.docx',
 udf=lambda x: (len(x.strip().split()), x),
 storage_options={"config": {}},
 df_args={'columns': ['token count', 'text']},
)
df.head()

[image: ../../_images/sec_callable_udf.png]

Example: Regular Expression udf

In this example, the corpus is a collection of log files. A RegEx
is used to parse the standard Apache log format. If a
line does not match the pattern, it is discarded. If it does match the
pattern, then a tuple is returned where each element is a value in the
RegEx capture group [https://www.regular-expressions.info/brackets.html].

This example uses the default engine, which returns an iterator. The
next() method is used to iterate through the values.

APACHE_LOG_PATTERN = r'^\[(\S+)\s(\S+)\s(\d+)\s(\d+\:\d+\:\d+)\s(\d+)]\s(\S+)\s(\S+)\s(\S+)\s(\S+)'
dl = textfactory.format('txt')
df = dl.read_line(
 f'oci://{bucket}@{namespace}/log_sample/*.log',
 udf=APACHE_LOG_PATTERN,
 storage_options={"config": {}},
)
next(df)

['Sun',
 'Dec',
 '04',
 '04:47:44',
 '2005',
 '[notice]',
 'workerEnv.init()',
 'ok',
 '/etc/httpd/conf/workers2.properties']

The .read_text() Method

It you want to treat each document in a corpus as a record, use the
.read_text() method. The path parameter is the only required
parameter as it defines the location of the corpus.

The optional udf parameter stands for a user-defined function. This
parameter can be a callable Python object or a RegEx.

The .read_text() method has the following arguments:

	df_args: Arguments to pass to the engine. It only applies to
Pandas and cuDF dataframes.

	path: The path to the corpus.

	storage_options: Options that are necessary for connecting to OCI
Object Storage.

	total_files: The maximum number of files that should be
processed.

	udf: User-defined function for data transformation and filtering.

Example: total_files

In this example, the are six files in the corpus. However, the
total_files parameter is set to 4 so only the first four files are
processed. There is no guarantee which four will actually be processed.
However, this parameter is commonly used to limit the size of the data
when you are developing the code for the model. Later on, it is often
removed so the entire corpus is processed.

This example also demonstrates the use of a list, plus globbing, to
define the corpus. Notice that the path parameter is a list with two
file paths. The output shows the dataframe has four rows and so only
four files were processed.

dl = textfactory.format('docx').engine('pandas')
df = dl.read_text(
 path=[f'oci://{bucket}@{namespace}/docx_sample/*.docx', f'oci://{bucket}@{namespace}/docx_sample/*.doc'],
 total_files=4,
 storage_options={"config": {}},
)
df.shape

(4, 1)

The .convert_to_text() Method

Converting a set of raw documents can be an expensive process. The
.convert_to_text() method allows you to convert a corpus of source
document,s and write them out as plain text files. Each document input
document is written to a separate file that has the same name as the
source file. However, the file extension is changed to .txt.
Converting the raw documents allows you to post-process
the raw text multiple times while only have to convert it once.

The src_path parameter defines the location of the corpus. The dst_path
parameter gives the location where the plain text files are to be
written. It can be an Object Storage bucket or the local block storage.
If the directory does not exist, it is created. It overwrites
any files in the directory.

The .convert_to_text() method has the following arguments:

	dst_path: Object Storage or local block storage path where plain
text files are written.

	encoding: Encoding for files. The default is utf-8.

	src_path: The path to the corpus.

	storage_options: Options that are necessary for connecting to
Object Storage.

The following example converts a corpus ,and writes it to a temporary
directory. It then lists all the plain text files that were created in
the conversion process.

dst_path = tempfile.mkdtemp()
dl = textfactory.format('pdf')
dl.convert_to_text(
 src_path=f'oci://{bucket}@{namespace}/pdf_sample/*.pdf',
 dst_path=dst_path,
 storage_options={"config": {}},
)
print(os.listdir(dst_path))
shutil.rmtree(dst_path)

['paper-2.txt', 'paper-0.txt', 'Emerging Infectious Diseases copyright info.txt', 'Preventing Chronic Disease Copyright License.txt', 'Budapest Open Access Initiative _ Budapest Open Access Initiative.txt', 'paper-1.txt']

Each document can contain metadata. The purpose of the
.metadata_all() method is to capture this information for each
document in the corpus. There is no standard set of metadata across all
documents so each document could return different set of values.

The path parameter is the only required parameter as it defines the
location of the corpus.

The .metadata_all() method has the following arguments:

	encoding: Encoding for files. The default is utf-8.

	path: The path to the corpus.

	storage_options: Options that are necessary for connecting to
Object Storage.

The next example processes a corpus of PDF documents using
pdfplumber, and prints the metadata for the first document.

dl = textfactory.format('pdf').backend('pdfplumber').option(Options.FILE_NAME)
metadata = dl.metadata_all(
 path=f'oci://{bucket}@{namespace}/pdf_sample/Emerging Infectious Diseases copyright info.pdf',
 storage_options={"config": {}}
)
next(metadata)

{'Creator': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
 'Producer': 'Skia/PDF m91',
 'CreationDate': "D:20210802234012+00'00'",
 'ModDate': "D:20210802234012+00'00'"}

The backend that is used can affect what metadata is returned. For
example, the Tika backend returns more metadata than pdfplumber, and also
the names of the metadata elements are also different. The following
example processes the same PDF document as previously used, but you can see that
there is a difference in the metadata.

dl = textfactory.format('pdf').backend('default')
metadata = dl.metadata_all(
 path=f'oci://{bucket}@{namespace}/pdf_sample/Emerging Infectious Diseases copyright info.pdf',
 storage_options={"config": {}}
)
next(metadata)

{'Content-Type': 'application/pdf',
 'Creation-Date': '2021-08-02T23:40:12Z',
 'Last-Modified': '2021-08-02T23:40:12Z',
 'Last-Save-Date': '2021-08-02T23:40:12Z',
 'X-Parsed-By': ['org.apache.tika.parser.DefaultParser',
 'org.apache.tika.parser.pdf.PDFParser'],
 'access_permission:assemble_document': 'true',
 'access_permission:can_modify': 'true',
 'access_permission:can_print': 'true',
 'access_permission:can_print_degraded': 'true',
 'access_permission:extract_content': 'true',
 'access_permission:extract_for_accessibility': 'true',
 'access_permission:fill_in_form': 'true',
 'access_permission:modify_annotations': 'true',
 'created': '2021-08-02T23:40:12Z',
 'date': '2021-08-02T23:40:12Z',
 'dc:format': 'application/pdf; version=1.4',
 'dcterms:created': '2021-08-02T23:40:12Z',
 'dcterms:modified': '2021-08-02T23:40:12Z',
 'meta:creation-date': '2021-08-02T23:40:12Z',
 'meta:save-date': '2021-08-02T23:40:12Z',
 'modified': '2021-08-02T23:40:12Z',
 'pdf:PDFVersion': '1.4',
 'pdf:charsPerPage': '2660',
 'pdf:docinfo:created': '2021-08-02T23:40:12Z',
 'pdf:docinfo:creator_tool': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
 'pdf:docinfo:modified': '2021-08-02T23:40:12Z',
 'pdf:docinfo:producer': 'Skia/PDF m91',
 'pdf:encrypted': 'false',
 'pdf:hasMarkedContent': 'true',
 'pdf:hasXFA': 'false',
 'pdf:hasXMP': 'false',
 'pdf:unmappedUnicodeCharsPerPage': '0',
 'producer': 'Skia/PDF m91',
 'xmp:CreatorTool': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
 'xmpTPg:NPages': '1'}

The .metadata_schema() Method

As briefly discussed in the .metadata_all() method section,
there is no standard set of metadata across all documents. The
.metadata_schema() method is a convience method that returns what
metadata is avalible in the corpus. It returns a list of all observed
metadata fields in the corpus. Since each document can have a different
set of metadata, all the values returned may not exist in all documents.
It should also be noted that the engine used can return different
metadata for the same document.

The path parameter is the only required parameter as it defines the
location of the corpus.

Often, you don’t want to process an entire corpus of documents to get a
sense of what metadata is available. Generally, the engine returns a
fairly consistent set of metadata. The n_files option is handy
because it limits the number of files that are processed.

The .metadata_schema() method has the following arguments:

	encoding: Encoding for files. The default is utf-8.

	n_files: Maximum number of files to process. The default is 1.

	path: The path to the corpus.

	storage_options: Options that are necessary for connecting to
Object Storage.

The following example uses the .metadata_schema() method to collect the
metadata fields on the first two files in the corpus. The n_files=2
parameter is used to control the number of files that are processed.

dl = textfactory.format('pdf').backend('pdfplumber')
schema =dl.metadata_schema(
 f'oci://{bucket}@{namespace}/pdf_sample/*.pdf',
 storage_options={"config": {}},
 n_files=2
)
print(schema)

['ModDate', 'Producer', 'CreationDate', 'Creator']

Augment the Records

The text_dataset module has the ability to augment the returned
records with additional information using the
.option() method. This method takes an enum from the Options
class. The .option() method can be used multiple times on the same
DataLoader to select a set of additional information that is
returned. The Options.FILE_NAME enum returns the filename that
is associated with the record. The Options.FILE_METADATA enum allows you
to extract individual values from the document’s metadata. Notice that the
engine used can return different metadata for the
same document.

Example: Using Options.FILE_NAME

The following example uses .option(Options.FILE_NAME) to augment to add
the filename of each record that is returned. The example uses the
txt for the FileProcessor, and Tika for the backend. The engine
is Pandas so a dataframe is returned. The df_args option is used to
rename the columns of the dataframe. Notice that the returned dataframe
has a column named path. This is the information that was added to
the record from the .option(Options.FILE_NAME) method.

dl = textfactory.format('txt').backend('tika').engine('pandas').option(Options.FILE_NAME)
df = dl.read_text(
 path=f'oci://{bucket}@{namespace}/20news-small/**/[1-9]*',
 storage_options={"config": {}},
 df_args={'columns': ['path', 'text']}
)
df.head()

[image: ../../_images/sec_filename.png]

Example: Using Options.FILE_METADATA

You can add metadata about a document to a record using
.option(Options.FILE_METADATA, {'extract': ['<key1>, '<key2>']}).
When using Options.FILE_METADATA, there is a required second
parameter. It takes a dictionary where the key is the action to be
taken. In the next example, the extract key provides a
list of metadata that can be extracted. When a list is used, the
returned value is also a list of the metadata values. The example
uses repeated calls to .option() where different metadata
values are extracted. In this case, a list is not returned, but
each value is in a separate Pandas column.

dl = textfactory.format('docx').engine('pandas') \
 .option(Options.FILE_METADATA, {'extract': ['Character Count']}) \
 .option(Options.FILE_METADATA, {'extract': ['Paragraph-Count']}) \
 .option(Options.FILE_METADATA, {'extract': ['Author']})
df = dl.read_text(
 path=f'oci://{bucket}@{namespace}/docx_sample/*.docx',
 storage_options={"config": {}},
 df_args={'columns': ['character count', 'paragraph count', 'author', 'content']},
)
df.head()

[image: ../../_images/sec_metadata.png]

Custom File Processor and Backend

The text_dataset module supports a number of file processors and
backends. However, it isn’t practical to provide these for all possible
documents. So, the text_dataset allows you to create your
own.

When creating a custom file processor, you must register it with ADS
using the FileProcessorFactory.register() method. The
first parameter is the name that you want to associate with the file
processor. The second parameter is the class that is to be registered.
There is no need to register the backend class.

Custom Backend

To create a backend, you need to develop a class that inherits from the
ads.text_dataset.backends.Base class. In your class, you need to
overload any of the following methods that you want to use with:
.read_line(), .read_text(), .convert_to_text(), and
.get_metadata(). The .get_metadata() method must be overload if
you want to use the .metadata_all() and .metadata_schema()
methods in your backend.

The .convert_to_text() method takes a file handler, destination
path, filename, and storage options as parameters. This method must write
the plain text file to the destination path, and return the path of the
file.

The .get_metadata() method takes a file handler as an input parameter,
and returns a dictionary of the metadata. The .metadata_all() and
.metadata_schema() methods don’t need to be overload because they use the
.get_metadata() method to return their results.

The .read_line() method must take a file handle, and have a yield
statement that returns a plain text line from the document.

The .read_text() method has the same requirements as the
.read_line() method, except it must yield the entire document as
plain text.

The following are the method signatures:

convert_to_text(self, fhandler, dst_path, fname, storage_options)
get_metadata(self, fhandler)
read_line(self, fhandler)
read_text(self, fhandler)

Custom File Processor

To create a custom file processor you must develop a class that inherits
from ads.text_dataset.extractor.FileProcessor. Generally, there are
no methods that need to be overloaded. However, the
backend_map class variable has to be defined. This is a dictionary
where the key is the name of the format that it support,s and the value
is the file processor class. There must be a key called default
that is used when no file processor is defined for the DataLoader.
An example of the backend_map is:

backend_map = {'default': MyCustomBackend, 'tika': Tika, 'custom': MyCustomBackend}

Example: Create a Custom File Processor and Backend

In the next example, you create a custom backend class called
ReverseBackend. It overloads the .read_line() and
.read_text() methods. This toy backend returns the records in
reverse order.

The TextReverseFileProcessor class is used to create a new file
processor for use with the backend. This class has the backend_map class
variable that maps the backend label to the backend
object. In this case, the only format that is provided is the default
class.

Having defined the backend (TextReverseBackend) and file processor
(TextReverseFileProcessor) classes, the format must be registered.
You register it with the
FileProcessorFactory.register('text_reverse', TextReverseFileProcessor)
command where the first parameter is the format and the second parameter is the
file processor class.

class TextReverseBackend(Base):
 def read_line(self, fhandler):
 with fhandler as f:
 for line in f:
 yield line.decode()[::-1]

 def read_text(self, fhandler):
 with fhandler as f:
 yield f.read().decode()[::-1]

class TextReverseFileProcessor(FileProcessor):
 backend_map = {'default': TextReverseBackend}

FileProcessorFactory.register('text_reverse', TextReverseFileProcessor)

Having created the custom backend and file processor, you use the
.read_line() method to read in one record and print it.

dl = textfactory.format('text_reverse')
reverse_text = dl.read_line(
 f'oci://{bucket}@{namespace}/20news-small/rec.sport.baseball/100521',
 total_lines=1,
 storage_options={"config": {}},
)
text = next(reverse_text)[0]
print(text)

)uiL C evetS(ude.uhj.fch.xinuhj@larimda :morF

The .read_line() method in the TextReverseBackend class reversed
the characters in each line of text that is processed. You can confirm
this by reversing it back.

text[::-1]

'From: admiral@jhunix.hcf.jhu.edu (Steve C Liu)n'

References

	ADS Library
Documentation [https://docs.cloud.oracle.com/en-us/iaas/tools/ads-sdk/latest/index.html]

	OCI Data Science
Documentation [https://docs.cloud.oracle.com/en-us/iaas/data-science/using/data-science.htm]

	Oracle Data & AI Blog [https://blogs.oracle.com/datascience/]

	Data Science YouTube
Videos [https://www.youtube.com/playlist?list=PLKCk3OyNwIzv6CWMhvqSB_8MLJIZdO80L]

 Release Notes

Release Notes

May 5, 2022

ADS v2.5.10

ADS

	Added BDSSecretKeeper to store and save configuration parameters to connect to Big Data service to the vault.

	Added the krbcontext and refresh_ticket functions to configure Kerberos authentication for the Big Data service.

	Added authentication options to logging APIs to allow you to pass in the OCI API key configuration or signer.

	Added the configuration file path option to the set_auth method to allow to change the path of the OCI configuration.

	Fixed a bug in AutoML for Ttext datasets.

	Fixed bug in import ads.jobs to notify users installing ADS optional dependencies.

	Fixed a bug in the generated score.py file, where Pandas dataframe’s dtypes changed when deserializing. Now you can recover it from the input schema.

	Updated requirements to oci>=2.59.0.

April 4, 2022

ADS v2.5.9

ADS

	Added framework specific model serialization to add more inputs to the generated score.py file.

	Added the following framework-specific classes for fast and easy model deployment:

	AutoMLModel

	SKlearnModel

	XGBoostModel

	LightGBMModel

	PyTorchModel

	TensorFlowModel

	Added the GenericModel class for frameworks not included in the preceding list:

	You can now prepare, verify, save and deploy your models using the methods in these new classes:

	.prepare(): Creates score.py [https://docs.oracle.com/iaas/data-science/using/model_score_py.htm], runtime.yaml, and schema files for model deployment purpose, and adds the model artifacts to the model catalog.

	.verify(): Helps test your model locally, before deploying it from the model catalog to an endpoint.

	.save(): Saves the model and model artifacts to the model catalog.

	.deploy(): Deploys the model from model catalog to a REST endpoint.

	.predict(): Calls the endpoint and creates inferences from the deployed model.

	Added support to create jobs with managed egress.

	Fixed bug in jobs, where log entries were being dropped when there were a large number logs in a short period of time. Now you can list all logs with jobwatch().

March 3, 2022

ADS v2.5.8

ADS

	Fixed bug in automatic extraction of taxonomy metadata for Sklearn models.

	Fixed bug in jobs NotebookRuntime when using non-ASCII encoding.

	Added compatibility with Python 3.8 and 3.9.

	Added an enhanced string class, called ADSString. It adds functionality such as regular expression (RegEx) matching, and natural language processing (NLP) parsing. The class can be expanded by registering custom plugins to perform custom string processing actions.

February 4, 2022

ADS v2.5.7

ADS

	Fixed bug in DataFlow Job creation.

	Fixed bug in ADSDataset get_recommendations raising HTML is not defined exception.

	Fixed bug in jobs ScriptRuntime causing the parent artifact folder to be zipped and uploaded instead of the specified folder.

	Fixed bug in ModelDeployment raising TypeError exception when updating an existing model deployment.

January 21, 2022

ADS v2.5.6

ADS

	Added support for the storage_options parameter in ADSDataset .to_hdf().

	Fixed error message to specify overwrite_script or overwrite_archive option in data_flow.create_app().

	Fixed output of multiclass evaluation plots when ADSEvaluatior() class uses a non-default legend_labels option.

	Added support to connect to an Oracle Database that does not require a wallet file.

	Added support to read and write from MySQL using ADS DataFrame APIs.

December 9, 2021

ADS v2.5.5

ADS

	Fixed bug in model artifact prepare(), reload(), and prepare_generic_model() raising ONNXRuntimeError caused by the mismatched version of skl2onnx.

December 3, 2021

ADS v2.5.4

The following features were added:

Data Labeling

	Added support to read exported dataset from the consolidated export file.

Following fixes were added:

ADS

	The DaskSeries class was marked as deprecated.

	The DaskSeriesAccessor class was marked as deprecated.

	The MLRuntime class was marked as deprecated.

	The ADSDataset.ddf attribute was marked as deprecated.

November 29, 2021

ADS v2.5.3

The following features were added:

ADS

	Moved fastavro, pandavro and openpyxl to an optional dependency.

Data Labeling

	Added the ability to specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the Object Detection dataset.

	Added support to load labeled dataset from OCI Data Labeling, and return the Pandas dataframe or generator formats.

	Added support to load labeled datasets by chunks.

November 17, 2021

ADS v2.5.2

The following features were added:

ADS

	Added support to manage credentials with the OCI Vault service for ADB and Access Tokens.

	Improved model introspection functionality. The INFERENCE_ENV_TYPE and INFERENCE_ENV_SLUG parameters are no longer required.

	Updated ADS dependency requirements. Relaxed the versions for the scikit-learn, scipy and onnx dependencies.

	Moved dask, ipywidget and wordcloud to an optional dependency.

	The Boston Housing dataset was replaced with an alternative one.

	Migrated ADSDataset to use Pandas instead of Dask.

	Deprecated MLRuntime.

	Deprecated resource_analyze method.

Jobs

	Added support for magic commands in notebooks when they run in a job.

	Added support to download notebook and output after running it in a job.

October 20, 2021

ADS v2.5.0

The following features were added:

Data Labeling

	Integrating with the Oracle Cloud Infrastructure Data Labeling service.

	Listing labeled datasets in the Data Labeling service.

	Exporting labeled datasets into Object Storage.

	Loading labeled datasets in the Pandas dataframe or generator formats.

	Visualizing the labeled entity extraction and object detection data.

	Converting the labeled entity extraction and object detection data to the Spacy and YOLO formats respectively.

ADS v2.4.2

The following improvements were effected:

ADS

	Improve ads import time.

	Fix the version of the jsonschema package.

	Update numpy deps to >= 1.19.2 for compatibility with TensorFlow 2.6.

Data Flow

	Added progress bar when creating a Data Flow application.

	Fixed the file upload path in Data Flow.

Model Store

	Added supporting tags when saving model artifacts.

Model Deployment

	Updated Model Deployment authentication.

This release has following bug fixes:

ADS

	Fixed the default runtime.yaml template generated outside of a notebook session.

	Oracle DB mixin the batch size parameter is now passed downstream.

	ADSModel.prepare() and prepare_generic_model() force_overwrite deletes user created folders.

	prepare_generic_model fails to create a successful artifact when taxonomy is extracted.

Dataflow

	Specify spark version in prepare_app() now works.

Jobs

	Running Job from a ZIP or folder now works.

September 27, 2021

ADS v2.4.1

The following dependencies were removed:

	pyarrow

	python-snappy

September 22, 2021

ADS v2.4.0

Jobs

The Data Science jobs feature is introduced and includes the following:

	Data Science jobs allow data scientists to run customized tasks outside of a notebook session.

	Running Data Science jobs and Data Flow applications through unified APIs by configuring job infrastructure and runtime parameters.

	Configuring various runtime configurations for running code from Python/Bash script, packages including multiple modules, Jupyter notebook, or a Git repository.

	Monitoring job runs and streaming log messages using the Logging service.

September 20, 2021

ADS v2.3.4

This release has following bug fixes:

	prepare_generic_model fails when used outside the Data Science notebook session

	TextDatasetFactory fails when used outside the Data Science notebook session

September 17, 2021

ADS v2.3.3

	Removed dependency on plotly

	print_user_message replaced with logger

August 3, 2021

ADS v2.3.1

Model Catalog

This release of the model catalog includes these enhancements:

	Automatical extraction of model taxonomy metadata that lets data scientists document the use case, framework, and hyperparameters of their models.

	Improvement to the model provenance metadata, including a reference to the model training resource (notebook sessions) by passing training_id into save().

	Support for custom metadata which lets data scientists document the context around their models, automatic extraction references to the conda environment used to train the model, the training and validation datasets, and so on.

	Automatcal extraction of the model input feature vector and prediction schemas.

	Model introspection tests that are run on the model artifact before the model is saved to the model catalog. Model introspection validates the artifact against a series of common issues and errors found with artifacts. These introspection tests are part of the model artifact code template that is included.

Feature Type

Feature type is an additional added module which includes the following functionality:

	Support for Explorationary Data Analysis including feature count, feature plot, feature statistics, correlation, and correlation plot.

	Support for the feature type manager that provides the tools to manage the handlers used to drive the feature type system.

	Support for the feature type validators that are a way of performing data validation and also allow a feature type to be dynamically extended so that the data validation process can be reproducible and shared across projects.

	Support for feature type warnings that allow you to automate the process of checking for data quality issues.

May 7, 2021

ADS v2.2.1

ADS v2.2.1 comes with many improvements, and bug fixes.

The improvements include:

	Requires Pandas >- 1.2 and Python == 3.7.

	Upgraded the scikit-learn dependency to 0.23.2.

	Added the ADSTextDataset and the ADS Text Extraction Framework.

	Updated the ADSTuner method .tune() to allow asynchronous tuning, including the ability to halt, resume, and terminate tuning operations from the main process.

	Added the ability to load and save ADSTuner tuned trials to Object Storage. The tuning progress can now be saved and loaded in a different ADSTuner object.

	Added the ability to update the ADSTuner tuning search space. Hyperparameters can be changed and distribution ranges modified during tuning.

	Updated plotting functions to plot in real-time while ADSTuner asynchronous tuning operations proceed.

	Added methods to report on the remaining budget for running ADSTuner asynchronous tuner (trials and time-based budgets).

	Added a method to report the difference between the optimal and current best score for ADSTuner tuning processes with score-based stopping criteria.

	Added caching for model loading method to avoid model deserialization each time the predict method is called.

	Made the list of supported formats in DatasetFactory.open() more explicit.

	Moved the ADSEvaluator caption to above the table.

	Added a warning message in the get_recommendations() method when no recommendations can be made.

	Added a parameter in print_summary() to display the ranking table only.

	list_apps in the DataFlow class supports the optional parameter compartment_id.

	An exception occurs when using SVC or KNN on large datasets in OracleAutoMLProvider.

	Speed improvements in correlation calculations.

	Improved the name of the y-axis label in feature_selection_trials().

	Automatically chooses the y-label based on the score_metric set in train if you don’t set it.

	Increased the default timeout for uploading models to the model catalog.

	Improved the module documentation.

	Speed improvements in get_recommendations() on wide datasets.

	Speed improvements in DatasetFactory.open().

	Deprecated the frac keyword from DatasetFactory.open().

	Disabled writing requirements.txt when function_artifacts = False.

	Pretty printing of specific labels in ADSEvaluator.metrics.

	Removed the global setting as the only mechanism for choosing the authentication in OCIClientFactory.

	Added the ability to have defaults and to provide authentication information while instantiating a Provider Class.

	Added a larger time buffer for the plot_param_importance method.

	Migrated the DatasetFactory reading engine from Dask to Pandas.

	Enabling Pandas to read lists and glob of files.

	DatasetFactory now supports reading from Object Storage using ocifs.

	The DatasetFactory URI pattern now supports namespaces, and follows the HDFS Connector format.

	The url() method can generate PARs for Object Storage objects.

	DatasetFactory now has caching for Object Storage operations.

The following issues were fixed:

	Issue with multipart upload and download in DatasetFactory.

	Issues with log level in OracleAutoMLProvider.

	Issue with fill_value when running get_recommendations().

	Issue with an invalid training path when saving model provenance.

	Issue with errors during model deletion.

	Issues with deep copying ADSData.

	Evaluation plot KeyError.

	Dataset show_in_notebook issue.

	Inconsistency in preparing ADSModels and generic models.

	Issue with force_overwrite in prepare_generic_model not being properly triggered.

	Issue with OracleAutoMLProvider failing to visualize_tuning_trials.

	Issues with model_prepare trying to do feature transforms on keras and pytorch models.

	Erroneous creation of __pychache__.

	The AttributeError message when an ApplicationSummary or RunSummary object is being displayed in a notebook.

	Issues with newer versions of Dask breaking DatasetFactory.

AutoML

AutoML is upgraded to AutoML v1.0 and the changes include:

	Switched to using Pandas Dataframes internally. AutoML now uses Pandas dataframes internally instead of Numpy dataframes, avoiding needless conversions.

	Pytorch is now an optional dependency. If Pytorch is installed, AutoML automatically considers multilayer perceptrons in its search. If Pytorch is not found, deep learning models are ignored.

	Updated the Pipeline interface to include train(), which runs all the pipeline stages though doesn’t do the final fitting of the model (fit() api should be used if final fit is needed).

	Updated the Pipeline interface to include refit() to allows you to refit the pipeline to an updated dataset without re-running the full pipeline again. We recommend this for advanced users only. For best results, we recommended that you rerun the full pipeline when the dataset changes.

	AutoML now reports memory usage for each trial as a part of its trials attributes. This information relies on the maximum resident size metric reported by Linux, and can sometimes be unreliable.

	holidays is now an optional dependency. If holidays is installed, AutoML automatically uses it to add holidays as a feature for engineering datetime columns.

	Added support for Anomaly Detection and Forecasting tasks (experimental).

	Downcast dataset to reduce pipeline training memory consumption.

	Set numpy BLAS parallelism to 1 to avoid CPU over subscription.

	Created interactive example notebooks for all supported tasks (classification, regression, anomaly detection, and forecasting), see http://automl.oraclecorp.com/.

	Other general bug fixes.

MLX

MLX is upgraded to MLX v1.1.1 the changes include:

	Upgrading to Python 3.7

	Upgrading to support Numpy >= 1.19.4

	Upgrading to support Pandas >= 1.1.5

	Upgrading to support Scikit-learn >= 0.23.2

	Upgrading to support Statsmodel >= 0.12.1

	Upgrading to support Dask >= 2.30.0

	Upgrading to support Distributed >= 2.30.1

	Upgrading to support Xgboost >= 1.2.1

	Upgrading to support Category_encoders >= 2.2.2

	Upgrading to support Tqdm >= 4.36.1

	Fixed imputation issue when columns are all NaN.

	Fixed WhatIF internal index-reference issue.

	Fixed rare floating point problem in FD/ALE explainers.

Janurary 13, 2021

ADS

	A full distribution of this release of ADS is found in the General Machine Learning for CPU and GPU environments. The Classic environments include the previous release of ADS.

	A distribution of ADS without AutoML and MLX is found in the remaining environments.

	DatasetFactory can now download files first before opening them in memory using the .download() method.

	Added support to archive files in creating Data Flow applications and runs.

	Support was added for loading Avro format data into ADS.

	Changed model serialization to use ONNX by default when possible on supported models.

	Added ADSTuner, which is a framework and model agnostic hyperparmater optimizer, use the adstuner.ipynb notebook for examples of how to use this feature.

	Corrected the up_sample() method in get_recommendations() so that it does not fail when all features are categorical. Up-sampling is possible for datasets containing continuous and categorical features.

	Resolved issues with serializing ndarray objects into JSON.

	A table of all of the ADS notebook examples can be found in our service documentation: Oracle Cloud Infrastructure Data Science [https://docs.cloud.oracle.com/en-us/iaas/data-science/using/use-notebook-sessions.htm#conda_understand_environments]

	Changed set_documentation_mode to false by default.

	Added unit-tests related to the dataset helper.

	Fixed the _check_object_exists to handle situations where the object storage bucket has more than 1000 objects.

	Added option overwrite_script in the create_app() method to allow a user to override a pre-existing file.

	Added support for newer fsspec versions.

	Added support for the C library Snappy.

	Fixed issue with uploading model provenance data due to inconsistency with OCI interface.

	Resolved issue with multiple versions of Cryptography being installed when installing fbprophet.

AutoML

AutoML is upgraded to AutoML v0.5.2 and the changes include:

	AutoML is now distributed in the General Machine Learning and Data Exploration conda environments.

	Support for ONNX. AutoML models can now be serialized using ONNX by calling the to_onnx() API on the AutoML estimator.

	Pre-processing has been overhauled to use sklearn pipelines to allow serialization using ONNX. Numerical, categorical, and text columns are supported for ONNX serialization. Datetime and time series columns are not supported.

	Torch-based deep learning models, TorchMLPClassifier and TorchMLPRegressor, have been added.

	GPU support for XGBoost and torch-based models have been added. This is disabled by default, and can be enabled by passing in ‘gpu_id’: ‘auto’ in engine_opts in the constructor. ONNX serialization for GPUs has not been tested.

	Adaptive sampling’s learning curve has been smoothened. This allows adaptive sampling to converge faster on some datasets.

	Improvements to ranking performance in feature selection were added. Feature selection is now much faster on large datasets.

	The default execution engine for AutoML has been switched to Dask. You can still use the Python multiprocessing by passing engine='local', engine_opts={'n_jobs' : -1} to init()

	GuassianNB has been enabled in the interface by default.

	The AdaBoostClassifier has been disabled in the pipeline interface by default. The ONNX converter for AdaBoost should not be used.

	The issue ValueError: Found unknown categories during transform has been fixed.

	You can manually specify a hyperparameter search space to AutoML. New parameter added to the pipeline. This allows you to freeze some hyperparmaters or to expose further ones for tuning.

	New API: Refit an AutoML pipeline to another dataset. This is primarily used to handle updated training data, where you train the pipeline once, and refit in on newer data.

	AutoML no longer closes a user specified Dask cluster.

	AutoML properly cleans up any existing futures on the Dask cluster at the end of fit.

MLX

MLX is upgraded to MLX v1.0.16 the changes include:

	MLX is now distributed in the General Machine Learning conda environments.

	Updated the explanation descriptions to use a base64 representation of the static plots. This obviates the need for creating a mlx_static directory.

	Replaced the boolean indexing in slicing Pandas dataFrame with integer indexing. After updating to Pandas >= 1.1.0 the boolean indexing caused some issues. Integer indexing addresses these issues.

	Fixed MLX related import warnings.

	Corrected an issue with ALE when the target values are strings.

	Removed the dependency on Paramiko.

	Addresses issue with ALE when the target values are not of type list.

August 11 2020

ADS

	Support was added to use Resource principals as an authentication mechanism for ADS.

	Support was added to MLX for an additional model explanation diagnostic, Accumulated Local Effects (ALEs).

	Support was added to MLX for “What-if” scenarios in model explainability.

	Improvements were made to the correlation heatmap calculations in show_in_notebook().

	Improvements were made to the model artifact.

Bug Fixes

	Data Flow applications inherit the compartment assignment of the client. Runs inherit from applications by default. Compartment OCIDs can also be specied independently at the client, application, and run levels.

	The Data Flow log link for logs pulled from an application loaded into the notebook session is fixed.

	Progress bars now complete fully (in ADSModel.prepare() and prepare_generic_model()).

	BaselineModel is now significantly faster and can be opted out of.

AutoML

No changes.

MLX

MLX upgraded to MLX v1.0.10 the changes include:

	Added support to specify the mlx_static root path (used for ALE summary).

	Added support for making mlx_static directory hidden (for example, <path>/.mlx_static/).

	Fixed issue with the boolean features in ALE.

June 9 2020

ADS

Numerous bug fixes including:

	Support for Data Flow applications and runs outside of a notebook session compartment. Support for specific object storage logs and script buckets at the application and run levels.

	ADS detects small shapes and gives warnings for AutoML execution.

	Removal of triggers in the Oracle Cloud Infrastructure Functions func.yaml file.

	DatasetFactory.open() incorrectly yielding a classification dataset for a continuous target was fixed.

	LabelEncoder producing the wrong results for category and object columns was fixed.

	An untrusted notebook issue when running model explanation visualizations was fixed.

	A warning about adaptive sampling requiring at least 1000 datapoints was added.

	A dtype cast float to integer into DatasetFactory.open("csv") was added.

	An option to specify the bucket of Data Flow logs when you create the application was added.

AutoML

AutoML upgraded to 0.4.2 the changes include:

	Reduced parallelization on low compute hardware.

	Support for passing in a custom logger object in automl.init(logger=).

	Support for datetime columns. AutoML should automatically infer datetime columns based on the Pandas dataframe, and perform feature engineering on them. This can also be forced by using the col_types argument in pipeline.fit(). The supported types are: ['categorical', 'numerical', 'datetime']

MLX

MLX upgraded to MLX 1.0.7 the changes include:

	Updated the feature distributions in the PDP/ICE plots (performance improvement).

	All distributions are now shown as PMFs. Categorical features show the category frequency and continuous features are computed using a NumPy histogram (with ‘auto’). They are also separate sub-plots, which are interactive.

	Classification PDP: The y-axis for continous features are now auto-scaled (not fixed to 0-1).

	1-feature PDP/ICE: The x-axis for continuous features now shows the entire feature distribution, whereas the plot may show a subset depending on the partial_range parameter (for example, partial_range=[0.2, 0.8] computes the PDP between the 20th and 80th percentile. The plot now shows the full distribution on the x-axis, but the line charts are only drawn between the specified percentile ranges).

	2-feature PDP: The plot x and y axes are now auto-set to match the partial_range specified by the user. This ensures that the heatmap fills the entire plot by default. However, the entire feature distribution can be viewed by zooming out or clicking Autoscale in plotly.

	Support for plotting scatter plots using WebGL (show_in_notebook(..., use_webgl=True)) was added.

	The side-issues that were causing the MLX Visualization Omitted warnings in JupyterLab was fixed.

April 30 2020

Environment Updates

	The home folder is now backed by block volume. You can now save all your files to the /home/datascience folder, and they persist when you deactivate and activate your sessions. The block_storage folder no longer exists. The Oracle Cloud Infrastructure keys can be saved directly to the ~/.oci folder, and no symbolic links are required.

Note: The ads-examples folder in the home folder is a symbolic link to the /opt/notebooks/ads-examples folder. Any changes made in ads-examples aren’t saved if you deactivate a notebook.

	Each new notebook that is launched has a prepopulated accordion style cell containing useful tips.

[image: Useful Tips Image]

The following packages were added:

	fdk = 0.1.12

	pandas-datareader = 0.8.1

	py-cpuinfo = 5.0

ADS

	ADS integration with the Oracle Cloud Infrastructure Data Flow [https://docs.cloud.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm] service provides a more efficient and convenient to launch a Spark application and run Spark jobs

	show_in_notebook() has had “head” removed from accordion and is replaced with dataset “warnings”.

	get_recommendations() is deprecated and replaced with suggest_recommendations(), which returns a Pandas dataframe with all the recommendations and suggested code to implement each action.

	A progress indication of Autonomous Data Warehouse [https://docs.cloud.oracle.com/en-us/iaas/Content/Database/Concepts/adboverview.htm] reads has been added.

Notebooks

	A new notebook is included in the ads-examples folder to demonstrate ADS and DataFlow Integration.

	A new notebook is included in the ads-examples folder which demonstrates advanced custom scoring functions within AutoML by implementing custom class weights.

	New version of the notebook example for deployment to Functions and API Gateway: Now using cloud shell.

	Significant improvements were made to existing ADS Notebooks.

AutoML

AutoML updated to version 0.4.1 from 0.3.1:

	More consistent handling of stratification and random state.

	Bug fix for LightGBM and XGBoost crashing on AMD shapes was implemented.

	Unified Proxy Models across all stages of the AutoML Pipeline, ensuring leaderboard rankings are consistent was implemented.

	Remove visual option from the interface.

	The default tuning metric for both binary and multi-class classification has been changed to neg_log_loss.

	Bug fix in AutoML XGBoost, where the predicted probabilities were sometimes NaN, was implemented.

	Fixed several corner case issues in Hyperparameter Optimization.

MLX

MLX updated to version 1.0.3 from 1.0.0:

	Added support for specifying the ‘average’ parameter in sklearn metrics by <metric>_<average>, for examlple F1_avg.

	Fixed an issue with the detailed scatter plot visualizations and cutoff feature/axis names.

	Fixed an issue with the balanced sampling in the Global Feature Permutation Importance explainer.

	Updated the supported scoring metrics in MLX. The PermutationImportance explainer now supports a large number of classification and regression metrics. Also, many of the metrics names were changed.

	Updated LIME and PermutationImportance explainer descriptions.

	Fixed an issue where sklearn.pipeline wasn’t imported.

	Fixed deprecated asscalar warnings.

March 18 2020

Access to ADW performance has been improved significantly

Major improvements made to the performance of the ADW dataset loader. Your data is now loaded much faster, depending on your environment.

Change to DatasetFactory.open() with ADW

DatasetFactory.open() with format='sql' no longer requires the index_col to be specified. This was confusing, since “index” means something very different in databases. Additionally, the table parameter may now be either a table or a sql expression.

ds = DatasetFactory.open(
 connection_string,
 format = 'sql',
 table = """
 SELECT *
 FROM sh.times
 WHERE rownum <= 30
 """
)

No longer automatically starts an H2O cluster

ADS no longer instantiates an H2O cluster on behalf of the user. Instead you need to import h2o on your own and then start your own cluster.

Preloaded Jupyter extensions

JupyterLab now supports these extensions:

	Bokeh

	Plotly

	Vega

	GeoJSON

	FASTA

	Variable Inspector

	VDOM

Profiling Dask APIs

With support for Bokeh extension, you can now profile Dask operations and visualize profiler output. For more details, see Dask ResourceProfiler [https://docs.dask.org/en/latest/diagnostics-local.html#resourceprofiler].

You can use the ads.common.analyzer.resource_analyze decorator to visualize the CPU and memory utilization of operations.

During execution, it records the following information for each timestep:

	Time in seconds since the epoch

	Memory usage in MB

	% CPU usage

Example:

from ads.common.analyzer import resource_analyze
from ads.dataset.dataset_browser import DatasetBrowser
@resource_analyze
def fetch_data():
 sklearn = DatasetBrowser.sklearn()
 wine_ds = sklearn.open('wine').set_target("target")
 return wine_ds
fetch_data()

The output shows two lines, one for total CPU percentage used by all the workers, and one for total memory used.

Dask Upgrade

Dask is updated to version 2.10.1 with support for Oracle Cloud Infrastructure Object Storage. The 2.10.1 version provides better performance over the older version.

 Class Documentation

Class Documentation

	ads package
	Subpackages

	Submodules

	ads.config module

	Module contents

 ads package

ads package

Subpackages

	ads.automl package
	Submodules

	ads.automl.driver module

	ads.automl.provider module

	Module contents

	ads.catalog package
	Submodules

	ads.catalog.model module

	ads.catalog.notebook module

	ads.catalog.project module

	ads.catalog.summary module

	Module contents

	ads.common package
	Submodules

	ads.common.card_identifier module

	ads.common.auth module

	ads.common.data module

	ads.common.model module

	ads.common.model_metadata module

	ads.common.decorator.runtime_dependency module

	ads.common.decorator.deprecate module

	ads.common.model_introspect module
	Classes

	ads.common.model_export_util module

	ads.common.function.fn_util module

	ads.common.utils module

	Module contents

	ads.common.model_metadata_mixin module

	ads.bds package
	Submodules

	ads.bds.auth module

	Module contents

	ads.data_labeling package
	Submodules

	ads.data_labeling.interface.loader module

	ads.data_labeling.interface.parser module

	ads.data_labeling.interface.reader module

	ads.data_labeling.boundingbox module

	ads.data_labeling.constants module

	ads.data_labeling.data_labeling_service module

	ads.data_labeling.metadata module

	ads.data_labeling.ner module

	ads.data_labeling.record module

	ads.data_labeling.mixin.data_labeling module

	ads.data_labeling.parser.export_metadata_parser module

	ads.data_labeling.parser.export_record_parser module

	ads.data_labeling.reader.dataset_reader module
	Classes

	ads.data_labeling.reader.jsonl_reader module

	ads.data_labeling.reader.metadata_reader module

	ads.data_labeling.reader.record_reader module

	ads.data_labeling.visualizer.image_visualizer module

	ads.data_labeling.visualizer.text_visualizer module

	Module contents

	ads.database package
	Subpackages

	Submodules

	ads.database.connection module

	Module contents

	ads.dataflow package
	Submodules

	ads.dataflow.dataflow module

	ads.dataflow.dataflowsummary module

	Module contents

	ads.dataset package
	Submodules

	ads.dataset.classification_dataset module

	ads.dataset.correlation module

	ads.dataset.correlation_plot module

	ads.dataset.dask_series module

	ads.dataset.dataframe_transformer module

	ads.dataset.dataset module

	ads.dataset.dataset_browser module

	ads.dataset.dataset_with_target module

	ads.dataset.exception module

	ads.dataset.factory module

	ads.dataset.feature_engineering_transformer module

	ads.dataset.feature_selection module

	ads.dataset.forecasting_dataset module

	ads.dataset.helper module

	ads.dataset.label_encoder module

	ads.dataset.pipeline module

	ads.dataset.plot module

	ads.dataset.progress module

	ads.dataset.recommendation module

	ads.dataset.recommendation_transformer module

	ads.dataset.regression_dataset module

	ads.dataset.sampled_dataset module

	ads.dataset.target module

	ads.dataset.timeseries module

	Module contents

	ads.evaluations package
	Submodules

	ads.evaluations.evaluation_plot module

	ads.evaluations.evaluator module

	ads.evaluations.statistical_metrics module

	Module contents

	ads.explanations package
	Submodules

	ads.explanations.base_explainer module

	ads.explanations.explainer module

	ads.explanations.mlx_global_explainer module

	ads.explanations.mlx_interface module

	ads.explanations.mlx_local_explainer module

	ads.explanations.mlx_whatif_explainer module

	Module contents

	ads.feature_engineering package
	Submodules

	ads.feature_engineering.exceptions module

	ads.feature_engineering.feature_type_manager module
	Classes

	ads.feature_engineering.accessor.dataframe_accessor module

	ads.feature_engineering.accessor.series_accessor module

	ads.feature_engineering.accessor.mixin.correlation module

	ads.feature_engineering.accessor.mixin.eda_mixin module

	ads.feature_engineering.accessor.mixin.eda_mixin_series module

	ads.feature_engineering.accessor.mixin.feature_types_mixin module
	Classes

	ads.feature_engineering.adsstring.common_regex_mixin module

	ads.feature_engineering.adsstring.oci_language module

	ads.feature_engineering.adsstring.string module

	ads.feature_engineering.feature_type.address module

	ads.feature_engineering.feature_type.base module

	ads.feature_engineering.feature_type.boolean module

	ads.feature_engineering.feature_type.category module

	ads.feature_engineering.feature_type.constant module

	ads.feature_engineering.feature_type.continuous module

	ads.feature_engineering.feature_type.creditcard module

	ads.feature_engineering.feature_type.datetime module

	ads.feature_engineering.feature_type.discrete module

	ads.feature_engineering.feature_type.document module

	ads.feature_engineering.feature_type.gis module

	ads.feature_engineering.feature_type.integer module

	ads.feature_engineering.feature_type.ip_address module

	ads.feature_engineering.feature_type.ip_address_v4 module

	ads.feature_engineering.feature_type.ip_address_v6 module

	ads.feature_engineering.feature_type.lat_long module

	ads.feature_engineering.feature_type.object module

	ads.feature_engineering.feature_type.ordinal module

	ads.feature_engineering.feature_type.phone_number module

	ads.feature_engineering.feature_type.string module

	ads.feature_engineering.feature_type.text module

	ads.feature_engineering.feature_type.unknown module

	ads.feature_engineering.feature_type.zip_code module

	ads.feature_engineering.feature_type.handler.feature_validator module
	Classes

	ads.feature_engineering.feature_type.handler.feature_warning module
	Classes

	ads.feature_engineering.feature_type.handler.warnings module

	Module contents

	ads.hpo package
	Submodules

	ads.hpo.distributions module

	ads.hpo.search_cv module

	ads.hpo.stopping_criterion

	Module contents

	ads.jobs package
	Submodules

	ads.jobs.ads_job module

	ads.jobs.builders.runtimes.python_runtime module

	ads.jobs.builders.infrastructure.dataflow module

	ads.jobs.builders.infrastructure.dsc_job module

	Module contents

	ads.model.framework other package
	Submodules

	ads.model.artifact module

	ads.model.generic_model module

	ads.model.model_properties module

	ads.model.runtime.runtime_info module

	ads.model.extractor.model_info_extractor_factory module

	ads.model.extractor.model_artifact module

	ads.model.extractor.automl_extractor module

	ads.model.extractor.xgboost_extractor module

	ads.model.extractor.lightgbm_extractor module

	ads.model.extractor.model_info_extractor module

	ads.model.extractor.sklearn_extractor module

	ads.model.extractor.keras_extractor module

	ads.model.extractor.tensorflow_extractor module

	ads.model.extractor.pytorch_extractor module

	Module contents

	ads.model.deployment package
	Submodules

	ads.model.deployment.model_deployer module

	ads.model.deployment.model_deployment module

	ads.model.deployment.model_deployment_properties module

	Module contents

	ads.model.framework package
	Submodules

	ads.model.framework.automl_model module

	ads.model.framework.lightgbm_model module

	ads.model.framework.pytorch_model module

	ads.model.framework.sklearn_model module

	ads.model.framework.tensorflow_model module

	ads.model.framework.xgboost_model module

	Module contents

	ads.model.runtime package
	Submodules

	ads.model.runtime.env_info module

	ads.model.runtime.model_deployment_details module

	ads.model.runtime.model_provenance_details module

	ads.model.runtime.runtime_info module

	ads.model.runtime.utils module

	Module contents

	ads.oracledb package
	Submodules

	ads.oracledb.oracle_db module

	ads.secrets package
	Submodules

	ads.secrets.secrets module

	ads.secrets.adb module

	ads.secrets.mysqldb module

	ads.secrets.oracledb module

	ads.secrets.big_data_service module

	ads.secrets.auth_token module

	Module contents

	ads.text_dataset package
	Submodules

	ads.text_dataset.backends module

	ads.text_dataset.dataset module

	ads.text_dataset.extractor module

	ads.text_dataset.options module

	Module contents

	ads.vault package
	Submodules

	ads.vault module

	Module contents

Submodules

ads.config module

	
ads.config.open(uri: Optional[str] = '~/.ads/config', profile: Optional[str] = 'DEFAULT', mode: Optional[str] = 'r', auth: Dict = None)

	Context manager helping to read and write config files.

	Parameters

	
	uri ((str, optional). Defaults to ~/.ads/config.) – The path to the config file. Can be local or Object Storage file.

	profile ((str, optional). Defaults to DEFAULT) – The name of the profile to be loaded.

	mode ((str, optional). Defaults to r.) – The config mode. Supported values: [‘r’, ‘w’]

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Yields

	ConfigSection – The config section object.

Module contents

	
ads.getLogger(name='ads')

	

	
ads.hello()

	Imports Pandas, sets the documentation mode, and prints a fancy “Hello”.

	
ads.set_auth(auth='api_key', oci_config_location='~/.oci/config', profile='DEFAULT')

	Enable/disable resource principal identity or keypair identity in a notebook session.

	Parameters

	
	auth ({'api_key', 'resource_principal'}, default 'api_key') – Enable/disable resource principal identity or keypair identity in a notebook session

	oci_config_location (str, default oci.config.DEFAULT_LOCATION, which is '~/.oci/config') – config file location

	profile (str, default 'DEFAULT') – profile name for api keys config file

	
ads.set_debug_mode(mode=True)

	Enable/disable printing stack traces on notebook.

	Parameters

	mode (bool (default True)) – Enable/disable print stack traces on notebook

	
ads.set_documentation_mode(mode=False)

	This method is deprecated and will be removed in future releases.
Enable/disable printing user tips on notebook.

	Parameters

	mode (bool (default False)) – Enable/disable print user tips on notebook

	
ads.set_expert_mode()

	This method is deprecated and will be removed in future releases.
Enables the debug and documentation mode for expert users all in one method.

 ads.automl package

ads.automl package

Submodules

ads.automl.driver module

	
class ads.automl.driver.AutoML(training_data, validation_data=None, provider=None, baseline='dummy', client=None)

	Bases: object

Creates an Automatic machine learning object.

	Parameters

	
	training_data (ADSData instance) –

	validation_data (ADSData instance) –

	provider (None or object of ads.automl.provider.AutoMLProvider) – If None, the default OracleAutoMLProvider will be used to generate the model

	baseline (None, "dummy", or object of ads.common.model.ADSModel (Default is "dummy")) –
	If None, than no baseline is created,

	If “dummy”, than the DummyClassifier or DummyRegressor are used

	If Object, than whatever estimator is provided will be used.

This estimator must include a part of its pipeline which does preprocessing
to handle categorical data

	client – Dask Client to use (optional)

Examples

>>> train, test = ds.train_test_split()
>>> olabs_automl = OracleAutoMLProvider()
>>> model, baseline = AutoML(train, provider=olabs_automl).train()

	
train(**kwargs)

	Returns a fitted automl model and a fitted baseline model.

	Parameters

	kwargs (dict, optional) – kwargs passed to provider’s train method

	Returns

	
	model (object of ads.common.model.ADSModel) – the trained automl model

	baseline (object of ads.common.model.ADSModel) – the baseline model to compare

Examples

>>> train, test = ds.train_test_split()
>>> olabs_automl = OracleAutoMLProvider()
>>> model, baseline = AutoML(train, provider=olabs_automl).train()

	
ads.automl.driver.get_ml_task_type(X, y, classes)

	Gets the ML task type and returns it.

	Parameters

	
	X (Dataframe) – The training dataframe

	Y (Dataframe) – The testing dataframe

	Classes (List) – a list of classes

	Returns

	A particular task type like REGRESSION, MULTI_CLASS_CLASSIFICATION…

	Return type

	ml_task_type

ads.automl.provider module

	
class ads.automl.provider.AutoMLFeatureSelection(msg)

	Bases: object

	
fit(X)

	Fits the baseline estimator

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted on

	Returns

	Self – The fitted estimator

	Return type

	Estimator

	
transform(X)

	Runs the Baselines transform function and returns the result

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be transformed

	Returns

	X – The transformed Dataframe.

	Return type

	Dataframe or list-like

	
class ads.automl.provider.AutoMLPreprocessingTransformer(msg)

	Bases: object

	
fit(X)

	Fits the preprocessing Transformer

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted on

	Returns

	Self – The fitted estimator

	Return type

	Estimator

	
transform(X)

	Runs the preprocessing transform function and returns the result

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be transformed

	Returns

	X – The transformed Dataframe.

	Return type

	Dataframe or list-like

	
class ads.automl.provider.AutoMLProvider

	Bases: abc.ABC

Abstract Base Class defining the structure of an AutoML solution. The solution needs to
implement train() and get_transformer_pipeline().

	
property est

	Returns the estimator.

The estimator can be a standard sklearn estimator or any object that implement methods from
(BaseEstimator, RegressorMixin) for regression or (BaseEstimator, ClassifierMixin) for classification.

	Returns

	est

	Return type

	An instance of estimator

	
abstract get_transformer_pipeline()

	Returns a list of transformers representing the transformations done on data before model prediction.

This method is optional to implement, and is used only for visualizing transformations on data using
ADSModel#visualize_transforms().

	Returns

	transformers_list

	Return type

	list of transformers implementing fit and transform

	
setup(X_train, y_train, ml_task_type, X_valid=None, y_valid=None, class_names=None, client=None)

	Setup arguments to the AutoML instance.

	Parameters

	
	X_train (DataFrame) – Training features

	y_train (DataFrame) – Training labels

	ml_task_type (One of ml_task_type.{REGRESSION,BINARY_CLASSIFICATION,) – MULTI_CLASS_CLASSIFICATION,BINARY_TEXT_CLASSIFICATION,MULTI_CLASS_TEXT_CLASSIFICATION}

	X_valid (DataFrame) – Validation features

	y_valid (DataFrame) – Validation labels

	class_names (list) – Unique values in y_train

	client (object) – Dask client instance for distributed execution

	
abstract train(**kwargs)

	Calls fit on estimator.

This method is expected to set the ‘est’ property.

	Parameters

	
	kwargs (dict, optional) –

	method (kwargs to decide the estimator and arguments for the fit) –

	
class ads.automl.provider.BaselineAutoMLProvider(est)

	Bases: ads.automl.provider.AutoMLProvider

Generates a baseline model using the Zero Rule algorithm by default. For a classification
predictive modeling problem where a categorical value is predicted, the Zero
Rule algorithm predicts the class value that has the most observations in the training dataset.

	Parameters

	est (BaselineModel) – An estimator that supports the fit/predict/predict_proba interface.
By default, DummyClassifier/DummyRegressor are used as estimators

	
decide_estimator(**kwargs)

	Decides which type of BaselineModel to generate.

	Returns

	Modell – A baseline model generated for the particular ML task being performed

	Return type

	BaselineModel

	
get_transformer_pipeline()

	Returns a list of transformers representing the transformations done on data before model prediction.

This method is used only for visualizing transformations on data using
ADSModel#visualize_transforms().

	Returns

	transformers_list

	Return type

	list of transformers implementing fit and transform

	
train(**kwargs)

	Calls fit on estimator.

This method is expected to set the ‘est’ property.

	Parameters

	
	kwargs (dict, optional) –

	method (kwargs to decide the estimator and arguments for the fit) –

	
class ads.automl.provider.BaselineModel(est)

	Bases: object

A BaselineModel object that supports fit/predict/predict_proba/transform
interface. Labels (y) are encoded using DataFrameLabelEncoder.

	
fit(X, y)

	Fits the baseline estimator.

	Parameters

	
	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted on

	Y (Dataframe, Series, or list-like) – A Dataframe, series, or list-like object holding the labels

	Returns

	estimator

	Return type

	The fitted estimator

	
predict(X)

	Runs the Baselines predict function and returns the result.

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted on

	Returns

	List

	Return type

	A list of predictions performed on the input data.

	
predict_proba(X)

	Runs the Baselines predict_proba function and returns the result.

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted on

	Returns

	List

	Return type

	A list of probabilities of being part of a class

	
transform(X)

	Runs the Baselines transform function and returns the result.

	Parameters

	X (Dataframe or list-like) – A Dataframe or list-like object holding data to be transformed

	Returns

	Dataframe or list-like

	Return type

	The transformed Dataframe. Currently, no transformation is performed by the default Baseline Estimator.

	
class ads.automl.provider.OracleAutoMLProvider(n_jobs=- 1, loglevel=None, logger_override=None)

	Bases: ads.automl.provider.AutoMLProvider, abc.ABC

The Oracle AutoML Provider automatically provides a tuned ML pipeline that best models the given a training
dataset and a prediction task at hand.

	Parameters

	
	n_jobs (int) – Specifies the degree of parallelism for Oracle AutoML. -1 (default) means that AutoML will use all
available cores.

	loglevel (int) – The verbosity of output for Oracle AutoML. Can be specified using the Python logging module
(https://docs.python.org/3/library/logging.html#logging-levels).

	
get_transformer_pipeline()

	Returns a list of transformers representing the transformations done on data before model prediction.

This method is used only for visualizing transformations on data using
ADSModel#visualize_transforms().

	Returns

	transformers_list

	Return type

	list of transformers implementing fit and transform

	
print_summary(max_rows=None, sort_column='Mean Validation Score', ranking_table_only=False)

	Prints a summary of the Oracle AutoML Pipeline in the last train() call.

	Parameters

	
	max_rows (int) – Number of trials to print. Pass in None to print all trials

	sort_column (string) – Column to sort results by. Must be one of [‘Algorithm’, ‘#Samples’, ‘#Features’, ‘Mean Validation Score’,
‘Hyperparameters’, ‘All Validation Scores’, ‘CPU Time’]

	ranking_table_only (bool) – Table to be displayed. Pass in False to display the complete table.
Pass in True to display the ranking table only.

	
print_trials(max_rows=None, sort_column='Mean Validation Score')

	Prints all trials executed by the Oracle AutoML Pipeline in the last train() call.

	Parameters

	
	max_rows (int) – Number of trials to print. Pass in None to print all trials

	sort_column (string) – Column to sort results by. Must be one of [‘Algorithm’, ‘#Samples’, ‘#Features’, ‘Mean Validation Score’,
‘Hyperparameters’, ‘All Validation Scores’, ‘CPU Time’]

	
selected_model_name()

	Return the name of the selected model by AutoML.

	
selected_score_label()

	Return the name of score_metric used in train.

	
train(**kwargs)

	Train the Oracle AutoML Pipeline. This looks at the training data, and
identifies the best set of features, the best algorithm and the best
set of hyperparameters for this data. A model is then generated, trained
on this data and returned.

	Parameters

	
	score_metric (str, callable) – Score function (or loss function) with signature score_func(y, y_pred, **kwargs) or string specified as
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values

	random_state (int) – Random seed used by AutoML

	model_list (list of str) – Models that will be evaluated by the Pipeline. Supported models:
- Classification: AdaBoostClassifier, DecisionTreeClassifier,
ExtraTreesClassifier, KNeighborsClassifier,
LGBMClassifier, LinearSVC, LogisticRegression,
RandomForestClassifier, SVC, XGBClassifier
- Regression: AdaBoostRegressor, DecisionTreeRegressor,
ExtraTreesRegressor, KNeighborsRegressor,
LGBMRegressor, LinearSVR, LinearRegression, RandomForestRegressor,
SVR, XGBRegressor

	time_budget (float, optional) – Time budget in seconds where 0 means no time budget constraint (best effort)

	min_features (int, float, list, optional (default: 1)) – Minimum number of features to keep. Acceptable values:
- If int, 0 < min_features <= n_features
- If float, 0 < min_features <= 1.0
- If list, names of features to keep, for example [‘a’, ‘b’] means keep features ‘a’ and ‘b’

	Returns

	self

	Return type

	object

	
visualize_adaptive_sampling_trials()

	Visualize the trials for Adaptive Sampling.

	
visualize_algorithm_selection_trials(ylabel=None)

	Plot the scores predicted by Algorithm Selection for each algorithm. The
horizontal line shows the average score across all algorithms. Algorithms
below the line are colored turquoise, whereas those with a score higher
than the mean are colored teal. The orange bar shows the algorithm with
the highest predicted score. The error bar is +/- one standard error.

	Parameters

	ylabel (str,) – Label for the y-axis. Defaults to the scoring metric.

	
visualize_feature_selection_trials(ylabel=None)

	Visualize the feature selection trials taken to arrive at optimal set of
features. The orange line shows the optimal number of features chosen
by Feature Selection.

	Parameters

	ylabel (str,) – Label for the y-axis. Defaults to the scoring metric.

	
visualize_tuning_trials(ylabel=None)

	Visualize (plot) the hyperparamter tuning trials taken to arrive at the optimal
hyper parameters. Each trial in the plot represents a particular
hyperparamter combination.

	Parameters

	ylabel (str,) – Label for the y-axis. Defaults to the scoring metric.

Module contents

 ads.catalog package

ads.catalog package

Submodules

ads.catalog.model module

	
class ads.catalog.model.Model(model: oci.data_science.models.model.Model, model_etag: str, provenance_metadata: oci.data_science.models.model_provenance.ModelProvenance, provenance_etag: str, ds_client: oci.data_science.data_science_client.DataScienceClient, identity_client: oci.identity.identity_client.IdentityClient)

	Bases: object

Class that represents the ADS implementation of model catalog item.
Converts the metadata and schema from OCI implememtation to ADS implementation.

	
to_dataframe()

	Converts model to dataframe format.

	
show_in_notebook()

	Shows model in the notebook in dataframe or YAML representation.

	
activate()

	Activates model.

	
deactivate()

	Deactivates model.

	
commit()

	Commits the changes made to the model.

	
rollback()

	Rollbacks the changes made to the model.

	
load_model()

	Loads the model from the model catalog based on model ID.

Initializes the Model.

	Parameters

	
	model (OCIModel) – The OCI model object.

	model_etag (str) – The model ETag.

	provenance_metadata (ModelProvenance) – The model provenance metadata.

	provenance_etag (str) – The model provenance metadata ETag.

	ds_client (DataScienceClient) – The Oracle DataScience client.

	identity_client (IdentityClient) – The Orcale Identity Service Client.

	
activate() → None

	Activates model.

	Returns

	Nothing.

	Return type

	None

	
commit(force: bool = True) → None

	Commits model changes.

	Parameters

	force (bool) – If True, any remote changes on this model would be lost.

	Returns

	Nothing.

	Return type

	None

	
deactivate() → None

	Deactivates model.

	Returns

	Nothing.

	Return type

	None

	
classmethod load_model(ds_client: oci.data_science.data_science_client.DataScienceClient, identity_client: oci.identity.identity_client.IdentityClient, model_id: str) → ads.catalog.model.Model

	Loads the model from the model catalog based on model ID.

	Parameters

	
	ds_client (DataScienceClient) – The Oracle DataScience client.

	identity_client (IdentityClient) – The Orcale Identity Service Client.

	model_id (str) – The model ID.

	Returns

	The ADS model catalog item.

	Return type

	Model

	Raises

	
	ServiceError – If error occures while getting model from server.:

	KeyError – If model not found.:

	ValueError – If error occures while getting model provenance mettadata from server.:

	
rollback() → None

	Rollbacks the changes made to the model.

	Returns

	Nothing.

	Return type

	None

	
show_in_notebook(display_format: str = 'dataframe') → None

	Shows model in dataframe or yaml format.
Supported formats: dataframe and yaml. Defaults to dataframe format.

	Returns

	Nothing.

	Return type

	None

	
to_dataframe() → pandas.core.frame.DataFrame

	Converts the model to dataframe format.

	Returns

	Pandas dataframe.

	Return type

	panadas.DataFrame

	
class ads.catalog.model.ModelCatalog(compartment_id: Optional[str] = None, ds_client_auth: Optional[dict] = None, identity_client_auth: Optional[dict] = None, timeout: Optional[int] = None)

	Bases: object

Allows to list, load, update, download, upload and delete models from model catalog.

	
get_model(self, model_id)

	Loads the model from the model catalog based on model_id.

	
list_models(self, project_id=None, include_deleted=False, datetime_format=utils.date_format, **kwargs)

	Lists all models in a given compartment, or in the current project if project_id is specified.

	
list_model_deployment(self, model_id, config=None, tenant_id=None, limit=500, page=None, **kwargs)

	Gets the list of model deployments by model Id across the compartments.

	
update_model(self, model_id, update_model_details=None, **kwargs)

	Updates a model with given model_id, using the provided update data.

	
delete_model(self, model, **kwargs)

	Deletes the model based on model_id.

	
download_model(self, model_id, target_dir, force_overwrite=False, install_libs=False, conflict_strategy=ConflictStrategy.IGNORE)

	Downloads the model from model_dir to target_dir based on model_id.

	
upload_model(self, model_artifact, provenance_metadata=None, project_id=None, display_name=None, description=None)

	Uploads the model artifact to cloud storage.

Initializes model catalog instance.

	Parameters

	
	compartment_id ((str, optional). Defaults to None.) – Model compartment OCID. If None, the config.NB_SESSION_COMPARTMENT_OCID would be used.

	ds_client_auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate DataScienceClient object.

	identity_client_auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	timeout ((int, optional). Defaults to 10 seconds.) – The connection timeout in seconds for the client.

	Raises

	
	ValueError – If compartment ID not specified.

	TypeError – If timeout not an integer.

	
delete_model(model, **kwargs)

	Deletes the model based on model_id.

	Parameters

	model (str ID or ads.catalog.Model,required) – The OCID of the model to delete as a string, or a Model instance.

	Returns

	Bool

	Return type

	True if the model was deleted and False otherwise

	
download_model(model_id: str, target_dir: str, force_overwrite: bool = False, install_libs: bool = False, conflict_strategy='IGNORE')

	Downloads the model from model_dir to target_dir based on model_id.

	Parameters

	
	model_id (str) – The OCID of the model to download.

	target_dir (str) – The target location of model after download.

	force_overwrite (bool) – Overwrite target_dir if exists.

	install_libs (bool, default: False) – Install the libraries specified in ds-requirements.txt which are missing in the current environment.

	conflict_strategy (ConflictStrategy, default: IGNORE) – Determines how to handle version conflicts between the current environment and requirements of
model artifact.
Valid values: “IGNORE”, “UPDATE” or ConflictStrategy.
IGNORE: Use the installed version in case of conflict
UPDATE: Force update dependency to the version required by model artifact in case of conflict

	Returns

	A ModelArtifact instance.

	Return type

	ModelArtifact

	
get_model(model_id)

	Loads the model from the model catalog based on model_id.

	Parameters

	model_id (str, required) – The model ID.

	Returns

	The ads.catalog.Model with the matching ID.

	Return type

	ads.catalog.Model

	
list_model_deployment(model_id: str, config: Optional[dict] = None, tenant_id: Optional[str] = None, limit: int = 500, page: Optional[str] = None, **kwargs)

	Gets the list of model deployments by model Id across the compartments.

	Parameters

	
	model_id (str) – The model ID.

	config (dict (optional)) – Configuration keys and values as per SDK and Tool Configuration.
The from_file() method can be used to load configuration from a file.
Alternatively, a dict can be passed. You can validate_config the dict
using validate_config(). Defaults to None.

	tenant_id (str (optional)) – The tenancy ID, which can be used to specify a different tenancy
(for cross-tenancy authorization) when searching for resources in
a different tenancy. Defaults to None.

	limit (int (optional)) – The maximum number of items to return. The value must be between
1 and 1000. Defaults to 500.

	page (str (optional)) – The page at which to start retrieving results.

	Return type

	The list of model deployments.

	
list_models(project_id: Optional[str] = None, include_deleted: bool = False, datetime_format: str = '%Y-%m-%d %H:%M:%S', **kwargs)

	Lists all models in a given compartment, or in the current project if project_id is specified.

	Parameters

	
	project_id (str) – The project_id of model.

	include_deleted (bool, optional, default=False) – Whether to include deleted models in the returned list.

	datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change format for date time fields.

	Returns

	A list of models.

	Return type

	ModelSummaryList

	
update_model(model_id, update_model_details=None, **kwargs) → ads.catalog.model.Model

	Updates a model with given model_id, using the provided update data.

	Parameters

	
	model_id (str) – The model ID.

	update_model_details (UpdateModelDetails) – Contains the update model details data to apply.
Mandatory unless kwargs are supplied.

	kwargs (dict, optional) – Update model details can be supplied instead as kwargs.

	Returns

	The ads.catalog.Model with the matching ID.

	Return type

	Model

	
upload_model(model_artifact, provenance_metadata=None, project_id=None, display_name=None, description=None, freeform_tags=None, defined_tags=None)

	Uploads the model artifact to cloud storage.

	Parameters

	
	model_artifact (ModelArtifact instance) – This is built by calling prepare on an ADSModel instance.

	provenance_metadata (ModelProvenance) – Model provenance gives data scientists information about the origin of their model. This information allows data scientists to reproduce
the development environment in which the model was trained.

	project_id (str, optional) – The project_id of model.

	display_name (str, optional) – The name of model.

	description (str, optional) – The description of model.

	freeform_tags (dict(str, str), optional) – Freeform tags for the model, by default None

	defined_tags (dict(str, dict(str, object)), optional) – Defined tags for the model, by default None

	Returns

	The ads.catalog.Model with the matching ID.

	Return type

	ads.catalog.Model

	
class ads.catalog.model.ModelSummaryList(model_catalog, model_list, response=None, datetime_format='%Y-%m-%d %H:%M:%S')

	Bases: ads.catalog.summary.SummaryList

Model Summary List which represents a list of Model Object.

	
sort_by(self, columns, reverse=False)

	Performs a multi-key sort on a particular set of columns and returns the sorted ModelSummaryList.
Results are listed in a descending order by default.

	
filter(self, selection, instance=None)

	Filters the model list according to a lambda filter function, or list comprehension.

	
filter(selection, instance=None)

	Filters the model list according to a lambda filter function, or list comprehension.

	Parameters

	
	selection (lambda function filtering model instances, or a list-comprehension) – function of list filtering projects

	instance (list, optional) – list to filter, optional, defaults to self

	Returns

	ModelSummaryList

	Return type

	A filtered ModelSummaryList

	
sort_by(columns, reverse=False)

	Performs a multi-key sort on a particular set of columns and returns the sorted ModelSummaryList.
Results are listed in a descending order by default.

	Parameters

	
	columns (List of string) – A list of columns which are provided to sort on

	reverse (Boolean (defaults to false)) – If you’d like to reverse the results (for example, to get ascending instead of descending results)

	Returns

	ModelSummaryList

	Return type

	A sorted ModelSummaryList

	
exception ads.catalog.model.ModelWithActiveDeploymentError

	Bases: Exception

ads.catalog.notebook module

	
class ads.catalog.notebook.NotebookCatalog(compartment_id=None)

	Bases: object

	
create_notebook_session(display_name=None, project_id=None, shape=None, block_storage_size_in_gbs=None, subnet_id=None, **kwargs)

	Create a new notebook session with the supplied details.

	Parameters

	
	display_name (str, required) – The value to assign to the display_name property of this CreateNotebookSessionDetails.

	project_id (str, required) – The value to assign to the project_id property of this CreateNotebookSessionDetails.

	shape (str, required) – The value to assign to the shape property of this NotebookSessionConfigurationDetails.
Allowed values for this property are: “VM.Standard.E2.2”, “VM.Standard.E2.4”,
“VM.Standard.E2.8”, “VM.Standard2.1”, “VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”,
“VM.Standard2.16”,”VM.Standard2.24”.

	block_storage_size_in_gbs (int, required) – Size of the block storage drive. Limited to values between 50 (GB) and 1024 (1024GB = 1TB)

	subnet_id (str, required) – The OCID of the subnet resource where the notebook is to be created.

	kwargs (dict, optional) – Additional kwargs passed to DataScienceClient.create_notebook_session()

	Returns

	oci.data_science.models.NotebookSession

	Return type

	A new notebook record.

	Raises

	KeyError – If the resource was not found or do not have authorization to access that resource.:

	
delete_notebook_session(notebook, **kwargs)

	Deletes the notebook based on notebook_id.

	Parameters

	notebook (str ID or oci.data_science.models.NotebookSession,required) – The OCID of the notebook to delete as a string, or a Notebook Session instance

	Returns

	Bool

	Return type

	True if delete was successful, false otherwise

	
get_notebook_session(notebook_id)

	Get the notebook based on notebook_id

	Parameters

	notebook_id (str, required) – The OCID of the notebook to get.

	Returns

	oci.data_science.models.NotebookSession

	Return type

	The oci.data_science.models.NotebookSession with the matching ID.

	Raises

	KeyError – If the resource was not found or do not have authorization to access that resource.:

	
list_notebook_session(include_deleted=False, datetime_format='%Y-%m-%d %H:%M:%S', **kwargs)

	List all notebooks in a given compartment

	Parameters

	
	include_deleted (bool, optional, default=False) – Whether to include deleted notebooks in the returned list

	datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change format for date time fields

	Returns

	NotebookSummaryList

	Return type

	A List of notebooks.

	Raises

	KeyError – If the resource was not found or do not have authorization to access that resource.:

	
update_notebook_session(notebook_id, update_notebook_details=None, **kwargs)

	Updates a notebook with given notebook_id, using the provided update data

	Parameters

	
	notebook_id (str) – notebook_id OCID to update

	update_notebook_details (oci.data_science.models.UpdateNotebookSessionDetails) – contains the new notebook details data to apply

	kwargs (dict, optional) – Update notebook session details can be supplied instead as kwargs

	Returns

	oci.data_science.models.NotebookSession

	Return type

	The updated Notebook record

	Raises

	KeyError – If the resource was not found or do not have authorization to access that resource.:

	
class ads.catalog.notebook.NotebookSummaryList(notebook_list, response=None, datetime_format='%Y-%m-%d %H:%M:%S')

	Bases: ads.catalog.summary.SummaryList

	
filter(selection, instance=None)

	Filter the notebook list according to a lambda filter function, or list comprehension.

	Parameters

	
	selection (lambda function filtering notebook instances, or a list-comprehension) – function of list filtering notebooks

	instance (list, optional) – list to filter, optional, defaults to self

	Raises

	ValueError – If selection passed is not correct. For example: selection=oci.data_science.models.NotebookSession.:

	
sort_by(columns, reverse=False)

	Performs a multi-key sort on a particular set of columns and returns the sorted NotebookSummaryList
Results are listed in a descending order by default.

	Parameters

	
	columns (List of string) – A list of columns which are provided to sort on

	reverse (Boolean (defaults to false)) – If you’d like to reverse the results (for example, to get ascending instead of descending results)

	Returns

	NotebookSummaryList

	Return type

	A sorted NotebookSummaryList

ads.catalog.project module

	
class ads.catalog.project.ProjectCatalog(compartment_id=None, ds_client_auth=None, identity_client_auth=None)

	Bases: collections.abc.Mapping

	
create_project(create_project_details=None, **kwargs)

	Create a new project with the supplied details.
create_project_details contains parameters needed to create a new project, according to oci.data_science.models.CreateProjectDetails.

	Parameters

	
	display_name (str) – The value to assign to the display_name property of this CreateProjectDetails.

	description (str) – The value to assign to the description property of this CreateProjectDetails.

	compartment_id (str) – The value to assign to the compartment_id property of this CreateProjectDetails.

	freeform_tags (dict(str, str)) – The value to assign to the freeform_tags property of this CreateProjectDetails.

	defined_tags (dict(str, dict(str, object))) – The value to assign to the defined_tags property of this CreateProjectDetails.

	kwargs – New project details can be supplied instead as kwargs

	Returns

	oci.data_science.models.Project

	Return type

	A new Project record.

	
delete_project(project, **kwargs)

	Deletes the project based on project_id.

	Parameters

	project (str ID or oci.data_science.models.Project,required) – The OCID of the project to delete as a string, or a Project instance

	Returns

	Bool

	Return type

	True if delete was succesful

	
get_project(project_id)

	Get the Project based on project_id

	Parameters

	project_id (str, required) – The OCID of the project to get.

	Return type

	The oci.data_science.models.Project with the matching ID.

	Raises

	KeyError – If the resource was not found or do not have authorization to access that resource.:

	
list_projects(include_deleted=False, datetime_format='%Y-%m-%d %H:%M:%S', **kwargs)

	List all projects in a given compartment, or in the current notebook session’s compartment

	Parameters

	
	include_deleted (bool, optional, default=False) – Whether to include deleted projects in the returned list

	datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change format for date time fields

	Returns

	ProjectSummaryList

	Return type

	List of Projects.

	Raises

	KeyError – If the resource was not found or do not have authorization to access that resource.:

	
update_project(project_id, update_project_details=None, **kwargs)

	Updates a project with given project_id, using the provided update data
update_project_details contains the update project details data to apply, according to oci.data_science.models.UpdateProjectDetails

	Parameters

	
	project_id (str) – project_id OCID to update

	display_name (str) – The value to assign to the display_name property of this UpdateProjectDetails.

	description (str) – The value to assign to the description property of this UpdateProjectDetails.

	freeform_tags (dict(str, str)) – The value to assign to the freeform_tags property of this UpdateProjectDetails.

	defined_tags (dict(str, dict(str, object))) – The value to assign to the defined_tags property of this UpdateProjectDetails.

	kwargs (dict, optional) – Update project details can be supplied instead as kwargs

	Returns

	oci.data_science.models.Project

	Return type

	The updated Project record

	
class ads.catalog.project.ProjectSummaryList(project_list, response=None, datetime_format='%Y-%m-%d %H:%M:%S')

	Bases: ads.catalog.summary.SummaryList

A class used to represent Project Summary List.

…

	
df

	Summary information for a project.

	Type

	data frame

	
datetime_format

	Format used to describe time.

	Type

	str

	
response

	A response object with data of type list of ProjectSummaryList.

	Type

	oci.response.Response

	
short_id_index

	Mapping of short id and its value.

	Type

	(dict of str: str)

	
sort_by(self, columns, reverse=False):

	Sort ProjectSummaryList by columns.

	
filter(self, selection, instance=None):

	Filter the project list according to a lambda filter function, or list comprehension.

	
filter(selection, instance=None)

	Filter the project list according to a lambda filter function, or list comprehension.

	Parameters

	
	selection (lambda function filtering Project instances, or a list-comprehension) – function of list filtering projects

	instance (list, optional) – list to filter, optional, defaults to self

	Returns

	ProjectSummaryList

	Return type

	A filtered ProjectSummaryList

	Raises

	ValueError – If selection passed is not correct.:

	
sort_by(columns, reverse=False)

	Sort ProjectSummaryList by columns.

Performs a multi-key sort on a particular set of columns and returns the sorted ProjectSummaryList
Results are listed in a descending order by default.

	Parameters

	
	columns (List of string) – A list of columns which are provided to sort on

	reverse (Boolean (defaults to false)) – If you’d like to reverse the results (for example, to get ascending instead of descending results)

	Returns

	ProjectSummaryList

	Return type

	A sorted ProjectSummaryList

ads.catalog.summary module

	
class ads.catalog.summary.SummaryList(entity_list, datetime_format='%Y-%m-%d %H:%M:%S')

	Bases: list

	
abstract filter(selection, instance=None)

	Abstract method for filtering, implemented by the derived class

	
show_in_notebook(datetime_format=None)

	Displays the model catalog summary in a Jupyter Notebook cell

	Parameters

	date_format (like utils.date_format. Defaults to none.) –

	Return type

	None

	
abstract sort_by(columns, reverse=False)

	Abstract method for sorting, implemented by the derived class

	
to_dataframe(datetime_format=None)

	Returns the model catalog summary as a pandas dataframe

	Parameters

	datatime_format (date_format) – A datetime format, like utils.date_format. Defaults to none.

	Returns

	Dataframe

	Return type

	The pandas DataFrame repersentation of the model catalog summary

Module contents

 ads.common package

ads.common package

Submodules

ads.common.card_identifier module

credit card patterns refer to https://en.wikipedia.org/wiki/Payment_card_number#Issuer_identification_number_(IIN)
Active and frequent card information
American Express: 34, 37
Diners Club (US & Canada): 54,55
Discover Card: 6011, 622126 - 622925, 624000 - 626999, 628200 - 628899, 64, 65
Master Card: 2221-2720, 51–55
Visa: 4

	
class ads.common.card_identifier.card_identify

	Bases: object

	
identify_issue_network(card_number)

	Returns the type of credit card based on its digits

	Parameters

	card_number (String) –

	Returns

	String

	Return type

	A string corresponding to the kind of credit card.

ads.common.auth module

	
ads.common.auth.api_keys(oci_config: str = '/home/docs/.oci/config', profile: str = 'DEFAULT', client_kwargs: Optional[dict] = None) → dict

	Prepares authentication and extra arguments necessary for creating clients for different OCI services using API
Keys.

	Parameters

	
	oci_config (str) – OCI authentication config file location. Default is $HOME/.oci/config.

	profile (str) – Profile name to select from the config file. The defautl is DEFAULT

	client_kwargs (dict) – kwargs that are required to instantiate the Client if we need to override the defaults.

	Returns

	Contains keys - config, signer and client_kwargs.

	The config contains the config loaded from the configuration loaded from oci_config.

	The signer contains the signer object created from the api keys.

	client_kwargs contains the client_kwargs that was passed in as input parameter.

	Return type

	dict

Examples

>>> from ads.common import auth as authutil
>>> from ads.common import oci_client as oc
>>> auth = authutil.api_keys(oci_config="/home/datascience/.oci/config", profile="TEST", client_kwargs={"timeout": 6000})
>>> oc.OCIClientFactory(**auth).object_storage # Creates Object storage client with timeout set to 6000 using API Key authentication

	
ads.common.auth.default_signer(client_kwargs=None)

	Prepares authentication and extra arguments necessary for creating clients for different OCI services based on
the default authentication setting for the session. Refer ads.set_auth API for further reference.

	Parameters

	client_kwargs (dict) – kwargs that are required to instantiate the Client if we need to override the defaults.

	Returns

	Contains keys - config, signer and client_kwargs.

	The config contains the config loaded from the configuration loaded from the default location if the default
auth mode is API keys, otherwise it is empty dictionary.

	The signer contains the signer object created from default auth mode.

	client_kwargs contains the client_kwargs that was passed in as input parameter.

	Return type

	dict

Examples

>>> from ads.common import auth as authutil
>>> from ads.common import oci_client as oc
>>> auth = authutil.default_signer()
>>> oc.OCIClientFactory(**auth).object_storage # Creates Object storage client

	
ads.common.auth.get_signer(oci_config=None, oci_profile=None, **client_kwargs)

	

	
ads.common.auth.resource_principal(client_kwargs=None)

	Prepares authentication and extra arguments necessary for creating clients for different OCI services using
Resource Principals.

	Parameters

	client_kwargs (dict) – kwargs that are required to instantiate the Client if we need to override the defaults.

	Returns

	Contains keys - config, signer and client_kwargs.

	The config contains and empty dictionary.

	The signer contains the signer object created from the resource principal.

	client_kwargs contains the client_kwargs that was passed in as input parameter.

	Return type

	dict

Examples

>>> from ads.common import auth as authutil
>>> from ads.common import oci_client as oc
>>> auth = authutil.resource_principal({"timeout": 6000})
>>> oc.OCIClientFactory(**auth).object_storage # Creates Object Storage client with timeout set to 6000 seconds using resource principal authentication

ads.common.data module

	
class ads.common.data.ADSData(X=None, y=None, name='', dataset_type=None)

	Bases: object

This class wraps the input dataframe to various models, evaluation, and explanation frameworks.
It’s primary purpose is to hold any metadata relevant to these tasks. This can include it’s:

	X - the independent variables as some dataframe-like structure,

	y - the dependent variable or target column as some array-like structure,

	name - a string to name the data for user convenience,

	dataset_type - the type of the X value.

As part of this initiative, ADSData knows how to turn itself into an onnxruntime compatible data
structure with the method .to_onnxrt(), which takes and onnx session as input.

	Parameters

	
	X (Union[pandas.DataFrame, dask.DataFrame, numpy.ndarray, scipy.sparse.csr.csr_matrix]) – If str, URI for the dataset. The dataset could be read from local or network file system, hdfs, s3 and gcs
Should be none if X_train, y_train, X_test, Y_test are provided

	y (Union[str, pandas.DataFrame, dask.DataFrame, pandas.Series, dask.Series, numpy.ndarray]) – If str, name of the target in X, otherwise series of labels corresponding to X

	name (str, optional) – Name to identify this data

	dataset_type (ADSDataset optional) – When this value is available, would be used to evaluate the ads task type

	kwargs – Additional keyword arguments that would be passed to the underlying Pandas read API.

	
static build(X=None, y=None, name='', dataset_type=None, **kwargs)

	Returns an ADSData object built from the (source, target) or (X,y)

	Parameters

	
	X (Union[pandas.DataFrame, dask.DataFrame, numpy.ndarray, scipy.sparse.csr.csr_matrix]) – If str, URI for the dataset. The dataset could be read from local or network file system, hdfs, s3 and gcs
Should be none if X_train, y_train, X_test, Y_test are provided

	y (Union[str, pandas.DataFrame, dask.DataFrame, pandas.Series, dask.Series, numpy.ndarray]) – If str, name of the target in X, otherwise series of labels corresponding to X

	name (str, optional) – Name to identify this data

	dataset_type (ADSDataset, optional) – When this value is available, would be used to evaluate the ads task
type

	kwargs – Additional keyword arguments that would be passed to the underlying Pandas read API.

	Returns

	ads_data – A built ADSData object

	Return type

	ads.common.data.ADSData

Examples

>>> data = open_csv("my.csv")

>>> data_ads = ADSData(data, 'target').build(data, 'target')

	
to_onnxrt(sess, idx_range=None, model=None, impute_values={}, **kwargs)

	Returns itself formatted as an input for the onnxruntime session inputs passed in.

	Parameters

	
	sess (Session) – The session object

	idx_range (Range) – The range of inputs to convert to onnx

	model (SupportedModel) – A model that supports being serialized for the onnx runtime.

	kwargs (additional keyword arguments) –
	sess_inputs - Pass in the output from onnxruntime.InferenceSession(“model.onnx”).get_inputs()

	input_dtypes (list) - If sess_inputs cannot be passed in, pass in the numpy dtypes of each input

	input_shapes (list) - If sess_inputs cannot be passed in, pass in the shape of each input

	input_names (list) -If sess_inputs cannot be passed in, pass in the name of each input

	Returns

	ort – array of inputs formatted for the given session.

	Return type

	Array

ads.common.model module

	
class ads.common.model.ADSModel(est, target=None, transformer_pipeline=None, client=None, booster=None, classes=None, name=None)

	Bases: object

Construct an ADSModel

	Parameters

	
	est (fitted estimator object) – The estimator can be a standard sklearn estimator, a keras, lightgbm, or xgboost estimator, or any other object that implement methods from
(BaseEstimator, RegressorMixin) for regression or (BaseEstimator, ClassifierMixin) for classification.

	target (PandasSeries) – The target column you are using in your dataset, this is assigned as the “y” attribute.

	transformer_pipeline (TransformerPipeline) – A custom trasnformer pipeline object.

	client (Str) – Currently unused.

	booster (Str) – Currently unused.

	classes (list, optional) – List of target classes. Required for classification problem if the est does not contain classes attribute.

	name (str, optional) – Name of the model.

	
static convert_dataframe_schema(df, drop=None)

	

	
feature_names(X=None)

	

	
static from_estimator(est, transformers=None, classes=None, name=None)

	Build ADSModel from a fitted estimator

	Parameters

	
	est (fitted estimator object) – The estimator can be a standard sklearn estimator or any object that implement methods from
(BaseEstimator, RegressorMixin) for regression or (BaseEstimator, ClassifierMixin) for classification.

	transformers (a scalar or an iterable of objects implementing transform function, optional) – The transform function would be applied on data before calling predict and predict_proba on estimator.

	classes (list, optional) – List of target classes. Required for classification problem if the est does not contain classes attribute.

	name (str, optional) – Name of the model.

	Returns

	model

	Return type

	ads.common.model.ADSModel

Examples

>>> model = MyModelClass.train()
>>> model_ads = from_estimator(model)

	
static get_init_types(df, underlying_model=None)

	

	
is_classifier()

	Returns True if ADS believes that the model is a classifier

	Returns

	Boolean

	Return type

	True if the model is a classifier, False otherwise.

	
predict(X)

	Runs the models predict function on some data

	Parameters

	X (MLData) – A MLData object which holds the examples to be predicted on.

	Returns

	Usually a list or PandasSeries of predictions

	Return type

	Union[List, pandas.Series], depending on the estimator

	
predict_proba(X)

	Runs the models predict probabilities function on some data

	Parameters

	X (MLData) – A MLData object which holds the examples to be predicted on.

	Returns

	Usually a list or PandasSeries of predictions

	Return type

	Union[List, pandas.Series], depending on the estimator

	
prepare(target_dir=None, data_sample=None, X_sample=None, y_sample=None, include_data_sample=False, force_overwrite=False, fn_artifact_files_included=False, fn_name='model_api', inference_conda_env=None, data_science_env=False, ignore_deployment_error=False, use_case_type=None, inference_python_version=None, imputed_values={}, **kwargs)

	Prepare model artifact directory to be published to model catalog

	Parameters

	
	target_dir (str, default: model.name[:12]) – Target directory under which the model artifact files need to be added

	data_sample (ADSData) – Note: This format is preferable to X_sample and y_sample.
A sample of the test data that will be provided to predict() API of scoring script
Used to generate schema_input.json and schema_output.json which defines the input and output formats

	X_sample (pandas.DataFrame) – A sample of input data that will be provided to predict() API of scoring script
Used to generate schema.json which defines the input formats

	y_sample (pandas.Series) – A sample of output data that is expected to be returned by predict() API of scoring script,
corresponding to X_sample
Used to generate schema_output.json which defines the output formats

	force_overwrite (bool, default: False) – If True, overwrites the target directory if exists already

	fn_artifact_files_included (bool, default: True) – If True, generates artifacts to export a model as a function without ads dependency

	fn_name (str, default: 'model_api') – Required parameter if fn_artifact_files_included parameter is setup.

	inference_conda_env (str, default: None) – Conda environment to use within the model deployment service for inferencing

	data_science_env (bool, default: False) – If set to True, datascience environment represented by the slug in the training conda environment will be used.

	ignore_deployment_error (bool, default: False) – If set to True, the prepare will ignore all the errors that may impact model deployment

	use_case_type (str) – The use case type of the model. Use it through UserCaseType class or string provided in UseCaseType. For
example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type=”binary_classification”. Check
with UseCaseType class to see all supported types.

	inference_python_version (str, default:None.) – If provided will be added to the generated runtime yaml

	**kwargs –

	-------- –

	max_col_num ((int, optional). Defaults to utils.DATA_SCHEMA_MAX_COL_NUM.) – The maximum column size of the data that allows to auto generate schema.

	Returns

	model_artifact

	Return type

	an instance of ModelArtifact that can be used to test the generated scoring script

	
rename(name)

	Changes the name of a model

	Parameters

	name (str) – A string which is supplied for naming a model.

	
score(X, y_true, score_fn=None)

	Scores a model according to a custom score function

	Parameters

	
	X (MLData) – A MLData object which holds the examples to be predicted on.

	y_true (MLData) – A MLData object which holds ground truth labels for the examples which are being predicted on.

	score_fn (Scorer (callable)) – A callable object that returns a score, usually created with sklearn.metrics.make_scorer().

	Returns

	Almost always a scalar score (usually a float).

	Return type

	float, depending on the estimator

	
show_in_notebook()

	Describe the model by showing it’s properties

	
summary()

	A summary of the ADSModel

	
transform(X)

	Process some MLData through the selected ADSModel transformers

	Parameters

	X (MLData) – A MLData object which holds the examples to be transformed.

	
visualize_transforms()

	A graph of the ADSModel transformer pipeline.
It is only supported in JupyterLabs Notebooks.

ads.common.model_metadata module

	
class ads.common.model_metadata.ExtendedEnumMeta(name, bases, namespace, **kwargs)

	Bases: abc.ABCMeta

The helper metaclass to extend functionality of a general class.

	
values(cls) → list:

	Gets the list of class attributes.

	
values() → list

	Gets the list of class attributes.

	Returns

	The list of class values.

	Return type

	list

	
class ads.common.model_metadata.Framework

	Bases: str

	
BERT = 'bert'

	

	
CUML = 'cuml'

	

	
EMCEE = 'emcee'

	

	
ENSEMBLE = 'ensemble'

	

	
FLAIR = 'flair'

	

	
GENSIM = 'gensim'

	

	
H20 = 'h2o'

	

	
KERAS = 'keras'

	

	
LIGHT_GBM = 'lightgbm'

	

	
MXNET = 'mxnet'

	

	
NLTK = 'nltk'

	

	
ORACLE_AUTOML = 'oracle_automl'

	

	
OTHER = 'other'

	

	
PROPHET = 'prophet'

	

	
PYMC3 = 'pymc3'

	

	
PYOD = 'pyod'

	

	
PYSTAN = 'pystan'

	

	
PYTORCH = 'pytorch'

	

	
SCIKIT_LEARN = 'scikit-learn'

	

	
SKTIME = 'sktime'

	

	
SPACY = 'spacy'

	

	
STATSMODELS = 'statsmodels'

	

	
TENSORFLOW = 'tensorflow'

	

	
TRANSFORMERS = 'transformers'

	

	
WORD2VEC = 'word2vec'

	

	
XGBOOST = 'xgboost'

	

	
class ads.common.model_metadata.MetadataCustomCategory

	Bases: str

	
OTHER = 'Other'

	

	
PERFORMANCE = 'Performance'

	

	
TRAINING_AND_VALIDATION_DATASETS = 'Training and Validation Datasets'

	

	
TRAINING_ENV = 'Training Environment'

	

	
TRAINING_PROFILE = 'Training Profile'

	

	
class ads.common.model_metadata.MetadataCustomKeys

	Bases: str

	
CLIENT_LIBRARY = 'ClientLibrary'

	

	
CONDA_ENVIRONMENT = 'CondaEnvironment'

	

	
CONDA_ENVIRONMENT_PATH = 'CondaEnvironmentPath'

	

	
ENVIRONMENT_TYPE = 'EnvironmentType'

	

	
MODEL_ARTIFACTS = 'ModelArtifacts'

	

	
MODEL_SERIALIZATION_FORMAT = 'ModelSerializationFormat'

	

	
SLUG_NAME = 'SlugName'

	

	
TRAINING_DATASET = 'TrainingDataset'

	

	
TRAINING_DATASET_NUMBER_OF_COLS = 'TrainingDatasetNumberOfCols'

	

	
TRAINING_DATASET_NUMBER_OF_ROWS = 'TrainingDatasetNumberOfRows'

	

	
TRAINING_DATASET_SIZE = 'TrainingDatasetSize'

	

	
VALIDATION_DATASET = 'ValidationDataset'

	

	
VALIDATION_DATASET_NUMBER_OF_COLS = 'ValidationDataSetNumberOfCols'

	

	
VALIDATION_DATASET_NUMBER_OF_ROWS = 'ValidationDatasetNumberOfRows'

	

	
VALIDATION_DATASET_SIZE = 'ValidationDatasetSize'

	

	
class ads.common.model_metadata.MetadataCustomPrintColumns

	Bases: str

	
CATEGORY = 'Category'

	

	
DESCRIPTION = 'Description'

	

	
KEY = 'Key'

	

	
VALUE = 'Value'

	

	
exception ads.common.model_metadata.MetadataDescriptionTooLong(key: str, length: int)

	Bases: ValueError

Maximum allowed length of metadata description has been exceeded.
See https://docs.oracle.com/en-us/iaas/data-science/using/models_saving_catalog.htm for more details.

	
exception ads.common.model_metadata.MetadataSizeTooLarge(size: int)

	Bases: ValueError

Maximum allowed size for model metadata has been exceeded.
See https://docs.oracle.com/en-us/iaas/data-science/using/models_saving_catalog.htm for more details.

	
class ads.common.model_metadata.MetadataTaxonomyKeys

	Bases: str

	
ALGORITHM = 'Algorithm'

	

	
ARTIFACT_TEST_RESULT = 'ArtifactTestResults'

	

	
FRAMEWORK = 'Framework'

	

	
FRAMEWORK_VERSION = 'FrameworkVersion'

	

	
HYPERPARAMETERS = 'Hyperparameters'

	

	
USE_CASE_TYPE = 'UseCaseType'

	

	
class ads.common.model_metadata.MetadataTaxonomyPrintColumns

	Bases: str

	
KEY = 'Key'

	

	
VALUE = 'Value'

	

	
exception ads.common.model_metadata.MetadataValueTooLong(key: str, length: int)

	Bases: ValueError

Maximum allowed length of metadata value has been exceeded.
See https://docs.oracle.com/en-us/iaas/data-science/using/models_saving_catalog.htm for more details.

	
class ads.common.model_metadata.ModelCustomMetadata

	Bases: ads.common.model_metadata.ModelMetadata

Class that represents Model Custom Metadata.

	
get(self, key: str) → ModelCustomMetadataItem

	Returns the model metadata item by provided key.

	
reset(self) → None

	Resets all model metadata items to empty values.

	
to_dataframe(self) → pd.DataFrame

	Returns the model metadata list in a data frame format.

	
size(self) → int

	Returns the size of the model metadata in bytes.

	
validate(self) → bool

	Validates metadata.

	
to_dict(self)

	Serializes model metadata into a dictionary.

	
to_yaml(self)

	Serializes model metadata into a YAML.

	
add(self, key: str, value: str, description: str = '', category: str = MetadataCustomCategory.OTHER, replace: bool = False) → None:

	Adds a new model metadata item. Replaces existing one if replace flag is True.

	
remove(self, key: str) → None

	Removes a model metadata item by key.

	
clear(self) → None

	Removes all metadata items.

	
isempty(self) → bool

	Checks if metadata is empty.

	
to_json(self)

	Serializes model metadata into a JSON.

	
to_json_file(self, file_path: str, storage_options: dict = None) → None

	Saves the metadata to a local file or object storage.

Examples

>>> metadata_custom = ModelCustomMetadata()
>>> metadata_custom.add(key="format", value="pickle")
>>> metadata_custom.add(key="note", value="important note", description="some description")
>>> metadata_custom["format"].description = "some description"
>>> metadata_custom.to_dataframe()
 Key Value Description Category
--
0 format pickle some description user defined
1 note important note some description user defined
>>> metadata_custom
 metadata:
 - category: user defined
 description: some description
 key: format
 value: pickle
 - category: user defined
 description: some description
 key: note
 value: important note
>>> metadata_custom.remove("format")
>>> metadata_custom
 metadata:
 - category: user defined
 description: some description
 key: note
 value: important note
>>> metadata_custom.to_dict()
 {'metadata': [{
 'key': 'note',
 'value': 'important note',
 'category': 'user defined',
 'description': 'some description'
 }]}
>>> metadata_custom.reset()
>>> metadata_custom
 metadata:
 - category: None
 description: None
 key: note
 value: None
>>> metadata_custom.clear()
>>> metadata_custom.to_dataframe()
 Key Value Description Category
--

Initializes custom model metadata.

	
add(key: str, value: str, description: str = '', category: str = 'Other', replace: bool = False) → None

	Adds a new model metadata item. Overrides the existing one if replace flag is True.

	Parameters

	
	key (str) – The metadata item key.

	value (str) – The metadata item value.

	description (str) – The metadata item description.

	category (str) – The metadata item category.

	replace (bool) – Overrides the existing metadata item if replace flag is True.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	TypeError – If provided key is not a string.
 If provided description not a string.

	ValueError – If provided key is empty.
 If provided value is empty.
 If provided value cannot be serialized to JSON.
 If item with provided key is already registered and replace flag is False.
 If provided category is not supported.

	MetadataValueTooLong – If the length of provided value exceeds 255 charracters.

	MetadataDescriptionTooLong – If the length of provided description exceeds 255 charracters.

	
clear() → None

	Removes all metadata items.

	Returns

	Nothing.

	Return type

	None

	
isempty() → bool

	Checks if metadata is empty.

	Returns

	True if metadata is empty, False otherwise.

	Return type

	bool

	
remove(key: str) → None

	Removes a model metadata item.

	Parameters

	key (str) – The key of the metadata item that should be removed.

	Returns

	Nothing.

	Return type

	None

	
set_training_data(path: str, data_size: Optional[str] = None)

	Adds training_data path and data size information into model custom metadata.

	Parameters

	
	path (str) – The path where the training_data is stored.

	data_size (str) – The size of the training_data.

	Returns

	Nothing.

	Return type

	None

	
set_validation_data(path: str, data_size: Optional[str] = None)

	Adds validation_data path and data size information into model custom metadata.

	Parameters

	
	path (str) – The path where the validation_data is stored.

	data_size (str) – The size of the validation_data.

	Returns

	Nothing.

	Return type

	None

	
to_dataframe() → pandas.core.frame.DataFrame

	Returns the model metadata list in a data frame format.

	Returns

	The model metadata in a dataframe format.

	Return type

	pandas.DataFrame

	
class ads.common.model_metadata.ModelCustomMetadataItem(key: str, value: Optional[str] = None, description: Optional[str] = None, category: Optional[str] = None)

	Bases: ads.common.model_metadata.ModelTaxonomyMetadataItem

Class that represents model custom metadata item.

	
key

	The model metadata item key.

	Type

	str

	
value

	The model metadata item value.

	Type

	str

	
description

	The model metadata item description.

	Type

	str

	
category

	The model metadata item category.

	Type

	str

	
reset(self) → None

	Resets model metadata item.

	
to_dict(self) → dict

	Serializes model metadata item to dictionary.

	
to_yaml(self)

	Serializes model metadata item to YAML.

	
size(self) → int

	Returns the size of the metadata in bytes.

	
update(self, value: str = '', description: str = '', category: str = '') → None

	Updates metadata item information.

	
to_json(self) → JSON

	Serializes metadata item into a JSON.

	
to_json_file(self, file_path: str, storage_options: dict = None) → None

	Saves the metadata item value to a local file or object storage.

	
validate(self) → bool

	Validates metadata item.

	
property category: str

	

	
property description: str

	

	
reset() → None

	Resets model metadata item.

Resets value, description and category to None.

	Returns

	Nothing.

	Return type

	None

	
update(value: str, description: str, category: str) → None

	Updates metadata item.

	Parameters

	
	value (str) – The value of model metadata item.

	description (str) – The description of model metadata item.

	category (str) – The category of model metadata item.

	Returns

	Nothing.

	Return type

	None

	
validate() → bool

	Validates metadata item.

	Returns

	True if validation passed.

	Return type

	bool

	Raises

	
	ValueError – If invalid category provided.

	MetadataValueTooLong – If value exceeds the length limit.

	
class ads.common.model_metadata.ModelMetadata

	Bases: abc.ABC

The base abstract class representing model metadata.

	
get(self, key: str) → ModelMetadataItem

	Returns the model metadata item by provided key.

	
reset(self) → None

	Resets all model metadata items to empty values.

	
to_dataframe(self) → pd.DataFrame

	Returns the model metadata list in a data frame format.

	
size(self) → int

	Returns the size of the model metadata in bytes.

	
validate(self) → bool

	Validates metadata.

	
to_dict(self)

	Serializes model metadata into a dictionary.

	
to_yaml(self)

	Serializes model metadata into a YAML.

	
to_json(self)

	Serializes model metadata into a JSON.

	
to_json_file(self, file_path: str, storage_options: dict = None) → None

	Saves the metadata to a local file or object storage.

Initializes Model Metadata.

	
get(key: str) → ads.common.model_metadata.ModelMetadataItem

	Returns the model metadata item by provided key.

	Parameters

	key (str) – The key of model metadata item.

	Returns

	The model metadata item.

	Return type

	ModelMetadataItem

	Raises

	ValueError – If provided key is empty or metadata item not found.

	
property keys: Tuple[str]

	Returns all registered metadata keys.

	Returns

	The list of metadata keys.

	Return type

	Tuple[str]

	
reset() → None

	Resets all model metadata items to empty values.

Resets value, description and category to None for every metadata item.

	
size() → int

	Returns the size of the model metadata in bytes.

	Returns

	The size of model metadata in bytes.

	Return type

	int

	
abstract to_dataframe() → pandas.core.frame.DataFrame

	Returns the model metadata list in a data frame format.

	Returns

	The model metadata in a dataframe format.

	Return type

	pandas.DataFrame

	
to_dict()

	Serializes model metadata into a dictionary.

	Returns

	The model metadata in a dictionary representation.

	Return type

	Dict

	
to_json()

	Serializes model metadata into a JSON.

	Returns

	The model metadata in a JSON representation.

	Return type

	JSON

	
to_json_file(file_path: str, storage_options: Optional[dict] = None) → None

	Saves the metadata to a local file or object storage.

	Parameters

	
	file_path (str) – The file path to store the data.
“oci://bucket_name@namespace/folder_name/”
“oci://bucket_name@namespace/folder_name/metadata.json”
“path/to/local/folder”
“path/to/local/folder/metadata.json”

	storage_options (dict. Default None) – Parameters passed on to the backend filesystem class.
Defaults to options set using DatasetFactory.set_default_storage().

	Returns

	Nothing.

	Return type

	None

	Raises

	
	ValueError – When file path is empty.:

	TypeError – When file path not a string.:

Examples

>>> metadata = ModelTaxonomyMetadataItem()
>>> storage_options = {"config": oci.config.from_file(os.path.join("~/.oci", "config"))}
>>> storage_options
{'log_requests': False,
 'additional_user_agent': '',
 'pass_phrase': None,
 'user': '<user-id>',
 'fingerprint': '05:15:2b:b1:46:8a:32:ec:e2:69:5b:32:01:**:**:**)',
 'tenancy': '<tenancy-id>',
 'region': 'us-ashburn-1',
 'key_file': '/home/datascience/.oci/oci_api_key.pem'}
>>> metadata.to_json_file(file_path = 'oci://bucket_name@namespace/folder_name/metadata_taxonomy.json', storage_options=storage_options)
>>> metadata_item.to_json_file("path/to/local/folder/metadata_taxonomy.json")

	
to_yaml()

	Serializes model metadata into a YAML.

	Returns

	The model metadata in a YAML representation.

	Return type

	Yaml

	
validate() → bool

	Validates model metadata.

	Returns

	True if metadata is valid.

	Return type

	bool

	
validate_size() → bool

	Validates model metadata size.

Validates the size of metadata. Throws an error if the size of the metadata
exceeds expected value.

	Returns

	True if metadata size is valid.

	Return type

	bool

	Raises

	MetadataSizeTooLarge – If the size of the metadata exceeds expected value.

	
class ads.common.model_metadata.ModelMetadataItem

	Bases: abc.ABC

The base abstract class representing model metadata item.

	
to_dict(self) → dict

	Serializes model metadata item to dictionary.

	
to_yaml(self)

	Serializes model metadata item to YAML.

	
size(self) → int

	Returns the size of the metadata in bytes.

	
to_json(self) → JSON

	Serializes metadata item to JSON.

	
to_json_file(self, file_path: str, storage_options: dict = None) → None

	Saves the metadata item value to a local file or object storage.

	
validate(self) → bool

	Validates metadata item.

	
size() → int

	Returns the size of the model metadata in bytes.

	Returns

	The size of model metadata in bytes.

	Return type

	int

	
to_dict() → dict

	Serializes model metadata item to dictionary.

	Returns

	The dictionary representation of model metadata item.

	Return type

	dict

	
to_json()

	Serializes metadata item into a JSON.

	Returns

	The metadata item in a JSON representation.

	Return type

	JSON

	
to_json_file(file_path: str, storage_options: Optional[dict] = None) → None

	Saves the metadata item value to a local file or object storage.

	Parameters

	
	file_path (str) – The file path to store the data.
“oci://bucket_name@namespace/folder_name/”
“oci://bucket_name@namespace/folder_name/result.json”
“path/to/local/folder”
“path/to/local/folder/result.json”

	storage_options (dict. Default None) – Parameters passed on to the backend filesystem class.
Defaults to options set using DatasetFactory.set_default_storage().

	Returns

	Nothing.

	Return type

	None

	Raises

	
	ValueError – When file path is empty.:

	TypeError – When file path not a string.:

Examples

>>> metadata_item = ModelCustomMetadataItem(key="key1", value="value1")
>>> storage_options = {"config": oci.config.from_file(os.path.join("~/.oci", "config"))}
>>> storage_options
{'log_requests': False,
 'additional_user_agent': '',
 'pass_phrase': None,
 'user': '<user-id>',
 'fingerprint': '05:15:2b:b1:46:8a:32:ec:e2:69:5b:32:01:**:**:**)',
 'tenancy': '<tenency-id>',
 'region': 'us-ashburn-1',
 'key_file': '/home/datascience/.oci/oci_api_key.pem'}
>>> metadata_item.to_json_file(file_path = 'oci://bucket_name@namespace/folder_name/file.json', storage_options=storage_options)
>>> metadata_item.to_json_file("path/to/local/folder/file.json")

	
to_yaml()

	Serializes model metadata item to YAML.

	Returns

	The model metadata item in a YAML representation.

	Return type

	Yaml

	
abstract validate() → bool

	Validates metadata item.

	Returns

	True if validation passed.

	Return type

	bool

	
class ads.common.model_metadata.ModelProvenanceMetadata(repo: Optional[str] = None, git_branch: Optional[str] = None, git_commit: Optional[str] = None, repository_url: Optional[str] = None, training_script_path: Optional[str] = None, training_id: Optional[str] = None, artifact_dir: Optional[str] = None)

	Bases: object

ModelProvenanceMetadata class.

Examples

>>> provenance_metadata = ModelProvenanceMetadata.fetch_training_code_details()
ModelProvenanceMetadata(repo=<git.repo.base.Repo '/home/datascience/.git'>, git_branch='master', git_commit='99ad04c31803f1d4ffcc3bf4afbd6bcf69a06af2', repository_url='file:///home/datascience', "", "")
>>> provenance_metadata.assert_path_not_dirty("your_path", ignore=False)

	
artifact_dir: str = None

	

	
assert_path_not_dirty(path: str, ignore: bool)

	Checks if all the changes in this path has been commited.

	Parameters

	
	path ((str)) – path.

	(bool) (ignore) – whether to ignore the changes or not.

	Raises

	ChangesNotCommitted – if there are changes not being commited.:

	Returns

	Nothing.

	Return type

	None

	
classmethod fetch_training_code_details(training_script_path: Optional[str] = None, training_id: Optional[str] = None, artifact_dir: Optional[str] = None)

	Fetches the training code details: repo, git_branch, git_commit, repository_url, training_script_path and training_id.

	Parameters

	
	training_script_path ((str, optional). Defaults to None.) – Training script path.

	training_id ((str, optional). Defaults to None.) – The training OCID for model.

	artifact_dir (str) – artifact directory to store the files needed for deployment.

	Returns

	A ModelProvenanceMetadata instance.

	Return type

	ModelProvenanceMetadata

	
git_branch: str = None

	

	
git_commit: str = None

	

	
repo: str = None

	

	
repository_url: str = None

	

	
training_id: str = None

	

	
training_script_path: str = None

	

	
class ads.common.model_metadata.ModelTaxonomyMetadata

	Bases: ads.common.model_metadata.ModelMetadata

Class that represents Model Taxonomy Metadata.

	
get(self, key: str) → ModelTaxonomyMetadataItem

	Returns the model metadata item by provided key.

	
reset(self) → None

	Resets all model metadata items to empty values.

	
to_dataframe(self) → pd.DataFrame

	Returns the model metadata list in a data frame format.

	
size(self) → int

	Returns the size of the model metadata in bytes.

	
validate(self) → bool

	Validates metadata.

	
to_dict(self)

	Serializes model metadata into a dictionary.

	
to_yaml(self)

	Serializes model metadata into a YAML.

	
to_json(self)

	Serializes model metadata into a JSON.

	
to_json_file(self, file_path: str, storage_options: dict = None) → None

	Saves the metadata to a local file or object storage.

Examples

>>> metadata_taxonomy = ModelTaxonomyMetadata()
>>> metadata_taxonomy.to_dataframe()
 Key Value
--
0 UseCaseType binary_classification
1 Framework sklearn
2 FrameworkVersion 0.2.2
3 Algorithm algorithm
4 Hyperparameters {}

>>> metadata_taxonomy.reset()
>>> metadata_taxonomy.to_dataframe()
 Key Value
--
0 UseCaseType None
1 Framework None
2 FrameworkVersion None
3 Algorithm None
4 Hyperparameters None

>>> metadata_taxonomy
 metadata:
 - key: UseCaseType
 category: None
 description: None
 value: None

Initializes Model Metadata.

	
to_dataframe() → pandas.core.frame.DataFrame

	Returns the model metadata list in a data frame format.

	Returns

	The model metadata in a dataframe format.

	Return type

	pandas.DataFrame

	
class ads.common.model_metadata.ModelTaxonomyMetadataItem(key: str, value: Optional[str] = None)

	Bases: ads.common.model_metadata.ModelMetadataItem

Class that represents model taxonomy metadata item.

	
key

	The model metadata item key.

	Type

	str

	
value

	The model metadata item value.

	Type

	str

	
reset(self) → None

	Resets model metadata item.

	
to_dict(self) → dict

	Serializes model metadata item to dictionary.

	
to_yaml(self)

	Serializes model metadata item to YAML.

	
size(self) → int

	Returns the size of the metadata in bytes.

	
update(self, value: str = '') → None

	Updates metadata item information.

	
to_json(self) → JSON

	Serializes metadata item into a JSON.

	
to_json_file(self, file_path: str, storage_options: dict = None) → None

	Saves the metadata item value to a local file or object storage.

	
validate(self) → bool

	Validates metadata item.

	
property key: str

	

	
reset() → None

	Resets model metadata item.

Resets value to None.

	Returns

	Nothing.

	Return type

	None

	
update(value: str) → None

	Updates metadata item value.

	Parameters

	value (str) – The value of model metadata item.

	Returns

	Nothing.

	Return type

	None

	
validate() → bool

	Validates metadata item.

	Returns

	True if validation passed.

	Return type

	bool

	Raises

	ValueError – If invalid UseCaseType provided.
 If invalid Framework provided.

	
property value: str

	

	
class ads.common.model_metadata.UseCaseType

	Bases: str

	
ANOMALY_DETECTION = 'anomaly_detection'

	

	
BINARY_CLASSIFICATION = 'binary_classification'

	

	
CLUSTERING = 'clustering'

	

	
DIMENSIONALITY_REDUCTION = 'dimensionality_reduction/representation'

	

	
IMAGE_CLASSIFICATION = 'image_classification'

	

	
MULTINOMIAL_CLASSIFICATION = 'multinomial_classification'

	

	
NER = 'ner'

	

	
OBJECT_LOCALIZATION = 'object_localization'

	

	
OTHER = 'other'

	

	
RECOMMENDER = 'recommender'

	

	
REGRESSION = 'regression'

	

	
SENTIMENT_ANALYSIS = 'sentiment_analysis'

	

	
TIME_SERIES_FORECASTING = 'time_series_forecasting'

	

	
TOPIC_MODELING = 'topic_modeling'

	

ads.common.decorator.runtime_dependency module

The module that provides the decorator helping to add runtime dependencies in functions.

Examples

>>> @runtime_dependency(module="pandas", short_name="pd")
... def test_function()
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)

>>> @runtime_dependency(module="pandas", short_name="pd")
... @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", install_from="ads[optional]")
... def test_function()
... pass

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", err_msg="Custom error message.")
... def test_function()
... pass

	
class ads.common.decorator.runtime_dependency.OptionalDependency

	Bases: object

	
BOOSTED = 'oracle-ads[boosted]'

	

	
DATA = 'oracle-ads[data]'

	

	
LABS = 'oracle-ads[labs]'

	

	
MACHINE_LEARNING = 'oracle-ads[machine_learning]'

	

	
MYSQL = 'oracle-ads[mysql]'

	

	
NOTEBOOK = 'oracle-ads[notebook]'

	

	
OPCTL = 'oracle-ads[opctl]'

	

	
TEXT = 'oracle-ads[text]'

	

	
ads.common.decorator.runtime_dependency.runtime_dependency(module: str, short_name: str = '', object: Optional[str] = None, install_from: Optional[str] = None, err_msg: str = '', is_for_notebook_only=False)

	The decorator which is helping to add runtime dependencies to functions.

	Parameters

	
	module (str) – The module name to be imported.

	short_name ((str, optional). Defaults to empty string.) – The short name for the imported module.

	object ((str, optional). Defaults to None.) – The name of the object to be imported. Can be a function or a class, or
any variable provided by module.

	install_from ((str, optional). Defaults to None.) – The parameter helping to answer from where the required dependency can be installed.

	err_msg ((str, optional). Defaults to empty string.) – The custom error message.

	is_for_notebook_only ((bool, optional). Defaults to False.) – If the value of this flag is set to True, the dependency will be added only
in case when the current environment is a jupyter notebook.

	Raises

	
	ModuleNotFoundError – In case if requested module not found.

	ImportError – In case if object cannot be imported from the module.

Examples

>>> @runtime_dependency(module="pandas", short_name="pd")
... def test_function()
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)

>>> @runtime_dependency(module="pandas", short_name="pd")
... @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", install_from="ads[optional]")
... def test_function()
... pass

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", err_msg="Custom error message.")
... def test_function()
... pass

ads.common.decorator.deprecate module

	
class ads.common.decorator.deprecate.TARGET_TYPE(value)

	Bases: enum.Enum

An enumeration.

	
ATTRIBUTE = 'Attribute'

	

	
CLASS = 'Class'

	

	
METHOD = 'Method'

	

	
ads.common.decorator.deprecate.deprecated(deprecated_in: str, removed_in: Optional[str] = None, details: Optional[str] = None, target_type: Optional[str] = None)

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.

	Parameters

	
	deprecated_in (str) – Version of ADS where this function deprecated.

	removed_in (str) – Future version where this function will be removed.

	details (str) – More information to be shown.

ads.common.model_introspect module

The module that helps to minimize the number of errors of the model post-deployment process.
The model provides a simple testing harness to ensure that model artifacts are
thoroughly tested before being saved to the model catalog.

Classes

	ModelIntrospect
	Class to introspect model artifacts.

Examples

>>> model_introspect = ModelIntrospect(artifact=model_artifact)
>>> model_introspect()
... Test key Test name Result Message
... --
... test_key_1 test_name_1 Passed test passed
... test_key_2 test_name_2 Not passed some error occured
>>> model_introspect.status
... Passed

	
class ads.common.model_introspect.Introspectable

	Bases: abc.ABC

Base class that represents an introspectable object.

	
exception ads.common.model_introspect.IntrospectionNotPassed

	Bases: ValueError

	
class ads.common.model_introspect.ModelIntrospect(artifact: ads.common.model_introspect.Introspectable)

	Bases: object

Class to introspect model artifacts.

	Parameters

	
	status (str) – Returns the current status of model introspection.
The possible variants: Passed, Not passed, Not tested.

	failures (int) – Returns the number of failures of introspection result.

	
run(self) → None

	Invokes model artifacts introspection.

	
to_dataframe(self) → pd.DataFrame

	Serializes model introspection result into a DataFrame.

Examples

>>> model_introspect = ModelIntrospect(artifact=model_artifact)
>>> result = model_introspect()
... Test key Test name Result Message
... --
... test_key_1 test_name_1 Passed test passed
... test_key_2 test_name_2 Not passed some error occured

Initializes the Model Introspect.

	Parameters

	artifact (Introspectable) – The instance of ModelArtifact object.

	Raises

	
	ValueError – If model artifact object not provided.:

	TypeError – If provided input paramater not a ModelArtifact instance.:

	
property failures: int

	Calculates the number of failures.

	Returns

	The number of failures.

	Return type

	int

	
run() → pandas.core.frame.DataFrame

	Invokes introspection.

	Returns

	The introspection result in a DataFrame format.

	Return type

	pd.DataFrame

	
property status: str

	Gets the current status of model introspection.

	
to_dataframe() → pandas.core.frame.DataFrame

	Serializes model introspection result into a DataFrame.

	Returns

	The model introspection result in a DataFrame representation.

	Return type

	pandas.DataFrame

	
class ads.common.model_introspect.PrintItem(key: str = '', case: str = '', result: str = '', message: str = '')

	Bases: object

Class represents the model introspection print item.

	
case: str = ''

	

	
key: str = ''

	

	
message: str = ''

	

	
result: str = ''

	

	
to_list() → List[str]

	Converts instance to a list representation.

	Returns

	The instance in a list representation.

	Return type

	List[str]

	
class ads.common.model_introspect.TEST_STATUS

	Bases: str

	
NOT_PASSED = 'Failed'

	

	
NOT_TESTED = 'Skipped'

	

	
PASSED = 'Passed'

	

ads.common.model_export_util module

	
class ads.common.model_export_util.ONNXTransformer

	Bases: object

This is a transformer to convert X [pandas.Dataframe, pd.Series] data into Onnx
readable dtypes and formats. It is Serializable, so it can be reloaded at another time.

Examples

>>> from ads.common.model_export_util import ONNXTransformer
>>> onnx_data_transformer = ONNXTransformer()
>>> train_transformed = onnx_data_transformer.fit_transform(train.X, {"column_name1": "impute_value1", "column_name2": "impute_value2"}})
>>> test_transformed = onnx_data_transformer.transform(test.X)

	
fit(X: Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list], impute_values: Optional[Dict] = None)

	Fits the OnnxTransformer on the dataset
:param X: The Dataframe for the training data
:type X: Union[pandas.DataFrame, pandas.Series, np.ndarray, list]

	Returns

	Self – The fitted estimator

	Return type

	ads.Model

	
fit_transform(X: Union[pandas.core.frame.DataFrame, pandas.core.series.Series], impute_values: Optional[Dict] = None)

	Fits, then transforms the data
:param X: The Dataframe for the training data
:type X: Union[pandas.DataFrame, pandas.Series]

	Returns

	The transformed X data

	Return type

	Union[pandas.DataFrame, pandas.Series]

	
static load(filename, **kwargs)

	Loads the Onnx model to disk
:param filename: The filename location for where the model should be loaded
:type filename: Str

	Returns

	onnx_transformer – The loaded model

	Return type

	ONNXTransformer

	
save(filename, **kwargs)

	Saves the Onnx model to disk
:param filename: The filename location for where the model should be saved
:type filename: Str

	Returns

	filename – The filename where the model was saved

	Return type

	Str

	
transform(X: Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list])

	Transforms the data for the OnnxTransformer.

	Parameters

	X (Union[pandas.DataFrame, pandas.Series, np.ndarray, list]) – The Dataframe for the training data

	Returns

	The transformed X data

	Return type

	Union[pandas.DataFrame, pandas.Series, np.ndarray, list]

	
ads.common.model_export_util.prepare_generic_model(model_path: str, fn_artifact_files_included: bool = False, fn_name: str = 'model_api', force_overwrite: bool = False, model: Optional[Any] = None, data_sample: Optional[ads.common.data.ADSData] = None, use_case_type=None, X_sample: Optional[Union[list, tuple, pandas.core.series.Series, numpy.ndarray, pandas.core.frame.DataFrame]] = None, y_sample: Optional[Union[list, tuple, pandas.core.series.Series, numpy.ndarray, pandas.core.frame.DataFrame]] = None, **kwargs) → ads.common.model_artifact.ModelArtifact

	Generates template files to aid model deployment.
The model could be accompanied by other artifacts all of which can be dumped at model_path.
Following files are generated:
* func.yaml
* func.py
* requirements.txt
* score.py

	Parameters

	
	model_path (str) – Path where the artifacts must be saved.
The serialized model object and any other associated files/objects must
be saved in the model_path directory

	fn_artifact_files_included (bool) – Default is False, if turned off, function artifacts are not generated.

	fn_name (str) – Opional parameter to specify the function name

	force_overwrite (bool) – Opional parameter to specify if the model_artifact should overwrite the existing model_path (if it exists)

	model ((Any, optional). Defaults to None.) – This is an optional model object which is only used to extract taxonomy metadata.
Supported models: automl, keras, lightgbm, pytorch, sklearn, tensorflow, and xgboost.
If the model is not under supported frameworks, then extracting taxonomy metadata will be skipped.
The alternative way is using atifact.populate_metadata(model=model, usecase_type=UseCaseType.REGRESSION).

	data_sample (ADSData) – A sample of the test data that will be provided to predict() API of scoring script
Used to generate schema_input and schema_output

	use_case_type (str) – The use case type of the model

	X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame, dask.dataframe.core.Series, dask.dataframe.core.DataFrame]) – A sample of input data that will be provided to predict() API of scoring script
Used to generate input schema.

	y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame, dask.dataframe.core.Series, dask.dataframe.core.DataFrame]) – A sample of output data that is expected to be returned by predict() API of scoring script,
corresponding to X_sample
Used to generate output schema.

	**kwargs –

	________ –

	data_science_env (bool, default: False) – If set to True, the datascience environment represented by the slug in the training conda environment will be used.

	inference_conda_env (str, default: None) – Conda environment to use within the model deployment service for inferencing. For example, oci://bucketname@namespace/path/to/conda/env

	ignore_deployment_error (bool, default: False) – If set to True, the prepare method will ignore all the errors that may impact model deployment.

	underlying_model (str, default: 'UNKNOWN') – Underlying Model Type, could be “automl”, “sklearn”, “h2o”, “lightgbm”, “xgboost”, “torch”, “mxnet”, “tensorflow”, “keras”, “pyod” and etc.

	model_libs (dict, default: {}) – Model required libraries where the key is the library names and the value is the library versions.
For example, {numpy: 1.21.1}.

	progress (int, default: None) – max number of progress.

	inference_python_version (str, default:None.) – If provided will be added to the generated runtime yaml

	max_col_num ((int, optional). Defaults to utils.DATA_SCHEMA_MAX_COL_NUM.) – The maximum column size of the data that allows to auto generate schema.

Examples

>>> import cloudpickle
>>> import os
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.datasets import make_classification
>>> import ads
>>> from ads.common.model_export_util import prepare_generic_model
>>> import yaml
>>> import oci
>>>
>>> ads.set_auth('api_key', oci_config_location=oci.config.DEFAULT_LOCATION, profile='DEFAULT')
>>> model_artifact_location = os.path.expanduser('~/myusecase/model/')
>>> inference_conda_env="oci://my-bucket@namespace/conda_environments/cpu/Data Exploration and Manipulation for CPU Python 3.7/2.0/dataexpl_p37_cpu_v2"
>>> inference_python_version = "3.7"
>>> if not os.path.exists(model_artifact_location):
... os.makedirs(model_artifact_location)
>>> X, y = make_classification(n_samples=100, n_features=20, n_classes=2)
>>> lrmodel = LogisticRegression().fit(X, y)
>>> with open(os.path.join(model_artifact_location, 'model.pkl'), "wb") as mfile:
... cloudpickle.dump(lrmodel, mfile)
>>> modelartifact = prepare_generic_model(
... model_artifact_location,
... model = lrmodel,
... force_overwrite=True,
... inference_conda_env=inference_conda_env,
... ignore_deployment_error=True,
... inference_python_version=inference_python_version
...)
>>> modelartifact.reload() # Call reload to update the ModelArtifact object with the generated score.py
>>> assert len(modelartifact.predict(X[:5])['prediction']) == 5 #Test the generated score.py works. This may require customization.
>>> with open(os.path.join(model_artifact_location, "runtime.yaml")) as rf:
... content = yaml.load(rf, Loader=yaml.FullLoader)
... assert content['MODEL_DEPLOYMENT']['INFERENCE_CONDA_ENV']['INFERENCE_ENV_PATH'] == inference_conda_env
... assert content['MODEL_DEPLOYMENT']['INFERENCE_CONDA_ENV']['INFERENCE_PYTHON_VERSION'] == inference_python_version
>>> # Save Model to model artifact
>>> ocimodel = modelartifact.save(
... project_id="oci1......", # OCID of the project to which the model to be associated
... compartment_id="oci1......", # OCID of the compartment where the model will reside
... display_name="LRModel_01",
... description="My Logistic Regression Model",
... ignore_pending_changes=True,
... timeout=100,
... ignore_introspection=True,
...)
>>> print(f"The OCID of the model is: {ocimodel.id}")

	Returns

	model_artifact – A generic model artifact

	Return type

	ads.model_artifact.model_artifact

	
ads.common.model_export_util.serialize_model(model=None, target_dir=None, X=None, y=None, model_type=None, **kwargs)

	
	Parameters

	
	model (ads.Model) – A model to be serialized

	target_dir (str, optional) – directory to output the serialized model

	X (Union[pandas.DataFrame, pandas.Series]) – The X data

	y (Union[list, pandas.DataFrame, pandas.Series]) – Tbe Y data

	model_type (str, optional) – A string corresponding to the model type

	Returns

	model_kwargs – A dictionary of model kwargs for the serialized model

	Return type

	Dict

ads.common.function.fn_util module

	
ads.common.function.fn_util.generate_fn_artifacts(path: str, fn_name: Optional[str] = None, fn_attributes=None, artifact_type_generic=False, **kwargs)

	
	Generates artifacts for fn (https://fnproject.io) at the provided path -
	
	func.py

	func.yaml

	requirements.txt if not there. If exists appends fdk to the file.

	score.py

	Parameters

	
	path (str) – Target folder where the artifacts are placed.

	fn_attributes (dict) – dictionary specifying all the function attributes as described in https://github.com/fnproject/docs/blob/master/fn/develop/func-file.md

	artifact_type_generic (bool) – default is False. This attribute decides which template to pick for score.py. If True, it is assumed that the code to load is provided by the user.

	
ads.common.function.fn_util.get_function_config() → dict

	Returns dictionary loaded from func_conf.yaml

	
ads.common.function.fn_util.prepare_fn_attributes(func_name: str, schema_version=20180708, version=None, python_runtime=None, entry_point=None, memory=None) → dict

	Workaround for collections.namedtuples. The defaults are not supported.

	
ads.common.function.fn_util.write_score(path, **kwargs)

	

ads.common.utils module

	
exception ads.common.utils.FileOverwriteError

	Bases: Exception

	
class ads.common.utils.JsonConverter(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.encoder.JSONEncoder

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt
encoding of keys that are not str, int, float or None. If
skipkeys is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str
objects with all incoming non-ASCII characters escaped. If
ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded
objects will be checked for circular references during encoding to
prevent an infinite recursion (which would cause an OverflowError).
Otherwise, no such check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be
encoded as such. This behavior is not JSON specification compliant,
but is consistent with most JavaScript based encoders and decoders.
Otherwise, it will be a ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be
sorted by key; this is useful for regression tests to ensure
that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array
elements and object members will be pretty-printed with that
indent level. An indent level of 0 will only insert newlines.
None is the most compact representation.

If specified, separators should be an (item_separator, key_separator)
tuple. The default is (’, ‘, ‘: ‘) if indent is None and
(‘,’, ‘: ‘) otherwise. To get the most compact JSON representation,
you should specify (‘,’, ‘:’) to eliminate whitespace.

If specified, default is a function that gets called for objects
that can’t otherwise be serialized. It should return a JSON encodable
version of the object or raise a TypeError.

	
default(obj)

	Converts an object to JSON based on its type

	Parameters

	obj (Object) – An object which is being converted to Json, supported types are pandas Timestamp, series, dataframe, or categorical or numpy ndarrays.

	Returns

	Json

	Return type

	A json repersentation of the object.

	
ads.common.utils.copy_from_uri(uri: str, to_path: str, unpack: Optional[bool] = False, force_overwrite: Optional[bool] = False, auth: Optional[Dict] = None) → None

	Copies file(s) to local path. Can be a folder, archived folder or a separate file.
The source files can be located in a local folder or in OCI Object Storage.

	Parameters

	
	uri (str) – The URI of the source file or directory, which can be local path or
OCI object storage URI.

	to_path (str) – The local destination path.
If this is a directory, the source files will be placed under it.

	unpack ((bool, optional). Defaults to False.) – Indicate if zip or tar.gz file specified by the uri should be unpacked.
This option has no effect on other files.

	force_overwrite ((bool, optional). Defaults to False.) – Whether to overwrite existing files or not.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	Nothing

	Return type

	None

	Raises

	ValueError – If destination path is already exist and force_overwrite is set to False.

	
ads.common.utils.download_from_web(url: str, to_path: str) → None

	Downloads a single file from http/https/ftp.

	Parameters

	
	url (str) – The URL of the source file.

	to_path (path-like object) – Local destination path.

	Returns

	Nothing

	Return type

	None

	
ads.common.utils.ellipsis_strings(raw, n=24)

	takes a sequence (<string>, list(<string>), tuple(<string>), pd.Series(<string>) and Ellipsis’ize them at position n

	
ads.common.utils.extract_lib_dependencies_from_model(model) → dict

	Extract a dictionary of library dependencies for a model

	Parameters

	model –

	Returns

	Dict

	Return type

	A dictionary of library dependencies.

	
ads.common.utils.first_not_none(itr)

	returns the first non-none result from an iterable, similar to any() but return value not true/false

	
ads.common.utils.flatten(d, parent_key='')

	Flattens nested dictionaries to a single layer dictionary

	Parameters

	
	d (dict) – The dictionary that needs to be flattened

	parent_key (str) – Keys in the dictionary that are nested

	Returns

	a_dict – a single layer dictionary

	Return type

	dict

	
ads.common.utils.generate_requirement_file(requirements: dict, file_path: str, file_name: str = 'requirements.txt')

	Generate requirements file at file_path.

	Parameters

	
	requirements (dict) – Key is the library name and value is the version

	file_path (str) – Directory to save requirements.txt

	file_name (str) – Opional parameter to specify the file name

	
ads.common.utils.get_base_modules(model)

	Get the base modules from an ADS model

	
ads.common.utils.get_bootstrap_styles()

	Returns HTML bootstrap style information

	
ads.common.utils.get_compute_accelerator_ncores()

	

	
ads.common.utils.get_cpu_count()

	Returns the number of CPUs available on this machine

	
ads.common.utils.get_dataframe_styles(max_width=75)

	Styles used for dataframe, example usage:

df.style .set_table_styles(utils.get_dataframe_styles()) .set_table_attributes(‘class=table’) .render())

	Returns

	styles – A list of dataframe table styler styles.

	Return type

	array

	
ads.common.utils.get_files(directory: str)

	List out all the file names under this directory.

	Parameters

	directory (str) – The directory to list out all the files from.

	Returns

	List of the files in the directory.

	Return type

	List

	
ads.common.utils.get_oci_config()

	Returns the OCI config location, and the OCI config profile.

	
ads.common.utils.get_progress_bar(max_progress, description='Initializing')

	this will return an instance of ProgressBar, sensitive to the runtime environment

	
ads.common.utils.get_sqlalchemy_engine(connection_url, *args, **kwargs)

	The SqlAlchemny docs say to use a single engine per connection_url, this class will take
care of that.

	Parameters

	connection_url (string) – The URL to connect to

	Returns

	engine – The engine from which SqlAlchemny commands can be ran on

	Return type

	SqlAlchemny engine

	
ads.common.utils.highlight_text(text)

	Returns text with html highlights.
:param text: The text to be highlighted.
:type text: String

	Returns

	ht – The text with html highlight information.

	Return type

	String

	
ads.common.utils.horizontal_scrollable_div(html)

	Wrap html with the necessary html to make horizontal scrolling possible.

Examples

display(HTML(utils.horizontal_scrollable_div(my_html)))

	Parameters

	html (str) – Your HTML to wrap.

	Returns

	Wrapped HTML.

	Return type

	type

	
ads.common.utils.inject_and_copy_kwargs(kwargs, **args)

	Takes in a dictionary and returns a copy with the args injected

Examples

>>> foo(arg1, args, utils.inject_and_copy_kwargs(kwargs, arg3=12, arg4=42))

	Parameters

	
	kwargs (dict) – The original kwargs.

	**args (type) – A series of arguments, foo=42, bar=12 etc

	Returns

	d – new dictionary object that you can use in place of kwargs

	Return type

	dict

	
ads.common.utils.is_data_too_wide(data: Union[list, tuple, pandas.core.series.Series, numpy.ndarray, pandas.core.frame.DataFrame], max_col_num: int) → bool

	Returns true if the data has too many columns.

	Parameters

	
	data (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]) – A sample of data that will be used to generate schema.

	max_col_num (int.) – The maximum column size of the data that allows to auto generate schema.

	
ads.common.utils.is_debug_mode()

	Returns true if ADS is in debug mode.

	
ads.common.utils.is_documentation_mode()

	Returns true if ADS is in documentation mode.

	
ads.common.utils.is_notebook()

	Returns true if the environment is a jupyter notebook.

	
ads.common.utils.is_resource_principal_mode()

	Returns true if ADS is in resource principal mode.

	
ads.common.utils.is_same_class(obj, cls)

	checks to see if object is the same class as cls

	
ads.common.utils.is_test()

	Returns true if ADS is in test mode.

	
class ads.common.utils.ml_task_types(value)

	Bases: enum.Enum

An enumeration.

	
BINARY_CLASSIFICATION = 2

	

	
BINARY_TEXT_CLASSIFICATION = 4

	

	
MULTI_CLASS_CLASSIFICATION = 3

	

	
MULTI_CLASS_TEXT_CLASSIFICATION = 5

	

	
REGRESSION = 1

	

	
UNSUPPORTED = 6

	

	
ads.common.utils.numeric_pandas_dtypes()

	Returns a list of the “numeric” pandas data types

	
ads.common.utils.oci_config_file()

	Returns the OCI config file location

	
ads.common.utils.oci_config_location()

	Returns oci configuration file location.

	
ads.common.utils.oci_config_profile()

	Returns the OCI config profile location.

	
ads.common.utils.oci_key_location()

	Returns the OCI key location

	
ads.common.utils.oci_key_profile()

	Returns key profile value specified in oci configuration file.

	
ads.common.utils.print_user_message(msg, display_type='tip', see_also_links=None, title='Tip')

	This method is deprecated and will be removed in future releases.
Prints in html formatted block one of tip|info|warn type.

	Parameters

	
	msg (str or list) – The actual message to display.
display_type is “module’, msg can be a list of [module name, module package name], i.e. [“automl”, “ads[ml]”]

	display_type (str (default 'tip')) – The type of user message.

	see_also_links (list of tuples in the form of [('display_name', 'url')]) –

	title (str (default 'tip')) – The title of user message.

	
ads.common.utils.random_valid_ocid(prefix='ocid1.dataflowapplication.oc1.iad')

	Generates a random valid ocid.

	Parameters

	prefix (str) – A prefix, corresponding to a region location.

	Returns

	ocid – a valid ocid with the given prefix.

	Return type

	str

	
ads.common.utils.replace_spaces(lst)

	Replace all spaces with underscores for strings in the list.

Requires that the list contains strings for each element.

lst: list of strings

	
ads.common.utils.set_oci_config(oci_config_location, oci_config_profile)

	
	Parameters

	
	oci_config_location – location of the config file, for example, ~/.oci/config

	oci_config_profile – The profile to load from the config file. Defaults to “DEFAULT”

	
ads.common.utils.split_data(X, y, random_state=42, test_size=0.3)

	Splits data using Sklearn based on the input type of the data.

	Parameters

	
	X (a Pandas Dataframe) – The data points.

	y (a Pandas Dataframe) – The labels.

	random_state (int) – A random state for reproducability.

	test_size (int) – The number of elements that should be included in the test dataset.

	
ads.common.utils.to_dataframe(data: Union[list, tuple, pandas.core.series.Series, numpy.ndarray, pandas.core.frame.DataFrame])

	Convert to pandas DataFrame.

	Parameters

	data (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]) – Convert data to pandas DataFrame.

	Returns

	pandas DataFrame.

	Return type

	pd.DataFrame

	
ads.common.utils.truncate_series_top_n(series, n=24)

	take a series which can be interpreted as a dict, index=key, this
function sorts by the values and takes the top-n values, and returns
a new series

	
ads.common.utils.wrap_lines(li, heading='')

	Wraps the elements of iterable into multi line string of fixed width

Module contents

ads.common.model_metadata_mixin module

	
class ads.common.model_metadata_mixin.MetadataMixin

	Bases: object

MetadataMixin class which populates the custom metadata, taxonomy metadata,
input/output schema and provenance metadata.

	
populate_metadata(use_case_type: Optional[str] = None, data_sample: Optional[ads.common.data.ADSData] = None, X_sample: Optional[Union[list, tuple, pandas.core.series.Series, numpy.ndarray, pandas.core.frame.DataFrame]] = None, y_sample: Optional[Union[list, tuple, pandas.core.series.Series, numpy.ndarray, pandas.core.frame.DataFrame]] = None, training_script_path: Optional[str] = None, training_id: Optional[str] = None, ignore_pending_changes: bool = True, max_col_num: int = 2000)

	Populates input schema and output schema.
If the schema exceeds the limit of 32kb, save as json files to the artifact directory.

	Parameters

	
	use_case_type ((str, optional). Defaults to None.) – The use case type of the model.

	data_sample ((ADSData, optional). Defaults to None.) – A sample of the data that will be used to generate intput_schema and output_schema.

	X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.) – A sample of input data that will be used to generate input schema.

	y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.) – A sample of output data that will be used to generate output schema.

	training_script_path (str. Defaults to None.) – Training script path.

	training_id ((str, optional). Defaults to None.) – The training model OCID.

	ignore_pending_changes (bool. Defaults to False.) – Ignore the pending changes in git.

	max_col_num ((int, optional). Defaults to utils.DATA_SCHEMA_MAX_COL_NUM.) – The maximum number of columns allowed in auto generated schema.

	Returns

	Nothing.

	Return type

	None

 ads.bds package

ads.bds package

Submodules

ads.bds.auth module

	
exception ads.bds.auth.KRB5KinitError

	Bases: Exception

KRB5KinitError class when kinit -kt command failed to generate cached ticket with the keytab file and the krb5 config file.

	
ads.bds.auth.has_kerberos_ticket()

	Whether kerberos cache ticket exists.

	
ads.bds.auth.init_ccache_with_keytab(principal: str, keytab_file: str) → None

	Initialize credential cache using keytab file.

	Parameters

	
	principal (str) – The unique identity to which Kerberos can assign tickets.

	keytab_path (str) – Path to your keytab file.

	Returns

	Nothing.

	Return type

	None

	
ads.bds.auth.krbcontext(principal: str, keytab_path: str, kerb5_path: str = '~/.bds_config/krb5.conf') → None

	A context manager for Kerberos-related actions.
It provides a Kerberos context that you can put code inside.
It will initialize credential cache automatically with keytab if no cached ticket exists.
Otherwise, does nothing.

	Parameters

	
	principal (str) – The unique identity to which Kerberos can assign tickets.

	keytab_path (str) – Path to your keytab file.

	kerb5_path ((str, optional).) – Path to your krb5 config file.

	Returns

	Nothing.

	Return type

	None

Examples

>>> from ads.bds.auth import krbcontext
>>> from pyhive import hive
>>> with krbcontext(principal = "your_principal", keytab_path = "your_keytab_path"):
>>> hive_cursor = hive.connect(host="your_hive_host",
... port="your_hive_port",
... auth='KERBEROS',
... kerberos_service_name="hive").cursor()

	
ads.bds.auth.refresh_ticket(principal: str, keytab_path: str, kerb5_path: str = '~/.bds_config/krb5.conf') → None

	generate new cached ticket based on the principal and keytab file path.

	Parameters

	
	principal (str) – The unique identity to which Kerberos can assign tickets.

	keytab_path (str) – Path to your keytab file.

	kerb5_path ((str, optional).) – Path to your krb5 config file.

	Returns

	Nothing.

	Return type

	None

Examples

>>> from ads.bds.auth import refresh_ticket
>>> from pyhive import hive
>>> refresh_ticket(principal = "your_principal", keytab_path = "your_keytab_path")
>>> hive_cursor = hive.connect(host="your_hive_host",
... port="your_hive_port",
... auth='KERBEROS',
... kerberos_service_name="hive").cursor()

Module contents

 ads.data_labeling package

ads.data_labeling package

Submodules

ads.data_labeling.interface.loader module

	
class ads.data_labeling.interface.loader.Loader

	Bases: abc.ABC

Data Loader Interface.

	
abstract load(**kwargs) → Any

	

ads.data_labeling.interface.parser module

	
class ads.data_labeling.interface.parser.Parser

	Bases: abc.ABC

Data Parser Interface.

	
abstract parse() → Any

	

ads.data_labeling.interface.reader module

	
class ads.data_labeling.interface.reader.Reader

	Bases: abc.ABC

Data Reader Interface.

	
info() → ads.common.serializer.Serializable

	

	
abstract read() → Any

	

ads.data_labeling.boundingbox module

	
class ads.data_labeling.boundingbox.BoundingBoxItem(top_left: typing.Tuple[float, float], bottom_left: typing.Tuple[float, float], bottom_right: typing.Tuple[float, float], top_right: typing.Tuple[float, float], labels: typing.List[str] = <factory>)

	Bases: object

BoundingBoxItem class representing bounding box label.

	
labels

	List of labels for this bounding box.

	Type

	List[str]

	
top_left

	Top left corner of this bounding box.

	Type

	Tuple[float, float]

	
bottom_left

	Bottom left corner of this bounding box.

	Type

	Tuple[float, float]

	
bottom_right

	Bottom right corner of this bounding box.

	Type

	Tuple[float, float]

	
top_right

	Top right corner of this bounding box.

	Type

	Tuple[float, float]

Examples

>>> item = BoundingBoxItem(
... labels = ['cat','dog']
... bottom_left=(0.2, 0.4),
... top_left=(0.2, 0.2),
... top_right=(0.8, 0.2),
... bottom_right=(0.8, 0.4))
>>> item.to_yolo(categories = ['cat','dog', 'horse'])

	
bottom_left: Tuple[float, float]

	

	
bottom_right: Tuple[float, float]

	

	
classmethod from_yolo(bbox: List[Tuple], categories: Optional[List[str]] = None) → ads.data_labeling.boundingbox.BoundingBoxItem

	Converts the YOLO formated annotations to BoundingBoxItem.

	Parameters

	
	bboxes (List[Tuple]) – The list of bounding box annotations in YOLO format.
Example: [(0, 0.511560675, 0.50234826, 0.47013485, 0.57803468)]

	categories (List[str]) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	The BoundingBoxItem.

	Return type

	BoundingBoxItem

	Raises

	TypeError – When categories list has a wrong format.

	
labels: List[str]

	

	
to_yolo(categories: List[str]) → List[Tuple[int, float, float, float, float]]

	Converts BoundingBoxItem to the YOLO format.

	Parameters

	categories (List[str]) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	The list of YOLO formatted bounding boxes.

	Return type

	List[Tuple[int, float, float, float, float]]

	Raises

	
	ValueError – When categories list not provided.
 When categories list not matched with the labels.

	TypeError – When categories list has a wrong format.

	
top_left: Tuple[float, float]

	

	
top_right: Tuple[float, float]

	

	
class ads.data_labeling.boundingbox.BoundingBoxItems(items: typing.List[ads.data_labeling.boundingbox.BoundingBoxItem] = <factory>)

	Bases: object

BoundingBoxItems class which consists of a list of BoundingBoxItem.

	
items

	List of BoundingBoxItem.

	Type

	List[BoundingBoxItem]

Examples

>>> item = BoundingBoxItem(
... labels = ['cat','dog']
... bottom_left=(0.2, 0.4),
... top_left=(0.2, 0.2),
... top_right=(0.8, 0.2),
... bottom_right=(0.8, 0.4))
>>> items = BoundingBoxItems(items = [item])
>>> items.to_yolo(categories = ['cat','dog', 'horse'])

	
items: List[ads.data_labeling.boundingbox.BoundingBoxItem]

	

	
to_yolo(categories: List[str]) → List[Tuple[int, float, float, float, float]]

	Converts BoundingBoxItems to the YOLO format.

	Parameters

	categories (List[str]) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	The list of YOLO formatted bounding boxes.

	Return type

	List[Tuple[int, float, float, float, float]]

	Raises

	
	ValueError – When categories list not provided.
 When categories list not matched with the labels.

	TypeError – When categories list has a wrong format.

ads.data_labeling.constants module

	
class ads.data_labeling.constants.AnnotationType

	Bases: object

AnnotationType class which contains all the annotation
types that data labeling service supports.

	
BOUNDING_BOX = 'BOUNDING_BOX'

	

	
ENTITY_EXTRACTION = 'ENTITY_EXTRACTION'

	

	
MULTI_LABEL = 'MULTI_LABEL'

	

	
SINGLE_LABEL = 'SINGLE_LABEL'

	

	
class ads.data_labeling.constants.DatasetType

	Bases: object

DatasetType class which contains all the dataset
types that data labeling service supports.

	
DOCUMENT = 'DOCUMENT'

	

	
IMAGE = 'IMAGE'

	

	
TEXT = 'TEXT'

	

	
class ads.data_labeling.constants.Formats

	Bases: object

Common formats class which contains all the common
formats that are supported to convert to.

	
SPACY = 'spacy'

	

	
YOLO = 'yolo'

	

ads.data_labeling.data_labeling_service module

	
class ads.data_labeling.data_labeling_service.DataLabeling(compartment_id: Optional[str] = None, dls_cp_client_auth: Optional[dict] = None, dls_dp_client_auth: Optional[dict] = None)

	Bases: ads.common.oci_mixin.OCIWorkRequestMixin

Class for data labeling service. Integrate the data labeling service APIs.

Examples

>>> import ads
>>> import pandas
>>> from ads.data_labeling.data_labeling_service import DataLabeling
>>> ads.set_auth("api_key")
>>> dls = DataLabeling()
>>> dls.list_dataset()
>>> metadata_path = dls.export(dataset_id="your dataset id",
... path="oci://<bucket_name>@<namespace>/folder")
>>> df = pd.DataFrame.ads.read_labeled_data(metadata_path)

Initialize a DataLabeling class.

	Parameters

	
	compartment_id (str, optional) – OCID of data labeling datasets’ compartment

	dls_cp_client_auth (dict, optional) – Data Labeling control plane client auth. Default is None. The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	dls_dp_client_auth (dict, optional) – Data Labeling data plane client auth. Default is None. The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	Nothing.

	Return type

	None

	
export(dataset_id: str, path: str, include_unlabeled=False) → str

	Export dataset based on the dataset_id and save the jsonl files under the path
(metadata jsonl file and the records jsonl file) to the object storage path provided by the user
and return the metadata jsonl path.

	Parameters

	
	dataset_id (str) – The dataset id of which the snapshot will be generated.

	path (str) – The object storage path to store the generated snapshot.
“oci://<bucket_name>@<namespace>/prefix”

	include_unlabeled (bool, Optional. Defaults to False.) – Whether to include unlabeled records or not.

	Returns

	oci path of the metadata jsonl file.

	Return type

	str

	
list_dataset(**kwargs) → pandas.core.frame.DataFrame

	List all the datasets created from the data labeling service under a given compartment.

	Parameters

	kwargs (dict, optional) – Additional keyword arguments will be passed to oci.data_labeling_serviceDataLabelingManagementClient.list_datasets method.

	Returns

	pandas dataframe which contains the dataset information.

	Return type

	pandas.DataFrame

	Raises

	Exception – If pagination.list_call_get_all_results() fails

ads.data_labeling.metadata module

	
class ads.data_labeling.metadata.Metadata(source_path: str = '', records_path: str = '', labels: typing.List[str] = <factory>, dataset_name: str = '', compartment_id: str = '', dataset_id: str = '', annotation_type: str = '', dataset_type: str = '')

	Bases: ads.common.serializer.DataClassSerializable

The class that representing the labeled dataset metadata.

	
source_path

	Contains information on where all the source data(image/text/document) stores.

	Type

	str

	
records_path

	Contains information on where records jsonl file stores.

	Type

	str

	
labels

	List of classes/labels for the dataset.

	Type

	List

	
dataset_name

	Dataset display name on the Data Labeling Service console.

	Type

	str

	
compartment_id

	Compartment id of the labeled dataset.

	Type

	str

	
dataset_id

	Dataset id.

	Type

	str

	
annotation_type

	Type of the labeling/annotation task. Currently supports SINGLE_LABEL,
MULTI_LABEL, ENTITY_EXTRACTION, BOUNDING_BOX.

	Type

	str

	
dataset_type

	Type of the dataset. Currently supports Text, Image, DOCUMENT.

	Type

	str

	
annotation_type: str = ''

	

	
compartment_id: str = ''

	

	
dataset_id: str = ''

	

	
dataset_name: str = ''

	

	
dataset_type: str = ''

	

	
classmethod from_dls_dataset(dataset: oci.data_labeling_service_dataplane.models.dataset.Dataset) → ads.data_labeling.metadata.Metadata

	Contructs a Metadata instance from OCI DLS dataset.

	Parameters

	dataset (OCIDLSDataset) – OCIDLSDataset object.

	Returns

	The ads labeled dataset metadata instance.

	Return type

	Metadata

	
labels: List[str]

	

	
records_path: str = ''

	

	
source_path: str = ''

	

	
to_dataframe() → pandas.core.frame.DataFrame

	Converts the metadata to dataframe format.

	Returns

	The metadata in Pandas dataframe format.

	Return type

	pandas.DataFrame

	
to_dict() → Dict

	Converts to dictionary representation.

	Returns

	The metadata in dictionary type.

	Return type

	Dict

ads.data_labeling.ner module

	
class ads.data_labeling.ner.NERItem(label: str = '', offset: int = 0, length: int = 0)

	Bases: object

NERItem class which is a representation of a token span.

	
label

	Entity name.

	Type

	str

	
offset

	The token span’s entity start index position in the text.

	Type

	int

	
length

	Length of the token span.

	Type

	int

	
classmethod from_spacy(token) → ads.data_labeling.ner.NERItem

	

	
label: str = ''

	

	
length: int = 0

	

	
offset: int = 0

	

	
to_spacy() → tuple

	Converts one NERItem to the spacy format.

	Returns

	NERItem in the spacy format

	Return type

	Tuple

	
class ads.data_labeling.ner.NERItems(items: typing.List[ads.data_labeling.ner.NERItem] = <factory>)

	Bases: object

NERItems class consists of a list of NERItem.

	
items

	List of NERItem.

	Type

	List[NERItem]

	
items: List[ads.data_labeling.ner.NERItem]

	

	
to_spacy() → List[tuple]

	Converts NERItems to the spacy format.

	Returns

	List of NERItems in the Spacy format.

	Return type

	List[tuple]

	
exception ads.data_labeling.ner.WrongEntityFormatLabelIsEmpty

	Bases: ValueError

	
exception ads.data_labeling.ner.WrongEntityFormatLabelNotString

	Bases: ValueError

	
exception ads.data_labeling.ner.WrongEntityFormatLengthIsNegative

	Bases: ValueError

	
exception ads.data_labeling.ner.WrongEntityFormatLengthNotInteger

	Bases: ValueError

	
exception ads.data_labeling.ner.WrongEntityFormatOffsetIsNegative

	Bases: ValueError

	
exception ads.data_labeling.ner.WrongEntityFormatOffsetNotInteger

	Bases: ValueError

ads.data_labeling.record module

	
class ads.data_labeling.record.Record(path: str = '', content: Optional[Any] = None, annotation: Optional[Union[Tuple, str, List[ads.data_labeling.boundingbox.BoundingBoxItem], List[ads.data_labeling.ner.NERItem]]] = None)

	Bases: object

Class representing Record.

	
path

	File path.

	Type

	str

	
content

	Content of the record.

	Type

	Any

	
annotation

	Annotation/label of the record.

	Type

	Union[Tuple, str, List[BoundingBoxItem], List[NERItem]]

	
annotation: Union[Tuple, str, List[ads.data_labeling.boundingbox.BoundingBoxItem], List[ads.data_labeling.ner.NERItem]] = None

	

	
content: Any = None

	

	
path: str = ''

	

	
to_dict() → Dict

	Convert the Record instance to a dictionary.

	Returns

	Dictionary representation of the Record instance.

	Return type

	Dict

	
to_tuple() → Tuple[str, Any, Union[Tuple, str, List[ads.data_labeling.boundingbox.BoundingBoxItem], List[ads.data_labeling.ner.NERItem]]]

	Convert the Record instance to a tuple.

	Returns

	Tuple representation of the Record instance.

	Return type

	Tuple

ads.data_labeling.mixin.data_labeling module

	
class ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin

	Bases: object

Mixin class for labeled text data.

	
static read_labeled_data(path: Optional[str] = None, dataset_id: Optional[str] = None, compartment_id: Optional[str] = None, auth: Optional[Dict] = None, materialize: bool = False, encoding: str = 'utf-8', include_unlabeled: bool = False, format: Optional[str] = None, chunksize: Optional[int] = None)

	Loads the dataset generated by data labeling service from either the export file or the Data Labeling Service.

	Parameters

	
	path ((str, optional). Defaults to None) – The export file path, can be either local or object storage path.

	dataset_id ((str, optional). Defaults to None) – The dataset OCID.

	compartment_id (str. Defaults to the compartment_id from the env variable.) – The compartment OCID of the dataset.

	auth ((dict, optional). Defaults to None) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	materialize ((bool, optional). Defaults to False) – Whether the content of the dataset file should be loaded or it should return the file path to the content.
By default the content will not be loaded.

	encoding ((str, optional). Defaults to 'utf-8') – Encoding of files. Only used for “TEXT” dataset.

	include_unlabeled ((bool, optional). Default to False) – Whether to load the unlabeled records or not.

	format ((str, optional). Defaults to None) – Output format of annotations. Can be None, “spacy” for dataset
Entity Extraction type or “yolo for Object Detection type.

	When None, it outputs List[NERItem] or List[BoundingBoxItem],

	When “spacy”, it outputs List[Tuple],

	When “yolo”, it outputs List[List[Tuple]].

	chunksize ((int, optional). Defaults to None) – The amount of records that should be read in one iteration.
The result will be returned in a generator format.

	Returns

	pd.Dataframe if chunksize is not specified.
Generator[pd.Dataframe] if chunksize is specified.

	Return type

	Union[Generator[pd.DataFrame, Any, Any], pd.DataFrame]

Examples

>>> import pandas as pd
>>> import ads
>>> from ads.common import auth as authutil
>>> df = pd.DataFrame.ads.read_labeled_data(path="path_to_your_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=False)
 Path Content Annotations
 --
 0 path/to/the/content/file yes
 1 path/to/the/content/file no

>>> df = pd.DataFrame.ads.read_labeled_data_from_dls(dataset_id="your_dataset_ocid",
... compartment_id="your_compartment_id",
... auth=authutil.api_keys(),
... materialize=False)
 Path Content Annotations
 --
 0 path/to/the/content/file yes
 1 path/to/the/content/file no

	
render_bounding_box(options: Optional[Dict] = None, content_column: str = 'Content', annotations_column: str = 'Annotations', categories: Optional[List[str]] = None, limit: int = 50, path: Optional[str] = None) → None

	Renders bounding box dataset. Displays only first 50 rows.

	Parameters

	
	options (dict) – The colors options specified for rendering.

	content_column (Optional[str]) – The column name with the content data.

	annotations_column (Optional[str]) – The column name for the annotations list.

	categories (Optional List[str]) – The list of object categories in proper order for model training.
Only used when bounding box annotations are in YOLO format.
Example: [‘cat’,’dog’,’horse’]

	limit (Optional[int]. Defaults to 50) – The maximum amount of records to display.

	path (Optional[str]) – Path to save the image with annotations to local directory.

	Returns

	Nothing

	Return type

	None

Examples

>>> import pandas as pd
>>> import ads
>>> from ads.common import auth as authutil
>>> df = pd.DataFrame.ads.read_labeled_data(path="path_to_your_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True)
>>> df.ads.render_bounding_box(content_column="Content", annotations_column="Annotations")

	
render_ner(options: Optional[Dict] = None, content_column: str = 'Content', annotations_column: str = 'Annotations', limit: int = 50) → None

	Renders NER dataset. Displays only first 50 rows.

	Parameters

	
	options (dict) – The colors options specified for rendering.

	content_column (Optional[str]) – The column name with the content data.

	annotations_column (Optional[str]) – The column name for the annotations list.

	limit (Optional[int]. Defaults to 50) – The maximum amount of records to display.

	Returns

	Nothing

	Return type

	None

Examples

>>> import pandas as pd
>>> import ads
>>> from ads.common import auth as authutil
>>> df = pd.DataFrame.ads.read_labeled_data(path="path_to_your_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True)
>>> df.ads.render_ner(content_column="Content", annotations_column="Annotations")

ads.data_labeling.parser.export_metadata_parser module

	
class ads.data_labeling.parser.export_metadata_parser.MetadataParser

	Bases: ads.data_labeling.interface.parser.Parser

MetadataParser class which parses the metadata from the record.

	
EXPECTED_KEYS = ['id', 'compartmentId', 'displayName', 'labelsSet', 'annotationFormat', 'datasetSourceDetails', 'datasetFormatDetails']

	

	
static parse(json_data: Dict[Any, Any]) → ads.data_labeling.metadata.Metadata

	Parses the metadata jsonl file.

	Parameters

	json_data (dict) – dictionary format of the metadata jsonl file content.

	Returns

	Metadata object which contains the useful fields from the metadata jsonl file

	Return type

	Metadata

ads.data_labeling.parser.export_record_parser module

	
class ads.data_labeling.parser.export_record_parser.BoundingBoxRecordParser(dataset_source_path: str, format: Optional[str] = None, categories: Optional[List[str]] = None)

	Bases: ads.data_labeling.parser.export_record_parser.RecordParser

BoundingBoxRecordParser class which parses the label of BoundingBox label data.

Initiates a RecordParser instance.

	Parameters

	
	dataset_source_path (str) – Dataset source path.

	format ((str, optional). Defaults to None.) – Output format of annotations.

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	RecordParser instance.

	Return type

	RecordParser

	
class ads.data_labeling.parser.export_record_parser.EntityType

	Bases: object

Entity type class for supporting multiple types of entities.

	
GENERIC = 'GENERIC'

	

	
IMAGEOBJECTSELECTION = 'IMAGEOBJECTSELECTION'

	

	
TEXTSELECTION = 'TEXTSELECTION'

	

	
class ads.data_labeling.parser.export_record_parser.MultiLabelRecordParser(dataset_source_path: str, format: Optional[str] = None, categories: Optional[List[str]] = None)

	Bases: ads.data_labeling.parser.export_record_parser.RecordParser

MultiLabelRecordParser class which parses the label of Multiple label data.

Initiates a RecordParser instance.

	Parameters

	
	dataset_source_path (str) – Dataset source path.

	format ((str, optional). Defaults to None.) – Output format of annotations.

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	RecordParser instance.

	Return type

	RecordParser

	
class ads.data_labeling.parser.export_record_parser.NERRecordParser(dataset_source_path: str, format: Optional[str] = None, categories: Optional[List[str]] = None)

	Bases: ads.data_labeling.parser.export_record_parser.RecordParser

NERRecordParser class which parses the label of NER label data.

Initiates a RecordParser instance.

	Parameters

	
	dataset_source_path (str) – Dataset source path.

	format ((str, optional). Defaults to None.) – Output format of annotations.

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	RecordParser instance.

	Return type

	RecordParser

	
class ads.data_labeling.parser.export_record_parser.RecordParser(dataset_source_path: str, format: Optional[str] = None, categories: Optional[List[str]] = None)

	Bases: ads.data_labeling.interface.parser.Parser

RecordParser class which parses the labels from the record.

Examples

>>> from ads.data_labeling.parser.export_record_parser import SingleLabelRecordParser
>>> from ads.data_labeling.parser.export_record_parser import MultiLabelRecordParser
>>> from ads.data_labeling.parser.export_record_parser import NERRecordParser
>>> from ads.data_labeling.parser.export_record_parser import BoundingBoxRecordParser
>>> import fsspec
>>> import json
>>> from ads.common import auth as authutil
>>> labels = []
>>> with fsspec.open("/path/to/records_file.jsonl", **authutil.api_keys()) as f:
>>> for line in f:
>>> bounding_box_labels = BoundingBoxRecordParser("source_data_path").parse(json.loads(line))
>>> labels.append(bounding_box_labels)

Initiates a RecordParser instance.

	Parameters

	
	dataset_source_path (str) – Dataset source path.

	format ((str, optional). Defaults to None.) – Output format of annotations.

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	RecordParser instance.

	Return type

	RecordParser

	
parse(record: Dict) → ads.data_labeling.record.Record

	Extracts the annotations from the record content.
Constructs and returns a Record instance containing the file path and the labels.

	Parameters

	record (Dict) – Content of the record from the record file.

	Returns

	Record instance which contains the file path as well as the annotations.

	Return type

	Record

	
class ads.data_labeling.parser.export_record_parser.RecordParserFactory

	Bases: object

RecordParserFactory class which contains a list of registered parsers
and allows to register new RecordParsers.

	Current parsers include:
	
	SingleLabelRecordParser

	MultiLabelRecordParser

	NERRecordParser

	BoundingBoxRecordParser

	
static parser(annotation_type: str, dataset_source_path: str, format: Optional[str] = None, categories: Optional[List[str]] = None) → ads.data_labeling.parser.export_record_parser.RecordParser

	Gets the parser based on the annotation_type.

	Parameters

	
	annotation_type (str) – Annotation type which can be SINGLE_LABEL, MULTI_LABEL, ENTITY_EXTRACTION
and BOUNDING_BOX.

	dataset_source_path (str) – Dataset source path.

	format ((str, optional). Defaults to None.) – Output format of annotations. Can be None, “spacy” for dataset
Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem].
When “spacy”, it outputs List[Tuple].
When “yolo”, it outputs List[List[Tuple]].

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	RecordParser corresponding to the annotation type.

	Return type

	RecordParser

	Raises

	ValueError – If annotation_type is not supported.

	
classmethod register(annotation_type: str, parser) → None

	Registers a new parser.

	Parameters

	
	annotation_type (str) – Annotation type which can be SINGLE_LABEL, MULTI_LABEL, ENTITY_EXTRACTION
and BOUNDING_BOX.

	parser (RecordParser) – A new Parser class to be registered.

	Returns

	Nothing.

	Return type

	None

	
class ads.data_labeling.parser.export_record_parser.SingleLabelRecordParser(dataset_source_path: str, format: Optional[str] = None, categories: Optional[List[str]] = None)

	Bases: ads.data_labeling.parser.export_record_parser.RecordParser

SingleLabelRecordParser class which parses the label of Single label data.

Initiates a RecordParser instance.

	Parameters

	
	dataset_source_path (str) – Dataset source path.

	format ((str, optional). Defaults to None.) – Output format of annotations.

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	RecordParser instance.

	Return type

	RecordParser

ads.data_labeling.reader.dataset_reader module

The module containing classes to read labeled datasets.
Allows to read labeled datasets from exports or from the cloud.

Classes

	LabeledDatasetReader
	The LabeledDatasetReader class to read labeled dataset.

	ExportReader
	The ExportReader class to read labeled dataset from the export.

	DLSDatasetReader
	The DLSDatasetReader class to read labeled dataset from the cloud.

Examples

>>> from ads.common import auth as authutil
>>> from ads.data_labeling import LabeledDatasetReader
>>> ds_reader = LabeledDatasetReader.from_export(
... path="oci://bucket_name@namespace/dataset_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True
...)
>>> ds_reader.info()
 --
 annotation_type SINGLE_LABEL
 compartment_id TEST_COMPARTMENT
 dataset_id TEST_DATASET
 dataset_name test_dataset_name
 dataset_type TEXT
 labels ['yes', 'no']
 records_path path/to/records
 source_path path/to/dataset

>>> ds_reader.read()
 Path Content Annotations

 0 path/to/the/content/file1 file content yes
 1 path/to/the/content/file2 file content no
 2 path/to/the/content/file3 file content no

>>> next(ds_reader.read(iterator=True))
 ("path/to/the/content/file1", "file content", "yes")

>>> next(ds_reader.read(iterator=True, chunksize=2))
 [("path/to/the/content/file1", "file content", "yes"),
 ("path/to/the/content/file2", "file content", "no")]

>>> next(ds_reader.read(chunksize=2))
 Path Content Annotations
 --
 0 path/to/the/content/file1 file content yes
 1 path/to/the/content/file2 file content no

>>> ds_reader = LabeledDatasetReader.from_DLS(
... dataset_id="dataset_OCID",
... compartment_id="compartment_OCID",
... auth=authutil.api_keys(),
... materialize=True
...)

	
class ads.data_labeling.reader.dataset_reader.DLSDatasetReader(dataset_id: str, compartment_id: str, auth: Dict, encoding='utf-8', materialize: bool = False, include_unlabeled: bool = False)

	Bases: ads.data_labeling.interface.reader.Reader

The DLSDatasetReader class to read labeled dataset from the cloud.

	
info(self) → Metadata

	Gets the labeled dataset metadata.

	
read(self) → Generator[Tuple, Any, Any]

	Reads the labeled dataset.

Initializes the DLS dataset reader instance.

	Parameters

	
	dataset_id (str) – The dataset OCID.

	compartment_id (str) – The compartment OCID of the dataset.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files. The encoding is used to extract the metadata information
of the labeled dataset and also to extract the content of the text dataset records.

	materialize ((bool, optional). Defaults to False.) – Whether the content of dataset files should be loaded/materialized or not.
By default the content will not be materialized.

	include_unlabeled ((bool, optional). Defaults to False.) – Whether to load the unlabeled records or not.

	Raises

	
	ValueError – When dataset_id is empty or not a string.:

	TypeError – When dataset_id not a string.:

	
info() → ads.data_labeling.metadata.Metadata

	Gets the labeled dataset metadata.

	Returns

	The labeled dataset metadata.

	Return type

	Metadata

	
read(format: Optional[str] = None) → Generator[Tuple, Any, Any]

	Reads the labeled dataset records.

	Parameters

	format ((str, optional). Defaults to None.) – Output format of annotations. Can be None, “spacy” for dataset
Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem].
When “spacy”, it outputs List[Tuple].
When “yolo”, it outputs List[List[Tuple]].

	Returns

	The labeled dataset records.

	Return type

	Generator[Tuple, Any, Any]

	
class ads.data_labeling.reader.dataset_reader.ExportReader(path: str, auth: Optional[Dict] = None, encoding='utf-8', materialize: bool = False, include_unlabeled: bool = False)

	Bases: ads.data_labeling.interface.reader.Reader

The ExportReader class to read labeled dataset from the export.

	
info(self) → Metadata

	Gets the labeled dataset metadata.

	
read(self) → Generator[Tuple, Any, Any]

	Reads the labeled dataset.

Initializes the labeled dataset export reader instance.

	Parameters

	
	path (str) – The metadata file path, can be either local or object storage path.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files. The encoding is used to extract the metadata information
of the labeled dataset and also to extract the content of the text dataset records.

	materialize ((bool, optional). Defaults to False.) – Whether the content of dataset files should be loaded/materialized or not.
By default the content will not be materialized.

	include_unlabeled ((bool, optional). Defaults to False.) – Whether to load the unlabeled records or not.

	Raises

	
	ValueError – When path is empty or not a string.:

	TypeError – When path not a string.:

	
info() → ads.data_labeling.metadata.Metadata

	Gets the labeled dataset metadata.

	Returns

	The labeled dataset metadata.

	Return type

	Metadata

	
read(format: Optional[str] = None) → Generator[Tuple, Any, Any]

	Reads the labeled dataset records.

	Parameters

	format ((str, optional). Defaults to None.) – Output format of annotations. Can be None, “spacy” for dataset
Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem].
When “spacy”, it outputs List[Tuple].
When “yolo”, it outputs List[List[Tuple]].

	Returns

	The labeled dataset records.

	Return type

	Generator[Tuple, Any, Any]

	
class ads.data_labeling.reader.dataset_reader.LabeledDatasetReader(reader: ads.data_labeling.interface.reader.Reader)

	Bases: object

The labeled dataset reader class.

	
info(self) → Metadata

	Gets labeled dataset metadata.

	
read(self, iterator: bool = False) → Union[Generator[Any, Any, Any], pd.DataFrame]

	Reads labeled dataset.

	
from_export(cls, path: str, auth: Dict = None, encoding='utf-8', materialize: bool = False) → 'LabeledDatasetReader'

	Constructs a Labeled Dataset Reader instance.

Examples

>>> from ads.common import auth as authutil
>>> from ads.data_labeling import LabeledDatasetReader

>>> ds_reader = LabeledDatasetReader.from_export(
... path="oci://bucket_name@namespace/dataset_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True
...)

>>> ds_reader = LabeledDatasetReader.from_DLS(
... dataset_id="dataset_OCID",
... compartment_id="compartment_OCID",
... auth=authutil.api_keys(),
... materialize=True
...)

>>> ds_reader.info()
 --
 annotation_type SINGLE_LABEL
 compartment_id TEST_COMPARTMENT
 dataset_id TEST_DATASET
 dataset_name test_dataset_name
 dataset_type TEXT
 labels ['yes', 'no']
 records_path path/to/records
 source_path path/to/dataset

>>> ds_reader.read()
 Path Content Annotations

 0 path/to/the/content/file1 file content yes
 1 path/to/the/content/file2 file content no
 2 path/to/the/content/file3 file content no

>>> next(ds_reader.read(iterator=True))
 ("path/to/the/content/file1", "file content", "yes")

>>> next(ds_reader.read(iterator=True, chunksize=2))
 [("path/to/the/content/file1", "file content", "yes"),
 ("path/to/the/content/file2", "file content", "no")]

>>> next(ds_reader.read(chunksize=2))
 Path Content Annotations
 --
 0 path/to/the/content/file1 file content yes
 1 path/to/the/content/file2 file content no

Initializes the labeled dataset reader instance.

	Parameters

	reader (Reader) – The Reader instance which reads and extracts the labeled dataset.

	
classmethod from_DLS(dataset_id: str, compartment_id: Optional[str] = None, auth: Optional[dict] = None, encoding: str = 'utf-8', materialize: bool = False, include_unlabeled: bool = False) → ads.data_labeling.reader.dataset_reader.LabeledDatasetReader

	Constructs Labeled Dataset Reader instance.

	Parameters

	
	dataset_id (str) – The dataset OCID.

	compartment_id (str. Defaults to the compartment_id from the env variable.) – The compartment OCID of the dataset.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files.

	materialize ((bool, optional). Defaults to False.) – Whether the content of the dataset file should be loaded or it should return the file path to the content.
By default the content will not be loaded.

	Returns

	The LabeledDatasetReader instance.

	Return type

	LabeledDatasetReader

	
classmethod from_export(path: str, auth: Optional[dict] = None, encoding: str = 'utf-8', materialize: bool = False, include_unlabeled: bool = False) → ads.data_labeling.reader.dataset_reader.LabeledDatasetReader

	Constructs Labeled Dataset Reader instance.

	Parameters

	
	path (str) – The metadata file path, can be either local or object storage path.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files.

	materialize ((bool, optional). Defaults to False.) – Whether the content of the dataset file should be loaded or it should return the file path to the content.
By default the content will not be loaded.

	Returns

	The LabeledDatasetReader instance.

	Return type

	LabeledDatasetReader

	
info() → ads.common.serializer.Serializable

	Gets the labeled dataset metadata.

	Returns

	The labeled dataset metadata.

	Return type

	Metadata

	
read(iterator: bool = False, format: Optional[str] = None, chunksize: Optional[int] = None) → Union[Generator[Any, Any, Any], pandas.core.frame.DataFrame]

	Reads the labeled dataset records.

	Parameters

	
	iterator ((bool, optional). Defaults to False.) – True if the result should be represented as a Generator.
Fasle if the result should be represented as a Pandas DataFrame.

	format ((str, optional). Defaults to None.) – Output format of annotations. Can be None, “spacy” or “yolo”.

	chunksize ((int, optional). Defaults to None.) – The number of records that should be read in one iteration.
The result will be returned in a generator format.

	Returns

	
	Union[– Generator[Tuple[str, str, Any], Any, Any],
Generator[List[Tuple[str, str, Any]], Any, Any],
Generator[pd.DataFrame, Any, Any],
pd.DataFrame

] – pd.Dataframe if iterator and chunksize are not specified.
Generator[pd.Dataframe] ` if `iterator equal to False and chunksize is specified.
Generator[List[Tuple[str, str, Any]]] if iterator equal to True and chunksize is specified.
Generator[Tuple[str, str, Any]] if iterator equal to True and chunksize is not specified.

ads.data_labeling.reader.jsonl_reader module

	
class ads.data_labeling.reader.jsonl_reader.JsonlReader(path: str, auth: Optional[Dict] = None, encoding='utf-8')

	Bases: ads.data_labeling.interface.reader.Reader

JsonlReader class which reads the file.

Initiates a JsonlReader object.

	Parameters

	
	path (str) – object storage path or local path for a file.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding of files. Only used for “TEXT” dataset.

Examples

>>> from ads.data_labeling.reader.jsonl_reader import JsonlReader
>>> path = "your/path/to/jsonl/file.jsonl"
>>> from ads.common import auth as authutil
>>> reader = JsonlReader(path=path, auth=authutil.api_keys(), encoding="utf-8")
>>> next(reader.read())

	
read(skip: Optional[int] = None) → Generator[Dict, Any, Any]

	Reads and yields the content of the file.

	Parameters

	skip ((int, optional). Defaults to None.) – The number of records that should be skipped.

	Returns

	The content of the file.

	Return type

	Generator[Dict, Any, Any]

	Raises

	
	ValueError – If skip not empty and not a positive integer.

	FileNotFoundError – When file not found.

ads.data_labeling.reader.metadata_reader module

	
class ads.data_labeling.reader.metadata_reader.DLSMetadataReader(dataset_id: str, compartment_id: str, auth: dict)

	Bases: ads.data_labeling.interface.reader.Reader

DLSMetadataReader class which reads the metadata jsonl file from the cloud.

Initializes the DLS metadata reader instance.

	Parameters

	
	dataset_id (str) – The dataset OCID.

	compartment_id (str) – The compartment OCID of the dataset.

	auth (dict) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Raises

	
	ValueError – When dataset_id is empty or not a string.:

	TypeError – When dataset_id not a string.:

	
read() → ads.data_labeling.metadata.Metadata

	Reads the content from the metadata file.

	Returns

	The metadata of the labeled dataset.

	Return type

	Metadata

	Raises

	
	DatasetNotFoundError – If dataset not found.

	ReadDatasetError – If any error occured in attempt to read dataset.

	
exception ads.data_labeling.reader.metadata_reader.DatasetNotFoundError(id: str)

	Bases: Exception

	
exception ads.data_labeling.reader.metadata_reader.EmptyMetadata

	Bases: Exception

Empty Metadata.

	
class ads.data_labeling.reader.metadata_reader.ExportMetadataReader(path: str, auth: Optional[Dict] = None, encoding='utf-8')

	Bases: ads.data_labeling.reader.jsonl_reader.JsonlReader

ExportMetadataReader class which reads the metadata jsonl file from local/object
storage path.

Initiates a JsonlReader object.

	Parameters

	
	path (str) – object storage path or local path for a file.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding of files. Only used for “TEXT” dataset.

Examples

>>> from ads.data_labeling.reader.jsonl_reader import JsonlReader
>>> path = "your/path/to/jsonl/file.jsonl"
>>> from ads.common import auth as authutil
>>> reader = JsonlReader(path=path, auth=authutil.api_keys(), encoding="utf-8")
>>> next(reader.read())

	
read() → ads.data_labeling.metadata.Metadata

	Reads the content from the metadata file.

	Returns

	The metadata of the labeled dataset.

	Return type

	Metadata

	
class ads.data_labeling.reader.metadata_reader.MetadataReader(reader: ads.data_labeling.interface.reader.Reader)

	Bases: object

MetadataReader class which reads and extracts the labeled dataset metadata.

Examples

>>> from ads.data_labeling import MetadataReader
>>> import oci
>>> import os
>>> from ads.common import auth as authutil
>>> reader = MetadataReader.from_export_file("metadata_export_file_path",
... auth=authutil.api_keys())
>>> reader.read()

Initiate a MetadataReader instance.

	Parameters

	reader (Reader) – Reader instance which reads and extracts the labeled dataset metadata.

	
classmethod from_DLS(dataset_id: str, compartment_id: Optional[str] = None, auth: Optional[dict] = None) → ads.data_labeling.reader.metadata_reader.MetadataReader

	Contructs a MetadataReader instance.

	Parameters

	
	dataset_id (str) – The dataset OCID.

	compartment_id ((str, optional). Default None) – The compartment OCID of the dataset.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	The MetadataReader instance whose reader is a DLSMetadataReader instance.

	Return type

	MetadataReader

	
classmethod from_export_file(path: str, auth: Optional[Dict] = None) → ads.data_labeling.reader.metadata_reader.MetadataReader

	Contructs a MetadataReader instance.

	Parameters

	
	path (str) – metadata file path, can be either local or object storage path.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	The MetadataReader instance whose reader is a ExportMetadataReader instance.

	Return type

	MetadataReader

	
read() → ads.data_labeling.metadata.Metadata

	Reads the content from the metadata file.

	Returns

	The metadata of the labeled dataset.

	Return type

	Metadata

	
exception ads.data_labeling.reader.metadata_reader.ReadDatasetError(id: str)

	Bases: Exception

ads.data_labeling.reader.record_reader module

	
class ads.data_labeling.reader.record_reader.RecordReader(reader: ads.data_labeling.interface.reader.Reader, parser: ads.data_labeling.interface.parser.Parser, loader: Optional[ads.data_labeling.interface.loader.Loader] = None, include_unlabeled: bool = False, encoding: str = 'utf-8', materialize: bool = False)

	Bases: object

Record Reader Class consists of parser, reader and loader. Reader reads the
the content from the record file. Parser parses the label for each record. And
Loader loads the content of the file path in that record.

Examples

>>> import os
>>> import oci
>>> from ads.data_labeling import RecordReader
>>> from ads.common import auth as authutil
>>> file_path = "/path/to/your_record.jsonl"
>>> dataset_type = "IMAGE"
>>> annotation_type = "BOUNDING_BOX"
>>> record_reader = RecordReader.from_export_file(file_path, dataset_type, annotation_type, "image_file_path", authutil.api_keys())
>>> next(record_reader.read())

Initiates a RecordReader instance.

	Parameters

	
	reader (Reader) – Reader instance to read content from the record file.

	parser (Parser) – Parser instance to parse the labels from record file.

	loader (Loader. Defaults to None.) – Loader instance to load the content from the file path in the record.

	materialize (bool, optional. Defaults to False.) – Whether to materialize the content using loader.

	include_unlabeled ((bool, optional). Default to False.) – Whether to load the unlabeled records or not.

	encoding (str, optional) – Encoding for text files. Used only to extract the content of the text dataset contents.

	Raises

	ValueError – If the record reader and record parser must be specified.
 If the loader is not specified when materialize if True.

	
classmethod from_DLS(dataset_id: str, dataset_type: str, annotation_type: str, dataset_source_path: str, compartment_id: Optional[str] = None, auth: Optional[Dict] = None, include_unlabeled: bool = False, encoding: str = 'utf-8', materialize: bool = False, format: Optional[str] = None, categories: Optional[List[str]] = None) → ads.data_labeling.reader.record_reader.RecordReader

	Constructs Record Reader instance.

	Parameters

	
	dataset_id (str) – The dataset OCID.

	dataset_type (str) – Dataset type. Currently supports TEXT, IMAGE and DOCUMENT.

	annotation_type (str) – Annotation Type. Currently TEXT supports SINGLE_LABEL, MULTI_LABEL,
ENTITY_EXTRACTION. IMAGE supports SINGLE_LABEL, MULTI_LABEL and BOUNDING_BOX.
DOCUMENT supports SINGLE_LABEL and MULTI_LABEL.

	dataset_source_path (str) – Dataset source path.

	compartment_id ((str, optional). Defaults to None.) – The compartment OCID of the dataset.

	auth ((dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files.

	materialize ((bool, optional). Defaults to False.) – Whether the content of the dataset file should be loaded or it should return the file path to the content.
By default the content will not be loaded.

	format ((str, optional). Defaults to None.) – Output format of annotations. Can be None, “spacy” for dataset
Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem].
When “spacy”, it outputs List[Tuple].
When “yolo”, it outputs List[List[Tuple]].

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	Returns

	The RecordReader instance.

	Return type

	RecordReader

	
classmethod from_export_file(path: str, dataset_type: str, annotation_type: str, dataset_source_path: str, auth: Optional[Dict] = None, include_unlabeled: bool = False, encoding: str = 'utf-8', materialize: bool = False, format: Optional[str] = None, categories: Optional[List[str]] = None, includes_metadata=False) → ads.data_labeling.reader.record_reader.RecordReader

	Initiates a RecordReader instance.

	Parameters

	
	path (str) – Record file path.

	dataset_type (str) – Dataset type. Currently supports TEXT, IMAGE and DOCUMENT.

	annotation_type (str) – Annotation Type. Currently TEXT supports SINGLE_LABEL, MULTI_LABEL,
ENTITY_EXTRACTION. IMAGE supports SINGLE_LABEL, MULTI_LABEL and BOUNDING_BOX.
DOCUMENT supports SINGLE_LABEL and MULTI_LABEL.

	dataset_source_path (str) – Dataset source path.

	auth ((dict, optional). Default None) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	include_unlabeled ((bool, optional). Default to False.) – Whether to load the unlabeled records or not.

	encoding ((str, optional). Defaults to "utf-8".) – Encoding for text files. Used only to extract the content of the text dataset contents.

	materialize ((bool, optional). Defaults to False.) – Whether to materialize the content by loader.

	format ((str, optional). Defaults to None.) – Output format of annotations. Can be None, “spacy” for dataset
Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem].
When “spacy”, it outputs List[Tuple].
When “yolo”, it outputs List[List[Tuple]].

	categories ((List[str], optional). Defaults to None.) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

	includes_metadata ((bool, optional). Defaults to False.) – Determines whether the export file includes metadata or not.

	Returns

	A RecordReader instance.

	Return type

	RecordReader

	
read() → Generator[Tuple[str, Union[List, str]], Any, Any]

	Reads the record.

	Yields

	Generator[Tuple[str, Union[List, str]], Any, Any] – File path, content and labels in a tuple.

ads.data_labeling.visualizer.image_visualizer module

The module that helps to visualize Image Dataset.

	
ads.data_labeling.visualizer.image_visualizer.render(items: List[LabeledImageItem], options: Dict = None)

	Renders Labeled Image dataset.

Examples

>>> bbox1 = BoundingBoxItem(bottom_left=(0.3, 0.4),
>>> top_left=(0.3, 0.09),
>>> top_right=(0.86, 0.09),
>>> bottom_right=(0.86, 0.4),
>>> labels=['dolphin', 'fish'])

>>> record1 = LabeledImageItem(img_obj1, [bbox1])

>>> bbox2 = BoundingBoxItem(bottom_left=(0.2, 0.4),
>>> top_left=(0.2, 0.2),
>>> top_right=(0.8, 0.2),
>>> bottom_right=(0.8, 0.4),
>>> labels=['dolphin'])
>>> bbox3 = BoundingBoxItem(bottom_left=(0.5, 1.0),
>>> top_left=(0.5, 0.8),
>>> top_right=(0.8, 0.8),
>>> bottom_right=(0.8, 1.0),
>>> labels=['shark'])

>>> record2 = LabeledImageItem(img_obj2, [bbox2, bbox3])
>>> render(items = [record1, record2], options={"default_color":"blue", "colors": {"dolphin":"blue", "whale":"red"}})

	
class ads.data_labeling.visualizer.image_visualizer.ImageLabeledDataFormatter

	Bases: object

The ImageRender class to render Image items in a notebook session.

	
static render_item(item: ads.data_labeling.visualizer.image_visualizer.LabeledImageItem, options: Optional[Dict] = None, path: Optional[str] = None) → None

	Renders image dataset.

	Parameters

	
	item (LabeledImageItem) – Item to render.

	options (Optional[dict]) – Render options.

	path (str) – Path to save the image with annotations to local directory.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	ValueError – If items not provided.
 If path is not valid.

	TypeError – If items provided in a wrong format.

	
class ads.data_labeling.visualizer.image_visualizer.LabeledImageItem(img: PIL.ImageFile.ImageFile, boxes: List[ads.data_labeling.boundingbox.BoundingBoxItem])

	Bases: object

Data class representing Image Item.

	
img

	the labeled image object.

	Type

	ImageFile

	
boxes

	a list of BoundingBoxItem

	Type

	List[BoundingBoxItem]

	
boxes: List[ads.data_labeling.boundingbox.BoundingBoxItem]

	

	
img: PIL.ImageFile.ImageFile

	

	
class ads.data_labeling.visualizer.image_visualizer.RenderOptions(default_color: str, colors: Optional[dict])

	Bases: object

Data class representing render options.

	
default_color

	The specified default color.

	Type

	str

	
colors

	The multiple specified colors.

	Type

	Optional[dict]

	
colors: Optional[dict]

	

	
default_color: str

	

	
classmethod from_dict(options: dict) → ads.data_labeling.visualizer.image_visualizer.RenderOptions

	Constructs an instance of RenderOptions from a dictionary.

	Parameters

	options (dict) – Render options in dictionary format.

	Returns

	The instance of RenderOptions.

	Return type

	RenderOptions

	
to_dict()

	Converts RenderOptions instance to dictionary format.

	Returns

	The render options in dictionary format.

	Return type

	dict

	
exception ads.data_labeling.visualizer.image_visualizer.WrongEntityFormat

	Bases: ValueError

	
ads.data_labeling.visualizer.image_visualizer.render(items: List[ads.data_labeling.visualizer.image_visualizer.LabeledImageItem], options: Optional[Dict] = None, path: Optional[str] = None) → None

	Render image dataset.

	Parameters

	
	items (List[LabeledImageItem]) – The list of LabeledImageItem to render.

	options (dict, optional) – The options for rendering.

	path (str) – Path to save the images with annotations to local directory.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	ValueError – If items not provided.
 If path is not valid.

	TypeError – If items provided in a wrong format.

Examples

>>> bbox1 = BoundingBoxItem(bottom_left=(0.3, 0.4),
>>> top_left=(0.3, 0.09),
>>> top_right=(0.86, 0.09),
>>> bottom_right=(0.86, 0.4),
>>> labels=['dolphin', 'fish'])

>>> record1 = LabeledImageItem(img_obj1, [bbox1])
>>> render(items = [record1])

ads.data_labeling.visualizer.text_visualizer module

The module that helps to visualize NER Text Dataset.

	
ads.data_labeling.visualizer.text_visualizer.render(items: List[LabeledTextItem], options: Dict = None) → str

	Renders NER dataset to Html format.

Examples

>>> record1 = LabeledTextItem("London is the capital of the United Kingdom", [NERItem('city', 0, 6), NERItem("country", 29, 14)])
>>> record2 = LabeledTextItem("Houston area contractor seeking a Sheet Metal Superintendent.", [NERItem("city", 0, 6)])
>>> result = render(items = [record1, record2], options={"default_color":"#DDEECC", "colors": {"city":"#DDEECC", "country":"#FFAAAA"}})
>>> display(HTML(result))

	
class ads.data_labeling.visualizer.text_visualizer.LabeledTextItem(txt: str, ents: List[ads.data_labeling.ner.NERItem])

	Bases: object

Data class representing NER Item.

	
txt

	The labeled sentence.

	Type

	str

	
ents

	The list of entities.

	Type

	List[NERItem]

	
ents: List[ads.data_labeling.ner.NERItem]

	

	
txt: str

	

	
class ads.data_labeling.visualizer.text_visualizer.RenderOptions(default_color: str, colors: Optional[dict])

	Bases: object

Data class representing render options.

	
default_color

	The specified default color.

	Type

	str

	
colors

	The multiple specified colors.

	Type

	Optional[dict]

	
colors: Optional[dict]

	

	
default_color: str

	

	
classmethod from_dict(options: dict) → ads.data_labeling.visualizer.text_visualizer.RenderOptions

	Constructs an instance of RenderOptions from a dictionary.

	Parameters

	options (dict) – Render options in dictionary format.

	Returns

	The instance of RenderOptions.

	Return type

	RenderOptions

	
to_dict()

	Converts RenderOptions instance to dictionary format.

	Returns

	The render options in dictionary format.

	Return type

	dict

	
class ads.data_labeling.visualizer.text_visualizer.TextLabeledDataFormatter

	Bases: object

The TextLabeledDataFormatter class to render NER items into Html format.

	
static render(items: List[ads.data_labeling.visualizer.text_visualizer.LabeledTextItem], options: Optional[Dict] = None) → str

	Renders NER dataset to Html format.

	Parameters

	
	items (List[LabeledTextItem]) – Items to render.

	options (Optional[dict]) – Render options.

	Returns

	Html representation of rendered NER dataset.

	Return type

	str

	Raises

	
	ValueError – If items not provided.

	TypeError – If items provided in a wrong format.

	
ads.data_labeling.visualizer.text_visualizer.render(items: List[ads.data_labeling.visualizer.text_visualizer.LabeledTextItem], options: Optional[Dict] = None) → str

	Renders NER dataset to Html format.

	Parameters

	
	items (List[LabeledTextItem]) – The list of NER items to render.

	options (dict, optional) – The options for rendering.

	Returns

	Html string.

	Return type

	str

Examples

>>> record = LabeledTextItem("London is the capital of the United Kingdom", [NERItem('city', 0, 6), NERItem("country", 29, 14)])
>>> result = render(items = [record], options={"default_color":"#DDEECC", "colors": {"city":"#DDEECC", "country":"#FFAAAA"}})
>>> display(HTML(result))

Module contents

 ads.database package

ads.database package

Subpackages

Submodules

ads.database.connection module

	
class ads.database.connection.Connector(secret_id: Optional[str] = None, key: Optional[str] = None, repository_path: Optional[str] = None, **kwargs)

	Bases: object

Validate that a connection could be made for the given set of connection parameters, and contruct a Connector object provided that the
validation is successful.

	Parameters

	
	secret_id (str, optional) – The ocid of the secret to retrieve from Oracle Cloud Infrastructure Vault.

	key (str, optional) – The key to find the database directory.

	repository_path (str, optional) – The local database information store, default to ~/.database unless specified otherwise.

	kwargs (dict, optional) – Name-value pairs that are to be added to the list of connection parameters.
For example, database_name=”mydb”, database_type=”oracle”, username = “root”, password = “pwd”.

	Return type

	A Connector object.

	
connect()

	

	
class ads.database.connection.OracleConnector(oracle_connection_config)

	Bases: object

	
ads.database.connection.get_repository(key: str, repository_path: Optional[str] = None) → dict

	Get all values from local database store.

	Parameters

	
	key (str) – The key to find the database directory.

	repository_path (str, optional) – The path to local database store, default to ~/.database unless specified otherwise.

	Return type

	A dictionary of all values in the store.

	
ads.database.connection.import_wallet(wallet_path: str, key: str, repository_path: Optional[str] = None) → None

	Saves wallet to local database store.
Unzip the wallet zip file, update sqlnet.ora and store wallet files.

	Parameters

	
	wallet_path (str) – The local path to the downloaded wallet zip file.

	key (str) – The key to find the database directory.

	repository_path (str, optional) – The local database store, default to ~/.database unless specified otherwise.

	
ads.database.connection.update_repository(value: dict, key: str, replace: bool = True, repository_path: Optional[str] = None) → dict

	Saves value into local database store.

	Parameters

	
	value (dict) – The values to store locally.

	key (str) – The key to find the local database directory.

	replace (bool, default to True) – If set to false, updates the stored value.

	repository_path (str: str, optional) – The local database store, default to ~/.database unless specified otherwise.

	Return type

	A dictionary of all values in the repository for the given key.

Module contents

 ads.dataflow package

ads.dataflow package

Submodules

ads.dataflow.dataflow module

	
class ads.dataflow.dataflow.DataFlow(compartment_id=None, dataflow_base_folder='/home/datascience/dataflow', os_auth=None, df_auth=None)

	Bases: object

	
create_app(app_config: dict, overwrite_script=False, overwrite_archive=False) → object

	Create a new dataflow application with the supplied app config.
app_config contains parameters needed to create a new application,
according to oci.data_flow.models.CreateApplicationDetails.

	Parameters

	
	app_config (dict) – the config file that contains all necessary parameters used to create a dataflow app

	overwrite_script (bool) – whether to overwrite the existing pyscript script on Object Storage

	overwrite_archive (bool) – whether to overwrite the existing archive file on Object Storage

	Returns

	df_app – New dataflow application.

	Return type

	oci.dataflow.models.Application

	
get_app(app_id: str)

	Get the Project based on app_id.

	Parameters

	app_id (str, required) – The OCID of the dataflow app to get.

	Returns

	app – The oci.dataflow.models.Application with the matching ID.

	Return type

	oci.dataflow.models.Application

	
list_apps(include_deleted: bool = False, compartment_id: Optional[str] = None, datetime_format: str = '%Y-%m-%d %H:%M:%S', **kwargs) → object

	List all apps in a given compartment, or in the current notebook session’s compartment.

	Parameters

	
	include_deleted (bool, optional, default=False) – Whether to include deleted apps in the returned list.

	compartment_id (str, optional, default: NB_SESSION_COMPARTMENT_OCID) – The compartment specified to list apps.

	datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change format for date time fields.

	Returns

	dsl – List of Dataflow applications.

	Return type

	List

	
load_app(app_id: str, target_folder: Optional[str] = None) → object

	Load an existing dataflow application based on application id.
The existing dataflow application can be created either from dataflow
service or the dataflow integration of ADS.

	Parameters

	
	app_id (str, required) – The OCID of the dataflow app to load.

	target_folder (str, optional,) – the folder to store the local artifacts of this application.
If not specified, the target_folder will use the
dataflow_base_folder by default.

	Returns

	dfa – A dataflow application of type ads.dataflow.dataflow.DataFlowApp

	Return type

	ads.dataflow.dataflow.DataFlowApp

	
prepare_app(display_name: str, script_bucket: str, pyspark_file_path: str, spark_version: str = '2.4.4', compartment_id: Optional[str] = None, archive_path: Optional[str] = None, archive_bucket: Optional[str] = None, logs_bucket: str = 'dataflow-logs', driver_shape: str = 'VM.Standard2.4', executor_shape: str = 'VM.Standard2.4', num_executors: int = 1, arguments: list = [], script_parameters: dict = []) → dict

	Check if the parameters provided by users to create an application are
valid and then prepare app_configuration for creating an app or saving
for future reuse.

	Parameters

	
	display_name (str, required) – A user-friendly name. This name is not necessarily unique.

	script_bucket (str, required) – bucket in object storage to upload the pyspark file

	pyspark_file_path (str, required) – path to the pyspark file

	spark_version (str) – Allowed values are “2.4.4”, “3.0.2”.

	compartment_id (str) – OCID of the compartment to create a dataflow app. If not
provided, compartment_id will use the same as the notebook session.

	archive_path (str, optional) – path to the archive file

	archive_bucket (str, optional) – bucket in object storage to upload the archive file

	logs_bucket (str, default is 'dataflow-logs') – bucket in object storage to put run logs

	driver_shape (str) – The value to assign to the driver_shape property of this
CreateApplicationDetails.
Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”,
“VM.Standard2.16”, “VM.Standard2.24”.

	executor_shape (str) – The value to assign to the executor_shape property of this
CreateApplicationDetails.
Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”,
“VM.Standard2.16”, “VM.Standard2.24”.

	num_executors (int) – The number of executor VMs requested.

	arguments (list of str) – The values passed into the command line string to run the application

	script_parameters (dict) – The value of the parameters passed to the running application as
command line arguments for the pyspark script.

	Returns

	app_configuration

	Return type

	dictionary containing all the validated params for CreateApplicationDetails.

	
template(job_type: str = 'standard_pyspark', script_str: str = '', file_dir: Optional[str] = None, file_name: Optional[str] = None) → str

	Populate a prewritten pyspark or sparksql python script with
user’s choice to write additional lines and save in local directory.

	Parameters

	
	job_type (str, default is 'standard_pyspark') – Currently supports two types, ‘standard_pyspark’ or ‘sparksql’

	script_str (str, optional, default is '') – code provided by user to write in the python script

	file_dir (str, optional) – Directory to save the python script in local directory

	file_name (str, optional) – name of the python script to save to the local directory

	Returns

	script_path – Path to the template generated python file in local directory

	Return type

	str

	
class ads.dataflow.dataflow.DataFlowApp(app_config, app_response, app_dir, oci_link, **kwargs)

	Bases: ads.dataflow.dataflow.DataFlow

	
property config: dict

	Retrieve the app_config file used to create the data flow app

	Returns

	app_config – dictionary containing all the validated params for this DataFlowApp

	Return type

	Dict

	
get_run(run_id: str)

	Get the Run based on run_id

	Parameters

	run_id (str, required) – The OCID of the dataflow run to get.

	Returns

	df_run – The oci.dataflow.models.Run with the matching ID.

	Return type

	oci.dataflow.models.Run

	
list_runs(include_failed: bool = False, datetime_format: str = '%Y-%m-%d %H:%M:%S', **kwargs) → object

	List all run of a dataflow app

	Parameters

	
	include_failed (bool, optional, default=False) – Whether to include failed runs in the returned list

	datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change format for date time fields

	Returns

	df_runs – List of Data flow runs.

	Return type

	List

	
property oci_link: object

	Retrieve the oci link of the data flow app

	Returns

	oci_link – a link to the app page in an oci console.

	Return type

	str

	
prepare_run(run_display_name: str, compartment_id: Optional[str] = None, logs_bucket: str = '', driver_shape: str = 'VM.Standard2.4', executor_shape: str = 'VM.Standard2.4', num_executors: int = 1, **kwargs) → dict

	Check if the parameters provided by users to create a run are
valid and then prepare run_config for creating run details.

	Parameters

	
	run_display_name (str) – A user-friendly name. This name is not necessarily unique.

	compartment_id (str) – OCID of the compartment to create a dataflow run. If not
provided, compartment_id will use the same as the dataflow app.

	logs_bucket (str) – bucket in object storage to put run logs, if not provided,
will use the same logs_bucket as defined in app_config

	driver_shape (str) – The value to assign to the driver_shape property of this
CreateApplicationDetails.
Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”,
“VM.Standard2.16”, “VM.Standard2.24”.

	executor_shape (str) – The value to assign to the executor_shape property of this
CreateApplicationDetails.
Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”,
“VM.Standard2.16”, “VM.Standard2.24”.

	num_executors (int) – The number of executor VMs requested.

	Returns

	run_config – Dictionary containing all the validated params for CreateRunDetails.

	Return type

	Dict

	
run(run_config: dict, save_log_to_local: bool = False, copy_script_to_object_storage: bool = True, copy_archive_to_object_storage: bool = True, pyspark_file_path: Optional[str] = None, archive_path: Optional[str] = None, wait: bool = True) → object

	Create a new dataflow run with the supplied run config.
run_config contains parameters needed to create a new run, according to oci.data_flow.models.CreateRunDetails.

	Parameters

	
	run_config (dict, required) – The config file that contains all necessary parameters used to create a dataflow run

	save_log_to_local (bool, optional) – A boolean value that defaults to false. If set to true, it saves the log files to local dir

	copy_script_to_object_storage (bool, optional) – A boolean value that defaults to true. Local script will be copied to object storage

	copy_archive_to_object_storage (bool, optional) – A boolean value that defaults to true. Local archive file will be copied to object storage

	pyspark_file_path (str, optional) – The pyspark file path used for creating the dataflow app.
if pyspark_file_path isn’t specified then reuse the path that the app was created with.

	archive_path (str, optional) – The archive file path used for creating the dataflow app.
if archive_path isn’t specified then reuse the path that the app was created with.

	wait (bool, optional) – A boolean value that defaults to true.
When True, the return will be ads.dataflow.dataflow.DataFlowRun in terminal state.
When False, the return will be a ads.dataflow.dataflow.RunObserver.

	Returns

	df_run – Either a new Data Flow run or a run observer.

	Return type

	Variable

	
class ads.dataflow.dataflow.DataFlowLog(text, oci_path, log_local_dir)

	Bases: object

	
head(n: int = 10)

	Show the first n lines of the log as the output of the notebook cell

	Parameters

	n (int, default is 10) – the number of lines from head of the log file

	Return type

	None

	
property local_dir

	Get the local directory where the log file is saved.

	Returns

	local_dir – Path to the local directory where the log file is saved.

	Return type

	str

	
property local_path

	Get the path of the log file in local directory

	Returns

	local_path – Path of the log file in local directory

	Return type

	str

	
property oci_path

	Get the path of the log file in object storage

	Returns

	oci_path – Path of the log file in object storage

	Return type

	str

	
save(log_dir=None)

	save the log file to a local directory.

	Parameters

	
	log_dir (str,) – The path to the local directory to save log file, if not

	set –

	default. (log will be saved to the _local_dir by) –

	Return type

	None

	
show_all()

	Show all content of the log as the output of the notebook cell

	Return type

	None

	
tail(n: int = 10)

	Show the last n lines of the log as the output of the notebook cell

	Parameters

	n (int, default is 10) – the number of lines from tail of the log file

	Return type

	None

	
class ads.dataflow.dataflow.DataFlowRun(run_config, run_response, save_log_to_local, local_dir, **kwargs)

	Bases: ads.dataflow.dataflow.DataFlow

	
LOG_OUTPUTS = ['stdout', 'stderr']

	

	
property config: dict

	Retrieve the run_config file used to create the Data Flow run

	Returns

	run_config – dictionary containing all the validated params for this DataFlowRun

	Return type

	Dict

	
fetch_log(log_type: str) → object

	Fetch the log information of a run

	Parameters

	log_type (str, have two values, 'stdout' or 'stderr') –

	Returns

	dfl – a Data Flow log object

	Return type

	DataFlowLog

	
property local_dir: str

	Retrieve the local directory of the data flow run

	Returns

	local_dir – the local path to the Data Flow run

	Return type

	str

	
property log_stderr: object

	Retrieve the stderr of the data flow run

	Returns

	log_error – a clickable link that opens the stderror log in another tab in jupyter notebook environment

	Return type

	ads.dataflow.dataflow.DataFlowLog

	
property log_stdout: object

	Retrieve the stdout of the data flow run

	Returns

	log_out – a clickable link that opens the stdout log in another tab in a JupyterLab notebook environment

	Return type

	ads.dataflow.dataflow.DataFlowLog

	
property oci_link: object

	Retrieve the oci link of the data flow run

	Returns

	oci_link – link to the run page in an oci console

	Return type

	str

	
property status: str

	Retrieve the status of the data flow run

	Returns

	status – String that describes the status of the run

	Return type

	str

	
update_config(param_dict) → None

	Modify the run_config file used to create the data flow run

	Parameters

	param_dict (Dict) – Dictionary containing the key value pairs of the run_config parameters and
the updated values.

	Return type

	None

	
class ads.dataflow.dataflow.RunObserver(app, run_config, save_log_to_local)

	Bases: object

	
property config: dict

	Retrieve the run_config file used to create the data flow run

	Returns

	run_config – Dictionary containing all the validated parameters for this Data Flow run

	Return type

	Dict

	
property local_dir: str

	Retrieve the local directory of the data flow run

	Returns

	local_dir – the local path to the Data Flow run

	Return type

	str

	
property oci_link: object

	Retrieve the oci link of the data flow run

	Returns

	oci_link – link to the run page in an oci console

	Return type

	str

	
property status: str

	Returns the lifecycle state of the Data Flow run

	
update_config(param_dict) → None

	Modify the run_config file used to create the data flow run

	Parameters

	param_dict (Dict) – dictionary containing the key value pairs of the run_config parameters and
the updated values.

	Return type

	None

	
wait()

	Wait and monitor the run creation process.

	Parameters

	None –

	Returns

	df_run – The oci.dataflow.models.Run after monitoring is done.

	Return type

	oci.dataflow.models.Run

	
class ads.dataflow.dataflow.SPARK_VERSION

	Bases: str

	
v2_4_4 = '2.4.4'

	

	
v3_0_2 = '3.0.2'

	

ads.dataflow.dataflowsummary module

	
class ads.dataflow.dataflowsummary.SummaryList(entity_list, datetime_format='%Y-%m-%d %H:%M:%S')

	Bases: list

	
abstract filter(selection, instance=None)

	Abstract filter method for dataflow summary.

	
abstract sort_by(columns, reverse=False)

	Abstract sort method for dataflow summary.

	
to_dataframe(datetime_format=None)

	Abstract to_dataframe method for dataflow summary.

Module contents

 ads.dataset package

ads.dataset package

Submodules

ads.dataset.classification_dataset module

	
class ads.dataset.classification_dataset.BinaryClassificationDataset(df, sampled_df, target, target_type, shape, positive_class=None, **kwargs)

	Bases: ads.dataset.classification_dataset.ClassificationDataset

Dataset for binary classification

	
set_positive_class(positive_class, missing_value=False)

	Return new dataset with values in target column mapped to True or False
in accordance with the specified positive label.

	Parameters

	
	positive_class (same dtype as target) – The target label which should be identified as positive outcome from model.

	missing_value (bool) – missing values will be converted to this

	Returns

	dataset

	Return type

	same type as the caller

	Raises

	ValidationError – if the positive_class is not present in target

Examples

>>> ds = DatasetFactory.open("iris.csv")
>>> ds_with_target = ds.set_target('class')
>>> ds_with_pos_class = ds.set_positive_class('setosa')

	
class ads.dataset.classification_dataset.BinaryTextClassificationDataset(df, sampled_df, target, target_type, shape, **kwargs)

	Bases: ads.dataset.classification_dataset.BinaryClassificationDataset

Dataset for binary text classification

	
auto_transform()

	Automatically chooses the most effective dataset transformation

	
select_best_features(score_func=None, k=12)

	Automatically chooses the best features and removes the rest

	
class ads.dataset.classification_dataset.ClassificationDataset(df, sampled_df, target, target_type, shape, **kwargs)

	Bases: ads.dataset.dataset_with_target.ADSDatasetWithTarget

Dataset for classification task

	
auto_transform(fix_imbalance: bool = True, correlation_threshold: float = 0.7, frac: float = 1.0, correlation_methods: str = 'pearson')

	Return transformed dataset with several optimizations applied automatically.
The optimizations include:

	Dropping constant and primary key columns, which has no predictive quality,

	Imputation, to fill in missing values in noisy data:

	For continuous variables, fill with mean if less than 40% is missing, else drop,

	For categorical variables, fill with most frequent if less than 40% is missing, else drop,

	Dropping strongly co-correlated columns that tend to produce less generalizable models,

	Balancing dataset using up or down sampling.

	Parameters

	
	fix_imbalance (bool, defaults to True.) – Fix imbalance between classes in dataset. Used only for classification datasets.

	correlation_threshold (float, defaults to 0.7. It must be between 0 and 1, inclusive.) – The correlation threshold where columns with correlation higher than the threshold will
be considered as strongly co-correlated and recommended to be taken care of.

	frac (float, defaults to 1.0. Range -> (0, 1].) – What fraction of the data should be used in the calculation?

	correlation_methods (Union[list, str], defaults to 'pearson'.) –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’].

	Returns

	transformed_dataset – The dataset after transformation

	Return type

	ADSDatasetWithTarget

Examples

>>> ds_clean = ds.auto_transform(correlation_threshold=0.6)

	
convert_to_text_classification(text_column: str)

	Builds a new dataset with the given text column as the only feature besides target.

	Parameters

	text_column (str) – Feature name to use for text classification task

	Returns

	ds – Dataset with one text feature and a classification target

	Return type

	TextClassificationDataset

Examples

>>> review_ds = DatasetFactory.open("review_data.csv")
>>> ds_text_class = review_ds.convert_to_text_classification('reviews')

	
down_sample(sampler=None)

	Fixes an imbalanced dataset by down-sampling.

	Parameters

	sampler (An instance of SamplerMixin) – Should implement fit_resample(X,y) method. If None, does random down sampling.

	Returns

	down_sampled_ds – A down-sampled dataset.

	Return type

	ClassificationDataset

Examples

>>> ds = DatasetFactory.open("some_data.csv")
>>> ds_balanced_small = ds.down_sample()

	
up_sample(sampler='default')

	Fixes imbalanced dataset by up-sampling

	Parameters

	
	sampler (An instance of SamplerMixin) – Should implement fit_resample(X,y) method.
If ‘default’, either SMOTE or random sampler will be used

	fill_missing_type (a string) – Can either be ‘mean’, ‘mode’ or ‘median’.

	Returns

	up_sampled_ds – an up-sampled dataset

	Return type

	ClassificationDataset

Examples

>>> ds = DatasetFactory.open("some_data.csv")
>>> ds_balanced_large = ds.up_sample()

	
class ads.dataset.classification_dataset.MultiClassClassificationDataset(df, sampled_df, target, target_type, shape, **kwargs)

	Bases: ads.dataset.classification_dataset.ClassificationDataset

Dataset for multi-class classification

	
class ads.dataset.classification_dataset.MultiClassTextClassificationDataset(df, sampled_df, target, target_type, shape, **kwargs)

	Bases: ads.dataset.classification_dataset.MultiClassClassificationDataset

Dataset for multi-class text classification

	
auto_transform()

	Automatically chooses the most effective dataset transformation

	
select_best_features(score_func=None, k=12)

	Automatically chooses the best features and removes the rest

ads.dataset.correlation module

ads.dataset.correlation_plot module

	
class ads.dataset.correlation_plot.BokehHeatMap(ds)

	Bases: object

Generate a HeatMap or horizontal bar plot to compare features.

	
debug()

	Return True if in debug mode, otherwise False.

	
flatten_corr_matrix(corr_matrix)

	Flatten a correlation matrix into a pandas Dataframe.

	Parameters

	corr_matrix (Pandas Dataframe) – The correlation matrix to be flattened.

	Returns

	corr_flatten – The flattened correlation matrix.

	Return type

	Pandas DataFrame

	
generate_heatmap(corr_matrix, title: str, msg: str, correlation_threshold: float)

	Generate a heatmap from a correlation matrix.

	Parameters

	
	corr_matrix (Pandas Dataframe) – The dataframe to be used for heatmap generation.

	title (str) – title of the heatmap.

	msg (str) – An additional msg to include in the plot.

	correlation_threshold (float) – A float between 0 and 1 which is used for excluding correlations which are not intense enough from the plot.

	Returns

	tab – A matplotlib Panel object which includes a plotted heatmap

	Return type

	matplotlib Panel

	
generate_target_heatmap(corr_matrix, title: str, correlation_target: str, msg: str, correlation_threshold: float)

	Generate a heatmap from a correlation matrix and its targets.

	Parameters

	
	corr_matrix (Pandas Dataframe) – The dataframe to be used for heatmap generation.

	title (str) – title of the heatmap.

	correlation_target (str) – The target column name for computing correlations against.

	msg (str) – An additional msg to include in the plot.

	correlation_threshold (float) – A float between 0 and 1 which is used for excluding correlations which are not intense enough from the plot.

	Returns

	tab – A matplotlib Panel object which includes a plotted heatmap.

	Return type

	matplotlib Panel

	
plot_correlation_heatmap(ds, plot_type: str = 'heatmap', correlation_target: Optional[str] = None, correlation_threshold=- 1, correlation_methods: str = 'pearson', **kwargs)

	Plots a correlation heatmap.

	Parameters

	
	ds (Pandas Slice) – A data slice or file

	plot_type (str Defaults to "heatmap") – The type of plot - “bar” is another option.

	correlation_target (str, Defaults to None) – the target column for correlation calculations.

	correlation_threshold (float, Defaults to -1) – the threshold for computing correlation heatmap elements.

	correlation_methods (str, Defaults to "pearson") – the way to compute correlations, other options are “cramers v” and “correlation ratio”

	
plot_hbar(matrix, low: float = 1, high=1, title: Optional[str] = None, tool_tips: Optional[list] = None, column_name: Optional[str] = None)

	Plots a histogram bar-graph.

	Parameters

	
	matrix (Pandas Dataframe) – The dataframe to be plotted.

	low (float, Defaults to 1) – The color mapping value for “low” points.

	high (float, Defaults to 1) – The color mapping value for “high” points.

	title (str, Defaults to None) – The optional title of the heat map.

	tool_tips (list of str, Defaults to None) – An optional list of tool tips to include with the plot.

	column_name (str, Defaults to None) – The name of the column which is being plotted.

	Returns

	fig – A matplotlib heatmap figure object.

	Return type

	matplotlib Figure

	
plot_heat_map(matrix, xrange: list, yrange: list, low: float = 1, high=1, title: Optional[str] = None, tool_tips: Optional[list] = None)

	Plots a matrix as a heatmap.

	Parameters

	
	matrix (Pandas Dataframe) – The dataframe to be plotted.

	xrange (List of floats) – The range of x values to plot.

	yrange (List of floats) – The range of y values to plot.

	low (float, Defaults to 1) – The color mapping value for “low” points.

	high (float, Defaults to 1) – The color mapping value for “high” points.

	title (str, Defaults to None) – The optional title of the heat map.

	tool_tips (list of str, Defaults to None) – An optional list of tool tips to include with the plot.

	Returns

	fig – A matplotlib heatmap figure object.

	Return type

	matplotlib Figure

	
ads.dataset.correlation_plot.plot_correlation_heatmap(ds=None, **kwargs) → None

	Plots a correlation heatmap.

	Parameters

	ds (Pandas Slice) – A data slice or file

ads.dataset.dask_series module

ads.dataset.dataframe_transformer module

	
class ads.dataset.dataframe_transformer.DataFrameTransformer(func_name, target_name, target_sample_val, args=None, kw_args=None)

	Bases: sklearn.base.TransformerMixin

A DataFrameTransformer object.

	
fit(df)

	Takes in a DF and returns a fitted model

	
transform(df)

	Takes in a DF and returns a transformed DF

	
ads.dataset.dataframe_transformer.expand_lambda_function(lambda_func)

	Returns a lambda function after expansion.

ads.dataset.dataset module

	
class ads.dataset.dataset.ADSDataset(df, sampled_df, shape, name='', description=None, type_discovery=True, types={}, metadata=None, progress=<ads.dataset.progress.DummyProgressBar object>, transformer_pipeline=None, interactive=False, **kwargs)

	Bases: ads.dataset.sampled_dataset.PandasDataset

An ADSDataset Object.

The ADSDataset object cannot be used for classification or regression problems until a
target has been set using set_target. To see some rows in the data use any of the usual
Pandas functions like head(). There are also a variety of converters, to_dask,
to_pandas, to_h2o, to_xgb, to_csv, to_parquet, to_json & to_hdf .

	
assign_column(column, arg)

	Return new dataset with new column or values of the existing column mapped according to input correspondence.

Used for adding a new column or substituting each value in a column with another value, that may be derived from
a function, a pandas.Series or a pandas.DataFrame.

	Parameters

	
	column (str) – Name of the feature to update.

	arg (function, dict, Series or DataFrame) – Mapping correspondence.

	Returns

	dataset – a dataset with the specified column assigned.

	Return type

	same type as the caller

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_same_size = ds.assign_column('target',lambda x: x>15 if x not None)
>>> ds_bigger = ds.assign_column('new_col', np.arange(ds.shape[0]))

	
astype(types)

	Convert data type of features.

	Parameters

	types (dict) – key is the existing feature name
value is the data type to which the values of the feature should be converted.
Valid data types: All numpy datatypes (Example: np.float64, np.int64, …)
or one of categorical, continuous, ordinal or datetime.

	Returns

	updated_dataset – an ADSDataset with new data types

	Return type

	ADSDataset

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_reformatted = ds.astype({"target": "categorical"})

	
call(func, *args, sample_size=None, **kwargs)

	Runs a custom function on dataframe

func will receive the pandas dataframe (which represents the dataset) as an argument named ‘df’ by default.
This can be overridden by specifying the dataframe argument name in a tuple (func, dataframe_name).

	Parameters

	
	func (Union[callable, tuple]) – Custom function that takes pandas dataframe as input
Alternatively a (callable, data) tuple where data is a string indicating the keyword of callable
that expects the dataframe name

	args (iterable, optional) – Positional arguments passed into func

	sample_size (int, Optional) – To use a sampled dataframe

	kwargs (mapping, optional) – A dictionary of keyword arguments passed into func

	Returns

	func – a plotting function that contains *args and **kwargs

	Return type

	function

Examples

>>> ds = DatasetFactory.open("classfication_data.csv")
>>> def f1(df):
... return(sum(df), axis=0)
>>> sum_ds = ds.call(f1)

	
compute()

	

	
corr(correlation_methods: Union[list, str] = 'pearson', frac: float = 1.0, sample_size: float = 1.0, nan_threshold: float = 0.8, overwrite: Optional[bool] = None, force_recompute: bool = False)

	Compute pairwise correlation of numeric and categorical columns, output a matrix or a list of matrices computed
using the correlation methods passed in.

	Parameters

	
	correlation_methods (Union[list, str], default to 'pearson') –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’].

	frac – Is deprecated and replaced by sample_size.

	sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What fraction of the data should be used in the calculation?

	nan_threshold (float, default to 0.8, Range -> [0, 1]) – Only compute a correlation when the proportion of the values, in a column, is less than or equal to nan_threshold.

	overwrite – Is deprecated and replaced by force_recompute.

	force_recompute (bool, default to be False) –
	If False, it calculates the correlation matrix if there is no cached correlation matrix. Otherwise,
it returns the cached correlation matrix.

	If True, it calculates the correlation matrix regardless whether there is cached result or not.

	Returns

	correlation – The pairwise correlations as a matrix (DataFrame) or list of matrices

	Return type

	Union[list, pandas.DataFrame]

	
property ddf

	

	
df_read_functions = ['head', 'describe', '_get_numeric_data']

	

	
drop_columns(columns)

	Return new dataset with specified columns removed.

	Parameters

	columns (str or list) – columns to drop.

	Returns

	dataset – a dataset with specified columns dropped.

	Return type

	same type as the caller

	Raises

	ValidationError – If any of the feature names is not found in the dataset.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_smaller = ds.drop_columns(['col1', 'col2'])

	
merge(data, **kwargs)

	Merges this dataset with another ADSDataset or pandas dataframe.

	Parameters

	
	data (Union[ADSDataset, pandas.DataFrame]) – Data to merge.

	kwargs (dict, optional) – additional keyword arguments that would be passed to underlying dataframe’s merge API.

Examples

>>> ds1 = DatasetFactory.open("data1.csv")
>>> ds2 = DatasetFactory.open("data2.csv")
>>> ds_12 = ds1.merge(ds2)

	
rename_columns(columns)

	Returns a new dataset with altered column names.

dict values must be unique (1-to-1). Labels not contained in a dict will be left as-is.
Extra labels listed don’t throw an error.

	Parameters

	columns (dict-like or function or list of str) – dict to rename columns selectively, or list of names to rename all columns, or a function like
str.upper

	Returns

	dataset – A dataset with specified columns renamed.

	Return type

	same type as the caller

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_renamed = ds.rename_columns({'col1': 'target'})

	
sample(frac=None, random_state=42)

	Returns random sample of dataset.

	Parameters

	
	frac (float, optional) – Fraction of axis items to return.

	random_state (int or np.random.RandomState) – If int we create a new RandomState with this as the seed
Otherwise we draw from the passed RandomState

	Returns

	sampled_dataset – An ADSDataset which was randomly sampled.

	Return type

	ADSDataset

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_sample = ds.sample()

	
set_description(description)

	Sets description for the dataset.

Give your dataset a description.

	Parameters

	description (str) – Description of the dataset.

Examples

>>> ds = DatasetFactory.open("data1.csv")
>>> ds_renamed = ds.set_description("dataset1 is from "data1.csv"")

	
set_name(name)

	Sets name for the dataset.

This name will be used to filter the datasets returned by ds.list() API.
Calling this API is optional. By default name of the dataset is set to empty.

	Parameters

	name (str) – Name of the dataset.

Examples

>>> ds = DatasetFactory.open("data1.csv")
>>> ds_renamed = ds.set_name("dataset1")

	
set_target(target, type_discovery=True, target_type=None)

	Returns a dataset tagged based on the type of target.

	Parameters

	
	target (str) – name of the feature to use as target.

	type_discovery (bool) – This is set as True by default.

	target_type (type) – If provided, then the target will be typed with the provided value.

	Returns

	ds – tagged according to the type of the target column.

	Return type

	ADSDataset

Examples

>>> ds = DatasetFactory.open("classfication_data.csv")
>>> ds_with_target= ds.set_target("target_class")

	
show_corr(frac: float = 1.0, sample_size: float = 1.0, nan_threshold: float = 0.8, overwrite: Optional[bool] = None, force_recompute: bool = False, correlation_target: Optional[str] = None, plot_type: str = 'heatmap', correlation_threshold: float = - 1, correlation_methods='pearson', **kwargs)

	Show heatmap or barplot of pairwise correlation of numeric and categorical columns, output three tabs
which are heatmap or barplot of correlation matrix of numeric columns vs numeric columns using pearson
correlation method, categorical columns vs categorical columns using Cramer’s V method,
and numeric vs categorical columns, excluding NA/null values and columns which have more than
80% of NA/null values. By default, only ‘pearson’ correlation is calculated and shown in the first tab.
Set correlation_methods=’all’ to show all correlation charts.

	Parameters

	
	frac (Is superseded by sample_size) –

	sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What fraction of the data should be used in the calculation?

	nan_threshold (float, defaults to 0.8, Range -> [0, 1]) – In the default case, it will only calculate the correlation of the columns which has less than or equal to
80% of missing values.

	overwrite – Is deprecated and replaced by force_recompute.

	force_recompute (bool, default to be False.) –
	If False, it calculates the correlation matrix if there is no cached correlation matrix. Otherwise,
it returns the cached correlation matrix.

	If True, it calculates the correlation matrix regardless whether there is cached result or not.

	plot_type (str, default to "heatmap") – It can only be “heatmap” or “bar”. Note that if “bar” is chosen, correlation_target also has to be set and
the bar chart will only show the correlation values of the pairs which have the target in them.

	correlation_target (str, default to Non) – It can be any columns of type continuous, ordinal, categorical or zipcode. When correlation_target is set,
only pairs that contains correlation_target will show.

	correlation_threshold (float, default to -1) – It can be any number between -1 and 1.

	correlation_methods (Union[list, str], defaults to 'pearson') –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’].

	Return type

	None

	
show_in_notebook(correlation_threshold=- 1, selected_index=0, sample_size=0, visualize_features=True, correlation_methods='pearson', **kwargs)

	Provide visualization of dataset.

	Display feature distribution. The data table display will show a maximum of 8 digits,

	Plot the correlation between the dataset features (as a heatmap) only when all the features are
continuous or ordinal,

	Display data head.

	Parameters

	
	correlation_threshold (int, default -1) – The correlation threshold to select, which only show features that have larger or equal
correlation values than the threshold.

	selected_index (int, str, default 0) – The displayed output is stacked into an accordion widget, use selected_index to force the display to open
a specific element, use the (zero offset) index or any prefix string of the name (eg, ‘corr’ for
correlations)

	sample_size (int, default 0) – The size (in rows) to sample for visualizations

	visualize_features (bool default False) – For the “Features” section control if feature visualizations are shown or not. If not only
a summary of the numeric statistics is shown. The numeric statistics are also always shows
for wide (>64 features) datasets

	correlation_methods (Union[list, str], default to 'pearson') –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’].

	
snapshot(snapshot_dir=None, name='', storage_options=None)

	Snapshot the dataset with modifications made so far.

Optionally caller can invoke ds.set_name() before saving to identify the dataset uniquely at the time of
using ds.list().

The snapshot can be reloaded by providing the URI returned by this API to DatasetFactory.open()

	Parameters

	
	snapshot_dir (str, optional) – Directory path under which dataset snapshot will be created.
Defaults to snapshots_dir set using DatasetFactory.set_default_storage().

	name (str, optional, default: "") – Name to uniquely identify the snapshot using DatasetFactory.list_snapshots().
If not provided, an auto-generated name is used.

	storage_options (dict, optional) – Parameters passed on to the backend filesystem class.
Defaults to storage_options set using DatasetFactory.set_default_storage().

	Returns

	p_str – the URI to access the snapshotted dataset.

	Return type

	str

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_uri = ds.snapshot()

	
to_avro(path, schema=None, storage_options=None, **kwargs)

	Save data to Avro files.
Avro is a remote procedure call and data serialization framework developed within Apache’s Hadoop project. It
uses JSON for defining data types and protocols, and serializes data in a compact binary format.

	Parameters

	
	path (string) – Path to a target filename. May contain a * to denote many filenames.

	schema (dict) – Avro schema dictionary, see below.

	storage_options (dict, optional) – Parameters passed to the backend filesystem class.
Defaults to storage_options set using DatasetFactory.set_default_storage().

	kwargs (dict, optional) – See https://fastavro.readthedocs.io/en/latest/writer.html

Notes

Avro schema is a complex dictionary describing the data,
see https://avro.apache.org/docs/1.8.2/gettingstartedpython.html#Defining+a+schema
and https://fastavro.readthedocs.io/en/latest/writer.html.
Its structure is as follows:

{'name': 'Test',
'namespace': 'Test',
'doc': 'Descriptive text',
'type': 'record',
'fields': [
 {'name': 'a', 'type': 'int'},
]}

where the “name” field is required, but “namespace” and “doc” are optional
descriptors; “type” must always be “record”. The list of fields should
have an entry for every key of the input records, and the types are
like the primitive, complex or logical types of the Avro spec
(https://avro.apache.org/docs/1.8.2/spec.html).

Examples

>>> ds = DatasetFactory.open("data.avro")
>>> ds.to_avro("my/path.avro")

	
to_csv(path, storage_options=None, **kwargs)

	Save the materialized dataframe to csv file.

	Parameters

	
	path (str) – Location to write to. If there are more than one partitions in df, should include a glob character to
expand into a set of file names, or provide a name_function=parameter.
Supports protocol specifications such as “oci://”, “s3://”.

	storage_options (dict, optional) – Parameters passed on to the backend filesystem class.
Defaults to storage_options set using DatasetFactory.set_default_storage().

	kwargs (dict, optional) –

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> [ds_link] = ds.to_csv("my/path.csv")

	
to_dask(filter=None, frac=None, npartitions=None, include_transformer_pipeline=False)

	Returns a copy of the data as dask.dataframe.core.DataFrame, and a sklearn pipeline optionally that holds the
transformations run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

	Parameters

	
	filter (str, optional) – The query string to filter the dataframe, for example
ds.to_dask(filter=”age > 50 and location == ‘san francisco”)
See also https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

	frac (float, optional) – fraction of original data to return.

	include_transformer_pipeline (bool, default: False) – If True, (dataframe, transformer_pipeline) is returned as a tuple.

	Returns

	
	dataframe (dask.dataframe.core.DataFrame) – if include_transformer_pipeline is False.

	(data, transformer_pipeline) (tuple of dask.dataframe.core.DataFrame and dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_dask = ds.to_dask()

Notes

See also http://docs.dask.org/en/latest/dataframe-api.html#dataframe and
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

	
to_dask_dataframe(filter=None, frac=None, npartitions=None, include_transformer_pipeline=False)

	

	
to_h2o(filter=None, frac=None, include_transformer_pipeline=False)

	Returns a copy of the data as h2o.H2OFrame, and a sklearn pipeline optionally that holds the
transformations run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

	Parameters

	
	filter (str, optional) – The query string to filter the dataframe, for example
ds.to_h2o(filter=”age > 50 and location == ‘san francisco”)
See also https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

	frac (float, optional) – fraction of original data to return.

	include_transformer_pipeline (bool, default: False) – If True, (dataframe, transformer_pipeline) is returned as a tuple.

	Returns

	
	dataframe (h2o.H2OFrame) – if include_transformer_pipeline is False.

	(data, transformer_pipeline) (tuple of h2o.H2OFrame and dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_as_h2o = ds.to_h2o()

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

	
to_h2o_dataframe(filter=None, frac=None, include_transformer_pipeline=False)

	

	
to_hdf(path: str, key: str, storage_options: Optional[dict] = None, **kwargs) → str

	Save data to Hierarchical Data Format (HDF) files.

	Parameters

	
	path (string) – Path to a target filename.

	key (string) – Datapath within the files.

	storage_options (dict, optional) – Parameters passed to the backend filesystem class.
Defaults to storage_options set using DatasetFactory.set_default_storage().

	kwargs (dict, optional) –

	Returns

	The filename of the HDF5 file created.

	Return type

	str

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds.to_hdf(path="my/path.h5", key="df")

	
to_json(path, storage_options=None, **kwargs)

	Save data to JSON files.

	Parameters

	
	path (str) – Location to write to. If there are more than one partitions in df, should include a glob character to
expand into a set of file names, or provide a name_function=parameter.
Supports protocol specifications such as “oci://”, “s3://”.

	storage_options (dict, optional) – Parameters passed on to the backend filesystem class.
Defaults to storage_options set using DatasetFactory.set_default_storage().

	kwargs (dict, optional) –

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds.to_json("my/path.json")

	
to_pandas(filter=None, frac=None, include_transformer_pipeline=False)

	Returns a copy of the data as pandas.DataFrame, and a sklearn pipeline optionally that holds the
transformations run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

	Parameters

	
	filter (str, optional) – The query string to filter the dataframe, for example
ds.to_pandas(filter=”age > 50 and location == ‘san francisco”)
See also https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

	frac (float, optional) – fraction of original data to return.

	include_transformer_pipeline (bool, default: False) – If True, (dataframe, transformer_pipeline) is returned as a tuple

	Returns

	
	dataframe (pandas.DataFrame) – if include_transformer_pipeline is False.

	(data, transformer_pipeline) (tuple of pandas.DataFrame and dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_as_df = ds.to_pandas()

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

	
to_pandas_dataframe(filter=None, frac=None, include_transformer_pipeline=False)

	

	
to_parquet(path, storage_options=None, **kwargs)

	Save data to parquet file.

	Parameters

	
	path (str) – Location to write to. If there are more than one partitions in df, should include a glob character to
expand into a set of file names, or provide a name_function=parameter.
Supports protocol specifications such as “oci://”, “s3://”.

	storage_options (dict, optional) – Parameters passed on to the backend filesystem class.
Defaults to storage_options set using DatasetFactory.set_default_storage().

	kwargs (dict, optional) –

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds.to_parquet("my/path")

	
to_xgb(filter=None, frac=None, include_transformer_pipeline=False)

	Returns a copy of the data as xgboost.DMatrix, and a sklearn pipeline optionally that holds the
transformations run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

	Parameters

	
	filter (str, optional) – The query string to filter the dataframe, for example
ds.to_xgb(filter=”age > 50 and location == ‘san francisco”)
See also https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

	frac (float, optional) – fraction of original data to return.

	include_transformer_pipeline (bool, default: False) – If True, (dataframe, transformer_pipeline) is returned as a tuple.

	Returns

	
	dataframe (xgboost.DMatrix) – if include_transformer_pipeline is False.

	(data, transformer_pipeline) (tuple of xgboost.DMatrix and dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> xgb_dmat = ds.to_xgb()

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

	
to_xgb_dmatrix(filter=None, frac=None, include_transformer_pipeline=False)

	

ads.dataset.dataset_browser module

	
class ads.dataset.dataset_browser.DatasetBrowser

	Bases: abc.ABC

	
static GitHub(user: str, repo: str, branch: str = 'master')

	Returns a GitHubDataset

	
static filesystem(folder: str)

	Returns a LocalFilesystemDataset.

	
filter_list(L, filter_pattern) → List[str]

	Filters a list of dataset names.

	
static list(filter_pattern='*') → List[str]

	Return a list of dataset browser strings.

	
abstract open(**kwargs)

	Return new dataset for the given name.

	Parameters

	name (str) – the name of the dataset to open.

	Returns

	ds

	Return type

	Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

	
static seaborn()

	Returns a SeabornDataset.

	
static sklearn()

	Returns a SklearnDataset.

	
static web(index_url: str)

	Returns a WebDataset.

	
class ads.dataset.dataset_browser.GitHubDatasets(user: str, repo: str, branch: str)

	Bases: ads.dataset.dataset_browser.DatasetBrowser

	
list(filter_pattern: str = '.*') → List[str]

	Return a list of dataset browser strings.

	
open(name: str, **kwargs)

	Return new dataset for the given name.

	Parameters

	name (str) – the name of the dataset to open.

	Returns

	ds

	Return type

	Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

	
class ads.dataset.dataset_browser.LocalFilesystemDatasets(folder: str)

	Bases: ads.dataset.dataset_browser.DatasetBrowser

	
list(filter_pattern: str = '.*') → List[str]

	Return a list of dataset browser strings.

	
open(name: str, **kwargs)

	Return new dataset for the given name.

	Parameters

	name (str) – the name of the dataset to open.

	Returns

	ds

	Return type

	Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

	
class ads.dataset.dataset_browser.SeabornDatasets

	Bases: ads.dataset.dataset_browser.DatasetBrowser

	
list(filter_pattern: str = '.*') → List[str]

	Return a list of dataset browser strings.

	
open(name: str, **kwargs)

	Return new dataset for the given name.

	Parameters

	name (str) – the name of the dataset to open.

	Returns

	ds

	Return type

	Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

	
class ads.dataset.dataset_browser.SklearnDatasets

	Bases: ads.dataset.dataset_browser.DatasetBrowser

	
list(filter_pattern: str = '.*') → List[str]

	Return a list of dataset browser strings.

	
open(name: str, **kwargs)

	Return new dataset for the given name.

	Parameters

	name (str) – the name of the dataset to open.

	Returns

	ds

	Return type

	Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

	
sklearn_datasets = ['breast_cancer', 'diabetes', 'iris', 'wine', 'digits']

	

	
class ads.dataset.dataset_browser.WebDatasets(index_url: str)

	Bases: ads.dataset.dataset_browser.DatasetBrowser

	
list(filter_pattern: str = '.*') → List[str]

	Return a list of dataset browser strings.

	
open(name: str, **kwargs)

	Return new dataset for the given name.

	Parameters

	name (str) – the name of the dataset to open.

	Returns

	ds

	Return type

	Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

ads.dataset.dataset_with_target module

	
class ads.dataset.dataset_with_target.ADSDatasetWithTarget(df, sampled_df, target, target_type, shape, sample_max_rows=-1, type_discovery=True, types={}, parent=None, name='', metadata=None, transformer_pipeline=None, description=None, progress=<ads.dataset.progress.DummyProgressBar object>, **kwargs)

	Bases: ads.dataset.dataset.ADSDataset

This class provides APIs for preparing dataset for modeling.

	
auto_transform(correlation_threshold: float = 0.7, frac: float = 1.0, sample_size=1.0, correlation_methods: Union[str, list] = 'pearson')

	Return transformed dataset with several optimizations applied automatically.
The optimizations include:

	Dropping constant and primary key columns, which has no predictive quality,

	Imputation, to fill in missing values in noisy data:

	For continuous variables, fill with mean if less than 40% is missing, else drop,

	For categorical variables, fill with most frequent if less than 40% is missing, else drop,

	Dropping strongly co-correlated columns that tend to produce less generalizable models.

	Parameters

	
	correlation_threshold (float, defaults to 0.7. It must be between 0 and 1, inclusive) – the correlation threshold where columns with correlation higher than the threshold will
be considered as strongly co-correlated and recommended to be taken care of.

	frac (Is superseded by sample_size) –

	sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What fraction of the data should be used in the calculation?

	correlation_methods (Union[list, str], defaults to 'pearson') –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’].

	Returns

	transformed_dataset

	Return type

	ADSDatasetWithTarget

Examples

>>> ds_clean = ds.auto_transform()

	
get_recommendations(correlation_methods: str = 'pearson', correlation_threshold: float = 0.7, frac: float = 1.0, sample_size: float = 1.0, overwrite: Optional[bool] = None, force_recompute: bool = False, display_format: str = 'widget')

	Generate recommendations for dataset optimization. This includes:

	Identifying constant and primary key columns, which has no predictive quality,

	Imputation, to fill in missing values in noisy data:

	For continuous variables, fill with mean if less than 40% is missing, else drop,

	For categorical variables, fill with most frequent if less than 40% is missing, else drop,

	Identifying strongly co-correlated columns that tend to produce less generalizable models,

	Automatically balancing dataset for classification problems using up or down sampling.

	Parameters

	
	correlation_methods (Union[list, str], default to 'pearson') –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’].

	correlation_threshold (float, defaults to 0.7. It must be between 0 and 1, inclusive) – The correlation threshold where columns with correlation higher than the threshold will
be considered as strongly co-correlated and recommended to be taken care of.

	frac (Is superseded by sample_size) –

	sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What fraction of the data should be used in the calculation?

	overwrite – Is deprecated and replaced by force_recompute.

	force_recompute (bool, default to be False) –
	If False, it calculates the correlation matrix if there is no cached correlation matrix. Otherwise,
it returns the cached correlation matrix.

	If True, it calculates the correlation matrix regardless whether there is cached result or not.

	display_format (string, defaults to 'widget'.) – Should be either ‘widget’ or ‘table’. If ‘widget’,
a GUI style interface is popped out; if ‘table’, a table of suggestions is shown.

	
get_transformed_dataset()

	Return the transformed dataset with the recommendations applied.

This method should be called after applying the recommendations using the Recommendation#show_in_notebook() API.

	
rename_columns(columns)

	Returns a dataset with columns renamed.

	
select_best_features(score_func=None, k=12)

	Return new dataset containing only the top k features.

	Parameters

	
	k (int, default 12) – The top ‘k’ features to select.

	score_func (function) – Scoring function to use to rank the features. This scoring function should take a 2d array X(features)
and an array like y(target) and return a numeric score for each feature in the same order as X.

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
and https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html

Examples

>>> ds = DatasetBrowser("sklearn").open("iris")
>>> ds_small = ds.select_best_features(k=2)

	
suggest_recommendations(correlation_methods: Union[str, list] = 'pearson', print_code: bool = True, correlation_threshold: float = 0.7, overwrite: Optional[bool] = None, force_recompute: bool = False, frac: float = 1.0, sample_size: float = 1.0, **kwargs)

	Returns a pandas dataframe with suggestions for dataset optimization. This includes:

	Identifying constant and primary key columns, which has no predictive quality,

	Imputation, to fill in missing values in noisy data:

	For continuous variables, fill with mean if less than 40% is missing, else drop,

	For categorical variables, fill with most frequent if less than 40% is missing, else drop,

	Identifying strongly co-correlated columns that tend to produce less generalizable models,

	Automatically balancing dataset for classification problems using up or down sampling.

	Parameters

	
	correlation_methods (Union[list, str], default to 'pearson') –
	‘pearson’: Use Pearson’s Correlation between continuous features,

	’cramers v’: Use Cramer’s V correlations between categorical features,

	’correlation ratio’: Use Correlation Ratio Correlation between categorical and continuous features,

	’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers v’]

	print_code (bool, Defaults to True) – Print Python code for the suggested actions.

	correlation_threshold (float. Defaults to 0.7. It must be between 0 and 1, inclusive) – the correlation threshold where columns with correlation higher than the threshold will
be considered as strongly co-correated and recommended to be taken care of.

	frac (Is superseded by sample_size) –

	sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What fraction of the data should be used in the calculation?

	overwrite – Is deprecated and replaced by force_recompute.

	force_recompute (bool, default to be False) –
	If False, it calculates the correlation matrix if there is no cached correlation matrix. Otherwise,
it returns the cached correlation matrix.

	If True, it calculates the correlation matrix regardless whether there is cached result or not.

	Returns

	suggestion dataframe

	Return type

	pandas.DataFrame

Examples

>>> suggestion_df = ds.suggest_recommendations(correlation_threshold=0.7)

	
train_test_split(test_size=0.1, random_state=42)

	Splits dataset to train and test data.

	Parameters

	
	test_size (Union[float, int], optional, default=0.1) –

	random_state (Union[int, RandomState], optional, default=None) –
	If int, random_state is the seed used by the random number generator;

	If RandomState instance, random_state is the random number generator;

	If None, the random number generator is the RandomState instance used by np.random.

	Returns

	train_data, test_data – tuple of ADSData instances

	Return type

	tuple

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> train, test = ds.train_test_split()

	
train_validation_test_split(test_size=0.1, validation_size=0.1, random_state=42)

	Splits dataset to train, validation and test data.

	Parameters

	
	test_size (Union[float, int], optional, default=0.1) –

	validation_size (Union[float, int], optional, default=0.1) –

	random_state (Union[int, RandomState], optional, default=None) –
	If int, random_state is the seed used by the random number generator;

	If RandomState instance, random_state is the random number generator;

	If None, the random number generator is the RandomState instance used by np.random.

	Returns

	train_data, validation_data, test_data – tuple of ADSData instances

	Return type

	tuple

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> train, valid, test = ds.train_validation_test_split()

	
type_of_target()

	Return the target type for the dataset.

	Returns

	target_type – an object of TypedFeature

	Return type

	TypedFeature

Examples

>>> ds = ds.set_target('target_class')
>>> assert(ds.type_of_target() == 'categorical')

	
visualize_transforms()

	Render a representation of the dataset’s transform DAG.

ads.dataset.exception module

	
exception ads.dataset.exception.DatasetError(*args, **kwargs)

	Bases: BaseException

Base class for dataset errors.

	
exception ads.dataset.exception.ValidationError(msg)

	Bases: ads.dataset.exception.DatasetError

Handles validation errors in dataset.

ads.dataset.factory module

	
class ads.dataset.factory.CustomFormatReaders

	Bases: object

	
DEFAULT_SQL_ARRAYSIZE = 50000

	

	
DEFAULT_SQL_CHUNKSIZE = 12007

	

	
DEFAULT_SQL_CTU = False

	

	
DEFAULT_SQL_MIL = 128

	

	
static read_arff(path, **kwargs)

	

	
static read_avro(path: str, **kwargs) → pandas.core.frame.DataFrame

	

	
static read_html(path, html_table_index: Optional[int] = None, **kwargs)

	

	
static read_json(path: str, **kwargs) → pandas.core.frame.DataFrame

	

	
static read_libsvm(path: str, **kwargs) → pandas.core.frame.DataFrame

	

	
static read_log(path, **kwargs)

	

	
classmethod read_sql(path: str, table: Optional[str] = None, **kwargs) → pandas.core.frame.DataFrame

	
	Parameters

	
	path – str
This is the connection URL that gets passed to sqlalchemy’s create_engine method

	table – str
This is either the name of a table to select * from or a sql query to be run

	kwargs –

	Returns

	pd.DataFrame

	
static read_tsv(path: str, **kwargs) → pandas.core.frame.DataFrame

	

	
static read_xml(path: str, **kwargs) → pandas.core.frame.DataFrame

	Load data from xml file.

	Parameters

	
	path (str) – Path to XML file

	storage_options (dict, optional) – Storage options passed to Pandas to read the file.

	Returns

	dataframe

	Return type

	pandas.DataFrame

	
class ads.dataset.factory.DatasetFactory

	Bases: object

	
static download(remote_path, local_path, storage=None, overwrite=False)

	Download a remote file or directory to local storage.

	Parameters

	
	remote_path (str) – Supports protocols like oci, s3, also supports glob expressions

	local_path (str) – Supports glob expressions

	storage (dict) – Parameters passed on to the backend remote filesystem class.

	overwrite (bool, default False) – If True, the method will overwrite any existing files in the local_path

Examples

>>> DatasetFactory.download("oci://Bucket/prefix/to/data/*.csv",
... "/home/datascience/data/")

	
static from_dataframe(df, target: Optional[str] = None, **kwargs)

	Returns an object of ADSDatasetWithTarget or ADSDataset given a pandas.DataFrame

	Parameters

	
	df (pandas.DataFrame) –

	target (str) –

	kwargs (dict) – See DatasetFactory.open() for supported kwargs

	Returns

	dataset – according to the type of target

	Return type

	an object of ADSDataset target is not specified, otherwise an object of ADSDatasetWithTarget tagged

Examples

>>> df = pd.DataFrame(data)
>>> ds = from_dataframe(df)

	
classmethod infer_target_type(target, target_series, discover_target_type=True)

	

	
static list_snapshots(snapshot_dir=None, name='', storage_options=None, **kwargs)

	Displays the URIs for dataset snapshots under the given directory path.

	Parameters

	
	snapshot_dir (str) – Return all dataset snapshots created using ADSDataset.snapshot() within this directory.
The path can contain protocols such as oci, s3.

	name (str, optional) – The list of snapshots in the directory gets filtered by the name. Accepts glob expressions.
default = “ads_”

	storage_options (dict) – Parameters passed on to the backend filesystem class.

Example

>>> DatasetFactory.list_snapshots(snapshot_dir="oci://my_bucket/snapshots_dir",
... name="ads_iris_")

Returns a list of all snapshots (recursively) saved to obj storage bucket “my_bucket” with prefix
“/snapshots_dir/ads_iris_**” sorted by time created.

	
static open(source, target=None, format='infer', reader_fn: Optional[Callable] = None, name: Optional[str] = None, description='', npartitions: Optional[int] = None, type_discovery=True, html_table_index=None, column_names='infer', sample_max_rows=10000, positive_class=None, transformer_pipeline=None, types={}, **kwargs)

	Returns an object of ADSDataset or ADSDatasetWithTarget read from the given path

	Parameters

	
	source (Union[str, pandas.DataFrame, h2o.DataFrame, pyspark.sql.dataframe.DataFrame]) – If str, URI for the dataset. The dataset could be read from local or network file system, hdfs, s3, gcs and optionally pyspark in pyspark
conda env

	target (str, optional) – Name of the target in dataset.
If set an ADSDatasetWithTarget object is returned, otherwise an ADSDataset object is returned which can be
used to understand the dataset through visualizations

	format (str, default: infer) – Format of the dataset.
Supported formats: CSV, TSV, Parquet, libsvm, JSON, XLS/XLSX (Excel), HDF5, SQL, XML,
Apache server log files (clf, log), ARFF.
By default, the format would be inferred from the ending of the dataset file path.

	reader_fn (Callable, default: None) – The user may pass in their own custom reader function.
It must accept (path, **kwarg) and return a pandas DataFrame

	name (str, optional default: "") –

	description (str, optional default: "") – Text describing the dataset

	npartitions (int, deprecated) – Number of partitions to split the data
By default this is set to the max number of cores supported by the backend compute accelerator

	type_discovery (bool, default: True) – If false, the data types of the dataframe are used as such.
By default, the dataframe columns are associated with the best suited data types. Associating the features
with the disovered datatypes would impact visualizations and model prediction.

	html_table_index (int, optional) – The index of the dataframe table in html content. This is used when the format of dataset is html

	column_names ('infer', list of str or None, default: 'infer') – Supported only for CSV and TSV.
List of column names to use.
By default, column names are inferred from the first line of the file.
If set to None, column names would be auto-generated instead of inferring from file.
If the file already contains a column header, specify header=0 to ignore the existing column names.

	sample_max_rows (int, default: 10000, use -1 auto calculate sample size, use 0 (zero) for no sampling) – Sample size of the dataframe to use for visualization and optimization.

	positive_class (Any, optional) – Label in target for binary classification problems which should be identified as positive for modeling.
By default, the first unique value is considered as the positive label.

	types (dict, optional) – Dictionary of <feature_name> : <data_type> to override the data type of features.

	transformer_pipeline (datasets.pipeline.TransformerPipeline, optional) – A pipeline of transformations done outside the sdk and need to be applied at the time of scoring

	storage_options (dict, default: varies by source type) – Parameters passed on to the backend filesystem class.

	sep (str) – Delimiting character for parsing the input file.

	kwargs (additional keyword arguments that would be passed to underlying dataframe read API) – based on the format of the dataset

	Returns

	
	dataset (An instance of ADSDataset)

	(or)

	dataset_with_target (An instance of ADSDatasetWithTarget)

Examples

>>> ds = DatasetFactory.open("/path/to/data.data", format='csv', delimiter=" ",
... na_values="n/a", skipinitialspace=True)

>>> ds = DatasetFactory.open("/path/to/data.csv", target="col_1", prefix="col_",
... skiprows=1, encoding="ISO-8859-1")

>>> ds = DatasetFactory.open("oci://bucket@namespace/path/to/data.tsv",
... column_names=["col1", "col2", "col3"], header=0)

>>> ds = DatasetFactory.open("oci://bucket@namespace/path/to/data.csv",
... storage_options={"config": "~/.oci/config",
... "profile": "USER_2"}, delimiter = ';')

>>> ds = DatasetFactory.open("/path/to/data.parquet", engine='pyarrow',
... types={"col1": "ordinal",
... "col2": "categorical",
... "col3" : "continuous",
... "col4" : "float64"})

>>> ds = DatasetFactory.open(df, target="class", sample_max_rows=5000,
... positive_class="yes")

>>> ds = DatasetFactory.open("s3://path/to/data.json.gz", format="json",
... compression="gzip", orient="records")

	
static open_to_pandas(source: str, format: Optional[str] = None, reader_fn: Optional[Callable] = None, **kwargs) → pandas.core.frame.DataFrame

	

	
static set_default_storage(snapshots_dir=None, storage_options=None)

	Set default storage directory and options.

Both snapshots_dir and storage_options can be overridden at the API scope.

	Parameters

	
	snapshots_dir (str) – Path for the snapshots directory. Can contain protocols such as oci, s3

	storage_options (dict, optional) – Parameters passed on to the backend filesystem class.

	
static upload(local_file_or_dir, remote_file_or_dir, storage_options=None)

	Upload local file or directory to remote storage

	Parameters

	
	local_file_or_dir (str) – Supports glob expressions

	remote_file_or_dir (str) – Supports protocols like oci, s3, also supports glob expressions

	storage_options (dict) – Parameters passed on to the backend remote filesystem class.

	
ads.dataset.factory.get_format_reader(path: ads.dataset.helper.ElaboratedPath, **kwargs) → Callable

	

	
ads.dataset.factory.load_dataset(path: ads.dataset.helper.ElaboratedPath, reader_fn: Callable, **kwargs) → pandas.core.frame.DataFrame

	

ads.dataset.feature_engineering_transformer module

	
class ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer(feature_metadata=None)

	Bases: sklearn.base.TransformerMixin

	
fit(X, y=None)

	

	
fit_transform(X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.

	Parameters

	
	X (array-like of shape (n_samples, n_features)) – Input samples.

	y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).

	**fit_params (dict) – Additional fit parameters.

	Returns

	X_new – Transformed array.

	Return type

	ndarray array of shape (n_samples, n_features_new)

	
transform(df, progress=<ads.dataset.progress.DummyProgressBar object>, fit_transform=False)

	

ads.dataset.feature_selection module

	
class ads.dataset.feature_selection.FeatureImportance(ds, score_func=None, n=None)

	Bases: object

	
show_in_notebook(fig_size=(10, 10))

	Shows selected features in the notebook with matplotlib.

ads.dataset.forecasting_dataset module

	
class ads.dataset.forecasting_dataset.ForecastingDataset(df, sampled_df, target, target_type, shape, **kwargs)

	Bases: ads.dataset.dataset_with_target.ADSDatasetWithTarget

	
select_best_features(score_func=None, k=12)

	Not yet implemented

ads.dataset.helper module

	
class ads.dataset.helper.DatasetDefaults

	Bases: object

	
sampling_confidence_interval = 1.0

	

	
sampling_confidence_level = 95

	

	
exception ads.dataset.helper.DatasetLoadException(exc_msg)

	Bases: BaseException

	
class ads.dataset.helper.ElaboratedPath(source: Union[str, List[str]], format: Optional[str] = None, name: Optional[str] = None, **kwargs)

	Bases: object

The Elaborated Path class unifies all of the operations and information related to a path or pathlist.
Whether the user wants to
An Elaborated path can accept any of the following as a valid source:
* A single path
* A glob pattern path
* A directory
* A list of paths (Note: all of these paths must be from the same filesystem AND have the same format)
* A sqlalchemy connection url

	Parameters

	
	source –

	format –

	kwargs –

By the end of this method, this class needs to have paths, format, and name ready

	
property format: str

	

	
property name: str

	

	
property num_paths: int

	This method will return the number of paths found with the associated original glob, folder, or path.
If this returns 0,
:return:

	
property paths: List[str]

	a list of str
Each element will be a valid path

	Type

	return

	
ads.dataset.helper.calculate_sample_size(population_size, min_size_to_sample, confidence_level=95, confidence_interval=1.0)

	
	Find sample size for a population using Cochran’s Sample Size Formula.
	With default values for confidence_level (percentage, default: 95%)
and confidence_interval (margin of error, percentage, default: 1%)

SUPPORTED CONFIDENCE LEVELS: 50%, 68%, 90%, 95%, and 99% ONLY - this
is because the Z-score is table based, and I’m only providing Z
for common confidence levels.

	
ads.dataset.helper.concatenate(X, y)

	

	
ads.dataset.helper.convert_columns(df, feature_metadata=None, dtypes=None)

	

	
ads.dataset.helper.convert_to_html(plot)

	

	
ads.dataset.helper.deprecate_default_value(var, old_value, new_value, warning_msg, warning_type)

	

	
ads.dataset.helper.deprecate_variable(old_var, new_var, warning_msg, warning_type)

	

	
ads.dataset.helper.down_sample(df, target)

	Fixes imbalanced dataset by down-sampling

	Parameters

	
	df (pandas.DataFrame) –

	target (name of the target column in df) –

	Returns

	downsampled_df

	Return type

	pandas.DataFrame

	
ads.dataset.helper.fix_column_names(X)

	

	
ads.dataset.helper.generate_sample(df: pandas.core.frame.DataFrame, n: int, confidence_level: int = 95, confidence_interval: float = 1.0, **kwargs)

	

	
ads.dataset.helper.get_dtype(feature_type, dtype)

	

	
ads.dataset.helper.get_feature_type(name, series)

	

	
ads.dataset.helper.get_fill_val(feature_types, column, action, constant='constant')

	

	
ads.dataset.helper.is_text_data(df, target=None)

	

	
ads.dataset.helper.map_types(types)

	

	
ads.dataset.helper.parse_apache_log_datetime(x)

	
	Parses datetime with timezone formatted as:
	[day/month/year:hour:minute:second zone]

Source: https://mmas.github.io/read-apache-access-log-pandas
.. rubric:: Example

>>> parse_datetime(‘13/Nov/2015:11:45:42 +0000’)
datetime.datetime(2015, 11, 3, 11, 45, 4, tzinfo=<UTC>)

Due to problems parsing the timezone (%z) with datetime.strptime, the
timezone will be obtained using the pytz library.

	
ads.dataset.helper.parse_apache_log_str(x)

	Returns the string delimited by two characters.

Source: https://mmas.github.io/read-apache-access-log-pandas
.. rubric:: Example

>>> parse_str(‘[my string]’)
‘my string’

	
ads.dataset.helper.rename_duplicate_cols(original_cols)

	

	
ads.dataset.helper.up_sample(df, target, sampler='default', feature_types=None)

	Fixes imbalanced dataset by up-sampling

	Parameters

	
	df (Union[pandas.DataFrame, dask.dataframe.core.DataFrame]) –

	target (name of the target column in df) –

	sampler (Should implement fit_resample(X,y) method) –

	fillna (a dictionary contains the column name as well as the fill value,) – only needed when the column has missing values

	Returns

	upsampled_df

	Return type

	Union[pandas.DataFrame, dask.dataframe.core.DataFrame]

	
ads.dataset.helper.visualize_transformation(transformer_pipeline, text=None)

	

	
ads.dataset.helper.write_parquet(path, data, engine='fastparquet', metadata_dict=None, compression=None, storage_options=None)

	Uses fast parquet to write dask dataframe and custom metadata in parquet format

	Parameters

	
	path (str) – Path to write to

	data (pandas.DataFrame) –

	engine (string) – “auto” by default

	metadata_dict (Deprecated, will not pass through) –

	compression ({{'snappy', 'gzip', 'brotli', None}}, default 'snappy') – Name of the compression to use

	storage_options (dict, optional) – storage arguments required to read the path

	Returns

	str

	Return type

	the file path the parquet was written to

ads.dataset.label_encoder module

	
class ads.dataset.label_encoder.DataFrameLabelEncoder

	Bases: sklearn.base.TransformerMixin

Label encoder for pandas.dataframe. dask.dataframe.core.DataFrame

	
fit(X)

	Fits a DataFrameLAbelEncoder.

	
transform(X)

	Transforms a dataset using the DataFrameLAbelEncoder.

ads.dataset.pipeline module

	
class ads.dataset.pipeline.TransformerPipeline(steps)

	Bases: sklearn.pipeline.Pipeline

	
add(transformer)

	Add transformer to data transformation pipeline

	Parameters

	transformer (Union[TransformerMixin, tuple(str, TransformerMixin)]) – if tuple, (name, transformer implementing transform)

	
steps: List[Any]

	

	
visualize()

	

ads.dataset.plot module

	
class ads.dataset.plot.Plotting(df, feature_types, x, y=None, plot_type='infer', yscale=None)

	Bases: object

	
select_best_plot()

	Returns the best plot for a given dataset

	
show_in_notebook(**kwargs)

	Visualizes the dataset by plotting the distribution of a feature or relationship between two features.

	Parameters

	
	figsize (tuple) – defines the size of the fig

	------- –

ads.dataset.progress module

	
class ads.dataset.progress.DummyProgressBar(*args, **kwargs)

	Bases: ads.dataset.progress.ProgressBar

	
update(*args, **kwargs)

	Updates the progress bar

	
class ads.dataset.progress.IpythonProgressBar(max_progress=100, description='Running', verbose=False)

	Bases: ads.dataset.progress.ProgressBar

	
update(description=None)

	Updates the progress bar

	
class ads.dataset.progress.ProgressBar

	Bases: object

	
abstract update(description)

	

	
class ads.dataset.progress.TqdmProgressBar(max_progress=100, description='Running', verbose=False)

	Bases: ads.dataset.progress.ProgressBar

	
update(description=None)

	Updates the progress bar

ads.dataset.recommendation module

	
class ads.dataset.recommendation.Recommendation(ds, recommendation_transformer)

	Bases: object

	
recommendation_type_labels = ['Constant Columns', 'Potential Primary Key Columns', 'Imputation', 'Multicollinear Columns', 'Identify positive label for target', 'Fix imbalance in dataset']

	

	
recommendation_types = ['constant_column', 'primary_key', 'imputation', 'strong_correlation', 'positive_class', 'fix_imbalance']

	

	
show_in_notebook()

	

ads.dataset.recommendation_transformer module

	
class ads.dataset.recommendation_transformer.RecommendationTransformer(feature_metadata=None, correlation=None, target=None, is_balanced=False, target_type=None, feature_ranking=None, len=0, fix_imbalance=True, auto_transform=True, correlation_threshold=0.7)

	Bases: sklearn.base.TransformerMixin

	
fit(X)

	

	
fit_transform(X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.

	Parameters

	
	X (array-like of shape (n_samples, n_features)) – Input samples.

	y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).

	**fit_params (dict) – Additional fit parameters.

	Returns

	X_new – Transformed array.

	Return type

	ndarray array of shape (n_samples, n_features_new)

	
transform(X, progress=<ads.dataset.progress.DummyProgressBar object>, fit_transform=False, update_transformer_log=False)

	

	
transformer_log(action)

	local wrapper to both log and record in the actions_performed array

ads.dataset.regression_dataset module

	
class ads.dataset.regression_dataset.RegressionDataset(df, sampled_df, target, target_type, shape, **kwargs)

	Bases: ads.dataset.dataset_with_target.ADSDatasetWithTarget

ads.dataset.sampled_dataset module

	
class ads.dataset.sampled_dataset.PandasDataset(sampled_df, type_discovery=True, types={}, metadata=None, progress=<ads.dataset.progress.DummyProgressBar object>)

	Bases: object

This class provides APIs that can work on a sampled dataset.

	
plot(x, y=None, plot_type='infer', yscale=None, verbose=True, sample_size=0)

	Supports plotting feature distribution, and relationship between features.

	Parameters

	
	x (str) – The name of the feature to plot

	y (str, optional) – Name of the feature to plot against x

	plot_type (str, default: infer) – Override the inferred plot type for certain combinations of the data types of x and y.
By default, the best plot type is inferred based on x and y data types.
Valid values:

	box_plot - discrete feature vs continuous feature. Draw a box plot to show
distributions with respect to categories,

	scatter - continuous feature vs continuous feature. Draw a scatter plot
with possibility of several semantic groupings.

	yscale (str, optional) – One of {“linear”, “log”, “symlog”, “logit”}.
The y axis scale type to apply. Can be used when either x or y is an ordinal feature.

	verbose (bool, default True) – Displays Note/Tips if True

	
plot_gis_scatter(lon='longitude', lat='latitude', ax=None)

	Supports plotting Choropleth maps

	Parameters

	
	df (pandas dataframe) – The dataframe to plot

	x (str) – The name of the feature to plot, usually the longitude

	y (str) – THe name of the feature to plot, usually the latitude

	
summary(feature_name=None)

	Display list of features & their datatypes.
Shows the column name and the feature’s meta_data if given a specific feature name.

	Parameters

	date_col (str) – The name of the feature

	Returns

	a dictionary that contains requested information

	Return type

	dict

	
timeseries(date_col)

	Supports any plotting operations where x=datetime.

	Parameters

	date_col (str) – The name of the feature to plot

	Returns

	a plotting object that contains a date column and dataframe

	Return type

	func

ads.dataset.target module

	
class ads.dataset.target.TargetVariable(sampled_ds, target, target_type)

	Bases: object

This class provides target specific APIs.

	
is_balanced()

	Returns True if the target is balanced, False otherwise.

	Returns

	is_balanced

	Return type

	bool

	
show_in_notebook(feature_names=None)

	Plot target distribution or target versus feature relation.

	Parameters

	feature_names (list, Optional) – Plot target against a list of features.
Display target distribution if feature_names is not provided.

ads.dataset.timeseries module

	
class ads.dataset.timeseries.Timeseries(col_name, df, date_range=None, min=None, max=None)

	Bases: object

	
plot(**kwargs)

	

Module contents

 ads.evaluations package

ads.evaluations package

Submodules

ads.evaluations.evaluation_plot module

	
class ads.evaluations.evaluation_plot.EvaluationPlot

	Bases: object

EvaluationPlot holds data and methods for plots and it used to output them

	
baseline(bool)

	whether to plot the null model or zero information model

	
baseline_kwargs(dict)

	keyword arguments for the baseline plot

	
color_wheel(dict)

	color information used by the plot

	
font_sz(dict)

	dictionary of plot methods

	
perfect(bool)

	determines whether a “perfect” classifier curve is displayed

	
perfect_kwargs(dict)

	parameters for the perfect classifier for precision/recall curves

	
prob_type(str)

	model type, i.e. classification or regression

	
get_legend_labels(legend_labels)

	Renders the legend labels on the plot

	
plot(evaluation, plots, num_classes, perfect, baseline, legend_labels)

	Generates the evalation plot

	
baseline = None

	

	
baseline_kwargs = {'c': '.2', 'ls': '--'}

	

	
color_wheel = ['teal', 'blueviolet', 'forestgreen', 'peru', 'y', 'dodgerblue', 'r']

	

	
double_overlay_plots = ['pr_and_roc_curve', 'lift_and_gain_chart']

	

	
font_sz = {'l': 14, 'm': 12, 's': 10, 'xl': 16, 'xs': 8}

	

	
classmethod get_legend_labels(legend_labels)

	Gets the legend labels, resolves any conflicts such as length, and renders
the labels for the plot

	Parameters

	(dict) (legend_labels) – key/value dictionary containing legend label data

	Return type

	Nothing

Examples

EvaluationPlot.get_legend_labels({‘class_0’: ‘green’, ‘class_1’: ‘yellow’, ‘class_2’: ‘red’})

	
perfect = None

	

	
perfect_kwargs = {'color': 'gold', 'label': 'Perfect Classifier', 'ls': '--'}

	

	
classmethod plot(evaluation, plots, num_classes, perfect=False, baseline=True, legend_labels=None)

	Generates the evaluation plot

	Parameters

	
	(DataFrame) (evaluation) – DataFrame with models as columns and metrics as rows.

	(str) (plots) – The plot type based on class attribute prob_type.

	(int) (num_classes) – The number of classes for the model.

	(bool (baseline) – Whether to display the curve of a perfect classifier. Default value is False.

	optional) – Whether to display the curve of a perfect classifier. Default value is False.

	(bool – Whether to display the curve of the baseline, featureless model. Default value is True.

	optional) – Whether to display the curve of the baseline, featureless model. Default value is True.

	(dict (legend_labels) – Legend labels dictionary. Default value is None. If legend_labels not specified class names will be used for plots.

	optional) – Legend labels dictionary. Default value is None. If legend_labels not specified class names will be used for plots.

	Return type

	Nothing

	
prob_type = None

	

	
single_overlay_plots = ['lift_chart', 'gain_chart', 'roc_curve', 'pr_curve']

	

ads.evaluations.evaluator module

	
class ads.evaluations.evaluator.ADSEvaluator(test_data, models, training_data=None, positive_class=None, legend_labels=None, show_full_name=False)

	Bases: object

ADS Evaluator class. This class holds field and methods for creating and using
ADS evaluator objects.

	
evaluations

	list of evaluations.

	Type

	list[DataFrame]

	
is_classifier

	Whether the model has a non-empty classes_ attribute indicating the presence of class labels.

	Type

	bool

	
legend_labels

	List of legend labels. Defaults to None.

	Type

	dict

	
metrics_to_show

	Names of metrics to show.

	Type

	list[str]

	
models

	The object built using ADSModel.from_estimator().

	Type

	list[ads.common.model.ADSModel]

	
positive_class

	The class to report metrics for binary dataset, assumed to be true.

	Type

	str or int

	
show_full_name

	Whether to show the name of the evaluator in relevant contexts.

	Type

	bool

	
test_data

	Test data to evaluate model on.

	Type

	ads.common.data.ADSData

	
training_data

	Training data to evaluate model.

	Type

	ads.common.data.ADSData

	
Positive_Class_names

	Class attribute listing the ways to represent positive classes

	Type

	list

	
add_metrics(func, names)

	Adds the listed metics to the evaluator it is called on

	
del_metrics(names)

	Removes listed metrics from the evaluator object it is called on

	
add_models(models, show_full_name)

	Adds the listed models to the evaluator object

	
del_models(names)

	Removes the listed models from the evaluator object

	
show_in_notebook(plots, use_training_data, perfect, baseline, legend_labels)

	Visualize evalutation plots in the notebook

	
calculate_cost(tn_weight, fp_weight, fn_weight, tp_weight, use_training_data)

	Returns a cost associated with the input weights

Creates an ads evaluator object.

	Parameters

	
	test_data (ads.common.data.ADSData instance) – Test data to evaluate model on.
The object can be built using ADSData.build().

	models (list[ads.common.model.ADSModel]) – The object can be built using ADSModel.from_estimator().
Maximum length of the list is 3

	training_data (ads.common.data.ADSData instance, optional) – Training data to evaluate model on and compare metrics against test data.
The object can be built using ADSData.build()

	positive_class (str or int, optional) – The class to report metrics for binary dataset. If the target classes is True or False,
positive_class will be set to True by default. If the dataset is multiclass or multilabel,
this will be ignored.

	legend_labels (dict, optional) – List of legend labels. Defaults to None.
If legend_labels not specified class names will be used for plots.

	show_full_name (bool, optional) – Show the name of the evaluator object. Defaults to False.

Examples

>>> train, test = ds.train_test_split()
>>> model1 = MyModelClass1.train(train)
>>> model2 = MyModelClass2.train(train)
>>> evaluator = ADSEvaluator(test, [model1, model2])

>>> legend_labels={'class_0': 'one', 'class_1': 'two', 'class_2': 'three'}
>>> multi_evaluator = ADSEvaluator(test, models=[model1, model2],
... legend_labels=legend_labels)

	
class EvaluationMetrics(ev_test, ev_train, use_training=False, less_is_more=None, precision=4)

	Bases: object

Class holding evaluation metrics.

	
ev_test

	evaluation test metrics

	Type

	list

	
ev_train

	evaluation training metrics

	Type

	list

	
use_training

	use training data

	Type

	bool

	
less_is_more

	metrics list

	Type

	list

	
show_in_notebook()

	Shows visualization metrics as a color coded table

	
DEFAULT_LABELS_MAP = {'accuracy': 'Accuracy', 'auc': 'ROC AUC', 'f1': 'F1', 'hamming_loss': 'Hamming distance', 'kappa_score_': "Cohen's kappa coefficient", 'precision': 'Precision', 'recall': 'Recall'}

	

	
property precision

	

	
show_in_notebook(labels={'accuracy': 'Accuracy', 'auc': 'ROC AUC', 'f1': 'F1', 'hamming_loss': 'Hamming distance', 'kappa_score_': "Cohen's kappa coefficient", 'precision': 'Precision', 'recall': 'Recall'})

	Visualizes evaluation metrics as a color coded table.

	Parameters

	labels (dictionary) – map printing specific labels for metrics display

	Return type

	Nothing

	
Positive_Class_Names = ['yes', 'y', 't', 'true', '1']

	

	
add_metrics(funcs, names)

	Adds the listed metrics to the evaluator object it is called on.

	Parameters

	
	funcs (list) – The list of metrics to be added. This function will be provided y_true
and y_pred, the true and predicted values for each model.

	names (list[str])) – The list of metric names corresponding to the functions.

	Return type

	Nothing

Examples

>>> def f1(y_true, y_pred):
... return np.max(y_true - y_pred)
>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.add_metrics([f1], ['Max Residual'])
>>> evaluator.metrics
Output table will include the desired metric

	
add_models(models, show_full_name=False)

	Adds the listed models to the evaluator object it is called on.

	Parameters

	
	models (list[ADSModel]) – The list of models to be added

	show_full_name (bool, optional) – Whether to show the full model name. Defaults to False.
** NOT USED **

	Return type

	Nothing

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.add_models("model3])

	
calculate_cost(tn_weight, fp_weight, fn_weight, tp_weight, use_training_data=False)

	Returns a cost associated with the input weights.

	Parameters

	
	tn_weight (int, float) – The weight to assign true negatives in calculating the cost

	fp_weight (int, float) – The weight to assign false positives in calculating the cost

	fn_weight (int, float) – The weight to assign false negatives in calculating the cost

	tp_weight (int, float) – The weight to assign true positives in calculating the cost

	use_training_data (bool, optional) – Use training data to pull the metrics. Defaults to False

	Returns

	DataFrame with the cost calculated for each model

	Return type

	pandas.DataFrame

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> costs_table = evaluator.calculate_cost(0, 10, 1000, 0)

	
del_metrics(names)

	Removes the listed metrics from the evaluator object it is called on.

	Parameters

	names (list[str]) – The list of names of metrics to be deleted. Names can be found by calling
evaluator.test_evaluations.index.

	Returns

	None

	Return type

	None

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.del_metrics(['mse])
>>> evaluator.metrics
Output table will exclude the desired metric

	
del_models(names)

	Removes the listed models from the evaluator object it is called on.

	Parameters

	names (list[str]) – the list of models to be delete. Names are the model names by default, and
assigned internally when conflicts exist. Actual names can be found using
evaluator.test_evaluations.columns

	Return type

	Nothing

Examples

>>> model3.rename("model3")
>>> evaluator = ADSEvaluator(test, [model1, model2, model3])
>>> evaluator.del_models([model3])

	
property metrics

	Returns evaluation metrics

	Returns

	HTML representation of a table comparing relevant metrics.

	Return type

	metrics

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.metrics
Outputs table displaying metrics.

	
property raw_metrics

	Returns the raw metric numbers

	Parameters

	
	metrics (list, optional) – Request metrics to pull. Defaults to all.

	use_training_data (bool, optional) – Use training data to pull metrics. Defaults to False

	Returns

	The requested raw metrics for each model. If metrics is None return all.

	Return type

	dict

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> raw_metrics_dictionary = evaluator.raw_metrics()

	
show_in_notebook(plots=None, use_training_data=False, perfect=False, baseline=True, legend_labels=None)

	Visualize evaluation plots.

	Parameters

	
	plots (list, optional) – Filter the plots that are displayed. Defaults to None. The name of the plots are as below:

	regression - residuals_qq, residuals_vs_fitted

	binary classification - normalized_confusion_matrix, roc_curve, pr_curve

	multi class classification - normalized_confusion_matrix, precision_by_label, recall_by_label, f1_by_label

	use_training_data (bool, optional) – Use training data to generate plots. Defaults to False.
By default, this method uses test data to generate plots

	legend_labels (dict, optional) – Rename legend labels, that used for multi class classification plots. Defaults to None.
legend_labels dict keys are the same as class names. legend_labels dict values are strings.
If legend_labels not specified class names will be used for plots.

	Returns

	Nothing. Outputs several evaluation plots as specified by plots.

	Return type

	None

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.show_in_notebook()

>>> legend_labels={'class_0': 'green', 'class_1': 'yellow', 'class_2': 'red'}
>>> multi_evaluator = ADSEvaluator(test, [model1, model2],
... legend_labels=legend_labels)
>>> multi_evaluator.show_in_notebook(plots=["normalized_confusion_matrix",
... "precision_by_label", "recall_by_label", "f1_by_label"])

ads.evaluations.statistical_metrics module

	
class ads.evaluations.statistical_metrics.ModelEvaluator(y_true, y_pred, model_name, classes=None, positive_class=None, y_score=None)

	Bases: object

ModelEvaluator takes in the true and predicted values and returns a pandas dataframe

	
y_true

	
	Type

	array-like object holding the true values for the model

	
y_pred

	
	Type

	array-like object holding the predicted values for the model

	
model_name(str)

	
	Type

	the name of the model

	
classes(list)

	
	Type

	list of target classes

	
positive_class(str)

	
	Type

	label for positive outcome from model

	
y_score

	
	Type

	array-like object holding the scores for true values for the model

	
metrics(dict)

	
	Type

	dictionary object holding model data

	
get_metrics()

	Gets the metrics information in a dataframe based on the number of classes

	
safe_metrics_call(scoring_functions, *args)

	Applies sklearn scoring functions to parameters in args

	
get_metrics()

	Gets the metrics information in a dataframe based on the number of classes

	Parameters

	self ((ModelEvaluator instance)) – The ModelEvaluator instance with the metrics.

	Returns

	Pandas dataframe containing the metrics

	Return type

	pandas.DataFrame

	
safe_metrics_call(scoring_functions, *args)

	Applies the sklearn function in scoring_functions to parameters in args.

	Parameters

	
	scoring_functions ((dict)) – Scoring functions dictionary

	args ((keyword arguments)) – Arguments passed to the sklearn function from metrics

	Returns

	Nothing

	Raises

	Exception – If an error is enountered applying the sklearn function fn to arguments.

Module contents

 ads.explanations package

ads.explanations package

Submodules

ads.explanations.base_explainer module

ads.explanations.explainer module

ads.explanations.mlx_global_explainer module

ads.explanations.mlx_interface module

ads.explanations.mlx_local_explainer module

ads.explanations.mlx_whatif_explainer module

Module contents

 ads.feature_engineering package

ads.feature_engineering package

Submodules

ads.feature_engineering.exceptions module

	
exception ads.feature_engineering.exceptions.InvalidFeatureType(tname: str)

	Bases: TypeError

	
exception ads.feature_engineering.exceptions.NameAlreadyRegistered(name: str)

	Bases: NameError

	
exception ads.feature_engineering.exceptions.TypeAlreadyAdded(tname: str)

	Bases: TypeError

	
exception ads.feature_engineering.exceptions.TypeAlreadyRegistered(tname: str)

	Bases: TypeError

	
exception ads.feature_engineering.exceptions.TypeNotFound(tname: str)

	Bases: TypeError

	
exception ads.feature_engineering.exceptions.WarningAlreadyExists(name: str)

	Bases: ValueError

	
exception ads.feature_engineering.exceptions.WarningNotFound(name: str)

	Bases: ValueError

ads.feature_engineering.feature_type_manager module

The module that helps to manage feature types.
Provides functionalities to register, unregister, list feature types.

Classes

	FeatureTypeManager
	Feature Types Manager class that manages feature types.

Examples

>>> from ads.feature_engineering.feature_type.base import FeatureType
>>> class NewType(FeatureType):
... description="My personal type."
... pass
>>> FeatureTypeManager.feature_type_register(NewType)
>>> FeatureTypeManager.feature_type_registered()
 Name Feature Type Description

0 Continuous continuous Type representing continuous values.
1 DateTime date_time Type representing date and/or time.
2 Category category Type representing discrete unordered values.
3 Ordinal ordinal Type representing ordered values.
4 NewType new_type My personal type.

>>> FeatureTypeManager.warning_registered()
 Feature Type Warning Handler
--
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

>>> FeatureTypeManager.validator_registered()
 Feature Type Validator Condition Handler

0 phone_number is_phone_number () default_handler
1 phone_number is_phone_number {'country_code': '+7'} specific_country_handler
2 credit_card is_credit_card () default_handler

>>> FeatureTypeManager.feature_type_unregister(NewType)
>>> FeatureTypeManager.feature_type_reset()
>>> FeatureTypeManager.feature_type_object('continuous')
Continuous

	
class ads.feature_engineering.feature_type_manager.FeatureTypeManager

	Bases: object

Feature Types Manager class that manages feature types.

Provides functionalities to register, unregister, list feature types.

	
feature_type_object(cls, feature_type: Union[FeatureType, str]) → FeatureType

	Gets a feature type by class object or name.

	
feature_type_register(cls, feature_type_cls: FeatureType) → None

	Registers a feature type.

	
feature_type_unregister(cls, feature_type_cls: Union[FeatureType, str]) → None

	Unregisters a feature type.

	
feature_type_reset(cls) → None

	Resets feature types to be default.

	
feature_type_registered(cls) → pd.DataFrame

	Lists all registered feature types as a DataFrame.

	
warning_registered(cls) → pd.DataFrame

	Lists registered warnings for all registered feature types.

	
validator_registered(cls) → pd.DataFrame

	Lists registered validators for all registered feature types.

Examples

>>> from ads.feature_engineering.feature_type.base import FeatureType
>>> class NewType(FeatureType):
... pass
>>> FeatureTypeManager.register_feature_type(NewType)
>>> FeatureTypeManager.feature_type_registered()
 Name Feature Type Description

0 Continuous continuous Type representing continuous values.
1 DateTime date_time Type representing date and/or time.
2 Category category Type representing discrete unordered values.
3 Ordinal ordinal Type representing ordered values.

>>> FeatureTypeManager.warning_registered()
 Feature Type Warning Handler
--
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

>>> FeatureTypeManager.validator_registered()
 Feature Type Validator Condition Handler

0 phone_number is_phone_number () default_handler
1 phone_number is_phone_number {'country_code': '+7'} specific_country_handler
2 credit_card is_credit_card () default_handler

>>> FeatureTypeManager.feature_type_unregister(NewType)
>>> FeatureTypeManager.feature_type_reset()
>>> FeatureTypeManager.feature_type_object('continuous')
Continuous

	
classmethod feature_type_object(feature_type: Union[ads.feature_engineering.feature_type.base.FeatureType, str]) → ads.feature_engineering.feature_type.base.FeatureType

	Gets a feature type by class object or name.

	Parameters

	feature_type (Union[FeatureType, str]) – The FeatureType subclass or a str indicating feature type.

	Returns

	Found feature type.

	Return type

	FeatureType

	Raises

	
	TypeNotFound – If provided feature type not registered.

	TypeError – If provided feature type not a subclass of FeatureType.

	
classmethod feature_type_register(feature_type_cls: ads.feature_engineering.feature_type.base.FeatureType) → None

	Registers new feature type.

	Parameters

	feature_type (FeatureType) – Subclass of FeatureType to be registered.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	TypeError – Type is not a subclass of FeatureType.

	TypeError – Type has already been registered.

	NameError – Name has already been used.

	
classmethod feature_type_registered() → pandas.core.frame.DataFrame

	Lists all registered feature types as a DataFrame.

	Returns

	The list of feature types in a DataFrame format.

	Return type

	pd.DataFrame

	
classmethod feature_type_reset() → None

	Resets feature types to be default.

	Returns

	Nothing.

	Return type

	None

	
classmethod feature_type_unregister(feature_type: Union[ads.feature_engineering.feature_type.base.FeatureType, str]) → None

	Unregisters a feature type.

	Parameters

	feature_type ((FeatureType | str)) – The FeatureType subclass or a str indicating feature type.

	Returns

	Nothing.

	Return type

	None

	Raises

	TypeError – In attempt to unregister a default feature type.

	
classmethod is_type_registered(feature_type: Union[ads.feature_engineering.feature_type.base.FeatureType, str]) → bool

	Checks if provided feature type registered in the system.

	Parameters

	feature_type (Union[FeatureType, str]) – The FeatureType subclass or a str indicating feature type.

	Returns

	True if provided feature type registered, False otherwise.

	Return type

	bool

	
classmethod validator_registered() → pandas.core.frame.DataFrame

	Lists registered validators for registered feature types.

	Returns

	The list of registered validators for registered feature types
in a DataFrame format.

	Return type

	pd.DataFrame

Examples

>>> FeatureTypeManager.validator_registered()
 Feature Type Validator Condition Handler

0 phone_number is_phone_number () default_handler
1 phone_number is_phone_number {'country_code': '+7'} specific_country_handler
2 credit_card is_credit_card () default_handler

	
classmethod warning_registered() → pandas.core.frame.DataFrame

	Lists registered warnings for all registered feature types.

	Returns

	The list of registered warnings for registered feature types
in a DataFrame format.

	Return type

	pd.DataFrame

Examples

>>> FeatureTypeManager.warning_registered()
 Feature Type Warning Handler
--
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

ads.feature_engineering.accessor.dataframe_accessor module

The ADS accessor for the Pandas DataFrame.
The accessor will be initialized with the pandas object the user is interacting with.

Examples

>>> from ads.feature_engineering.accessor.dataframe_accessor import ADSDataFrameAccessor
 >>> from ads.feature_engineering.feature_type.continuous import Continuous
 >>> from ads.feature_engineering.feature_type.creditcard import CreditCard
 >>> from ads.feature_engineering.feature_type.string import String
 >>> from ads.feature_engineering.feature_type.base import Tag
>>> df = pd.DataFrame({'Name': ['Alex'], 'CreditCard': ["4532640527811543"]})
>>> df.ads.feature_type
{'Name': ['string'], 'Credit Card': ['string']}
>>> df.ads.feature_type_description
 Column Feature Type Description
--
0 Name string Type representing string values.
1 Credit Card string Type representing string values.
>>> df.ads.default_type
{'Name': 'string', 'Credit Card': 'string'}
>>> df.ads.feature_type = {'Name':['string', Tag('abc')]}
>>> df.ads.tags
{'Name': ['abc']}
>>> df.ads.feature_type = {'Credit Card':['credit_card']}
>>> df.ads.feature_select(include=['credit_card'])
 Credit Card

0 4532640527811543

	
class ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor(pandas_obj)

	Bases: ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin, ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin, ads.dbmixin.db_pandas_accessor.DBAccessMixin, ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin

ADS accessor for the Pandas DataFrame.

	
columns

	The column labels of the DataFrame.

	Type

	List[str]

	
tags(self) → Dict[str, str]

	Gets the dictionary of user defined tags for the dataframe.

	
default_type(self) → Dict[str, str]

	Gets the map of columns and associated default feature type names.

	
feature_type(self) → Dict[str, List[str]]

	Gets the list of registered feature types.

	
feature_type_description(self) → pd.DataFrame

	Gets the list of registered feature types in a DataFrame format.

	
sync(self, src: Union[pd.DataFrame, pd.Series]) → pd.DataFrame

	Syncs feature types of current DataFrame with that from src.

	
feature_select(self, include: List[Union[FeatureType, str]] = None, exclude: List[Union[FeatureType, str]] = None) → pd.DataFrame

	Gets the list of registered feature types in a DataFrame format.

	
help(self, prop: str = None) → None

	Provids docstring for affordable methods and properties.

Examples

>>> from ads.feature_engineering.accessor.dataframe_accessor import ADSDataFrameAccessor
>>> from ads.feature_engineering.feature_type.continuous import Continuous
>>> from ads.feature_engineering.feature_type.creditcard import CreditCard
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.base import Tag
df = pd.DataFrame({'Name': ['Alex'], 'CreditCard': ["4532640527811543"]})
>>> df.ads.feature_type
{'Name': ['string'], 'Credit Card': ['string']}
>>> df.ads.feature_type_description
 Column Feature Type Description

0 Name string Type representing string values.
1 Credit Card string Type representing string values.
>>> df.ads.default_type
{'Name': 'string', 'Credit Card': 'string'}
>>> df.ads.feature_type = {'Name':['string', Tag('abc')]}
>>> df.ads.tags
{'Name': ['abc']}
>>> df.ads.feature_type = {'Credit Card':['credit_card']}
>>> df.ads.feature_select(include=['credit_card'])
 Credit Card

0 4532640527811543

Initializes ADS Pandas DataFrame Accessor.

	Parameters

	pandas_obj (pandas.DataFrame) – Pandas dataframe

	Raises

	ValueError – If provided DataFrame has duplicate columns.

	
property default_type: Dict[str, str]

	Gets the map of columns and associated default feature type names.

	Returns

	The dictionary where key is column name and value is the name of default feature
type.

	Return type

	Dict[str, str]

	
feature_select(include: Optional[List[Union[ads.feature_engineering.feature_type.base.FeatureType, str]]] = None, exclude: Optional[List[Union[ads.feature_engineering.feature_type.base.FeatureType, str]]] = None) → pandas.core.frame.DataFrame

	Returns a subset of the DataFrame’s columns based on the column feature_types.

	Parameters

	
	include (List[Union[FeatureType, str]], optional) – Defaults to None. A list of FeatureType subclass or str to be included.

	exclude (List[Union[FeatureType, str]], optional) – Defaults to None. A list of FeatureType subclass or str to be excluded.

	Raises

	
	ValueError – If both of include and exclude are empty

	ValueError – If include and exclude are used simultaneously

	Returns

	The subset of the frame including the feature types in include and excluding
the feature types in exclude.

	Return type

	pandas.DataFrame

	
property feature_type: Dict[str, List[str]]

	Gets the list of registered feature types.

	Returns

	The dictionary where key is column name and value is list of associated feature type
names.

	Return type

	Dict[str, List[str]]

	
property feature_type_description: pandas.core.frame.DataFrame

	Gets the list of registered feature types in a DataFrame format.

	Return type

	pandas.DataFrame

Examples

>>> df.ads.feature_type_description()
 Column Feature Type Description

0 City string Type representing string values.
1 Phone Number string Type representing string values.

	
info() → Any

	Gets information about the dataframe.

	Returns

	The information about the dataframe.

	Return type

	Any

	
model_schema(max_col_num: int = 2000)

	Generates schema from the dataframe.

	Parameters

	max_col_num (int, optional. Defaults to 1000) – The maximum column size of the data that allows to auto generate schema.

Examples

>>> df = pd.read_csv('./orcl_attrition.csv', usecols=['Age', 'Attrition'])
>>> schema = df.ads.model_schema()
>>> schema
Schema:
 - description: Attrition
 domain:
 constraints: []
 stats:
 count: 1470
 unique: 2
 values: String
 dtype: object
 feature_type: String
 name: Attrition
 required: true
 - description: Age
 domain:
 constraints: []
 stats:
 25%: 31.0
 50%: 37.0
 75%: 44.0
 count: 1470.0
 max: 61.0
 mean: 37.923809523809524
 min: 19.0
 std: 9.135373489136732
 values: Integer
 dtype: int64
 feature_type: Integer
 name: Age
 required: true
>>> schema.to_dict()
{'Schema': [{'dtype': 'object',
 'feature_type': 'String',
 'name': 'Attrition',
 'domain': {'values': 'String',
 'stats': {'count': 1470, 'unique': 2},
 'constraints': []},
 'required': True,
 'description': 'Attrition'},
 {'dtype': 'int64',
 'feature_type': 'Integer',
 'name': 'Age',
 'domain': {'values': 'Integer',
 'stats': {'count': 1470.0,
 'mean': 37.923809523809524,
 'std': 9.135373489136732,
 'min': 19.0,
 '25%': 31.0,
 '50%': 37.0,
 '75%': 44.0,
 'max': 61.0},
 'constraints': []},
 'required': True,
 'description': 'Age'}]}

	Returns

	data schema.

	Return type

	ads.feature_engineering.schema.Schema

	Raises

	ads.feature_engineering.schema.DataSizeTooWide – If the number of columns of input data exceeds max_col_num.

	
sync(src: Union[pandas.core.frame.DataFrame, pandas.core.series.Series]) → pandas.core.frame.DataFrame

	Syncs feature types of current DataFrame with that from src.

Syncs feature types of current dataframe with that from src, where src
can be a dataframe or a series. In either case, only columns with
matched names are synced.

	Parameters

	src (pd.DataFrame | pd.Series) – The source to sync from.

	Returns

	Synced dataframe.

	Return type

	pandas.DataFrame

	
property tags: Dict[str, List[str]]

	Gets the dictionary of user defined tags for the dataframe. Key is column name
and value is list of tag names.

	Returns

	The map of columns and associated default tags.

	Return type

	Dict[str, List[str]]

ads.feature_engineering.accessor.series_accessor module

The ADS accessor for the Pandas Series.
The accessor will be initialized with the pandas object the user is interacting with.

Examples

>>> from ads.feature_engineering.accessor.series_accessor import ADSSeriesAccessor
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.ordinal import Ordinal
>>> from ads.feature_engineering.feature_type.base import Tag
>>> series = pd.Series(['name1', 'name2', 'name3'])
>>> series.ads.default_type
'string'
>>> series.ads.feature_type
['string']
>>> series.ads.feature_type_description
 Feature Type Description
--
0 string Type representing string values.
>>> series.ads.feature_type = ['string', Ordinal, Tag('abc')]
>>> series.ads.feature_type
['string', 'ordinal', 'abc']
>>> series1 = series.dropna()
>>> series1.ads.sync(series)
>>> series1.ads.feature_type
['string', 'ordinal', 'abc']

	
class ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor(pandas_obj: pandas.core.series.Series)

	Bases: ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin, ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries

ADS accessor for Pandas Series.

	
name

	The name of Series.

	Type

	str

	
tags

	The list of tags for the Series.

	Type

	List[str]

	
help(self, prop: str = None) → None

	Provids docstring for affordable methods and properties.

	
sync(self, src: Union[pd.DataFrame, pd.Series]) → None

	Syncs feature types of current series with that from src.

	
default_type(self) → str

	Gets the name of default feature type for the series.

	
feature_type(self) → List[str]

	Gets the list of registered feature types for the series.

	
feature_type_description(self) → pd.DataFrame

	Gets the list of registered feature types in a DataFrame format.

Examples

>>> from ads.feature_engineering.accessor.series_accessor import ADSSeriesAccessor
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.ordinal import Ordinal
>>> from ads.feature_engineering.feature_type.base import Tag
>>> series = pd.Series(['name1', 'name2', 'name3'])
>>> series.ads.default_type
'string'
>>> series.ads.feature_type
['string']
>>> series.ads.feature_type_description
 Feature Type Description
--
0 string Type representing string values.
>>> series.ads.feature_type = ['string', Ordinal, Tag('abc')]
>>> series.ads.feature_type
['string', 'ordinal', 'abc']
>>> series1 = series.dropna()
>>> series1.ads.sync(series)
>>> series1.ads.feature_type
['string', 'ordinal', 'abc']

Initializes ADS Pandas Series Accessor.

	Parameters

	pandas_obj (pd.Series) – The pandas series

	
property default_type: str

	Gets the name of default feature type for the series.

	Returns

	The name of default feature type.

	Return type

	str

	
property feature_type: List[str]

	Gets the list of registered feature types for the series.

	Returns

	Names of feature types.

	Return type

	List[str]

Examples

>>> series = pd.Series(['name1'])
>>> series.ads.feature_type = ['name', 'string', Tag('tag for name')]
>>> series.ads.feature_type
['name', 'string', 'tag for name']

	
property feature_type_description: pandas.core.frame.DataFrame

	Gets the list of registered feature types in a DataFrame format.

	Returns

	The DataFrame with feature types for this series.

	Return type

	pd.DataFrame

Examples

>>> series = pd.Series(['name1'])
>>> series.ads.feature_type = ['name', 'string', Tag('Name tag')]
>>> series.ads.feature_type_description
 Feature Type Description
 --
 0 name Type representing name values.
 1 string Type representing string values.
 2 Name tag Tag.

	
sync(src: Union[pandas.core.frame.DataFrame, pandas.core.series.Series]) → None

	Syncs feature types of current series with that from src.

The src could be a dataframe or a series. In either case, only columns
with matched names are synced.

	Parameters

	src ((pd.DataFrame | pd.Series)) – The source to sync from.

	Returns

	Nothing.

	Return type

	None

Examples

>>> series = pd.Series(['name1', 'name2', 'name3', None])
>>> series.ads.feature_type = ['name']
>>> series.ads.feature_type
['name', string]
>>> series.dropna().ads.feature_type
['string']
>>> series1 = series.dropna()
>>> series1.ads.sync(series)
>>> series1.ads.feature_type
['name', 'string']

	
class ads.feature_engineering.accessor.series_accessor.ADSSeriesValidator(feature_type_list: List[ads.feature_engineering.feature_type.base.FeatureType], series: pandas.core.series.Series)

	Bases: object

Class helper to invoke registerred validator on a series level.

Initializes ADS series validator.

	Parameters

	
	feature_type_list (List[FeatureType]) – The list of feature types.

	series (pd.Series) – The pandas series.

ads.feature_engineering.accessor.mixin.correlation module

	
ads.feature_engineering.accessor.mixin.correlation.cat_vs_cat(df: pandas.core.frame.DataFrame, normal_form: bool = True) → pandas.core.frame.DataFrame

	Calculates the correlation of all pairs of categorical features and categorical features.

	
ads.feature_engineering.accessor.mixin.correlation.cat_vs_cont(df: pandas.core.frame.DataFrame, categorical_columns, continuous_columns, normal_form: bool = True) → pandas.core.frame.DataFrame

	Calculates the correlation of all pairs of categorical features and continuous features.

	
ads.feature_engineering.accessor.mixin.correlation.cont_vs_cont(df: pandas.core.frame.DataFrame, normal_form: bool = True) → pandas.core.frame.DataFrame

	Calculates the Pearson correlation between two columns of the DataFrame.

ads.feature_engineering.accessor.mixin.eda_mixin module

This exploratory data analysis (EDA) Mixin is used in the ADS accessor for the Pandas Dataframe.
The series of purpose-driven methods enable the data scientist to complete analysis on the dataframe.

From the accessor we have access to the pandas object the user is interacting with as well as
corresponding lists of feature types per column.

	
class ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin

	Bases: object

	
correlation_ratio() → pandas.core.frame.DataFrame

	Generate a Correlation Ratio data frame for all categorical-continuous variable pairs.

	Returns

	
	pandas.DataFrame

	Correlation Ratio correlation data frame with the following 3 columns –

	Column 1 (name of the first categorical/continuous column)

	Column 2 (name of the second categorical/continuous column)

	Value (correlation value)

Note

Pairs will be replicated. For example for variables x and y, we would have (x,y), (y,x) both with same correlation value. We will also have (x,x) and (y,y) with value 1.0.

	
correlation_ratio_plot() → matplotlib.axes._axes.Axes

	Generate a heatmap of the Correlation Ratio correlation for all categorical-continuous variable
pairs.

	Returns

	Correlation Ratio correlation plot object that can be updated by the customer

	Return type

	Plot object

	
cramersv() → pandas.core.frame.DataFrame

	Generate a Cramer’s V correlation data frame for all categorical variable pairs.

Gives a warning for dropped non-categorical columns.

	Returns

	
	Cramer’s V correlation data frame with the following 3 columns:
	
	Column 1 (name of the first categorical column)

	Column 2 (name of the second categorical column)

	Value (correlation value)

	Return type

	pandas.DataFrame

Note

Pairs will be replicated. For example for variables x and y, we would have (x,y), (y,x) both with same correlation value. We will also have (x,x) and (y,y) with value 1.0.

	
cramersv_plot() → matplotlib.axes._axes.Axes

	Generate a heatmap of the Cramer’s V correlation for all categorical variable pairs.

Gives a warning for dropped non-categorical columns.

	Returns

	Cramer’s V correlation plot object that can be updated by the customer

	Return type

	Plot object

	
feature_count() → pandas.core.frame.DataFrame

	Counts the number of columns for each feature type and each primary feature.
The column of primary is the number of primary feature types that is assigned to the column.

	Returns

	The number of columns for each feature type
The number of columns for each primary feature

	Return type

	Dataframe with

Examples

>>> df.ads.feature_type
{'PassengerId': ['ordinal', 'category'],
'Survived': ['ordinal'],
'Pclass': ['ordinal'],
'Name': ['category'],
'Sex': ['category']}
>>> df.ads.feature_count()
 Feature Type Count Primary
0 category 3 2
1 ordinal 3 3

	
feature_plot() → pandas.core.frame.DataFrame

	For every column in the dataframe plot generate a list of summary plots based on the most
relevant feature type.

	Returns

	Dataframe with 2 columns:
1. Column - feature name
2. Plot - plot object

	Return type

	pandas.DataFrame

	
feature_stat() → pandas.core.frame.DataFrame

	Summary statistics Dataframe provided.

This returns feature stats on each column using FeatureType summary method.

Examples

>>> df = pd.read_csv('~/advanced-ds/tests/vor_datasets/vor_titanic.csv')
>>> df.ads.feature_stat().head()
 Column Metric Value
0 PassengerId count 891.000
1 PassengerId mean 446.000
2 PassengerId standard deviation 257.354
3 PassengerId sample minimum 1.000
4 PassengerId lower quartile 223.500

	Returns

	Dataframe with 3 columns: name, metric, value

	Return type

	pandas.DataFrame

	
pearson() → pandas.core.frame.DataFrame

	Generate a Pearson correlation data frame for all continuous variable pairs.

Gives a warning for dropped non-numerical columns.

	Returns

	
	pandas.DataFrame

	Pearson correlation data frame with the following 3 columns –

	Column 1 (name of the first continuous column)

	Column 2 (name of the second continuous column)

	Value (correlation value)

Note

Pairs will be replicated. For example for variables x and y, we’d have (x,y), (y,x) both with same correlation value. We’ll also have (x,x) and (y,y) with value 1.0.

	
pearson_plot() → matplotlib.axes._axes.Axes

	Generate a heatmap of the Pearson correlation for all continuous variable pairs.

	Returns

	Pearson correlation plot object that can be updated by the customer

	Return type

	Plot object

	
warning() → pandas.core.frame.DataFrame

	Generates a data frame that lists feature specific warnings.

	Returns

	The list of feature specific warnings.

	Return type

	pandas.DataFrame

Examples

>>> df.ads.warning()
 Column Feature Type Warning Message Metric Value
--
0 Age continuous Zeros Age has 38 zeros Count 38
1 Age continuous Zeros Age has 12.2% zeros Percentage 12.2%

ads.feature_engineering.accessor.mixin.eda_mixin_series module

This exploratory data analysis (EDA) Mixin is used in the ADS accessor for the Pandas Series.
The series of purpose-driven methods enable the data scientist to complete univariate analysis.

From the accessor we have access to the pandas object the user is interacting with as well as
corresponding list of feature types.

	
class ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries

	Bases: object

	
feature_plot() → matplotlib.axes._axes.Axes

	For the series generate a summary plot based on the most relevant feature type.

	Returns

	Plot object for the series based on the most relevant feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
feature_stat() → pandas.core.frame.DataFrame

	Summary statistics Dataframe provided.

This returns feature stats on series using FeatureType summary method.

Examples

>>> df = pd.read_csv('~/advanced-ds/tests/vor_datasets/vor_titanic.csv')
>>> df['Cabin'].ads.feature_stat()
 Metric Value
0 count 891
1 unqiue 147
2 missing 687

	Returns

	Dataframe with 2 columns and rows for different metric values

	Return type

	pandas.DataFrame

	
warning() → pandas.core.frame.DataFrame

	Generates a data frame that lists feature specific warnings.

	Returns

	The list of feature specific warnings.

	Return type

	pandas.DataFrame

Examples

>>> df["Age"].ads.warning()
 Feature Type Warning Message Metric Value

0 continuous Zeros Age has 38 zeros Count 38
1 continuous Zeros Age has 12.2% zeros Percentage 12.2%

ads.feature_engineering.accessor.mixin.feature_types_mixin module

The module that represents the ADS Feature Types Mixin class that extends
Pandas Series and Dataframe accessors.

Classes

	ADSFeatureTypesMixin
	ADS Feature Types Mixin class that extends Pandas Series and Dataframe accessors.

	
class ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin

	Bases: object

ADS Feature Types Mixin class that extends Pandas Series and DataFrame accessors.

	
warning_registered(cls) → pd.DataFrame

	Lists registered warnings for registered feature types.

	
validator_registered(cls) → pd.DataFrame

	Lists registered validators for registered feature types.

	
help(self, prop: str = None) → None

	Help method that prints either a table of available properties or, given a property,
returns its docstring.

	
help(prop: Optional[str] = None) → None

	Help method that prints either a table of available properties or, given an individual property,
returns its docstring.

	Parameters

	prop (str) – The Name of property.

	Returns

	Nothing.

	Return type

	None

	
validator_registered() → pandas.core.frame.DataFrame

	Lists registered validators for registered feature types.

	Returns

	The list of registered validators for registered feature types

	Return type

	pandas.DataFrame

Examples

>>> df.ads.validator_registered()
 Column Feature Type Validator Condition Handler
--
0 PhoneNumber phone_number is_phone_number () default_handler
1 PhoneNumber phone_number is_phone_number {'country_code': '+7'} specific_country_handler
2 CreditCard credit_card is_credit_card () default_handler

>>> df['PhoneNumber'].ads.validator_registered()
 Feature Type Validator Condition Handler

0 phone_number is_phone_number () default_handler
1 phone_number is_phone_number {'country_code': '+7'} specific_country_handler

	
warning_registered() → pandas.core.frame.DataFrame

	Lists registered warnings for all registered feature types.

	Returns

	The list of registered warnings for registered feature types.

	Return type

	pandas.DataFrame

Examples

>>> df.ads.warning_registered()
 Column Feature Type Warning Handler

 0 Age continuous zeros zeros_handler
 1 Age continuous high_cardinality high_cardinality_handler

>>> df["Age"].ads.warning_registered()
 Feature Type Warning Handler

 0 continuous zeros zeros_handler
 1 continuous high_cardinality high_cardinality_handler

ads.feature_engineering.adsstring.common_regex_mixin module

	
class ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

	Bases: object

	
property address

	

	
property credit_card

	

	
property date

	

	
property email

	

	
property ip

	

	
property link

	

	
property phone_number_US

	

	
property price

	

	
redact(fields: Union[List[str], Dict[str, str]]) → str

	Remove personal information in a string.
For example, “Jane’s phone number is 123-456-7890” is turned into “Jane’s phone number is [phone_number_US].”

	Parameters

	fields ((list(str) | dict)) – either a list of fields to redact, e.g. [‘email’, ‘phone_number_US’], in which case the redacted text is replaced
with capitalized word like [EMAIL] or [PHONE_NUMBER_US_WITH_EXT], or a dictionary where key is a field to redact and value
is the replacement text, e.g., {‘email’: ‘HIDDEN_EMAIL’}.

	Returns

	redacted string

	Return type

	str

	
redact_map = {'address': '[ADDRESS]', 'address_with_zip': '[ADDRESS_WITH_ZIP]', 'credit_card': '[CREDIT_CARD]', 'date': '[DATE]', 'email': '[EMAIL]', 'ip': '[IP]', 'ipv6': '[IPV6]', 'link': '[LINK]', 'phone_number_US': '[PHONE_NUMBER_US]', 'phone_number_US_with_ext': '[PHONE_NUMBER_US_WITH_EXT]', 'po_box': '[PO_BOX]', 'price': '[PRICE]', 'ssn': '[SSN]', 'time': '[TIME]', 'zip_code': '[ZIP_CODE]'}

	

	
property ssn

	

	
property time

	

	
property zip_code

	

ads.feature_engineering.adsstring.oci_language module

	
class ads.feature_engineering.adsstring.oci_language.OCILanguage(auth=None)

	Bases: object

	
property absa: pandas.core.frame.DataFrame

	

	
property key_phrase: pandas.core.frame.DataFrame

	

	
property language_dominant: pandas.core.frame.DataFrame

	

	
property ner: pandas.core.frame.DataFrame

	

	
property text_classification: pandas.core.frame.DataFrame

	

ads.feature_engineering.adsstring.string module

	
class ads.feature_engineering.adsstring.string.ADSString(text: str, language='english')

	Bases: str, ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

Defines an enhanced string class for the purporse of performing NLP tasks.
Its functionalities can be extended by registering plugins.

	
plugins

	list of plugins that add functionalities to the class.

	Type

	List

	
string

	plain string

	Type

	str

Example

>>> ADSString.nlp_backend('nltk')
>>> s = ADSString("Walking my dog on a breezy day is the best.")
>>> s.lower() # regular string methods still work
>>> s.replace("a", "e")
>>> s.nouns
>>> s.parts_of_speech
>>> s = ADSString("get in touch with my associate at john.smith@gmail.com to schedule")
>>> s.emails
>>> ADSString.plugin_register(OCILanguage)
>>> s = ADSString("This movie is awesome.")
>>> s.absa

Initialze the class and register plugins.

	Parameters

	
	text (str) – input text

	language (str, optional) – language of the text, by default “english”.

	Raises

	TypeError – input text is not a string.

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center(width, fillchar=' ', /)

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count(sub[, start[, end]]) → int

	Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode(encoding='utf-8', errors='strict')

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith(suffix[, start[, end]]) → bool

	Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs(tabsize=8)

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find(sub[, start[, end]]) → int

	Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format(*args, **kwargs) → str

	Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map(mapping) → str

	Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
help() → None

	List available properties.

	Parameters

	plugin (Any) – registered plugin

	Return type

	None

	
index(sub[, start[, end]]) → int

	Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Use keyword.iskeyword() to test for reserved identifiers such as “def” and
“class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join(iterable, /)

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
language_model_cache = {}

	

	
ljust(width, fillchar=' ', /)

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip(chars=None, /)

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
maketrans(y=None, z=None, /)

	Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode
ordinals (integers) or characters to Unicode ordinals, strings or None.
Character keys will be then converted to ordinals.
If there are two arguments, they must be strings of equal length, and
in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it
must be a string, whose characters will be mapped to None in the result.

	
nlp_backend() → None

	Set backend for extracting NLP related properties.

	Parameters

	backend (str, optional) – name of backend, by default ‘nltk’.

	Raises

	
	ModuleNotFoundError – module corresponding to backend is not found.

	ValueError – input backend is invalid.

	Return type

	None

	
partition(sep, /)

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
plugin_clear() → None

	Clears plugins.

	
plugin_list() → None

	List registered plugins.

	
plugin_register() → None

	Register a plugin

	Parameters

	plugin (Any) – plugin to register

	Return type

	None

	
plugins = []

	

	
redact(fields: Union[List[str], Dict[str, str]]) → str

	Remove personal information in a string.
For example, “Jane’s phone number is 123-456-7890” is turned into “Jane’s phone number is [phone_number_US].”

	Parameters

	fields ((list(str) | dict)) – either a list of fields to redact, e.g. [‘email’, ‘phone_number_US’], in which case the redacted text is replaced
with capitalized word like [EMAIL] or [PHONE_NUMBER_US_WITH_EXT], or a dictionary where key is a field to redact and value
is the replacement text, e.g., {‘email’: ‘HIDDEN_EMAIL’}.

	Returns

	redacted string

	Return type

	str

	
replace(old, new, count=-1, /)

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind(sub[, start[, end]]) → int

	Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex(sub[, start[, end]]) → int

	Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust(width, fillchar=' ', /)

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition(sep, /)

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit(sep=None, maxsplit=- 1)

	Return a list of the words in the string, using sep as the delimiter string.

	sep
	The delimiter according which to split the string.
None (the default value) means split according to any whitespace,
and discard empty strings from the result.

	maxsplit
	Maximum number of splits to do.
-1 (the default value) means no limit.

Splits are done starting at the end of the string and working to the front.

	
rstrip(chars=None, /)

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split(sep=None, maxsplit=- 1)

	Return a list of the words in the string, using sep as the delimiter string.

	sep
	The delimiter according which to split the string.
None (the default value) means split according to any whitespace,
and discard empty strings from the result.

	maxsplit
	Maximum number of splits to do.
-1 (the default value) means no limit.

	
splitlines(keepends=False)

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith(prefix[, start[, end]]) → bool

	Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
property string

	

	
strip(chars=None, /)

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate(table, /)

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill(width, /)

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
ads.feature_engineering.adsstring.string.to_adsstring(func: Callable) → Callable

	Decorator that converts output of a function to ADSString if it returns a string.

	Parameters

	func (Callable) – function to decorate

	Returns

	decorated function

	Return type

	Callable

	
ads.feature_engineering.adsstring.string.wrap_output_string(decorator: Callable) → Callable

	Class decorator that applies a decorator to all methods of a class.

	Parameters

	decorator (Callable) – decorator to apply

	Returns

	class decorator

	Return type

	Callable

ads.feature_engineering.feature_type.address module

The module that represents an Address feature type.

	Classes:
	
	Address
	The Address feature type.

	
class ads.feature_engineering.feature_type.address.Address

	Bases: ads.feature_engineering.feature_type.string.String

Type representing address.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the location of given address on map base on zip code.

Example

>>> from ads.feature_engineering.feature_type.address import Address
>>> import pandas as pd
>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
 '1 Berkeley Street, Boston, MA 67891',
 '54305 Oxford Street, Seattle, WA 95132',
 ''])
>>> Address.validator.is_address(address)
0 True
1 True
2 True
3 False
dtype: bool

	
description = 'Type representing address.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
 '1 Berkeley Street, Boston, MA 67891',
 '54305 Oxford Street, Seattle, WA 95132',
 ''],
 name='address')
>>> address.ads.feature_type = ['address']
>>> address.ads.feature_domain()
constraints: []
stats:
 count: 4
 missing: 1
 unique: 3
values: Address

	Returns

	Domain based on the Address feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the location of given address on map base on zip code.

Examples

>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
 '1 Berkeley Street, Boston, MA 67891',
 '54305 Oxford Street, Seattle, WA 95132',
 ''],
 name='address')
>>> address.ads.feature_type = ['address']
>>> address.ads.feature_plot()

	Returns

	Plot object for the series based on the Address feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
 '1 Berkeley Street, Boston, MA 67891',
 '54305 Oxford Street, Seattle, WA 95132',
 ''],
 name='address')
>>> address.ads.feature_type = ['address']
>>> address.ads.feature_stat()
 Metric Value
0 count 4
1 unique 3
2 missing 1

	Returns

	Summary statistics of the Series provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.address.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pd.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.base module

	
class ads.feature_engineering.feature_type.base.FeatureBaseType(classname, bases, dictionary)

	Bases: type

The helper metaclass to extend fucntionality of FeatureType class.

	
class ads.feature_engineering.feature_type.base.FeatureBaseTypeMeta(classname, bases, dictionary)

	Bases: ads.feature_engineering.feature_type.base.FeatureBaseType, abc.ABCMeta

The class to provide compatibility between ABC and FeatureBaseType metaclass.

	
class ads.feature_engineering.feature_type.base.FeatureType

	Bases: abc.ABC

Abstract case for feature types. Default class attribute include name and description.
Name is auto generated using camel to snake conversion unless specified.

	
description = 'Base feature type.'

	

	
name = 'feature_type'

	

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
class ads.feature_engineering.feature_type.base.Name

	Bases: object

	
class ads.feature_engineering.feature_type.base.Tag(name: str)

	Bases: object

Class for free form tags. Name must be specified.

Initialize a tag instance.

	Parameters

	name (str) – The name of the tag.

ads.feature_engineering.feature_type.boolean module

The module that represents a Boolean feature type.

	Classes:
	
	Boolean
	The feature type that represents binary values True/False.

	Functions:
	
	default_handler(data: pd.Series) -> pd.Series
	Processes given data and indicates if the data matches requirements.

	
class ads.feature_engineering.feature_type.boolean.Boolean

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing binary values True/False.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Show the counts of observations in True/False using bars.

Examples

>>> from ads.feature_engineering.feature_type.boolean import Boolean
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> Boolean.validator.is_boolean(s)
0 True
1 True
2 True
3 True
4 False
5 False
dtype: bool

	
description = 'Type representing binary values True/False.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> s.ads.feature_domain()
constraints:
- expression: $x in [True, False]
 language: python
stats:
 count: 6
 missing: 2
 unique: 2
values: Boolean

	Returns

	Domain based on the Boolean feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the counts of observations in True/False using bars.

	Parameters

	x (pandas.Series) – The feature being evaluated.

	Returns

	Plot object for the series based on the Boolean feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> s.ads.feature_plot()

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

	Parameters

	x (pandas.Series) – The feature being evaluated.

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> s.ads.feature_stat()
 Metric Value
0 count 6
1 unique 2
2 missing 2

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.boolean.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.category module

The module that represents a Category feature type.

	Classes:
	
	Category
	The Category feature type.

	
class ads.feature_engineering.feature_type.category.Category

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing discrete unordered values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the counts of observations in each categorical bin using bar chart.

	
description = 'Type representing discrete unordered values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='category')
>>> cat.ads.feature_type = ['category']
>>> cat.ads.feature_domain()
constraints:
- expression: $x in ['S', 'C', 'Q', '']
 language: python
stats:
 count: 22
 missing: 3
 unique: 3
values: Category

	Returns

	Domain based on the Category feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the counts of observations in each categorical bin using bar chart.

	Parameters

	x (pandas.Series) – The feature being evaluated.

	Returns

	Plot object for the series based on the Category feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

Examples

>>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='сategory')
>>> cat.ads.feature_type = ['сategory']
>>> cat.ads.feature_plot()

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count) if there are any.

	Parameters

	x (pandas.Series) – The feature being evaluated.

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

Examples

>>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='сategory')
>>> cat.ads.feature_type = ['сategory']
>>> cat.ads.feature_stat()
 Metric Value
0 count 22
1 unique 3
2 missing 3

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.constant module

The module that represents a Constant feature type.

	Classes:
	
	Constant
	The Constant feature type.

	
class ads.feature_engineering.feature_type.constant.Constant

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing constant values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the counts of observations in bars.

	
description = 'Type representing constant values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.
.. rubric:: Example

>>> s = pd.Series([1, 1, 1, 1, 1], name='constant')
>>> s.ads.feature_type = ['constant']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 5
 unique: 1
values: Constant

	Returns

	Domain based on the Constant feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the counts of observations in bars.

	Parameters

	x (pandas.Series) – The feature being shown.

Examples

>>> s = pd.Series([1, 1, 1, 1, 1], name='constant')
>>> s.ads.feature_type = ['constant']
>>> s.ads.feature_plot()

	Returns

	Plot object for the series based on the Constant feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

	Parameters

	x (pandas.Series) – The feature being evaluated.

	Returns

	Summary statistics of the Series provided.

	Return type

	pandas.DataFrame

Examples

>>> s = pd.Series([1, 1, 1, 1, 1], name='constant')
>>> s.ads.feature_type = ['constant']
>>> s.ads.feature_stat()
 Metric Value
0 count 5
1 unique 1

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.continuous module

The module that represents a Continuous feature type.

	Classes:
	
	Continuous
	The Continuous feature type.

	
class ads.feature_engineering.feature_type.continuous.Continuous

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing continuous values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows distributions of datasets using box plot.

	
description = 'Type representing continuous values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
 4.43, 3.26, np.NaN, None], name='continuous')
>>> cts.ads.feature_type = ['continuous']
>>> cts.ads.feature_domain()
constraints: []
stats:
 count: 10.0
 lower quartile: 3.058
 mean: 4.959
 median: 3.81
 missing: 2.0
 sample maximum: 13.32
 sample minimum: 2.25
 skew: 2.175
 standard deviation: 3.62
 upper quartile: 4.908
values: Continuous

	Returns

	Domain based on the Continuous feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows distributions of datasets using box plot.

Examples

>>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
 4.43, 3.26, np.NaN, None], name='continuous')
>>> cts.ads.feature_type = ['continuous']
>>> cts.ads.feture_plot()

	Returns

	Plot object for the series based on the Continuous feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, mean, standard deviation, sample minimum,
lower quartile, median, 75%, upper quartile, skew and missing(count).

Examples

>>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
 4.43, 3.26, np.NaN, None], name='continuous')
>>> cts.ads.feature_type = ['continuous']
>>> cts.ads.feature_stat()
 Metric Value
0 count 10.000
1 mean 4.959
2 standard deviation 3.620
3 sample minimum 2.250
4 lower quartile 3.058
5 median 3.810
6 upper quartile 4.908
7 sample maximum 13.320
8 skew 2.175
9 missing 2.000

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.creditcard module

The module that represents a CreditCard feature type.

	Classes:
	
	CreditCard
	The CreditCard feature type.

	Functions:
	
	default_handler(data: pd.Series) -> pd.Series
	Processes given data and indicates if the data matches requirements.

	_luhn_checksum(card_number: str) -> float
	Implements Luhn algorithm to validate a credit card number.

	
class ads.feature_engineering.feature_type.creditcard.CreditCard

	Bases: ads.feature_engineering.feature_type.string.String

Type representing credit card numbers.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the counts of observations in each credit card type using bar chart.

Examples

>>> from ads.feature_engineering.feature_type.creditcard import CreditCard
>>> import pandas as pd
>>> s = pd.Series(["4532640527811543", None, "4556929308150929", "4539944650919740", "4485348152450846", "4556593717607190"], name='credit_card')
>>> s.ads.feature_type = ['credit_card']
>>> CreditCard.validator.is_credit_card(s)
0 True
1 False
2 True
3 True
4 True
5 True
Name: credit_card, dtype: bool

	
description = 'Type representing credit card numbers.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> visa = [
 "4532640527811543",
 None,
 "4556929308150929",
 "4539944650919740",
 "4485348152450846",
 "4556593717607190",
]
>>> mastercard = [
 "5334180299390324",
 "5111466404826446",
 "5273114895302717",
 "5430972152222336",
 "5536426859893306",
]
>>> amex = [
 "371025944923273",
 "374745112042294",
 "340984902710890",
 "375767928645325",
 "370720852891659",
]
>>> creditcard_list = visa + mastercard + amex
>>> creditcard_series = pd.Series(creditcard_list,name='card')
>>> creditcard_series.ads.feature_type = ['credit_card']
>>> creditcard_series.ads.feature_domain()
constraints: []
stats:
 count: 16
 count_Amex: 5
 count_Diners Club: 2
 count_MasterCard: 3
 count_Visa: 5
 count_missing: 1
 missing: 1
 unique: 15
values: CreditCard

	Returns

	Domain based on the CreditCard feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the counts of observations in each credit card type using bar chart.

Examples

>>> visa = [
 "4532640527811543",
 None,
 "4556929308150929",
 "4539944650919740",
 "4485348152450846",
 "4556593717607190",
]
>>> mastercard = [
 "5334180299390324",
 "5111466404826446",
 "5273114895302717",
 "5430972152222336",
 "5536426859893306",
]
>>> amex = [
 "371025944923273",
 "374745112042294",
 "340984902710890",
 "375767928645325",
 "370720852891659",
]
>>> creditcard_list = visa + mastercard + amex
>>> creditcard_series = pd.Series(creditcard_list,name='card')
>>> creditcard_series.ads.feature_type = ['credit_card']
>>> creditcard_series.ads.feature_plot()

	Returns

	Plot object for the series based on the CreditCard feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series)

	Generates feature statistics.

	Feature statistics include (total)count, unique(count), missing(count) and
	count of each credit card type.

Examples

>>> visa = [
 "4532640527811543",
 None,
 "4556929308150929",
 "4539944650919740",
 "4485348152450846",
 "4556593717607190",
]
>>> mastercard = [
 "5334180299390324",
 "5111466404826446",
 "5273114895302717",
 "5430972152222336",
 "5536426859893306",
]
>>> amex = [
 "371025944923273",
 "374745112042294",
 "340984902710890",
 "375767928645325",
 "370720852891659",
]
>>> creditcard_list = visa + mastercard + amex
>>> creditcard_series = pd.Series(creditcard_list,name='card')
>>> creditcard_series.ads.feature_type = ['credit_card']
>>> creditcard_series.ads.feature_stat()
 Metric Value
0 count 16
1 unique 15
2 missing 1
3 count_Amex 5
4 count_Visa 5
5 count_MasterCard 3
6 count_Diners Club 2
7 count_missing 1

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.creditcard.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.datetime module

The module that represents a DateTime feature type.

	Classes:
	
	DateTime
	The DateTime feature type.

	
class ads.feature_engineering.feature_type.datetime.DateTime

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing date and/or time.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows distributions of datetime datasets using histograms.

Example

>>> from ads.feature_engineering.feature_type.datetime import DateTime
>>> import pandas as pd
>>> s = pd.Series(["12/12/12", "12/12/13", None, "12/12/14"], name='datetime')
>>> s.ads.feature_type = ['date_time']
>>> DateTime.validator.is_datetime(s)
0 True
1 True
2 False
3 True
Name: datetime, dtype: bool

	
description = 'Type representing date and/or time.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000', '', None, np.nan, 'April/13/2011', 'April/15/11'], name='datetime')
>>> s.ads.feature_type = ['date_time']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 8
 missing: 3
 sample maximum: April/15/11
 sample minimum: 3/11/2000
values: DateTime

	Returns

	Domain based on the DateTime feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows distributions of datetime datasets using histograms.

Examples

>>> x = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000', '', None, np.nan, 'April/13/2011', 'April/15/11'], name='datetime')
>>> x.ads.feature_type = ['date_time']
>>> x.ads.feature_plot()

	Returns

	Plot object for the series based on the DateTime feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, sample maximum, sample minimum, and
missing(count) if there is any.

Examples

>>> x = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000', '', None, np.nan, 'April/13/2011', 'April/15/11'], name='datetime')
>>> x.ads.feature_type = ['date_time']
>>> x.ads.feature_stat()
 Metric Value
0 count 8
1 sample maximum April/15/11
2 sample minimum 3/11/2000
3 missing 3

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.datetime.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.discrete module

The module that represents a Discrete feature type.

	Classes:
	
	Discrete
	The Discrete feature type.

	
class ads.feature_engineering.feature_type.discrete.Discrete

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing discrete values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows distributions of datasets using box plot.

	
description = 'Type representing discrete values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> discrete_numbers = pd.Series([35, 25, 13, 42],
 name='discrete')
>>> discrete_numbers.ads.feature_type = ['discrete']
>>> discrete_numbers.ads.feature_domain()
constraints: []
stats:
 count: 4
 unique: 4
values: Discrete

	Returns

	Domain based on the Discrete feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows distributions of datasets using box plot.

Examples

>>> discrete_numbers = pd.Series([35, 25, 13, 42],
 name='discrete')
>>> discrete_numbers.ads.feature_type = ['discrete']
>>> discrete_numbers.ads.feature_stat()
 Metric Value
0 count 4
1 unique 4

	Returns

	Plot object for the series based on the Discrete feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> discrete_numbers = pd.Series([35, 25, 13, 42],
 name='discrete')
>>> discrete_numbers.ads.feature_type = ['discrete']
>>> discrete_numbers.ads.feature_stat()
 discrete
count 4
unique 4

	Returns

	Summary statistics of the Series provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.document module

The module that represents a Document feature type.

	Classes:
	
	Document
	The Document feature type.

	
class ads.feature_engineering.feature_type.document.Document

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing document values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
description = 'Type representing document values.'

	

	
classmethod feature_domain()

	
	Returns

	Nothing.

	Return type

	None

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.gis module

The module that represents a GIS feature type.

	Classes:
	
	GIS
	The GIS feature type.

	
class ads.feature_engineering.feature_type.gis.GIS

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing geographic information.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the location of given address on map base on longitude and latitute.

Example

>>> from ads.feature_engineering.feature_type.gis import GIS
>>> import pandas as pd
>>> s = pd.Series(["-18.2193965, -93.587285",
 "-21.0255305, -122.478584",
 "85.103913, 19.405744",
 "82.913736, 178.225672",
 "62.9795085,-66.989705",
 "54.5604395,95.235090",
 "24.2811855,-162.380403",
 "-1.818319,-80.681214",
 None,
 "(51.816119, 175.979008)",
 "(54.3392995,-11.801615)"],
 name='gis')
>>> s.ads.feature_type = ['gis']
>>> GIS.validator.is_gis(s)
0 True
1 True
2 True
3 True
4 True
5 True
6 True
7 True
8 False
9 True
10 True
Name: gis, dtype: bool

	
description = 'Type representing geographic information.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> gis = pd.Series([
 "69.196241,-125.017615",
 "5.2272595,-143.465712",
 "-33.9855425,-153.445155",
 "43.340610,86.460554",
 "24.2811855,-162.380403",
 "2.7849025,-7.328156",
 "45.033805,157.490179",
 "-1.818319,-80.681214",
 "-44.510428,-169.269477",
 "-56.3344375,-166.407038",
 "",
 np.NaN,
 None
],
 name='gis'
)
>>> gis.ads.feature_type = ['gis']
>>> gis.ads.feature_domain()
constraints: []
stats:
 count: 13
 missing: 3
 unique: 10
values: GIS

	Returns

	Domain based on the GIS feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the location of given address on map base on longitude and latitute.

Examples

>>> gis = pd.Series([
 "69.196241,-125.017615",
 "5.2272595,-143.465712",
 "-33.9855425,-153.445155",
 "43.340610,86.460554",
 "24.2811855,-162.380403",
 "2.7849025,-7.328156",
 "45.033805,157.490179",
 "-1.818319,-80.681214",
 "-44.510428,-169.269477",
 "-56.3344375,-166.407038",
 "",
 np.NaN,
 None
],
 name='gis'
)
>>> gis.ads.feature_type = ['gis']
>>> gis.ads.feature_plot()

	Returns

	Plot object for the series based on the GIS feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> gis = pd.Series([
 "69.196241,-125.017615",
 "5.2272595,-143.465712",
 "-33.9855425,-153.445155",
 "43.340610,86.460554",
 "24.2811855,-162.380403",
 "2.7849025,-7.328156",
 "45.033805,157.490179",
 "-1.818319,-80.681214",
 "-44.510428,-169.269477",
 "-56.3344375,-166.407038",
 "",
 np.NaN,
 None
],
 name='gis'
)
>>> gis.ads.feature_type = ['gis']
>>> gis.ads.feature_stat()
 gis
count 13
unique 10
missing 3

	Returns

	Summary statistics of the Series provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.gis.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.integer module

The module that represents an Integer feature type.

	Classes:
	
	Integer
	The Integer feature type.

	
class ads.feature_engineering.feature_type.integer.Integer

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing integer values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows distributions of datasets using box plot.

	
description = 'Type representing integer values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='integer')
>>> s.ads.feature_type = ['integer']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 6
 freq: 2
 missing: 2
 top: true
 unique: 2
values: Integer

	Returns

	Domain based on the Integer feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows distributions of datasets using box plot.

Examples

>>> x = pd.Series([1, 0, 1, 2, 3, 4, np.nan], name='integer')
>>> x.ads.feature_type = ['integer']
>>> x.ads.feature_plot()

	Returns

	Plot object for the series based on the Integer feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, mean, standard deviation, sample minimum,
lower quartile, median, 75%, upper quartile, max and missing(count) if there is any.

Examples

>>> x = pd.Series([1, 0, 1, 2, 3, 4, np.nan], name='integer')
>>> x.ads.feature_type = ['integer']
>>> x.ads.feature_stat()
 Metric Value
0 count 7
1 mean 1
2 standard deviation 1
3 sample minimum 0
4 lower quartile 1
5 median 1
6 upper quartile 2
7 sample maximum 4
8 missing 1

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.ip_address module

The module that represents an IpAddress feature type.

	Classes:
	
	IpAddress
	The IpAddress feature type.

	
class ads.feature_engineering.feature_type.ip_address.IpAddress

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing IP Address.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

Example

>>> from ads.feature_engineering.feature_type.ip_address import IpAddress
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address']
>>> IpAddress.validator.is_ip_address(s)
0 True
1 True
2 False
3 False
4 False
Name: ip_address, dtype: bool

	
description = 'Type representing IP Address.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 6
 missing: 2
 unique: 3
values: IpAddress

	Returns

	Domain based on the IpAddress feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address']
>>> s.ads.feature_stat()
 Metric Value
0 count 6
1 unique 2
2 missing 2

	Returns

	Summary statistics of the Series provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.ip_address.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.ip_address_v4 module

The module that represents an IpAddressV4 feature type.

	Classes:
	
	IpAddressV4
	The IpAddressV4 feature type.

	
class ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing IP Address V4.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

Example

>>> from ads.feature_engineering.feature_type.ip_address_v4 import IpAddressV4
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address_v4']
>>> IpAddressV4.validator.is_ip_address_v4(s)
0 True
1 False
2 False
3 False
4 False
Name: ip_address, dtype: bool

	
description = 'Type representing IP Address V4.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4', np.NaN, None], name='ip_address_v4')
>>> s.ads.feature_type = ['ip_address_v4']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 6
 missing: 2
 unique: 4
values: IpAddressV4

	Returns

	Domain based on the IpAddressV4 feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address_v4']
>>> s.ads.feature_stat()
 Metric Value
0 count 6
1 unique 4
2 missing 2

	Returns

	Summary statistics of the Series provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.ip_address_v4.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.ip_address_v6 module

The module that represents an IpAddressV6 feature type.

	Classes:
	
	IpAddressV6
	The IpAddressV6 feature type.

	
class ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing IP Address V6.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

Example

>>> from ads.feature_engineering.feature_type.ip_address_v6 import IpAddressV6
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address_v6']
>>> IpAddressV6.validator.is_ip_address_v6(s)
0 False
1 True
2 False
3 False
4 False
Name: ip_address, dtype: bool

	
description = 'Type representing IP Address V6.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address_v6')
>>> s.ads.feature_type = ['ip_address_v6']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 6
 missing: 2
 unique: 2
values: IpAddressV6

	Returns

	Domain based on the IpAddressV6 feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address_v6']
>>> s.ads.feature_stat()
 Metric Value
0 count 6
1 unique 2
2 missing 2

	Returns

	Summary statistics of the Series provided.

	Return type

	Pandas Dataframe

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.ip_address_v6.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.lat_long module

The module that represents a LatLong feature type.

	Classes:
	
	LatLong
	The LatLong feature type.

	Functions:
	
	default_handler(data: pd.Series) -> pd.Series
	Processes given data and indicates if the data matches requirements.

	
class ads.feature_engineering.feature_type.lat_long.LatLong

	Bases: ads.feature_engineering.feature_type.string.String

Type representing longitude and latitute.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the location of given address on map base on longitude and latitute.

Example

>>> from ads.feature_engineering.feature_type.lat_long import LatLong
>>> import pandas as pd
>>> s = pd.Series(["-18.2193965, -93.587285",
 "-21.0255305, -122.478584",
 "85.103913, 19.405744",
 "82.913736, 178.225672",
 "62.9795085,-66.989705",
 "54.5604395,95.235090",
 "24.2811855,-162.380403",
 "-1.818319,-80.681214",
 None,
 "(51.816119, 175.979008)",
 "(54.3392995,-11.801615)"],
 name='latlong')
>>> s.ads.feature_type = ['lat_long']
>>> LatLong.validator.is_lat_long(s)
0 True
1 True
2 True
3 True
4 True
5 True
6 True
7 True
8 False
9 True
10 True
Name: latlong, dtype: bool

	
description = 'Type representing longitude and latitute.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> latlong_series = pd.Series([
 "69.196241,-125.017615",
 "5.2272595,-143.465712",
 "-33.9855425,-153.445155",
 "43.340610,86.460554",
 "24.2811855,-162.380403",
 "2.7849025,-7.328156",
 "45.033805,157.490179",
 "-1.818319,-80.681214",
 "-44.510428,-169.269477",
 "-56.3344375,-166.407038",
 "",
 np.NaN,
 None
],
 name='latlong'
)
>>> latlong_series.ads.feature_type = ['lat_long']
>>> latlong_series.ads.feature_domain()
constraints: []
stats:
 count: 13
 missing: 3
 unique: 10
values: LatLong

	Returns

	Domain based on the LatLong feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the location of given address on map base on longitude and latitute.

Examples

>>> latlong_series = pd.Series([
 "69.196241,-125.017615",
 "5.2272595,-143.465712",
 "-33.9855425,-153.445155",
 "43.340610,86.460554",
 "24.2811855,-162.380403",
 "2.7849025,-7.328156",
 "45.033805,157.490179",
 "-1.818319,-80.681214",
 "-44.510428,-169.269477",
 "-56.3344375,-166.407038",
 "",
 np.NaN,
 None
],
 name='latlong'
)
>>> latlong_series.ads.feature_type = ['lat_long']
>>> latlong_series.ads.feature_plot()

	Returns

	Plot object for the series based on the LatLong feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generate feature statistics.

Feature statistics include (total)count, unique(count)
and missing(count) if there is any.

Examples

>>> latlong_series = pd.Series([
 "69.196241,-125.017615",
 "5.2272595,-143.465712",
 "-33.9855425,-153.445155",
 "43.340610,86.460554",
 "24.2811855,-162.380403",
 "2.7849025,-7.328156",
 "45.033805,157.490179",
 "-1.818319,-80.681214",
 "-44.510428,-169.269477",
 "-56.3344375,-166.407038",
 "",
 np.NaN,
 None
],
 name='latlong'
)
>>> latlong_series.ads.feature_type = ['lat_long']
>>> latlong_series.ads.feature_stat()
 Metric Value
0 count 13
1 unique 10
2 missing 3

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.lat_long.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.object module

The module that represents an Object feature type.

	Classes:
	
	Object
	The Object feature type.

	
class ads.feature_engineering.feature_type.object.Object

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing object.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
description = 'Type representing object.'

	

	
classmethod feature_domain()

	
	Returns

	Nothing.

	Return type

	None

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.ordinal module

The module that represents an Ordinal feature type.

	Classes:
	
	Ordinal
	The Ordinal feature type.

	
class ads.feature_engineering.feature_type.ordinal.Ordinal

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing ordered values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the counts of observations in each categorical bin using bar chart.

	
description = 'Type representing ordered values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan], name='ordinal')
>>> x.ads.feature_type = ['ordinal']
>>> x.ads.feature_domain()
constraints:
- expression: $x in [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
 language: python
stats:
 count: 10
 missing: 1
 unique: 9
values: Ordinal

	Returns

	Domain based on the Ordinal feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the counts of observations in each categorical bin using bar chart.

Examples

>>> x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan], name='ordinal')
>>> x.ads.feature_type = ['ordinal']
>>> x.ads.feature_plot()

	Returns

	The bart chart plot object for the series based on the Continuous feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count),
and missing(count) if there is any.

Examples

>>> x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan], name='ordinal')
>>> x.ads.feature_type = ['ordinal']
>>> x.ads.feature_stat()
 Metric Value
0 count 10
1 unique 9
2 missing 1

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.phone_number module

The module that represents a Phone Number feature type.

	Classes:
	
	PhoneNumber
	The Phone Number feature type.

	Functions:
	
	default_handler(data: pd.Series) -> pd.Series
	Processes given data and indicates if the data matches requirements.

	
class ads.feature_engineering.feature_type.phone_number.PhoneNumber

	Bases: ads.feature_engineering.feature_type.string.String

Type representing phone numbers.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

Examples

>>> from ads.feature_engineering.feature_type.phone_number import PhoneNumber
>>> import pandas as pd
>>> s = pd.Series([None, "1-640-124-5367", "1-573-916-4412"])
>>> PhoneNumber.validator.is_phone_number(s)
0 False
1 True
2 True
dtype: bool

	
description = 'Type representing phone numbers.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan, None], name='phone')
>>> s.ads.feature_type = ['phone_number']
>>> s.ads.feature_domain()
constraints: []
stats:
 count: 7
 missing: 4
 unique: 2
values: PhoneNumber

	Returns

	Domain based on the PhoneNumber feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and
missing(count) if there is any.

Examples

>>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan, None], name='phone')
>>> s.ads.feature_type = ['phone_number']
>>> s.ads.feature_stat()
 Metric Value
1 count 7
2 unique 2
3 missing 4

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	pandas.DataFrame

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.phone_number.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pandas.Series) – The data to process.

	Returns

	The logical list indicating if the data matches requirements.

	Return type

	pandas.Series

ads.feature_engineering.feature_type.string module

The module that represents a String feature type.

	Classes:
	
	String
	The feature type that represents string values.

	
class ads.feature_engineering.feature_type.string.String

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing string values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows distributions of datasets using wordcloud.

Example

>>> from ads.feature_engineering.feature_type.string import String
>>> import pandas as pd
>>> s = pd.Series(["Hello", "world", None], name='string')
>>> String.validator.is_string(s)
0 True
1 True
2 False
Name: string, dtype: bool

	
description = 'Type representing string values.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
>>> string.ads.feature_type = ['string']
>>> string.ads.feature_domain()
constraints: []
stats:
 count: 22
 missing: 3
 unique: 3
values: String

	Returns

	Domain based on the String feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows distributions of datasets using wordcloud.

Examples

>>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
>>> string.ads.feature_type = ['string']
>>> string.ads.feature_plot()

	Returns

	Plot object for the series based on the String feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count)
and missing(count) if there is any.

Examples

>>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
>>> string.ads.feature_type = ['string']
>>> string.ads.feature_stat()
 Metric Value
0 count 22
1 unique 3
2 missing 3

	Returns

	Summary statistics of the Series or Dataframe provided.

	Return type

	Pandas Dataframe

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.string.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pd.Series) – The data to process.

	Returns

	pd.Series

	Return type

	The logical list indicating if the data matches requirements.

ads.feature_engineering.feature_type.text module

The module that represents a Text feature type.

	Classes:
	
	Text
	The Text feature type.

	
class ads.feature_engineering.feature_type.text.Text

	Bases: ads.feature_engineering.feature_type.string.String

Type representing text values.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows distributions of datasets using wordcloud.

	
description = 'Type representing text values.'

	

	
classmethod feature_domain()

	
	Returns

	Nothing.

	Return type

	None

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows distributions of datasets using wordcloud.

Examples

>>> text = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='text')
>>> text.ads.feature_type = ['text']
>>> text.ads.feature_plot()

	Returns

	Plot object for the series based on the Text feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.unknown module

The module that represents an Unknown feature type.

	Classes:
	
	Text
	The Unknown feature type.

	
class ads.feature_engineering.feature_type.unknown.Unknown

	Bases: ads.feature_engineering.feature_type.base.FeatureType

Type representing third-party dtypes.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
description = 'Type representing unknown type.'

	

	
classmethod feature_domain()

	
	Returns

	Nothing.

	Return type

	None

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

ads.feature_engineering.feature_type.zip_code module

The module that represents a ZipCode feature type.

	Classes:
	
	ZipCode
	The ZipCode feature type.

	Functions:
	
	default_handler(data: pd.Series) -> pd.Series
	Processes given data and indicates if the data matches requirements.

	
class ads.feature_engineering.feature_type.zip_code.ZipCode

	Bases: ads.feature_engineering.feature_type.string.String

Type representing postal code.

	
description

	The feature type description.

	Type

	str

	
name

	The feature type name.

	Type

	str

	
warning

	Provides functionality to register warnings and invoke them.

	Type

	FeatureWarning

	
validator

	Provides functionality to register validators and invoke them.

	
feature_stat(x: pd.Series) → pd.DataFrame

	Generates feature statistics.

	
feature_plot(x: pd.Series) → plt.Axes

	Shows the geometry distribution base on location of zipcode.

Example

>>> from ads.feature_engineering.feature_type.zip_code import ZipCode
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(["94065", "90210", np.NaN, None], name='zipcode')
>>> ZipCode.validator.is_zip_code(s)
0 True
1 True
2 False
3 False
Name: zipcode, dtype: bool

	
description = 'Type representing postal code.'

	

	
classmethod feature_domain(x: pandas.core.series.Series) → ads.feature_engineering.schema.Domain

	Generate the domain of the data of this feature type.

Examples

>>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
>>> zipcode.ads.feature_type = ['zip_code']
>>> zipcode.ads.feature_domain()
constraints: []
stats:
 count: 4
 missing: 2
 unique: 2
values: ZipCode

	Returns

	Domain based on the ZipCode feature type.

	Return type

	ads.feature_engineering.schema.Domain

	
static feature_plot(x: pandas.core.series.Series) → matplotlib.axes._axes.Axes

	Shows the geometry distribution base on location of zipcode.

Examples

>>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
>>> zipcode.ads.feature_type = ['zip_code']
>>> zipcode.ads.feature_plot()

	Returns

	Plot object for the series based on the ZipCode feature type.

	Return type

	matplotlib.axes._subplots.AxesSubplot

	
static feature_stat(x: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
>>> zipcode.ads.feature_type = ['zip_code']
>>> zipcode.ads.feature_stat()
 Metric Value
0 count 4
1 unique 2
2 missing 2

	Returns

	Summary statistics of the Series provided.

	Return type

	Pandas Dataframe

	
validator = <ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator object>

	

	
warning = <ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

	

	
ads.feature_engineering.feature_type.zip_code.default_handler(data: pandas.core.series.Series, *args, **kwargs) → pandas.core.series.Series

	Processes given data and indicates if the data matches requirements.

	Parameters

	data (pd.Series) – The data to process.

	Returns

	pd.Series

	Return type

	The logical list indicating if the data matches requirements.

ads.feature_engineering.feature_type.handler.feature_validator module

The module that helps to register custom validators for the feature types and
extending registered validators with dispatching based on the specific arguments.

Classes

	FeatureValidator
	The Feature Validator class to manage custom validators.

	FeatureValidatorMethod
	The Feature Validator Method class. Extends methods which requires
dispatching based on the specific arguments.

	
class ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator

	Bases: object

The Feature Validator class to manage custom validators.

	
register(self, name: str, handler: Callable, condition: Union[Tuple, Dict[str, Any]] = None, replace: bool = False) → None

	Registers new validator.

	
unregister(self, name: str, condition: Union[Tuple, Dict[str, Any]] = None) → None

	Unregisters validator.

	
registered(self) → pd.DataFrame

	Gets the list of registered validators.

Examples

>>> series = pd.Series(['+1-202-555-0141', '+1-202-555-0142'], name='Phone Number')

>>> def phone_number_validator(data: pd.Series) -> pd.Series:
... print("phone_number_validator")
... return data

>>> def universal_phone_number_validator(data: pd.Series, country_code) -> pd.Series:
... print("universal_phone_number_validator")
... return data

>>> def us_phone_number_validator(data: pd.Series, country_code) -> pd.Series:
... print("us_phone_number_validator")
... return data

>>> PhoneNumber.validator.register(name="is_phone_number", handler=phone_number_validator, replace=True)
>>> PhoneNumber.validator.register(name="is_phone_number", handler=universal_phone_number_validator, condition = ('country_code',))
>>> PhoneNumber.validator.register(name="is_phone_number", handler=us_phone_number_validator, condition = {'country_code':'+1'})

>>> PhoneNumber.validator.is_phone_number(series)
 phone_number_validator
 0 +1-202-555-0141
 1 +1-202-555-0142

>>> PhoneNumber.validator.is_phone_number(series, country_code = '+7')
 universal_phone_number_validator
 0 +1-202-555-0141
 1 +1-202-555-0142

>>> PhoneNumber.validator.is_phone_number(series, country_code = '+1')
 us_phone_number_validator
 0 +1-202-555-0141
 1 +1-202-555-0142

>>> PhoneNumber.validator.registered()
 Validator Condition Handler

 0 is_phone_number () phone_number_validator
 1 is_phone_number ('country_code') universal_phone_number_validator
 2 is_phone_number {'country_code': '+1'} us_phone_number_validator

>>> series.ads.validator.is_phone_number()
 phone_number_validator
 0 +1-202-555-0141
 1 +1-202-555-0142

>>> series.ads.validator.is_phone_number(country_code = '+7')
 universal_phone_number_validator
 0 +1-202-555-0141
 1 +1-202-555-0142

>>> series.ads.validator.is_phone_number(country_code = '+1')
 us_phone_number_validator
 0 +1-202-555-0141
 1 +1-202-555-0142

Initializes the FeatureValidator.

	
register(name: str, handler: Callable, condition: Optional[Union[Tuple, Dict[str, Any]]] = None, replace: bool = False) → None

	Registers new validator.

	Parameters

	
	name (str) – The validator name.

	handler (callable) – The handler.

	condition (Union[Tuple, Dict[str, Any]]) – The condition for the validator.

	replace (bool) – The flag indicating if the registered validator should be replaced with the new one.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	ValueError – The name is empty or handler is not provided.

	TypeError – The handler is not callable.
 The name of the validator is not a string.

	ValidatorAlreadyExists – The validator is already registered.

	
registered() → pandas.core.frame.DataFrame

	Gets the list of registered validators.

	Returns

	The list of registerd validators.

	Return type

	pd.DataFrame

	
unregister(name: str, condition: Optional[Union[Tuple, Dict[str, Any]]] = None) → None

	Unregisters validator.

	Parameters

	
	name (str) – The name of the validator to be unregistered.

	condition (Union[Tuple, Dict[str, Any]]) – The condition for the validator to be unregistered.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	TypeError – The name of the validator is not a string.

	ValidatorNotFound – The validator not found.

	ValidatorWIthConditionNotFound – The validator with provided condition not found.

	
class ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod(handler: Callable)

	Bases: object

The Feature Validator Method class.

Extends methods which requires dispatching based on the specific arguments.

	
register(self, condition: Union[Tuple, Dict[str, Any]], handler: Callable) → None

	Registers new handler.

	
unregister(self, condition: Union[Tuple, Dict[str, Any]]) → None

	Unregisters existing handler.

	
registered(self) → pd.DataFrame

	Gets the list of registered handlers.

Initializes the Feature Validator Method.

	Parameters

	handler (Callable) – The handler that will be called by default if suitable one not found.

	
register(condition: Union[Tuple, Dict[str, Any]], handler: Callable) → None

	Registers new handler.

	Parameters

	
	condition (Union[Tuple, Dict[str, Any]]) – The condition which will be used to register a new handler.

	handler (Callable) – The handler to be registered.

	Returns

	Nothing.

	Return type

	None

	Raises

	ValueError – If condition not provided or provided in the wrong format.
 If handler not provided or has wrong format.

	
registered() → pandas.core.frame.DataFrame

	Gets the list of registered handlers.

	Returns

	The list of registerd handlers.

	Return type

	pd.DataFrame

	
unregister(condition: Union[Tuple, Dict[str, Any]]) → None

	Unregisters existing handler.

	Parameters

	condition (Union[Tuple, Dict[str, Any]]) – The condition which will be used to unregister a handler.

	Returns

	Nothing.

	Return type

	None

	Raises

	ValueError – If condition not provided or provided in the wrong format.
 If condition not registered.

	
exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorAlreadyExists(name: str)

	Bases: ValueError

	
exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorNotFound(name: str)

	Bases: ValueError

	
exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorWithConditionAlreadyExists(name: str)

	Bases: ValueError

	
exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorWithConditionNotFound(name: str)

	Bases: ValueError

	
exception ads.feature_engineering.feature_type.handler.feature_validator.WrongHandlerMethodSignature(handler_name: str, condition: str, handler_signature: str)

	Bases: ValueError

ads.feature_engineering.feature_type.handler.feature_warning module

The module that helps to register custom warnings for the feature types.

Classes

	FeatureWarning
	The Feature Warning class. Provides functionality to register
warning handlers and invoke them.

Examples

>>> warning = FeatureWarning()
>>> def warning_handler_zeros_count(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 38 zeros', 'Count', 38]],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> def warning_handler_zeros_percentage(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 12.2% zeros', 'Percentage', '12.2%']],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> warning.register(name="zeros_count", handler=warning_handler_zeros_count)
>>> warning.register(name="zeros_percentage", handler=warning_handler_percentage)
>>> warning.registered()
 Name Handler
 --
 0 zeros_count warning_handler_zeros_count
 1 zeros_percentage warning_handler_zeros_percentage

>>> warning.zeros_percentage(data_series)
 Warning Message Metric Value
 --
 0 Zeros Age has 38 zeros Count 38

>>> warning.zeros_count(data_series)
 Warning Message Metric Value
 --
 1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning(data_series)
 Warning Message Metric Value
 --
 0 Zeros Age has 38 zeros Count 38
 1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning.unregister('zeros_count')
>>> warning(data_series)
 Warning Message Metric Value
 --
 0 Zeros Age has 12.2% zeros Percentage 12.2%

	
class ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning

	Bases: object

The Feature Warning class.

Provides functionality to register warning handlers and invoke them.

	
register(self, name: str, handler: Callable) → None

	Registers a new warning for the feature type.

	
unregister(self, name: str) → None

	Unregisters warning.

	
registered(self) → pd.DataFrame

	Gets the list of registered warnings.

Examples

>>> warning = FeatureWarning()
>>> def warning_handler_zeros_count(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 38 zeros', 'Count', 38]],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> def warning_handler_zeros_percentage(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 12.2% zeros', 'Percentage', '12.2%']],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> warning.register(name="zeros_count", handler=warning_handler_zeros_count)
>>> warning.register(name="zeros_percentage", handler=warning_handler_percentage)
>>> warning.registered()
 Warning Handler
 --
 0 zeros_count warning_handler_zeros_count
 1 zeros_percentage warning_handler_zeros_percentage

>>> warning.zeros_percentage(data_series)
 Warning Message Metric Value
 --
 0 Zeros Age has 38 zeros Count 38

>>> warning.zeros_count(data_series)
 Warning Message Metric Value
 --
 1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning(data_series)
 Warning Message Metric Value
 --
 0 Zeros Age has 38 zeros Count 38
 1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning.unregister('zeros_count')
>>> warning(data_series)
 Warning Message Metric Value
 --
 0 Zeros Age has 12.2% zeros Percentage 12.2%

Initializes the FeatureWarning.

	
register(name: str, handler: Callable, replace: bool = False) → None

	Registers a new warning.

	Parameters

	
	name (str) – The warning name.

	handler (callable) – The handler associated with the warning.

	replace (bool) – The flag indicating if the registered warning should be replaced with the new one.

	Returns

	Nothing

	Return type

	None

	Raises

	
	ValueError – If warning name is empty or handler not defined.

	TypeError – If handler is not callable.

	WarningAlreadyExists – If warning is already registered.

	
registered() → pandas.core.frame.DataFrame

	Gets the list of registered warnings.

	Return type

	pd.DataFrame

Examples

>>> The list of registerd warnings in DataFrame format.
 Name Handler

 0 zeros_count warning_handler_zeros_count
 1 zeros_percentage warning_handler_zeros_percentage

	
unregister(name: str) → None

	Unregisters warning.

	Parameters

	name (str) – The name of warning to be unregistered.

	Returns

	Nothing.

	Return type

	None

	Raises

	
	ValueError – If warning name is not provided or empty.

	WarningNotFound – If warning not found.

ads.feature_engineering.feature_type.handler.warnings module

The module with all default warnings provided to user. These are registered to relevant feature
types directly in the feature type files themselves.

	
ads.feature_engineering.feature_type.handler.warnings.high_cardinality_handler(s: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Warning if number of unique values (including Nan) in series is greater than or equal to 15.

	Parameters

	s (pd.Series) – Pandas series - column of some feature type.

	Returns

	Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’
and 1 rows, which lists count of unique values.

	Return type

	pd.Dataframe

	
ads.feature_engineering.feature_type.handler.warnings.missing_values_handler(s: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Warning for > 5 percent missing values (Nans) in series.

	Parameters

	s (pd.Series) – Pandas series - column of some feature type.

	Returns

	Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’
and 2 rows, where first row is count of missing values and second is
percentage of missing values.

	Return type

	pd.Dataframe

	
ads.feature_engineering.feature_type.handler.warnings.skew_handler(s: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Warning if absolute value of skew is greater than 1.

	Parameters

	s (pd.Series) – Pandas series - column of some feature type, expects continuous values.

	Returns

	Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’
and 1 rows, which lists skew value of that column.

	Return type

	pd.Dataframe

	
ads.feature_engineering.feature_type.handler.warnings.zeros_handler(s: pandas.core.series.Series) → pandas.core.frame.DataFrame

	Warning for greater than 10 percent zeros in series.

	Parameters

	s (pd.Series) – Pandas series - column of some feature type.

	Returns

	Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’
and 2 rows, where first row is count of zero values and second is
percentage of zero values.

	Return type

	pd.Dataframe

Module contents

 ads.hpo package

ads.hpo package

Submodules

ads.hpo.distributions module

	
class ads.hpo.distributions.CategoricalDistribution(choices: Sequence[Union[None, bool, int, float, str]])

	Bases: ads.hpo.distributions.Distribution

A categorical distribution.

	Parameters

	choices – Parameter value candidates. It is recommended to restrict the types of the choices
to the following: None, bool, int, float
and str.

	
class ads.hpo.distributions.DiscreteUniformDistribution(low: float, high: float, step: float)

	Bases: ads.hpo.distributions.Distribution

A discretized uniform distribution in the linear domain.

Note

If the range \([\mathsf{low}, \mathsf{high}]\) is not divisible by \(q\),
\(\mathsf{high}\) will be replaced with the maximum of \(k q + \mathsf{low}
\lt \mathsf{high}\), where \(k\) is an integer.

	Parameters

	
	low (float) – Lower endpoint of the range of the distribution. low is included in the range.

	high (float) – Upper endpoint of the range of the distribution. high is included in the range.

	step (float) – A discretization step.

	
class ads.hpo.distributions.Distribution(dist)

	Bases: object

Defines the abstract base class for hyperparameter search distributions

	
get_distribution()

	Returns the distribution

	
class ads.hpo.distributions.DistributionEncode(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.encoder.JSONEncoder

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt
encoding of keys that are not str, int, float or None. If
skipkeys is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str
objects with all incoming non-ASCII characters escaped. If
ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded
objects will be checked for circular references during encoding to
prevent an infinite recursion (which would cause an OverflowError).
Otherwise, no such check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be
encoded as such. This behavior is not JSON specification compliant,
but is consistent with most JavaScript based encoders and decoders.
Otherwise, it will be a ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be
sorted by key; this is useful for regression tests to ensure
that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array
elements and object members will be pretty-printed with that
indent level. An indent level of 0 will only insert newlines.
None is the most compact representation.

If specified, separators should be an (item_separator, key_separator)
tuple. The default is (’, ‘, ‘: ‘) if indent is None and
(‘,’, ‘: ‘) otherwise. To get the most compact JSON representation,
you should specify (‘,’, ‘:’) to eliminate whitespace.

If specified, default is a function that gets called for objects
that can’t otherwise be serialized. It should return a JSON encodable
version of the object or raise a TypeError.

	
default(dist: ads.hpo.distributions.Distribution) → Dict[str, Any]

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
static from_json(json_object: Dict[Any, Any])

	

	
class ads.hpo.distributions.IntLogUniformDistribution(low: float, high: float, step: float = 1)

	Bases: ads.hpo.distributions.Distribution

A uniform distribution on integers in the log domain.

	Parameters

	
	low – Lower endpoint of the range of the distribution. low is included in the range.

	high – Upper endpoint of the range of the distribution. high is included in the range.

	step – A step for spacing between values.

	
class ads.hpo.distributions.IntUniformDistribution(low: float, high: float, step: float = 1)

	Bases: ads.hpo.distributions.Distribution

A uniform distribution on integers.

Note

If the range \([\mathsf{low}, \mathsf{high}]\) is not divisible by
\(\mathsf{step}\), \(\mathsf{high}\) will be replaced with the maximum of
\(k \times \mathsf{step} + \mathsf{low} \lt \mathsf{high}\), where \(k\) is
an integer.

	Parameters

	
	low – Lower endpoint of the range of the distribution. low is included in the range.

	high – Upper endpoint of the range of the distribution. high is included in the range.

	step – A step for spacing between values.

	
class ads.hpo.distributions.LogUniformDistribution(low: float, high: float)

	Bases: ads.hpo.distributions.Distribution

A uniform distribution in the log domain.

	Parameters

	
	low – Lower endpoint of the range of the distribution. low is included in the range.

	high – Upper endpoint of the range of the distribution. high is excluded from the range.

	
class ads.hpo.distributions.UniformDistribution(low: float, high: float)

	Bases: ads.hpo.distributions.Distribution

A uniform distribution in the linear domain.

	Parameters

	
	low – Lower endpoint of the range of the distribution. low is included in the range.

	high – Upper endpoint of the range of the distribution. high is excluded from the range.

	
ads.hpo.distributions.decode(s: str)

	Decodes a string to an object

	Parameters

	s (str) – The string being decoded to a distribution object

	Returns

	Decoded string

	Return type

	Distribution or Dict

	
ads.hpo.distributions.encode(o: ads.hpo.distributions.Distribution) → str

	Encodes a distribution to a string

	Parameters

	o (Distribution) – The distribution to encode

	Returns

	The distribution encoded as a string

	Return type

	str (DistributionEncode)

ads.hpo.search_cv module

	
class ads.hpo.search_cv.ADSTuner(model, strategy='perfunctory', scoring=None, cv=5, study_name=None, storage=None, load_if_exists=True, random_state=None, loglevel=20, n_jobs=1, X=None, y=None)

	Bases: sklearn.base.BaseEstimator

Hyperparameter search with cross-validation.

Returns a hyperparameter tuning object

	Parameters

	
	model – Object to use to fit the data. This is assumed to implement the
scikit-learn estimator or pipeline interface.

	strategy – perfunctory, detailed or a dictionary/mapping of hyperparameter
and its distribution . If obj:perfunctory, picks a few
relatively more important hyperparmeters to tune . If obj:detailed,
extends to a larger search space. If obj:dict, user defined search
space: Dictionary where keys are hyperparameters and values are distributions.
Distributions are assumed to implement the ads distribution interface.

	scoring (Optional[Union[Callable[..., float], str]]) – String or callable to evaluate the predictions on the validation data.
If None, score on the estimator is used.

	cv (int) – Integer to specify the number of folds in a CV splitter.
If estimator is a classifier and y is
either binary or multiclass,
sklearn.model_selection.StratifiedKFold is used. otherwise,
sklearn.model_selection.KFold is used.

	study_name (str,) – Name of the current experiment for the ADSTuner object. One ADSTuner
object can only be attached to one study_name.

	storage – Database URL. (e.g. sqlite:///example.db). Default to sqlite:////tmp/hpo_*.db.

	load_if_exists – Flag to control the behavior to handle a conflict of study names.
In the case where a study named study_name already exists in the storage,
a DuplicatedStudyError is raised if load_if_exists is
set to False.
Otherwise, the existing one is returned.

	random_state – Seed of the pseudo random number generator. If int, this is the
seed used by the random number generator. If None, the global random state from
numpy.random is used.

	loglevel – loglevel. can be logging.NOTSET, logging.INFO, logging.DEBUG, logging.WARNING

	n_jobs (int) – Number of parallel jobs. -1 means using all processors.

	X (TwoDimArrayLikeType) – Training data.

	y (Union[OneDimArrayLikeType, TwoDimArrayLikeType], optional) – Target.

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.svm import SVC

tuner = ADSTuner(
 SVC(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)

X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])

	
property best_index

	returns: Index which corresponds to the best candidate parameter setting.
:rtype: int

	
property best_params

	returns: Parameters of the best trial.
:rtype: Dict[str, Any]

	
property best_score

	returns: Mean cross-validated score of the best estimator.
:rtype: float

	
best_scores(n: int = 5, reverse: bool = True)

	Return the best scores from the study

	Parameters

	
	n (int) – The maximum number of results to show. Defaults to 5. If None or
negative return all.

	reverse (bool) – Whether to reverse the sort order so results are in descending order.
Defaults to True

	Returns

	List of the best scores

	Return type

	list[float or int]

	Raises

	ValueError –

	
get_status()

	return the status of the current tuning process.

Alias for the property status.

	Returns

	The status of the process

	Return type

	Status

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.get_status()

	
halt()

	Halt the current running tuning process.

	Returns

	Nothing

	Return type

	None

	Raises

	InvalidStateTransition –

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.halt()

	
is_completed()

	
	Returns

	True if the ADSTuner instance has completed; False otherwise.

	Return type

	bool

	
is_halted()

	
	Returns

	True if the ADSTuner instance is halted; False otherwise.

	Return type

	bool

	
is_running()

	
	Returns

	True if the ADSTuner instance is running; False otherwise.

	Return type

	bool

	
is_terminated()

	
	Returns

	True if the ADSTuner instance has been terminated; False otherwise.

	Return type

	bool

	
property n_trials

	returns: Number of completed trials. Alias for trial_count.
:rtype: int

	
static optimizer(study_name, pruner, sampler, storage, load_if_exists, objective_func, global_start, global_stop, **kwargs)

	Static method for running ADSTuner tuning process

	Parameters

	
	study_name (str) – The name of the study.

	pruner – The pruning method for pruning trials.

	sampler – The sampling method used for tuning.

	storage (str) – Storage endpoint.

	load_if_exists (bool) – Load existing study if it exists.

	objective_func – The objective function to be maximized.

	global_start (multiprocesing.Value) – The global start time.

	global_stop (multiprocessing.Value) – The global stop time.

	kwargs (dict) – Keyword/value pairs passed into the optimize process

	Raises

	Exception – Raised for any exceptions thrown by the underlying optimization process

	Returns

	Nothing

	Return type

	None

	
plot_best_scores(best=True, inferior=True, time_interval=1, fig_size=(800, 500))

	Plot optimization history of all trials in a study.

	Parameters

	
	best – controls whether to plot the lines for the best scores so far.

	inferior – controls whether to plot the dots for the actual objective scores.

	time_interval – how often(in seconds) the plot refresh to check on the new trial results.

	fig_size (tuple) – width and height of the figure.

	Returns

	Nothing.

	Return type

	None

	
plot_contour_scores(params=None, time_interval=1, fig_size=(800, 500))

	Contour plot of the scores.

	Parameters

	
	params (Optional[List[str]]) – Parameter list to visualize. Defaults to all.

	time_interval (float) – Time interval for the plot. Defaults to 1.

	fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

	Returns

	Nothing.

	Return type

	None

	
plot_edf_scores(time_interval=1, fig_size=(800, 500))

	Plot the EDF (empirical distribution function) of the scores.

Only completed trials are used.

	Parameters

	
	time_interval (float) – Time interval for the plot. Defaults to 1.

	fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

	Returns

	Nothing.

	Return type

	None

	
plot_intermediate_scores(time_interval=1, fig_size=(800, 500))

	Plot intermediate values of all trials in a study.

	Parameters

	
	time_interval (float) – Time interval for the plot. Defaults to 1.

	fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

	Returns

	Nothing.

	Return type

	None

	
plot_parallel_coordinate_scores(params=None, time_interval=1, fig_size=(800, 500))

	Plot the high-dimentional parameter relationships in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

	Parameters

	
	params (Optional[List[str]]) – Parameter list to visualize. Defaults to all.

	time_interval (float) – Time interval for the plot. Defaults to 1.

	fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

	Returns

	Nothing.

	Return type

	None

	
plot_param_importance(importance_evaluator='Fanova', time_interval=1, fig_size=(800, 500))

	Plot hyperparameter importances.

	Parameters

	
	importance_evaluator (str) – Importance evaluator. Valid values: “Fanova”, “MeanDecreaseImpurity”. Defaults
to “Fanova”.

	time_interval (float) – How often the plot refresh to check on the new trial results.

	fig_size (tuple) – Width and height of the figure.

	Raises

	NotImplementedErorr – Raised for unsupported importance evaluators

	Returns

	Nothing.

	Return type

	None

	
resume()

	Resume the current halted tuning process.

	Returns

	Nothing

	Return type

	None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.halt()
tuner.resume()

	
property score_remaining

	returns: The difference between the best score and the optimal score.
:rtype: float

	Raises

	ExitCriterionError – Error is raised if there is no score-based criteria for tuning.

	
property scoring_name

	returns: Scoring name.
:rtype: str

	
search_space(strategy=None, overwrite=False)

	Returns the search space. If strategy is not passed in, return the existing search
space. When strategy is passed in, overwrite the existing search space if overwrite
is set True, otherwise, only update the existing search space.

	Parameters

	
	strategy (Union[str, dict], optional) – perfunctory, detailed or a dictionary/mapping of the hyperparameters
and their distributions. If obj:perfunctory, picks a few relatively
more important hyperparmeters to tune . If obj:detailed, extends to a
larger search space. If obj:dict, user defined search space: Dictionary
where keys are parameters and values are distributions. Distributions are
assumed to implement the ads distribution interface.

	overwrite (bool, optional) – Ignored when strategy is None. Otherwise, search space is overwritten if overwrite
is set True and updated if it is False.

	Returns

	A mapping of the hyperparameters and their distributions.

	Return type

	dict

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.search_space()

	
property sklearn_steps

	returns: Search space which corresponds to the best candidate parameter setting.
:rtype: int

	
property status

	returns: The status of the current tuning process.
:rtype: Status

	
terminate()

	Terminate the current tuning process.

	Returns

	Nothing

	Return type

	None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.terminate()

	
property time_elapsed

	Return the time in seconds that the HPO process has been searching

	Returns

	int

	Return type

	The number of seconds the HPO process has been searching

	
property time_remaining

	Returns the number of seconds remaining in the study

	Returns

	int

	Return type

	Number of seconds remaining in the budget. 0 if complete/terminated

	Raises

	ExitCriterionError – Error is raised if time has not been included in the budget.

	
property time_since_resume

	Return the seconds since the process has been resumed from a halt.

	Returns

	int

	Return type

	the number of seconds since the process was last resumed

	Raises

	NoRestartError –

	
property trial_count

	returns: Number of completed trials. Alias for trial_count.
:rtype: int

	
property trials

	returns: Trial data up to this point.
:rtype: pandas.DataFrame

	
trials_export(file_uri, metadata=None, script_dict={'model': None, 'scoring': None})

	Export the meta data as well as files needed to reconstruct the ADSTuner object to the object storage.
Data is not stored. To resume the same ADSTuner object from object storage and continue tuning from previous trials,
you have to provide the dataset.

	Parameters

	
	file_uri (str) – Object storage path, ‘oci://bucketname@namespace/filepath/on/objectstorage’. For example,
oci://test_bucket@ociodsccust/tuner/test.zip

	metadata (str, optional) – User defined metadata

	script_dict (dict, optional) – Script paths for model and scoring. This is only recommended for unsupported
models and user-defined scoring functions. You can store the model and scoring
function in a dictionary with keys model and scoring and the respective
paths as values. The model and scoring scripts must import necessary libraries
for the script to run. The model and scoring variables must be set to
your model and scoring function.

	Returns

	Nothing

	Return type

	None

Example:

Print out a list of supported models
from ads.hpo.ads_search_space import model_list
print(model_list)

Example scoring dictionary
{'model':'/home/datascience/advanced-ds/notebooks/scratch/ADSTunerV2/mymodel.py',
'scoring':'/home/datascience/advanced-ds/notebooks/scratch/ADSTunerV2/customized_scoring.py'}

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)], synchronous=True)
tuner.trials_export('oci://<bucket_name>@<namespace>/tuner/test.zip')

	
classmethod trials_import(file_uri, delete_zip_file=True, target_file_path=None)

	Import the database file from the object storage

	Parameters

	
	file_uri (str) – ‘oci://bucketname@namespace/filepath/on/objectstorage’
Example: ‘oci://<bucket_name>@<namespace>/tuner/test.zip’

	delete_zip_file (bool, defaults to True, optional) – Whether delete the zip file afterwards.

	target_file_path (str, optional) – The path where the zip file will be saved. For example, ‘/home/datascience/myfile.zip’.

	Returns

	ADSTuner object

	Return type

	ADSTuner

Examples

>>> from ads.hpo.stopping_criterion import *
>>> from ads.hpo.search_cv import ADSTuner
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import SGDClassifier
>>> X, y = load_iris(return_X_y=True)
>>> tuner = ADSTuner.trials_import('oci://<bucket_name>@<namespace>/tuner/test.zip')
>>> tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)], synchronous=True)

	
property trials_remaining

	returns: The number of trials remaining in the budget.
:rtype: int

	Raises

	ExitCriterionError – Raised if the current tuner does not include a trials-based exit
 condition.

	
tune(X=None, y=None, exit_criterion=[], loglevel=None, synchronous=False)

	Run hypyerparameter tuning until one of the <code>exit_criterion</code>
is met. The default is to run 50 trials.

	Parameters

	
	X (TwoDimArrayLikeType) – Training data.

	y (Union[OneDimArrayLikeType, TwoDimArrayLikeType], optional) – Target.

	exit_criterion (list, optional) – A list of ads stopping criterion. Can be ScoreValue(), NTrials(), TimeBudget().
For example, [ScoreValue(0.96), NTrials(40), TimeBudget(10)]. It will exit when any of the
stopping criterion is satisfied in the exit_criterion list.
By default, the run will stop after 50 trials.

	loglevel (int, optional) – Log level.

	synchronous (boolean, optional) – Tune synchronously or not. Defaults to False

	Returns

	Nothing

	Return type

	None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.svm import SVC

tuner = ADSTuner(
 SVC(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])

	
wait()

	Wait for the current tuning process to finish running.

	Returns

	Nothing

	Return type

	None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
 SGDClassifier(),
 strategy='detailed',
 scoring='f1_weighted',
 random_state=42
)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.wait()

	
exception ads.hpo.search_cv.DuplicatedStudyError

	Bases: Exception

DuplicatedStudyError is raised when a new tuner process is created with a study name that
already exists in storage.

	
exception ads.hpo.search_cv.ExitCriterionError

	Bases: Exception

ExitCriterionError is raised when an attempt is made to check exit status for a different exit
type than the tuner was initialized with. For example, if an HPO study has an exit criteria based
on the number of trials and a request is made for the time remaining, which is a different exit
criterion, an exception is raised.

	
exception ads.hpo.search_cv.InvalidStateTransition

	Bases: Exception

Invalid State Transition is raised when an invalid transition request is made, such as calling
halt without a running process.

	
exception ads.hpo.search_cv.NoRestartError

	Bases: Exception

NoRestartError is raised when an attempt is made to check how many seconds have transpired since
the HPO process was last resumed from a halt. This can happen if the process has been terminated
or it was never halted and then resumed to begin with.

	
class ads.hpo.search_cv.State(value)

	Bases: enum.Enum

An enumeration.

	
COMPLETED = 5

	

	
HALTED = 3

	

	
INITIATED = 1

	

	
RUNNING = 2

	

	
TERMINATED = 4

	

ads.hpo.stopping_criterion

	
class ads.hpo.stopping_criterion.NTrials(n_trials: int)

	Bases: object

Exit based on number of trials.

	Parameters

	n_trials (int) – Number of trials (sets of hyperparamters tested). If None, there is no
limitation on the number of trials.

	Returns

	NTrials object

	Return type

	NTrials

	
class ads.hpo.stopping_criterion.ScoreValue(score: float)

	Bases: object

Exit if the score is greater than or equal to the threshold.

	Parameters

	score (float) – The threshold for exiting the tuning process. If a trial value is greater or equal
to score, process exits.

	Returns

	ScoreValue object

	Return type

	ScoreValue

	
class ads.hpo.stopping_criterion.TimeBudget(seconds: float)

	Bases: object

Exit based on the number of seconds.

	Parameters

	seconds (float) – Time limit, in seconds. If None there is no time limit.

	Returns

	TimeBudget object

	Return type

	TimeBudget

Module contents

 ads.jobs package

ads.jobs package

Submodules

ads.jobs.ads_job module

	
class ads.jobs.ads_job.Job(name: Optional[str] = None, infrastructure=None, runtime=None)

	Bases: ads.jobs.builders.base.Builder

Represents a Job containing infrastructure and runtime.

Example

Here is an example for creating and running a job:

from ads.jobs import Job, DataScienceJob, PythonRuntime
Define an OCI Data Science job to run a python script
job = (
 Job(name="<job_name>")
 .with_infrastructure(
 DataScienceJob()
 .with_compartment_id("<compartment_ocid>")
 .with_project_id("<project_ocid>")
 .with_subnet_id("<subnet_ocid>")
 .with_shape_name("VM.Standard2.1")
 .with_block_storage_size(50)
 .with_log_group_id("<log_group_ocid>")
 .with_log_id("<log_ocid>")
)
 .with_runtime(
 ScriptRuntime()
 .with_source("oci://bucket_name@namespace/path/to/script.py")
 .with_service_conda("tensorflow26_p37_cpu_v2")
 .with_environment_variable(ENV="value")
 .with_argument("argument", key="value")
 .with_freeform_tag(tag_name="tag_value")
)
)
Create and Run the job
run = job.create().run()
Stream the job run outputs
run.watch()

If you are in an OCI notebook session and you would like to use the same infrastructure
configurations, the infrastructure configuration can be simplified.
Here is another example of creating and running a jupyter notebook as a job:

from ads.jobs import Job, DataScienceJob, NotebookRuntime
Define an OCI Data Science job to run a jupyter Python notebook
job = (
 Job(name="<job_name>")
 .with_infrastructure(
 # The same configurations as the OCI notebook session will be used.
 DataScienceJob()
 .with_log_group_id("<log_group_ocid>")
 .with_log_id("<log_ocid>")
)
 .with_runtime(
 NotebookRuntime()
 .with_notebook("path/to/notebook.ipynb")
 .with_service_conda(tensorflow26_p37_cpu_v2")
 # Saves the notebook with outputs to OCI object storage.
 .with_output("oci://bucket_name@namespace/path/to/dir")
)
).create()
Run and monitor the job
run = job.run().watch()
Download the notebook and outputs to local directory
run.download(to_dir="path/to/local/dir/")

See also

	https
	//docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/jobs/index.html

Initializes a job.

	The infrastructure and runtime can be configured when initializing the job,
	or by calling with_infrastructure() and with_runtime().

The infrastructure should be a subclass of ADS job Infrastructure, e.g., DataScienceJob, DataFlow.
The runtime should be a subclass of ADS job Runtime, e.g., PythonRuntime, ScriptRuntime.

	Parameters

	
	name (str, optional) – The name of the job, by default None.
If it is None, a default name may be generated by the infrastructure,
depending on the implementation of the infrastructure.
For OCI data science job, the default name contains the job artifact name and a timestamp.

	infrastructure (Infrastructure, optional) – Job infrastructure, by default None

	runtime (Runtime, optional) – Job runtime, by default None.

	
create(**kwargs) → ads.jobs.ads_job.Job

	Creates the job on the infrastructure.

	Returns

	The job instance (self)

	Return type

	Job

	
static dataflow_job(compartment_id: Optional[str] = None, **kwargs) → List[ads.jobs.ads_job.Job]

	List data flow jobs under a given compartment.

	Parameters

	
	compartment_id (str) – compartment id

	kwargs – additional keyword arguments

	Returns

	list of Job instances

	Return type

	List[Job]

	
static datascience_job(compartment_id: Optional[str] = None, **kwargs) → List[ads.jobs.builders.infrastructure.dsc_job.DataScienceJob]

	Lists the existing data science jobs in the compartment.

	Parameters

	compartment_id (str) – The compartment ID for listing the jobs.
This is optional if running in an OCI notebook session.
The jobs in the same compartment of the notebook session will be returned.

	Returns

	A list of Job objects.

	Return type

	list

	
delete() → None

	Deletes the job from the infrastructure.

	
download(to_dir: str, output_uri=None, **storage_options)

	Downloads files from remote output URI to local.

	Parameters

	
	to_dir (str) – Local directory to which the files will be downloaded to.

	output_uri ((str, optional). Default is None.) – The remote URI from which the files will be downloaded.
Defaults to None.
If output_uri is not specified, this method will try to get the output_uri from the runtime.

	storage_options – Extra keyword arguments for particular storage connection.
This method uses fsspec to download the files from remote URI.
storage_options will to be passed into fsspec.open_files().

	Returns

	The job instance (self)

	Return type

	Job

	Raises

	AttributeError – The output_uri is not specified and the runtime is not configured with output_uri.

	
static from_dataflow_job(job_id: str) → ads.jobs.ads_job.Job

	Create a Data Flow job given a job id.

	Parameters

	job_id (str) – id of the job

	Returns

	a Job instance

	Return type

	Job

	
static from_datascience_job(job_id) → ads.jobs.ads_job.Job

	Loads a data science job from OCI.

	Parameters

	job_id (str) – OCID of an existing data science job.

	Returns

	A job instance.

	Return type

	Job

	
classmethod from_dict(config: dict) → ads.jobs.ads_job.Job

	Initializes a job from a dictionary containing the configurations.

	Parameters

	config (dict) – A dictionary containing the infrastructure and runtime specifications.

	Returns

	A job instance

	Return type

	Job

	Raises

	NotImplementedError – If the type of the intrastructure or runtime is not supported.

	
property id: str

	The ID of the job.
For jobs running on OCI, this is the OCID.

	Returns

	ID of the job.

	Return type

	str

	
property infrastructure: Union[ads.jobs.builders.infrastructure.dsc_job.DataScienceJob, ads.jobs.builders.infrastructure.dataflow.DataFlow]

	The job infrastructure.

	Returns

	Job infrastructure.

	Return type

	Infrastructure

	
property kind: str

	The kind of the object as showing in YAML.

	Returns

	“job”

	Return type

	str

	
property name: str

	The name of the job.
For jobs running on OCI, this is the display name.

	Returns

	The name of the job.

	Return type

	str

	
run(name=None, args=None, env_var=None, freeform_tags=None, wait=False) → Union[ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun, ads.jobs.builders.infrastructure.dataflow.DataFlowRun]

	Runs the job.

	Parameters

	
	name (str, optional) – Name of the job run, by default None.
The infrastructure handles the naming of the job run.
For data science job, if a name is not provided,
a default name will be generated containing the job name and the timestamp of the run.

	args (str, optional) – Command line arguments for the job run, by default None.
This will override the configurations on the job.
If this is None, the args from the job configuration will be used.

	env_var (dict, optional) – Additional environment variables for the job run, by default None

	freeform_tags (dict, optional) – Freeform tags for the job run, by default None

	wait (bool, optional) – Indicate if this method call should wait for the job run.
By default False, this method returns as soon as the job run is created.
If this is set to True, this method will stream the job logs and wait until it finishes,
similar to job.run().watch().

	Returns

	A job run instance, depending on the infrastructure.

	Return type

	Job Run Instance

	
run_list(**kwargs) → list

	Gets a list of runs of the job.

	Returns

	A list of job run instances, the actual object type depends on the infrastructure.

	Return type

	list

	
property runtime: ads.jobs.builders.runtimes.base.Runtime

	The job runtime.

	Returns

	The job runtime

	Return type

	Runtime

	
status() → str

	Status of the job

	Returns

	Status of the job

	Return type

	str

	
to_dict() → dict

	Serialize the job specifications to a dictionary.

	Returns

	A dictionary containing job specifications.

	Return type

	dict

	
with_infrastructure(infrastructure) → ads.jobs.ads_job.Job

	Sets the infrastructure for the job.

	Parameters

	infrastructure (Infrastructure) – Job infrastructure.

	Returns

	The job instance (self)

	Return type

	Job

	
with_name(name: str) → ads.jobs.ads_job.Job

	Sets the job name.

	Parameters

	name (str) – Job name.

	Returns

	The job instance (self)

	Return type

	Job

	
with_runtime(runtime) → ads.jobs.ads_job.Job

	Sets the runtime for the job.

	Parameters

	runtime (Runtime) – Job runtime.

	Returns

	The job instance (self)

	Return type

	Job

ads.jobs.builders.runtimes.python_runtime module

	
class ads.jobs.builders.runtimes.python_runtime.CondaRuntime(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.runtimes.base.Runtime

Represents a job runtime with conda pack

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
CONST_CONDA = 'conda'

	

	
CONST_CONDA_REGION = 'region'

	

	
CONST_CONDA_SLUG = 'slug'

	

	
CONST_CONDA_TYPE = 'type'

	

	
CONST_CONDA_TYPE_CUSTOM = 'published'

	

	
CONST_CONDA_TYPE_SERVICE = 'service'

	

	
CONST_CONDA_URI = 'uri'

	

	
property conda: dict

	The conda pack specification

	Returns

	A dictionary with “type” and “slug” as keys.

	Return type

	dict

	
with_custom_conda(uri: str, region: Optional[str] = None)

	Specifies the custom conda pack for running the job

	Parameters

	
	uri (str) – The OCI object storage URI for the conda pack,
e.g. “oci://your_bucket@namespace/object_name.”
In the Environment Explorer of an OCI notebook session,
this is shown as the “source” of the conda pack.

	region (str, optional) – The region of the bucket storing the custom conda pack, by default None.
If region is not specified, ADS will use the region from your authentication credentials,
* For API Key, config[“region”] is used.
* For Resource Principal, signer.region is used.

This is required if the conda pack is stored in a different region.

	Returns

	The runtime instance.

	Return type

	self

See also

	https
	//docs.oracle.com/en-us/iaas/data-science/using/conda_publishs_object.htm

	
with_service_conda(slug: str)

	Specifies the service conda pack for running the job

	Parameters

	slug (str) – The slug name of the service conda pack

	Returns

	The runtime instance.

	Return type

	self

	
class ads.jobs.builders.runtimes.python_runtime.DataFlowNotebookRuntime(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime, ads.jobs.builders.runtimes.python_runtime.NotebookRuntime

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
convert(overwrite=False)

	

	
class ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.runtimes.base.Runtime

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
CONST_ARCHIVE_BUCKET = 'archiveBucket'

	

	
CONST_ARCHIVE_URI = 'archiveUri'

	

	
CONST_SCRIPT_BUCKET = 'scriptBucket'

	

	
CONST_SCRIPT_PATH = 'scriptPathURI'

	

	
property archive_bucket: str

	Bucket to save archive zip

	
property archive_uri

	The Uri of archive zip

	
convert(**kwargs)

	

	
property script_bucket: str

	Bucket to save script

	
property script_uri: str

	The URI of the source code

	
with_archive_bucket(bucket) → DataFlowRuntime

	Set object storage bucket to save the archive zip, in case archive uri given is local.

	Parameters

	bucket (str) – name of the bucket

	Returns

	runtime instance itself

	Return type

	DataFlowRuntime

	
with_archive_uri(uri: str) → DataFlowRuntime

	Set archive uri (which is a zip file containing dependencies).

	Parameters

	uri (str) – uri to the archive zip

	Returns

	runtime instance itself

	Return type

	DataFlowRuntime

	
with_script_bucket(bucket) → DataFlowRuntime

	Set object storage bucket to save the script, in case script uri given is local.

	Parameters

	bucket (str) – name of the bucket

	Returns

	runtime instance itself

	Return type

	DataFlowRuntime

	
with_script_uri(path) → DataFlowRuntime

	Set script uri.

	Parameters

	uri (str) – uri to the script

	Returns

	runtime instance itself

	Return type

	DataFlowRuntime

	
class ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime(spec: Optional[Dict] = None, skip_metadata_update=False)

	Bases: ads.jobs.builders.runtimes.python_runtime.CondaRuntime, ads.jobs.builders.runtimes.python_runtime._PythonRuntimeMixin

Represents a job runtime with source code from git repository

Initialize Git Python Runtime.

	Parameters

	
	spec (dict, optional) – Runtime specifications, by default None

	skip_metadata_update (bool, optional) – Indicate if the metadata update should be skipped after the job run, by default False.
By default, the job run metadata will be updated with the following freeform tags:
* repo: The URL of the Git repository
* commit: The Git commit ID
* module: The entry script/module
* method: The entry function/method
* outputs. The prefix of the output files in object storage.

This update step also requires resource principals to have the permission to update the job run.

	
CONST_BRANCH = 'branch'

	

	
CONST_COMMIT = 'commit'

	

	
CONST_GIT_SSH_SECRET_ID = 'gitSecretId'

	

	
CONST_GIT_URL = 'url'

	

	
CONST_SKIP_METADATA = 'skipMetadataUpdate'

	

	
property branch: str

	Git branch name.

	
property commit: str

	Git commit ID (SHA1 hash)

	
property skip_metadata_update

	Indicate if the metadata update should be skipped after the job run

	Returns

	True if the metadata update will be skipped. Otherwise False.

	Return type

	bool

	
property ssh_secret_ocid

	The OCID of the OCI Vault secret storing the Git SSH key.

	
property url: str

	URL of the Git repository.

	
with_argument(*args, **kwargs)

	Specifies the arguments for running the script/function.

When running a python script, the arguments will be the command line arguments.
For example, with_argument(“arg1”, “arg2”, key1=”val1”, key2=”val2”)
will generate the command line arguments: “arg1 arg2 –key1 val1 –key2 val2”

When running a function, the arguments will be passed into the function.
Arguments can also be list, dict or any JSON serializable object.
For example, with_argument(“arg1”, “arg2”, key1=[“val1a”, “val1b”], key2=”val2”)
will be passed in as “your_function(“arg1”, “arg2”, key1=[“val1a”, “val1b”], key2=”val2”)

	Returns

	The runtime instance.

	Return type

	self

	
with_source(url: str, branch: Optional[str] = None, commit: Optional[str] = None, secret_ocid: Optional[str] = None)

	Specifies the Git repository and branch/commit for the job source code.

	Parameters

	
	url (str) – URL of the Git repository.

	branch (str, optional) – Git branch name, by default None, the default branch will be used.

	commit (str, optional) – Git commit ID (SHA1 hash), by default None, the most recent commit will be used.

	secret_ocid (str) – The secret OCID storing the SSH key content for checking out the Git repository.

	Returns

	The runtime instance.

	Return type

	self

	
class ads.jobs.builders.runtimes.python_runtime.NotebookRuntime(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.runtimes.python_runtime.CondaRuntime

Represents a job runtime with Jupyter notebook

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
CONST_NOTEBOOK_ENCODING = 'notebookEncoding'

	

	
CONST_NOTEBOOK_PATH = 'notebookPathURI'

	

	
CONST_OUTPUT_URI = 'outputURI'

	

	
EXCLUDE_TAG = 'excludeTags'

	

	
property exclude_tag: list

	A list of cell tags indicating cells to be excluded from the job

	
property notebook_encoding: str

	The encoding of the notebook

	
property notebook_uri: str

	The URI of the notebook

	
property output_uri: list

	URI for storing the output notebook and files

	
with_exclude_tag(*tags)

	Specifies the cell tags in the notebook to exclude cells from the job script.

	Parameters

	*tags (list) – A list of tags (strings).

	Returns

	The runtime instance.

	Return type

	self

	
with_notebook(path: str, encoding='utf-8')

	Specifies the notebook to be converted to python script and run as a job.

	Parameters

	path (str) – The path of the Jupyter notebook

	Returns

	The runtime instance.

	Return type

	self

	
with_output(output_uri: str)

	Specifies the output URI for storing the output notebook and files.

	Parameters

	output_uri (str) – URI for storing the output notebook and files.
For example, oci://bucket@namespace/path/to/dir

	Returns

	The runtime instance.

	Return type

	self

	
class ads.jobs.builders.runtimes.python_runtime.PythonRuntime(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.runtimes.python_runtime.ScriptRuntime, ads.jobs.builders.runtimes.python_runtime._PythonRuntimeMixin

Represents a job runtime using ADS driver script to run Python code

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
CONST_WORKING_DIR = 'workingDir'

	

	
with_working_dir(working_dir: str)

	Specifies the working directory in the job run.
By default, the working directory will the directory containing the user code (job artifact directory).
This can be changed by specifying a relative path to the job artifact directory.

	Parameters

	working_dir (str) – The path of the working directory.
This can be a relative path from the job artifact directory.

	Returns

	The runtime instance.

	Return type

	self

	
property working_dir: str

	The working directory for the job run.

	
class ads.jobs.builders.runtimes.python_runtime.ScriptRuntime(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.runtimes.python_runtime.CondaRuntime

Represents job runtime with scripts and conda pack

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
CONST_ENTRYPOINT = 'entrypoint'

	

	
CONST_SCRIPT_PATH = 'scriptPathURI'

	

	
property entrypoint: str

	The relative path of the script to be set as entrypoint when source is a zip/tar/directory.

	
property script_uri: str

	The URI of the source code

	
property source_uri: str

	The URI of the source code

	
with_entrypoint(entrypoint: str)

	Specify the entrypoint for the job

	Parameters

	entrypoint (str) – The relative path of the script to be set as entrypoint when source is a zip/tar/directory.

	Returns

	The runtime instance.

	Return type

	self

	
with_script(uri: str)

	Specifies the source code script for the job

	Parameters

	uri (str) – URI to the Python or Shell script, which can be any URI supported by fsspec,
including http://, https:// and OCI object storage.
For example: oci://your_bucket@your_namespace/path/to/script.py

	Returns

	The runtime instance.

	Return type

	self

	
with_source(uri: str, entrypoint: Optional[str] = None)

	Specifies the source code for the job

	Parameters

	
	uri (str) – URI to the source code,
which can be a (.py/.sh) script, a zip/tar file or directory containing the scripts/modules
If the source code is a single file, URI can be any URI supported by fsspec,
including http://, https:// and OCI object storage.
For example: oci://your_bucket@your_namespace/path/to/script.py
If the source code is a directory, only local directory is supported.

	entrypoint (str, optional) – The relative path of the script to be set as entrypoint when source is a zip/tar/directory.
By default None. This is not needed when the source is a single script.

	Returns

	The runtime instance.

	Return type

	self

ads.jobs.builders.infrastructure.dataflow module

	
class ads.jobs.builders.infrastructure.dataflow.DataFlow(spec: Optional[dict] = None)

	Bases: ads.jobs.builders.infrastructure.base.Infrastructure

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
create(runtime: ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime, **kwargs) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Create a Data Flow job given a runtime.

	Parameters

	
	runtime – runtime to bind to the Data Flow job

	kwargs – additional keyword arguments

	Returns

	a Data Flow job instance

	Return type

	DataFlow

	
delete()

	Delete a Data Flow job and canceling associated runs.

	Return type

	None

	
classmethod from_dict(config: dict) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Load a Data Flow job instance from a dictionary of configurations.

	Parameters

	config (dict) – dictionary of configurations

	Returns

	a Data Flow job instance

	Return type

	DataFlow

	
classmethod from_id(id: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Load a Data Flow job given an id.

	Parameters

	id (str) – id of the Data Flow job to load

	Returns

	a Data Flow job instance

	Return type

	DataFlow

	
property job_id: Optional[str]

	The OCID of the job

	
classmethod list_jobs(compartment_id: Optional[str] = None, **kwargs) → List[ads.jobs.builders.infrastructure.dataflow.DataFlow]

	List Data Flow jobs in a given compartment.

	Parameters

	
	compartment_id (str) – id of that compartment

	kwargs – additional keyword arguments for filtering jobs

	Returns

	list of Data Flow jobs

	Return type

	List[DataFlow]

	
property name: str

	Display name of the job

	
run(name: Optional[str] = None, args: Optional[List[str]] = None, env_vars: Optional[Dict[str, str]] = None, freeform_tags: Optional[Dict[str, str]] = None, wait: bool = False, **kwargs) → ads.jobs.builders.infrastructure.dataflow.DataFlowRun

	Run a Data Flow job.

	Parameters

	
	name (str, optional) – name of the run

	args (List[str], optional) – list of command line arguments

	env_vars (Dict[str, str], optional) – dictionary of environment variables (not used for data flow)

	freeform_tags (Dict[str, str], optional) – freeform tags

	wait (bool, optional) – whether to wait for a run to terminate

	kwargs – additional keyword arguments

	Returns

	a DataFlowRun instance

	Return type

	DataFlowRun

	
run_list(**kwargs) → List[ads.jobs.builders.infrastructure.dataflow.DataFlowRun]

	List runs associated with a Data Flow job.

	Parameters

	kwargs – additional arguments for filtering runs.

	Returns

	list of DataFlowRun instances

	Return type

	List[DataFlowRun]

	
to_dict() → dict

	Serialize job to a dictionary.

	Returns

	serialized job as a dictionary

	Return type

	dict

	
to_yaml() → str

	Serializes the object into YAML string.

	Returns

	YAML stored in a string.

	Return type

	str

	
with_compartment_id(id: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set compartment id for a Data Flow job.

	Parameters

	id (str) – compartment id

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_configuration(configs: dict) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set configuration for a Data Flow job.

	Parameters

	configs (dict) – dictionary of configurations

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_driver_shape(shape: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set driver shape for a Data Flow job.

	Parameters

	shape (str) – driver shape

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_execute(exec: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set command for spark-submit.

	Parameters

	exec (str) – str of commands

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_executor_shape(shape: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set executor shape for a Data Flow job.

	Parameters

	shape (str) – executor shape

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_id(id: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set id for a Data Flow job.

	Parameters

	id (str) – id of a job

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_language(lang: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set language for a Data Flow job.

	Parameters

	lang (str) – language for the job

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_logs_bucket_uri(uri: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set logs bucket uri for a Data Flow job.

	Parameters

	uri (str) – uri to logs bucket

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_metastore_id(id: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set Hive metastore id for a Data Flow job.

	Parameters

	id (str) – metastore id

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_num_executors(n: int) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set number of executors for a Data Flow job.

	Parameters

	n (int) – number of executors

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_spark_version(ver: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set spark version for a Data Flow job.
Currently supported versions are 2.4.4 and 3.0.2
Documentation: https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#before_you_begin

	Parameters

	ver (str) – spark version

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
with_warehouse_bucket_uri(uri: str) → ads.jobs.builders.infrastructure.dataflow.DataFlow

	Set warehouse bucket uri for a Data Flow job.

	Parameters

	uri (str) – uri to warehouse bucket

	Returns

	the Data Flow instance itself

	Return type

	DataFlow

	
class ads.jobs.builders.infrastructure.dataflow.DataFlowApp(config: Optional[dict] = None, signer: Optional[oci.signer.Signer] = None, client_kwargs: Optional[dict] = None, **kwargs)

	Bases: ads.common.oci_mixin.OCIModelMixin, oci.data_flow.models.application.Application

Initializes a service/resource with OCI client as a property.
If config or signer is specified, it will be used to initialize the OCI client.
If neither of them is specified, the client will be initialized with ads.common.auth.default_signer.
If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

	Parameters

	
	config (dict, optional) – OCI API key config dictionary, by default None.

	signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

	client_kwargs (dict, optional) – Additional keyword arguments for initializing the OCI client.

	
property client: oci.data_flow.data_flow_client.DataFlowClient

	OCI client

	
create() → ads.jobs.builders.infrastructure.dataflow.DataFlowApp

	Create a Data Flow application.

	Returns

	a DataFlowApp instance

	Return type

	DataFlowApp

	
delete() → None

	Delete a Data Flow application.

	Return type

	None

	
classmethod init_client(**kwargs) → oci.data_flow.data_flow_client.DataFlowClient

	Initializes the OCI client specified in the “client” keyword argument
Sub-class should override this method and call cls._init_client(client=OCI_CLIENT)

	Parameters

	**kwargs – Additional keyword arguments for initalizing the OCI client.

	Return type

	An instance of OCI client.

	
to_yaml() → str

	Serializes the object into YAML string.

	Returns

	YAML stored in a string.

	Return type

	str

	
class ads.jobs.builders.infrastructure.dataflow.DataFlowLogs(run_id)

	Bases: object

	
property application

	

	
property driver

	

	
property executor

	

	
class ads.jobs.builders.infrastructure.dataflow.DataFlowRun(config: Optional[dict] = None, signer: Optional[oci.signer.Signer] = None, client_kwargs: Optional[dict] = None, **kwargs)

	Bases: ads.common.oci_mixin.OCIModelMixin, oci.data_flow.models.run.Run, ads.jobs.builders.infrastructure.base.RunInstance

Initializes a service/resource with OCI client as a property.
If config or signer is specified, it will be used to initialize the OCI client.
If neither of them is specified, the client will be initialized with ads.common.auth.default_signer.
If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

	Parameters

	
	config (dict, optional) – OCI API key config dictionary, by default None.

	signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

	client_kwargs (dict, optional) – Additional keyword arguments for initializing the OCI client.

	
TERMINATED_STATES = ['CANCELED', 'FAILED', 'SUCCEEDED']

	

	
property client: oci.data_flow.data_flow_client.DataFlowClient

	OCI client

	
create() → ads.jobs.builders.infrastructure.dataflow.DataFlowRun

	Create a Data Flow run.

	Returns

	a DataFlowRun instance

	Return type

	DataFlowRun

	
delete() → None

	Cancel a Data Flow run if it is not yet terminated.

	Return type

	None

	
classmethod init_client(**kwargs) → oci.data_flow.data_flow_client.DataFlowClient

	Initializes the OCI client specified in the “client” keyword argument
Sub-class should override this method and call cls._init_client(client=OCI_CLIENT)

	Parameters

	**kwargs – Additional keyword arguments for initalizing the OCI client.

	Return type

	An instance of OCI client.

	
property logs: ads.jobs.builders.infrastructure.dataflow.DataFlowLogs

	Show logs from a run.
There are three types of logs: application log, driver log and executor log,
each with stdout and stderr separately.
To access each type of logs,
>>> dfr.logs.application.stdout
>>> dfr.logs.driver.stderr

	Returns

	an instance of DataFlowLogs

	Return type

	DataFlowLogs

	
property run_details_link

	Link to run details page in OCI console

	Returns

	html display

	Return type

	DisplayHandle

	
property status: str

	Show status (lifecycle state) of a run.

	Returns

	status of the run

	Return type

	str

	
to_yaml() → str

	Serializes the object into YAML string.

	Returns

	YAML stored in a string.

	Return type

	str

	
wait(interval: int = 3) → ads.jobs.builders.infrastructure.dataflow.DataFlowRun

	Wait for a run to terminate.

	Parameters

	interval (int, optional) – interval to wait before probing again

	Returns

	a DataFlowRun instance

	Return type

	DataFlowRun

	
watch(interval: int = 3) → ads.jobs.builders.infrastructure.dataflow.DataFlowRun

	This is an alias of wait() method. It waits for a run to terminate.

	Parameters

	interval (int, optional) – interval to wait before probing again

	Returns

	a DataFlowRun instance

	Return type

	DataFlowRun

ads.jobs.builders.infrastructure.dsc_job module

	
class ads.jobs.builders.infrastructure.dsc_job.DSCJob(artifact: Optional[Union[str, ads.jobs.builders.runtimes.artifact.Artifact]] = None, **kwargs)

	Bases: ads.common.oci_datascience.OCIDataScienceMixin, oci.data_science.models.job.Job

Represents an OCI Data Science Job
This class contains all attributes of the oci.data_science.models.Job.
The main purpose of this class is to link the oci.data_science.models.Job model and the related client methods.
Mainly, linking the Job model (payload) to Create/Update/Get/List/Delete methods.

A DSCJob can be initialized by unpacking a the properties stored in a dictionary (payload):

job_properties = {
 "display_name": "my_job,
 "job_infrastructure_configuration_details": {"shape_name": "VM.MY_SHAPE"}
}
job = DSCJob(**job_properties)

The properties can also be OCI REST API payload, in which the keys are in camel format.

job_payload = {
 "projectId": "<project_ocid>",
 "compartmentId": "<compartment_ocid>",
 "displayName": "<job_name>",
 "jobConfigurationDetails": {
 "jobType": "DEFAULT",
 "commandLineArguments": "pos_arg1 pos_arg2 --key1 val1 --key2 val2",
 "environmentVariables": {
 "KEY1": "VALUE1",
 "KEY2": "VALUE2",
 # User specifies conda env via env var
 "CONDA_ENV_TYPE" : "service",
 "CONDA_ENV_SLUG" : "mlcpuv1"
 }
 },
 "jobInfrastructureConfigurationDetails": {
 "jobInfrastructureType": "STANDALONE",
 "shapeName": "VM.Standard2.1",
 "blockStorageSizeInGBs": "100",
 "subnetId": "<subnet_ocid>"
 }
}
job = DSCJob(**job_payload)

Initialize a DSCJob object.

	Parameters

	
	artifact (str or Artifact) – Job artifact, which can be a path or an Artifact object. Defaults to None.

	kwargs – Same as kwargs in oci.data_science.models.Job.
Keyword arguments are passed into OCI Job model to initialize the properties.

	
DEFAULT_INFRA_TYPE = 'ME_STANDALONE'

	

	
property artifact: Union[str, ads.jobs.builders.runtimes.artifact.Artifact]

	Job artifact.

	Returns

	When creating a job, this be a path or an Artifact object.
When loading the job from OCI, this will be the filename of the job artifact.

	Return type

	str or Artifact

	
create() → ads.jobs.builders.infrastructure.dsc_job.DSCJob

	Create the job on OCI Data Science platform

	Returns

	The DSCJob instance (self), which allows chaining additional method.

	Return type

	DSCJob

	
delete() → ads.jobs.builders.infrastructure.dsc_job.DSCJob

	Deletes the job and the corresponding job runs.

	Returns

	The DSCJob instance (self), which allows chaining additional method.

	Return type

	DSCJob

	
download_artifact(artifact_path: str) → ads.jobs.builders.infrastructure.dsc_job.DSCJob

	Downloads the artifact from OCI

	Parameters

	artifact_path (str) – Local path to store the job artifact.

	Returns

	The DSCJob instance (self), which allows chaining additional method.

	Return type

	DSCJob

	
classmethod from_ocid(ocid) → ads.jobs.builders.infrastructure.dsc_job.DSCJob

	Gets a job by OCID

	Parameters

	ocid (str) – The OCID of the job.

	Returns

	An instance of DSCJob.

	Return type

	DSCJob

	
load_properties_from_env() → None

	Loads default properties from the environment

	
run(**kwargs) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

	Runs the job

	Parameters

	
	**kwargs – Keyword arguments for initializing a Data Science Job Run.
The keys can be any keys in supported by OCI JobConfigurationDetails and JobRun, including:
* hyperparameter_values: dict(str, str)
* environment_variables: dict(str, str)
* command_line_arguments: str
* maximum_runtime_in_minutes: int
* display_name: str

	specified (If display_name is not) –

	"<JOB_NAME>-run-<TIMESTAMP>" (it will be generated as) –

	Returns

	An instance of DSCJobRun, which can be used to monitor the job run.

	Return type

	DSCJobRun

	
run_list(**kwargs) → list[DataScienceJobRun]

	Lists the runs of this job.

	Parameters

	**kwargs – Keyword arguments to te passed into the OCI list_job_runs() for filtering the job runs.

	Returns

	A list of DSCJobRun objects

	Return type

	list

	
update() → ads.jobs.builders.infrastructure.dsc_job.DSCJob

	Updates the Data Science Job.

	
upload_artifact(artifact_path: Optional[str] = None) → ads.jobs.builders.infrastructure.dsc_job.DSCJob

	Uploads the job artifact to OCI

	Parameters

	artifact_path (str, optional) – Local path to the job artifact file to be uploaded, by default None.
If artifact_path is None, the path in self.artifact will be used.

	Returns

	The DSCJob instance (self), which allows chaining additional method.

	Return type

	DSCJob

	
ads.jobs.builders.infrastructure.dsc_job.DSCJobRun

	alias of ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

	
class ads.jobs.builders.infrastructure.dsc_job.DataScienceJob(spec: Optional[Dict] = None, **kwargs)

	Bases: ads.jobs.builders.infrastructure.base.Infrastructure

Represents the OCI Data Science Job infrastructure.

Initializes a data science job infrastructure

	Parameters

	
	spec (dict, optional) – Object specification, by default None

	kwargs (dict) – Specification as keyword arguments.
If spec contains the same key as the one in kwargs, the value from kwargs will be used.

	
CONST_BLOCK_STORAGE = 'blockStorageSize'

	

	
CONST_COMPARTMENT_ID = 'compartmentId'

	

	
CONST_DISPLAY_NAME = 'displayName'

	

	
CONST_JOB_INFRA = 'jobInfrastructureType'

	

	
CONST_JOB_TYPE = 'jobType'

	

	
CONST_LOG_GROUP_ID = 'logGroupId'

	

	
CONST_LOG_ID = 'logId'

	

	
CONST_PROJECT_ID = 'projectId'

	

	
CONST_SHAPE_NAME = 'shapeName'

	

	
CONST_SUBNET_ID = 'subnetId'

	

	
attribute_map = {'blockStorageSize': 'job_infrastructure_configuration_details.block_storage_size_in_gbs', 'compartmentId': 'compartment_id', 'displayName': 'display_name', 'jobInfrastructureType': 'job_infrastructure_configuration_details.job_infrastructure_type', 'jobType': 'job_configuration_details.job_type', 'logGroupId': 'job_log_configuration_details.log_group_id', 'logId': 'job_log_configuration_details.log_id', 'projectId': 'project_id', 'shapeName': 'job_infrastructure_configuration_details.shape_name', 'subnetId': 'job_infrastructure_configuration_details.subnet_id'}

	

	
property block_storage_size: int

	Block storage size for the job

	
property compartment_id: Optional[str]

	The compartment OCID

	
create(runtime, **kwargs) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Creates a job with runtime.

	Parameters

	runtime (Runtime) – An ADS job runtime.

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
delete() → None

	Deletes a job

	
classmethod from_dsc_job(dsc_job: ads.jobs.builders.infrastructure.dsc_job.DSCJob) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Initialize a DataScienceJob instance from a DSCJob

	Parameters

	dsc_job (DSCJob) – An instance of DSCJob

	Returns

	An instance of DataScienceJob

	Return type

	DataScienceJob

	
classmethod from_id(job_id: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Gets an existing job using Job OCID

	Parameters

	job_id (str) – Job OCID

	Returns

	An instance of DataScienceJob

	Return type

	DataScienceJob

	
classmethod instance_shapes(compartment_id: Optional[str] = None) → list

	Lists the supported shapes for running jobs in a compartment.

	Parameters

	compartment_id (str, optional) – The compartment ID for running the jobs, by default None.
This is optional in a OCI Data Science notebook session.
If this is not specified, the compartment ID of the notebook session will be used.

	Returns

	A list of dictionaries containing the information of the supported shapes.

	Return type

	list

	
property job_id: Optional[str]

	The OCID of the job

	
property job_infrastructure_type: Optional[str]

	Job infrastructure type

	
property job_type: Optional[str]

	Job type

	
classmethod list_jobs(compartment_id: Optional[str] = None, **kwargs) → List[ads.jobs.builders.infrastructure.dsc_job.DataScienceJob]

	Lists all jobs in a compartment.

	Parameters

	
	compartment_id (str, optional) – The compartment ID for running the jobs, by default None.
This is optional in a OCI Data Science notebook session.
If this is not specified, the compartment ID of the notebook session will be used.

	**kwargs – Keyword arguments to be passed into OCI list_jobs API for filtering the jobs.

	Returns

	A list of DataScienceJob object.

	Return type

	List[DataScienceJob]

	
property log_group_id: str

	Log group OCID of the data science job

	Returns

	Log group OCID

	Return type

	str

	
property log_id: str

	Log OCID for the data science job.

	Returns

	Log OCID

	Return type

	str

	
property name: str

	Display name of the job

	
property project_id: Optional[str]

	Project OCID

	
run(name=None, args=None, env_var=None, freeform_tags=None, wait=False) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

	Runs a job on OCI Data Science job

	Parameters

	
	name (str, optional) – The name of the job run, by default None

	args (str, optional) – Command line arguments for the job run, by default None.

	env_var (dict, optional) – Environment variable for the job run, by default None

	freeform_tags (dict, optional) – Freeform tags for the job run, by default None

	wait (bool, optional) – Indicate if this method should wait for the run to finish before it returns, by default False.

	Returns

	A Data Science Job Run instance.

	Return type

	DSCJobRun

	
run_list(**kwargs) → List[ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun]

	Gets a list of job runs.

	Parameters

	**kwargs – Keyword arguments for filtering the job runs.
These arguments will be passed to OCI API.

	Returns

	A list of job runs.

	Return type

	List[DSCJobRun]

	
property shape_name: Optional[str]

	Shape name

	
property status: Optional[str]

	Status of the job.

	Returns

	Status of the job.

	Return type

	str

	
property subnet_id: str

	Subnet ID

	
with_block_storage_size(size_in_gb: int) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the block storage size in GB

	Parameters

	size_in_gb (int) – Block storage size in GB

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_compartment_id(compartment_id: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the compartment OCID

	Parameters

	compartment_id (str) – The compartment OCID

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_job_infrastructure_type(infrastructure_type: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the job infrastructure type

	Parameters

	infrastructure_type (str) – Job infrastructure type as string

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_job_type(job_type: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the job type

	Parameters

	job_type (str) – Job type as string

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_log_group_id(log_group_id: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the log group OCID for the data science job.
If log group ID is specified but log ID is not,
a new log resource will be created automatically for each job run to store the logs.

	Parameters

	log_group_id (str) – Log Group OCID

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_log_id(log_id: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the log OCID for the data science job.
If log ID is specified, setting the log group ID (with_log_group_id()) is not strictly needed.
ADS will look up the log group ID automatically.
However, this may require additional permission,
and the look up may not be available for newly created log group.
Specifying both log ID (with_log_id()) and log group ID (with_log_group_id())
can avoid such lookup and speed up the job creation.

	Parameters

	log_id (str) – Log resource OCID.

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_project_id(project_id: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the project OCID

	Parameters

	project_id (str) – The project OCID

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_shape_name(shape_name: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the shape name for running the job

	Parameters

	shape_name (str) – Shape name

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
with_subnet_id(subnet_id: str) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

	Sets the subnet ID

	Parameters

	subnet_id (str) – Subnet ID

	Returns

	The DataScienceJob instance (self)

	Return type

	DataScienceJob

	
class ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun(config: Optional[dict] = None, signer: Optional[oci.signer.Signer] = None, client_kwargs: Optional[dict] = None, **kwargs)

	Bases: ads.common.oci_datascience.OCIDataScienceMixin, oci.data_science.models.job_run.JobRun, ads.jobs.builders.infrastructure.base.RunInstance

Represents a Data Science Job run

Initializes a service/resource with OCI client as a property.
If config or signer is specified, it will be used to initialize the OCI client.
If neither of them is specified, the client will be initialized with ads.common.auth.default_signer.
If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

	Parameters

	
	config (dict, optional) – OCI API key config dictionary, by default None.

	signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

	client_kwargs (dict, optional) – Additional keyword arguments for initializing the OCI client.

	
TERMINAL_STATES = ['SUCCEEDED', 'FAILED', 'CANCELED', 'DELETED']

	

	
cancel() → ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

	Cancels a job run
This method will wait for the job run to be canceled before returning.

	Returns

	The job run instance.

	Return type

	self

	
create() → ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

	Creates a job run

	
download(to_dir)

	Downloads files from job run output URI to local.

	Parameters

	to_dir (str) – Local directory to which the files will be downloaded to.

	Returns

	The job run instance (self)

	Return type

	DataScienceJobRun

	
property job

	The job instance of this run.

	Returns

	An ADS Job instance

	Return type

	Job

	
property log_group_id: str

	The log group ID from OCI logging service containing the logs from the job run.

	
property log_id: str

	The log ID from OCI logging service containing the logs from the job run.

	
property logging: ads.common.oci_logging.OCILog

	The OCILog object containing the logs from the job run

	
logs(limit: Optional[int] = None) → list

	Gets the logs of the job run.

	Parameters

	limit (int, optional) – Limit the number of logs to be returned.
Defaults to None. All logs will be returned.

	Returns

	A list of log records. Each log record is a dictionary with the following keys: id, time, message.

	Return type

	list

	
property status: str

	Lifecycle status

	Returns

	Status in a string.

	Return type

	str

	
to_yaml() → str

	Serializes the object into YAML string.

	Returns

	YAML stored in a string.

	Return type

	str

	
watch(interval: float = 3) → ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

	Watches the job run until it finishes.
Before the job start running, this method will output the job run status.
Once the job start running, the logs will be streamed until the job is success, failed or cancelled.

	Parameters

	interval (int) – Time interval in seconds between each request to update the logs.
Defaults to 3 (seconds).

Module contents

 ads.model.framework other package

ads.model.framework other package

Submodules

ads.model.artifact module

	
exception ads.model.artifact.AritfactFolderStructureError(required_files: Tuple[str])

	Bases: Exception

	
exception ads.model.artifact.ArtifactNestedFolderError(folder: str)

	Bases: Exception

	
exception ads.model.artifact.ArtifactRequiredFilesError(required_files: Tuple[str])

	Bases: Exception

	
class ads.model.artifact.ModelArtifact(artifact_dir: str, model_file_name: str, reload: Optional[bool] = False)

	Bases: object

The class that represents model artifacts.
It is designed to help to generate and manage model artifacts.

Initializes a ModelArtifact instance.

	Parameters

	
	artifact_dir (str) – The local artifact folder to store the files needed for deployment.

	model_file_name (str) – The file name of the serialized model.

	reload ((bool, optional). Defaults to False.) – Determine whether will reload the Model into the env.

	Returns

	A ModelArtifact instance.

	Return type

	ModelArtifact

	Raises

	ValueError – If artifact_dir not provided.
 If model_file_name not provided.

	
classmethod from_uri(uri: str, artifact_dir: str, model_file_name: str, force_overwrite: Optional[bool] = False, auth: Optional[Dict] = None)

	Constructs a ModelArtifact object from the existing model artifacts.

	Parameters

	
	uri (str) – The URI of source artifact folder or achive. Can be local path or
OCI object storage URI.

	artifact_dir (str) – The local artifact folder to store the files needed for deployment.

	model_file_name ((str)) – The file name of the serialized model.

	force_overwrite ((bool, optional). Defaults to False.) – Whether to overwrite existing files or not.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API.
If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate
IdentityClient object.

	Returns

	A ModelArtifact instance

	Return type

	ModelArtifact

	Raises

	ValueError – If uri is equal to artifact_dir, and it not exists.

	
prepare_runtime_yaml(inference_conda_env: str, inference_python_version: Optional[str] = None, training_conda_env: Optional[str] = None, training_python_version: Optional[str] = None, force_overwrite: bool = False, namespace: str = 'id19sfcrra6z', bucketname: str = 'service-conda-packs') → None

	Generate a runtime yaml file and save it to the artifact
directory.

	Parameters

	
	inference_conda_env ((str, optional). Defaults to None.) – The object storage path of conda pack which will be used in deployment.
Can be either slug or object storage path of the conda pack.
You can only pass in slugs if the conda pack is a service pack.

	inference_python_version ((str, optional). Defaults to None.) – The python version which will be used in deployment.

	training_conda_env ((str, optional). Defaults to None.) – The object storage path of conda pack used during training.
Can be either slug or object storage path of the conda pack.
You can only pass in slugs if the conda pack is a service pack.

	training_python_version ((str, optional). Defaults to None.) – The python version used during training.

	force_overwrite ((bool, optional). Defaults to False.) – Whether to overwrite existing files.

	namespace ((str, optional)) – The namespace of region.

	bucketname ((str, optional)) – The bucketname of service pack.

	Raises

	ValueError – If neither slug or conda_env_uri is provided.

	Returns

	A RuntimeInfo instance.

	Return type

	RuntimeInfo

	
prepare_score_py(jinja_template_filename: str)

	write score.py file.

	Parameters

	jinja_template_filename (str.) – The jinja template file name.

	Returns

	Nothing

	Return type

	None

	
reload()

	Syncs the score.py to reload the model and predict function.

	Returns

	Nothing

	Return type

	None

ads.model.generic_model module

	
class ads.model.generic_model.GenericModel(estimator: Callable, artifact_dir: str, properties: Optional[ads.model.model_properties.ModelProperties] = None, auth: Optional[Dict] = None, serialize: bool = True, **kwargs: dict)

	Bases: ads.common.model_metadata_mixin.MetadataMixin, ads.common.model_introspect.Introspectable

Generic Model class which is the base class for all the frameworks including
the unsupported frameworks.

	
algorithm

	The algorithm of the model.

	Type

	str

	
artifact_dir

	Artifact directory to store the files needed for deployment.

	Type

	str

	
auth

	Default authentication is set using the ads.set_auth API. To override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
an authentication signer to instantiate an IdentityClient object.

	Type

	Dict

	
ds_client

	The data science client used by model deployment.

	Type

	DataScienceClient

	
estimator

	Any model object generated by sklearn framework

	Type

	Callable

	
framework

	The framework of the model.

	Type

	str

	
hyperparameter

	The hyperparameters of the estimator.

	Type

	dict

	
metadata_custom

	The model custom metadata.

	Type

	ModelCustomMetadata

	
metadata_provenance

	The model provenance metadata.

	Type

	ModelProvenanceMetadata

	
metadata_taxonomy

	The model taxonomy metadata.

	Type

	ModelTaxonomyMetadata

	
model_artifact

	This is built by calling prepare.

	Type

	ModelArtifact

	
model_deployment

	A ModelDeployment instance.

	Type

	ModelDeployment

	
model_file_name

	Name of the serialized model.

	Type

	str

	
model_id

	The model ID.

	Type

	str

	
properties

	ModelProperties object required to save and deploy model.

	Type

	ModelProperties

	
runtime_info

	A RuntimeInfo instance.

	Type

	RuntimeInfo

	
schema_input

	Schema describes the structure of the input data.

	Type

	Schema

	
schema_output

	Schema describes the structure of the output data.

	Type

	Schema

	
serialize

	Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	Type

	bool

	
version

	The framework version of the model.

	Type

	str

	
delete_deployment(...)

	Deletes the current model deployment.

	
deploy(..., **kwargs)

	Deploys a model.

	
from_model_artifact(uri, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from the specified folder, or zip/tar archive.

	
from_model_catalog(model_id, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from model catalog.

	
introspect(...)

	Runs model introspection.

	
predict(data, ...)

	Returns prediction of input data run against the model deployment endpoint.

	
prepare(..., **kwargs)

	Prepare and save the score.py, serialized model and runtime.yaml file.

	
reload(...)

	Reloads the model artifact files: score.py and the runtime.yaml.

	
save(..., **kwargs)

	Saves model artifacts to the model catalog.

	
summary_status(...)

	Gets a summary table of the current status.

	
verify(data, ...)

	Tests if deployment works in local environment.

Examples

>>> import tempfile
>>> from ads.model.generic_model import GenericModel

>>> class Toy:
... def predict(self, x):
... return x ** 2
>>> estimator = Toy()

>>> model = GenericModel(estimator=estimator, artifact_dir=tempfile.mkdtemp())
>>> model.summary_status()
>>> model.prepare(inference_conda_env="oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Data Exploration and Manipulation for CPU Python 3.7/3.0/dataexpl_p37_cpu_v3",
... inference_python_version="3.7",
... model_file_name="toy_model.pkl",
... training_id=None,
... force_overwrite=True
...)
>>> model.verify(2)
>>> model.save()
>>> model.deploy()
>>> model.predict(2)
>>> model.delete_deployment()

GenericModel Constructor.

	Parameters

	
	estimator ((Callable).) – Trained model.

	artifact_dir (str) – Artifact directory to store the files needed for deployment.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	serialize ((bool, optional). Defaults to True.) – Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	
delete_deployment(wait_for_completion: bool = False)

	Deletes the current deployment.

	Parameters

	wait_for_completion ((bool, optional). Defaults to False.) – Whether to wait till completion.

	Raises

	ValueError – if there is not deployment attached yet.:

	
deploy(wait_for_completion: Optional[bool] = True, display_name: Optional[str] = None, description: Optional[str] = None, deployment_instance_shape: Optional[str] = None, deployment_instance_count: Optional[int] = None, deployment_bandwidth_mbps: Optional[int] = None, deployment_log_group_id: Optional[str] = None, deployment_access_log_id: Optional[str] = None, deployment_predict_log_id: Optional[str] = None, **kwargs: Dict) → ads.model.deployment.model_deployment.ModelDeployment

	Deploys a model. The model needs to be saved to the model catalog at first.

	Parameters

	
	wait_for_completion ((bool, optional). Defaults to True.) – Flag set for whether to wait for deployment to complete before proceeding.

	display_name ((str, optional). Defaults to None.) – The name of the model.

	description ((str, optional). Defaults to None.) – The description of the model.

	deployment_instance_shape ((str, optional). Default to VM.Standard2.1.) – The shape of the instance used for deployment.

	deployment_instance_count ((int, optional). Defaults to 1.) – The number of instance used for deployment.

	deployment_bandwidth_mbps ((int, optional). Defaults to 10.) – The bandwidth limit on the load balancer in Mbps.

	deployment_log_group_id ((str, optional). Defaults to None.) – The oci logging group id. The access log and predict log share the same log group.

	deployment_access_log_id ((str, optional). Defaults to None.) – The access log OCID for the access logs. https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm

	deployment_predict_log_id ((str, optional). Defaults to None.) – The predict log OCID for the predict logs. https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm

	kwargs –
	project_id: (str, optional).
	Project OCID. If not specified, the value will be taken from the environment variables.

	compartment_id(str, optional).
	Compartment OCID. If not specified, the value will be taken from the environment variables.

	max_wait_time(int, optional). Defaults to 1200 seconds.
	Maximum amount of time to wait in seconds.
Negative implies infinite wait time.

	poll_interval(int, optional). Defaults to 60 seconds.
	Poll interval in seconds.

	Returns

	The ModelDeployment instance.

	Return type

	ModelDeployment

	Raises

	ValueError – If model_id is not specified.

	
classmethod from_model_artifact(uri: str, model_file_name: str, artifact_dir: str, auth: Optional[Dict] = None, force_overwrite: Optional[bool] = False, properties: Optional[ads.model.model_properties.ModelProperties] = None, **kwargs: dict) → ads.model.generic_model.GenericModel

	Loads model from a folder, or zip/tar archive.

	Parameters

	
	uri (str) – The folder path, ZIP file path, or TAR file path. It could contain a
seriliazed model(required) as well as any files needed for deployment including:
serialized model, runtime.yaml, score.py and etc. The content of the folder will be
copied to the artifact_dir folder.

	model_file_name (str) – The serialized model file name.

	artifact_dir (str) – The artifact directory to store the files needed for deployment.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	force_overwrite ((bool, optional). Defaults to False.) – Whether to overwrite existing files or not.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	Returns

	An instance of GenericModel class.

	Return type

	GenericModel

	Raises

	ValueError – If model_file_name not provided.

	
classmethod from_model_catalog(model_id: str, model_file_name: str, artifact_dir: str, auth: Optional[Dict] = None, force_overwrite: Optional[bool] = False, properties: Optional[Union[ads.model.model_properties.ModelProperties, Dict]] = None, **kwargs) → ads.model.generic_model.GenericModel

	Loads model from model catalog.

	Parameters

	
	model_id (str) – The model OCID.

	model_file_name ((str)) – The name of the serialized model.

	artifact_dir (str) – The artifact directory to store the files needed for deployment.
Will be created if not exists.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	force_overwrite ((bool, optional). Defaults to False.) – Whether to overwrite existing files or not.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	kwargs –
	compartment_id(str, optional)
	Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout(int, optional). Defaults to 10 seconds.
	The connection timeout in seconds for the client.

	Returns

	An instance of GenericModel class.

	Return type

	GenericModel

	
introspect() → pandas.core.frame.DataFrame

	Conducts instrospection.

	Returns

	A pandas DataFrame which contains the instrospection results.

	Return type

	pandas.DataFrame

	
predict(data: Any) → Dict[str, Any]

	Returns prediction of input data run against the model deployment endpoint.

	Parameters

	data (Any) – JSON serializable data for the prediction for onnx models, for local serialization
method, data can be the data types that each framework support.

	Returns

	Dictionary with the predicted values.

	Return type

	Dict[str, Any]

	Raises

	
	NotActiveDeploymentError – If model deployment process was not started or not finished yet.

	ValueError – If data is empty or not JSON serializable.

	
prepare(inference_conda_env: Optional[str] = None, inference_python_version: Optional[str] = None, training_conda_env: Optional[str] = None, training_python_version: Optional[str] = None, model_file_name: Optional[str] = None, as_onnx: bool = False, initial_types: Optional[List[Tuple]] = None, force_overwrite: bool = False, namespace: str = 'id19sfcrra6z', use_case_type: Optional[str] = None, X_sample: Optional[Union[list, tuple, pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray]] = None, y_sample: Optional[Union[list, tuple, pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray]] = None, training_script_path: Optional[str] = None, training_id: Optional[str] = None, ignore_pending_changes: bool = True, max_col_num: int = 2000, **kwargs: Dict) → None

	Prepare and save the score.py, serialized model and runtime.yaml file.

	Parameters

	
	inference_conda_env ((str, optional). Defaults to None.) – Can be either slug or object storage path of the conda pack.
You can only pass in slugs if the conda pack is a service pack.

	inference_python_version ((str, optional). Defaults to None.) – Python version which will be used in deployment.

	training_conda_env ((str, optional). Defaults to None.) – Can be either slug or object storage path of the conda pack.
You can only pass in slugs if the conda pack is a service pack.
If training_conda_env is not provided, training_conda_env will
use the same value of training_conda_env.

	training_python_version ((str, optional). Defaults to None.) – Python version used during training.

	model_file_name ((str).) – Name of the serialized model.

	as_onnx ((bool, optional). Defaults to False.) – Whether to serialize as onnx model.

	initial_types ((list[Tuple], optional).) – Defaults to None. Only used for SklearnModel, LightGBMModel and XGBoostModel.
Each element is a tuple of a variable name and a type.
Check this link http://onnx.ai/sklearn-onnx/api_summary.html#id2 for
more explanation and examples for initial_types.

	force_overwrite ((bool, optional). Defaults to False.) – Whether to overwrite existing files.

	namespace ((str, optional).) – Namespace of region. This is used for identifying which region the service pack
is from when you pass a slug to inference_conda_env and training_conda_env.

	use_case_type (str) – The use case type of the model. Use it through UserCaseType class or string provided in UseCaseType. For
example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type=”binary_classification”. Check
with UseCaseType class to see all supported types.

	X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.) – A sample of input data that will be used to generate input schema.

	y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.) – A sample of output data that will be used to generate output schema.

	training_script_path (str. Defaults to None.) – Training script path.

	training_id ((str, optional). Defaults to value from environment variables.) – The training OCID for model. Can be notebook session or job OCID.

	ignore_pending_changes (bool. Defaults to False.) – whether to ignore the pending changes in the git.

	max_col_num ((int, optional). Defaults to utils.DATA_SCHEMA_MAX_COL_NUM.) – Do not generate the input schema if the input has more than this
number of features(columns).

	kwargs –
	impute_values: (dict, optional).
	The dictionary where the key is the column index(or names is accepted
for pandas dataframe) and the value is the impute value for the corresponding column.

	Raises

	
	FileExistsError – when files already exist but force_overwrite is False.:

	ValueError – when inference_python_version is not provided, but also cannot be found through manifest file.:

	Returns

	Nothing.

	Return type

	None

	
reload() → None

	Reloads the model artifact files: score.py and the runtime.yaml.

	Returns

	Nothing.

	Return type

	None

	
save(display_name: Optional[str] = None, description: Optional[str] = None, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] = None, ignore_introspection: Optional[bool] = False, **kwargs) → None

	Saves model artifacts to the model catalog.

	Parameters

	
	display_name ((str, optional). Defaults to None.) – The name of the model.

	description ((str, optional). Defaults to None.) – The description of the model.

	freeform_tags (Dict(str, str), Defaults to None.) – Freeform tags for the model.

	defined_tags ((Dict(str, dict(str, object)), optional). Defaults to None.) – Defined tags for the model.

	ignore_introspection ((bool, optional). Defaults to None.) – Determine whether to ignore the result of model introspection or not.
If set to True, the save will ignore all model introspection errors.

	kwargs –
	project_id: (str, optional).
	Project OCID. If not specified, the value will be taken either
from the environment variables or model properties.

	compartment_id(str, optional).
	Compartment OCID. If not specified, the value will be taken either
from the environment variables or model properties.

	timeout: (int, optional). Defaults to 10 seconds.
	The connection timeout in seconds for the client.

	Raises

	RuntimeInfoInconsistencyError – When .runtime_info is not synched with runtime.yaml file.

	Returns

	Nothing

	Return type

	None

	
serialize_model(as_onnx: bool = False, initial_types: Optional[List[Tuple]] = None, force_overwrite: bool = False, X_sample: Optional[any] = None)

	Serialize and save model using ONNX or model specific method.

	Parameters

	
	as_onnx ((boolean, optional)) – If set as True, convert into ONNX model.

	initial_types ((List[Tuple], optional)) – a python list. Each element is a tuple of a variable name and a data type.

	force_overwrite ((boolean, optional)) – If set as True, overwrite serialized model if exists.

	X_sample ((any, optional). Defaults to None.) – Contains model inputs such that model(X_sample) is a valid
invocation of the model, used to valid model input type.

	Returns

	Nothing

	Return type

	None

	
summary_status() → pandas.core.frame.DataFrame

	A summary table of the current status.

	Returns

	The summary stable of the current status.

	Return type

	pd.DataFrame

	
verify(data: Any) → Dict[str, Any]

	test if deployment works in local environment.

	Parameters

	data (Any.) – Data used to test if deployment works in local environment.

	Returns

	A dictionary which contains prediction results.

	Return type

	Dict

	
class ads.model.generic_model.ModelState(value)

	Bases: enum.Enum

An enumeration.

	
AVAILABLE = 'Available'

	

	
DONE = 'Done'

	

	
NEEDSACTION = 'Needs Action'

	

	
NOTAVAILABLE = 'Not Available'

	

	
exception ads.model.generic_model.NotActiveDeploymentError(state: str)

	Bases: Exception

	
exception ads.model.generic_model.RuntimeInfoInconsistencyError

	Bases: Exception

	
exception ads.model.generic_model.SerializeInputNotImplementedError

	Bases: NotImplementedError

	
exception ads.model.generic_model.SerializeModelNotImplementedError

	Bases: NotImplementedError

	
class ads.model.generic_model.SummaryStatus

	Bases: object

SummaryStatus class which track the status of the Model frameworks.

	
update_action(detail: str, action: str) → None

	Updates the action of the summary status table of the corresponding detail.

	Parameters

	
	detail ((str)) – Value of the detail in the Details column. Used to locate which row to update.

	status ((str)) – New status to be updated for the row specified by detail.

	Returns

	Nothing.

	Return type

	None

	
update_status(detail: str, status: str) → None

	Updates the status of the summary status table of the corresponding detail.

	Parameters

	
	detail ((str)) – value of the detail in the Details column. Used to locate which row to update.

	status ((str)) – new status to be updated for the row specified by detail.

	Returns

	Nothing.

	Return type

	None

ads.model.model_properties module

	
class ads.model.model_properties.ModelProperties(inference_conda_env: Optional[str] = None, inference_python_version: Optional[str] = None, training_conda_env: Optional[str] = None, training_python_version: Optional[str] = None, training_resource_id: Optional[str] = None, training_script_path: Optional[str] = None, training_id: Optional[str] = None, compartment_id: Optional[str] = None, project_id: Optional[str] = None, deployment_instance_shape: Optional[str] = None, deployment_instance_count: Optional[int] = None, deployment_bandwidth_mbps: Optional[int] = None, deployment_log_group_id: Optional[str] = None, deployment_access_log_id: Optional[str] = None, deployment_predict_log_id: Optional[str] = None)

	Bases: ads.common.base_properties.BaseProperties

Represents properties required to save and deploy model.

	
compartment_id: str = None

	

	
deployment_access_log_id: str = None

	

	
deployment_bandwidth_mbps: int = None

	

	
deployment_instance_count: int = None

	

	
deployment_instance_shape: str = None

	

	
deployment_log_group_id: str = None

	

	
deployment_predict_log_id: str = None

	

	
inference_conda_env: str = None

	

	
inference_python_version: str = None

	

	
project_id: str = None

	

	
training_conda_env: str = None

	

	
training_id: str = None

	

	
training_python_version: str = None

	

	
training_resource_id: str = None

	

	
training_script_path: str = None

	

ads.model.runtime.runtime_info module

	
class ads.model.runtime.runtime_info.RuntimeInfo(model_artifact_version: str = '', model_deployment: ads.model.runtime.model_deployment_details.ModelDeploymentDetails = <factory>, model_provenance: ads.model.runtime.model_provenance_details.ModelProvenanceDetails = <factory>)

	Bases: ads.common.serializer.DataClassSerializable

RuntimeInfo class which is the data class represenation of the runtime yaml file.

	
classmethod from_env() → ads.model.runtime.runtime_info.RuntimeInfo

	Popolate the RuntimeInfo from environment variables.

	Returns

	A RuntimeInfo instance.

	Return type

	RuntimeInfo

	
model_artifact_version: str = ''

	

	
model_deployment: ads.model.runtime.model_deployment_details.ModelDeploymentDetails

	

	
model_provenance: ads.model.runtime.model_provenance_details.ModelProvenanceDetails

	

	
save()

	Save the RuntimeInfo object into runtime.yaml file under the artifact directory.

	Returns

	Nothing.

	Return type

	None

ads.model.extractor.model_info_extractor_factory module

	
class ads.model.extractor.model_info_extractor_factory.ModelInfoExtractorFactory

	Bases: object

Class that extract Model Taxonomy Metadata for all supported frameworks.

	
static extract_info(model)

	Extracts model taxonomy metadata.

	Parameters

	model ([ADS model, sklearn, xgboost, lightgbm, keras, oracle_automl]) – The model object

	Returns

	A dictionary with keys of Framework, FrameworkVersion, Algorithm, Hyperparameters of the model

	Return type

	ModelTaxonomyMetadata

Examples

>>> from ads.common.model_info_extractor_factory import ModelInfoExtractorFactory
>>> metadata_taxonomy = ModelInfoExtractorFactory.extract_info(model)

ads.model.extractor.model_artifact module

ads.model.extractor.automl_extractor module

	
class ads.model.extractor.automl_extractor.AutoMLExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from automl models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

ads.model.extractor.xgboost_extractor module

	
class ads.model.extractor.xgboost_extractor.XgboostExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from xgboost models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
framework(self) → str

	Returns the framework of the model.

	
algorithm(self) → object

	Returns the algorithm of the model.

	
version(self) → str

	Returns the version of framework of the model.

	
hyperparameter(self) → dict

	Returns the hyperparameter of the model.

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

ads.model.extractor.lightgbm_extractor module

	
class ads.model.extractor.lightgbm_extractor.LightgbmExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from lightgbm models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
framework(self) → str

	Returns the framework of the model.

	
algorithm(self) → object

	Returns the algorithm of the model.

	
version(self) → str

	Returns the version of framework of the model.

	
hyperparameter(self) → dict

	Returns the hyperparameter of the model.

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

ads.model.extractor.model_info_extractor module

	
class ads.model.extractor.model_info_extractor.ModelInfoExtractor

	Bases: abc.ABC

The base abstract class to extract model metadata.

	
framework(self) → str

	Returns the framework of the model.

	
algorithm(self) → object

	Returns the algorithm of the model.

	
version(self) → str

	Returns the version of framework of the model.

	
hyperparameter(self) → dict

	Returns the hyperparameter of the model.

	
info(self) → dict

	Returns the model taxonomy metadata information.

	
abstract algorithm()

	The abstract method to extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
abstract framework()

	The abstract method to extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
abstract hyperparameter()

	The abstract method to extracts the hyperparameters of the model.

	Returns

	The hyperparameter of the model.

	Return type

	dict

	
info()

	Extracts the taxonomy metadata of the model.

	Returns

	The taxonomy metadata of the model.

	Return type

	dict

	
abstract version()

	The abstract method to extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

	
ads.model.extractor.model_info_extractor.normalize_hyperparameter(data: Dict) → dict

	Converts all the fields to string to make sure it’s
json serializable.

	Parameters

	data (([Dict])) – The hyperparameter returned by the model.

	Returns

	Normalized (json serializable) dictionary.

	Return type

	Dict

ads.model.extractor.sklearn_extractor module

	
class ads.model.extractor.sklearn_extractor.SklearnExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from sklearn models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
framework(self) → str

	Returns the framework of the model.

	
algorithm(self) → object

	Returns the algorithm of the model.

	
version(self) → str

	Returns the version of framework of the model.

	
hyperparameter(self) → dict

	Returns the hyperparameter of the model.

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

ads.model.extractor.keras_extractor module

	
class ads.model.extractor.keras_extractor.KerasExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from keras models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

ads.model.extractor.tensorflow_extractor module

	
class ads.model.extractor.tensorflow_extractor.TensorflowExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from tensorflow models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
framework(self) → str

	Returns the framework of the model.

	
algorithm(self) → object

	Returns the algorithm of the model.

	
version(self) → str

	Returns the version of framework of the model.

	
hyperparameter(self) → dict

	Returns the hyperparameter of the model.

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

ads.model.extractor.pytorch_extractor module

	
class ads.model.extractor.pytorch_extractor.PytorchExtractor(model)

	Bases: ads.model.extractor.model_info_extractor.ModelInfoExtractor

Class that extract model metadata from pytorch models.

	
model

	The model to extract metadata from.

	Type

	object

	
estimator

	The estimator to extract metadata from.

	Type

	object

	
framework(self) → str

	Returns the framework of the model.

	
algorithm(self) → object

	Returns the algorithm of the model.

	
version(self) → str

	Returns the version of framework of the model.

	
hyperparameter(self) → dict

	Returns the hyperparameter of the model.

	
property algorithm

	Extracts the algorithm of the model.

	Returns

	The algorithm of the model.

	Return type

	object

	
property framework

	Extracts the framework of the model.

	Returns

	The framework of the model.

	Return type

	str

	
property hyperparameter

	Extracts the hyperparameters of the model.

	Returns

	The hyperparameters of the model.

	Return type

	dict

	
property version

	Extracts the framework version of the model.

	Returns

	The framework version of the model.

	Return type

	str

Module contents

 ads.model.deployment package

ads.model.deployment package

Submodules

ads.model.deployment.model_deployer module

APIs to interact with Oracle’s Model Deployment service.

There are three main classes: ModelDeployment, ModelDeploymentDetails, ModelDeployer.

One creates a ModelDeployment and deploys it under the umbrella of the ModelDeployer class. This way
multiple ModelDeployments can be unified with one ModelDeployer. The ModelDeployer class also serves
as the interface to all the deployments. ModelDeploymentDetails holds information about the particular
details of a particular deployment, such as how many instances, etc. In this way multiple, independent
ModelDeployments with the same details can be created using the ModelDeployer class.

Examples

>>> from model_deploy.model_deployer import ModelDeployer, ModelDeploymentDetails
>>> deployer = ModelDeployer("model_dep_conf.yaml")
>>> deployment_properties = ModelDeploymentProperties(
... 'ocid1.datasciencemodel.ocn.reg.xxxxxxxxxxxxxxxxxxxxxxxxx')
... .with_prop('display_name', "My model display name")
... .with_prop("project_id", project_id)
... .with_prop("compartment_id", compartment_id)
... .with_instance_configuration(
... config={"INSTANCE_SHAPE":"VM.Standard2.1",
... "INSTANCE_COUNT":"1",
... 'bandwidth_mbps':10})
... .build()
>>> deployment_info = deployer.deploy(deployment_properties,
... max_wait_time=600, poll_interval=15)
>>> print(deployment_info.model_deployment_id)
>>> print(deployment_info.workflow_req_id)
>>> print(deployment_info.url)
>>> deployer.list_deployments() # Optionally pass in a status

	
class ads.model.deployment.model_deployer.ModelDeployer(config: Optional[dict] = None)

	Bases: object

ModelDeployer is the class responsible for deploying the ModelDeployment

	
config

	ADS auth dictionary for OCI authentication.

	Type

	dict

	
ds_client

	data science client

	Type

	DataScienceClient

	
ds_composite_client

	composite data science client

	Type

	DataScienceCompositeClient

	
deploy(model_deployment_details, **kwargs)

	Deploy the model specified by model_deployment_details.

	
get_model_deployment(model_deployment_id: str)

	Get the ModelDeployment specified by model_deployment_id.

	
get_model_deployment_state(model_deployment_id)

	Get the state of the current deployment specified by id.

	
delete(model_deployment_id, **kwargs)

	Remove the model deployment specified by the id or Model Deployment Object

	
list_deployments(status)

	lists the model deployments associated with current compartment and data
science client

	
show_deployments(status)

	shows the deployments filtered by status in a Dataframe

Initializes model deployer.

	Parameters

	config (dict, optional) – ADS auth dictionary for OCI authentication.
This can be generated by calling ads.common.auth.api_keys() or ads.common.auth.resource_principal().
If this is None, ads.common.default_signer(client_kwargs) will be used.

	
delete(model_deployment_id, wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30) → ads.model.deployment.model_deployment.ModelDeployment

	Deletes the model deployment specified by OCID.

	Parameters

	
	model_deployment_id (str) – Model deployment OCID.

	wait_for_completion (bool) – Wait for deletion to complete. Defaults to True.

	max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 600).
Negative implies infinite wait time.

	poll_interval (int) – Poll interval in seconds (Defaults to 60).

	Return type

	A ModelDeployment instance that was deleted

	
deploy(properties: Optional[Union[ads.model.deployment.model_deployment_properties.ModelDeploymentProperties, Dict]] = None, wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs) → ads.model.deployment.model_deployment.ModelDeployment

	Deploys a model.

	Parameters

	
	properties (ModelDeploymentProperties or dict) – Properties to deploy the model.
Properties can be None when kwargs are used for specifying properties.

	wait_for_completion (bool) – Flag set for whether to wait for deployment to complete before proceeding.
Optional, defaults to True.

	max_wait_time (int) – Maximum amount of time to wait in seconds. Optional, defaults to 1200.
Negative value implies infinite wait time.

	poll_interval (int) – Poll interval in seconds. Optional, defaults to 30.

	kwargs – Keyword arguments for initializing ModelDeploymentProperties.
See ModelDeploymentProperties() for details.

	Returns

	A ModelDeployment instance.

	Return type

	ModelDeployment

	
deploy_from_model_uri(model_uri: str, properties: Optional[Union[ads.model.deployment.model_deployment_properties.ModelDeploymentProperties, Dict]] = None, wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs) → ads.model.deployment.model_deployment.ModelDeployment

	Deploys a model.

	Parameters

	
	model_uri (str) – uri to model files, can be local or in cloud storage

	properties (ModelDeploymentProperties or dict) – Properties to deploy the model.
Properties can be None when kwargs are used for specifying properties.

	wait_for_completion (bool) – Flag set for whether to wait for deployment to complete before proceeding.
Defaults to True

	max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 1200).
Negative implies infinite wait time.

	poll_interval (int) – Poll interval in seconds (Defaults to 30).

	kwargs – Keyword arguments for initializing ModelDeploymentProperties

	Returns

	A ModelDeployment instance

	Return type

	ModelDeployment

	
get_model_deployment(model_deployment_id: str) → ads.model.deployment.model_deployment.ModelDeployment

	Gets a ModelDeployment by OCID.

	Parameters

	model_deployment_id (str) – Model deployment OCID

	Returns

	A ModelDeployment instance

	Return type

	ModelDeployment

	
get_model_deployment_state(model_deployment_id: str) → ads.model.deployment.common.utils.State

	Gets the state of a deployment specified by OCID

	Parameters

	model_deployment_id (str) – Model deployment OCID

	Returns

	The state of the deployment

	Return type

	str

	
list_deployments(status=None, compartment_id=None, **kwargs) → list

	Lists the model deployments associated with current compartment and data science client

	Parameters

	
	status (str) – Status of deployment. Defaults to None.

	compartment_id (str) – Target compartment to list deployments from.
Defaults to the compartment set in the environment variable “NB_SESSION_COMPARTMENT_OCID”.
If “NB_SESSION_COMPARTMENT_OCID” is not set, the root compartment ID will be used.
An ValueError will be raised if root compartment ID cannot be determined.

	kwargs – The values are passed to oci.data_science.DataScienceClient.list_model_deployments.

	Returns

	A list of ModelDeployment objects.

	Return type

	list

	Raises

	ValueError – If compartment_id is not specified and cannot be determined from the environment.

	
show_deployments(status=None, compartment_id=None) → pandas.core.frame.DataFrame

	
	Returns the model deployments associated with current compartment and data science client
	as a Dataframe that can be easily visualized

	Parameters

	
	status (str) – Status of deployment. Defaults to None.

	compartment_id (str) – Target compartment to list deployments from.
Defaults to the compartment set in the environment variable “NB_SESSION_COMPARTMENT_OCID”.
If “NB_SESSION_COMPARTMENT_OCID” is not set, the root compartment ID will be used.
An ValueError will be raised if root compartment ID cannot be determined.

	Returns

	pandas Dataframe containing information about the ModelDeployments

	Return type

	DataFrame

	Raises

	ValueError – If compartment_id is not specified and cannot be determined from the environment.

	
update(model_deployment_id: str, properties: Optional[ads.model.deployment.model_deployment_properties.ModelDeploymentProperties] = None, wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs) → ads.model.deployment.model_deployment.ModelDeployment

	Updates an existing model deployment.

	Parameters

	
	model_deployment_id (str) – Model deployment OCID.

	properties (ModelDeploymentProperties) – An instance of ModelDeploymentProperties or dict to initialize the ModelDeploymentProperties.
Defaults to None.

	wait_for_completion (bool) – Flag set for whether to wait for deployment to complete before proceeding.
Defaults to True.

	max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 1200).

	poll_interval (int) – Poll interval in seconds (Defaults to 30).

	kwargs – Keyword arguments for initializing ModelDeploymentProperties.

	Returns

	A ModelDeployment instance

	Return type

	ModelDeployment

ads.model.deployment.model_deployment module

	
class ads.model.deployment.model_deployment.ModelDeployment(properties=None, config=None, workflow_req_id=None, model_deployment_id=None, model_deployment_url='', **kwargs)

	Bases: object

A class used to represent a Model Deployment.

	
config

	Deployment configuration parameters

	Type

	(dict)

	
deployment_properties

	ModelDeploymentProperties object

	Type

	(ModelDeploymentProperties)

	
workflow_state_progress

	Workflow request id

	Type

	(str)

	
workflow_steps

	The number of steps in the workflow

	Type

	(int)

	
url

	The model deployment url endpoint

	Type

	(str)

	
ds_client

	The data science client used by model deployment

	Type

	(DataScienceClient)

	
ds_composite_client

	The composite data science client used by the model deployment

	Type

	(DataScienceCompositeClient)

	
workflow_req_id

	Workflow request id

	Type

	(str)

	
model_deployment_id

	model deployment id

	Type

	(str)

	
state

	Returns the deployment state of the current Model Deployment object

	Type

	(State)

	
deploy(wait_for_completion, **kwargs)

	Deploy the current Model Deployment object

	
delete(wait_for_completion, **kwargs)

	Deletes the current Model Deployment object

	
update(wait_for_completion, **kwargs)

	Updates a model deployment

	
list_workflow_logs()

	Returns a list of the steps involved in deploying a model

Initializes a ModelDeployment

	Parameters

	
	properties (ModelDeploymentProperties or dict) – Object containing deployment properties.
properties can be None when kwargs are used for specifying properties.

	config (dict) – ADS auth dictionary for OCI authentication.
This can be generated by calling ads.common.auth.api_keys() or ads.common.auth.resource_principal().
If this is None, ads.common.default_signer(client_kwargs) will be used.

	workflow_req_id (str) – Workflow request id. Defaults to “”

	model_deployment_id (str) – Model deployment OCID. Defaults to “”

	model_deployment_url (str) – Model deployment url. Defaults to “”

	kwargs – Keyword arguments for initializing ModelDeploymentProperties

	
property access_log: ads.model.deployment.model_deployment.ModelDeploymentLog

	Gets the model deployment predict logs object.

	Returns

	The ModelDeploymentLog object containing the predict logs.

	Return type

	ModelDeploymentLog

	
delete(wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30)

	Deletes the ModelDeployment

	Parameters

	
	wait_for_completion (bool) – Flag set for whether to wait for deployment to complete before proceeding.
Defaults to True.

	max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 600).
Negative implies infinite wait time.

	poll_interval (int) – Poll interval in seconds (Defaults to 60).

	Returns

	The instance of ModelDeployment.

	Return type

	ModelDeployment

	
deploy(wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30)

	deploy deploys the current ModelDeployment object

	Parameters

	
	wait_for_completion (bool) – Flag set for whether to wait for deployment to complete before proceeding.
Defaults to True.

	max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 600).
Negative implies infinite wait time.

	poll_interval (int) – Poll interval in seconds (Defaults to 60).

	Returns

	The instance of ModelDeployment.

	Return type

	ModelDeployment

	
list_workflow_logs() → list

	Returns a list of the steps involved in deploying a model

	Returns

	List of dictionaries detailing the status of each step in the deployment process.

	Return type

	list

	
logs(log_type: str = 'access', **kwargs)

	Gets the access or predict logs.

	Parameters

	
	log_type ((str, optional). Defaults to "access".) – The log type. Can be “access” or “predict”.

	kwargs (dict) – Back compatability arguments.

	Returns

	The ModelDeploymentLog object containing the logs.

	Return type

	ModelDeploymentLog

	
predict(json_input: dict) → dict

	Returns prediction of input data run against the model deployment endpoint

	Parameters

	json_input (dict) – JSON payload for the prediction.

	Returns

	Prediction results.

	Return type

	dict

	
property predict_log: ads.model.deployment.model_deployment.ModelDeploymentLog

	Gets the model deployment predict logs object.

	Returns

	The ModelDeploymentLog object containing the predict logs.

	Return type

	ModelDeploymentLog

	
show_logs(time_start: Optional[datetime.datetime] = None, time_end: Optional[datetime.datetime] = None, limit=100, log_type='access')

	Shows deployment logs as a pandas dataframe.

	Parameters

	
	time_start ((datetime.datetime, optional). Defaults to None.) – Starting date and time in RFC3339 format for retrieving logs.
Defaults to None. Logs will be retrieved 14 days from now.

	time_end ((datetime.datetime, optional). Defaults to None.) – Ending date and time in RFC3339 format for retrieving logs.
Defaults to None. Logs will be retrieved until now.

	limit ((int, optional). Defaults to 100.) – The maximum number of items to return.

	log_type ((str, optional). Defaults to "access".) – The log type. Can be “access” or “predict”.

	Return type

	A pandas DataFrame containing logs.

	
property state: ads.model.deployment.common.utils.State

	Returns the deployment state of the current Model Deployment object

	
property status: ads.model.deployment.common.utils.State

	Returns the deployment state of the current Model Deployment object

	
update(properties: Optional[Union[ads.model.deployment.model_deployment_properties.ModelDeploymentProperties, dict]] = None, wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs)

	Updates a model deployment

You can update model_deployment_configuration_details and change instance_shape and model_id
when the model deployment is in the ACTIVE lifecycle state.
The bandwidth_mbps or instance_count can only be updated while the model deployment is in the INACTIVE state.
Changes to the bandwidth_mbps or instance_count will take effect the next time
the ActivateModelDeployment action is invoked on the model deployment resource.

	Parameters

	
	properties (ModelDeploymentProperties or dict) – The properties for updating the deployment.

	wait_for_completion (bool) – Flag set for whether to wait for deployment to complete before proceeding.
Defaults to True.

	max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 1200).
Negative implies infinite wait time.

	poll_interval (int) – Poll interval in seconds (Defaults to 60).

	kwargs – dict

	Returns

	The instance of ModelDeployment.

	Return type

	ModelDeployment

	
class ads.model.deployment.model_deployment.ModelDeploymentLog(model_deployment_id: str, **kwargs)

	Bases: ads.common.oci_logging.OCILog

The class representing model deployment logs.

Initializes an OCI log model for the model deployment.

	Parameters

	
	model_deployment_id (str) – The OCID of the model deployment.
This parameter will be used as a source field to filter the log records.

	kwargs (dict) – Keyword arguments for initializing ModelDeploymentLog.

	
head(limit=100, time_start: Optional[datetime.datetime] = None) → None

	Prints the preceding log records.

	Parameters

	
	limit ((int, optional). Defaults to 100.) – Maximum number of records to be returned.

	time_start ((datetime.datetime, optional)) – Starting time for the log query.
Defaults to None. Logs up to 14 days from now will be returned.

	Returns

	Nothing

	Return type

	None

	
stream(interval: int = 3, stop_condition: Optional[callable] = None, time_start: Optional[datetime.datetime] = None) → None

	Streams logs to console/terminal until stop_condition() returns true.

	Parameters

	
	interval ((int, optional). Defaults to 3 seconds.) – The time interval between sending each request to pull logs from OCI.

	stop_condition ((callable, optional). Defaults to None.) – A function to determine if the streaming should stop.
The log streaming will stop if the function returns true.

	time_start (datetime.datetime) – Starting time for the log query.
Defaults to None. Logs up to 14 days from now will be returned.

	Returns

	Nothing

	Return type

	None

	
tail(limit=100, time_start: Optional[datetime.datetime] = None) → None

	Prints the most recent log records.

	Parameters

	
	limit ((int, optional). Defaults to 100.) – Maximum number of records to be returned.

	time_start ((datetime.datetime, optional)) – Starting time for the log query.
Defaults to None. Logs up to 14 days from now will be returned.

	Returns

	Nothing

	Return type

	None

	
class ads.model.deployment.model_deployment.ModelDeploymentLogType

	Bases: object

	
ACCESS = 'access'

	

	
PREDICT = 'predict'

	

ads.model.deployment.model_deployment_properties module

	
class ads.model.deployment.model_deployment_properties.ModelDeploymentProperties(model_id: Optional[str] = None, model_uri: Optional[str] = None, oci_model_deployment: Optional[Union[oci.data_science.models.model_deployment.ModelDeployment, oci.data_science.models.create_model_deployment_details.CreateModelDeploymentDetails, oci.data_science.models.update_model_deployment_details.UpdateModelDeploymentDetails, dict]] = None, config: Optional[dict] = None, **kwargs)

	Bases: ads.common.oci_datascience.OCIDataScienceMixin, oci.data_science.models.model_deployment.ModelDeployment

Represents the details for a model deployment

	
swagger_types

	The property names and the corresponding types of OCI ModelDeployment model.

	Type

	dict

	
model_id

	The model artifact OCID in model catalog.

	Type

	str

	
model_uri

	uri to model files, can be local or in cloud storage.

	Type

	str

	
with_prop(property_name, value)

	Set the model deployment details property_name attribute to value

	
with_instance_configuration(config)

	Set the configuration of VM instance.

	
with_access_log(log_group_id, log_id)

	Config the access log with OCI logging service

	
with_predict_log(log_group_id, log_id)

	Config the predict log with OCI logging service

	
build()

	Return an instance of CreateModelDeploymentDetails for creating the deployment.

Initialize a ModelDeploymentProperties object by specifying one of the followings:

	Parameters

	
	model_id (str) – Model Artifact OCID. The model_id must be specified either
explicitly or as an attribute of the OCI object.

	model_uri (str) – uri to model files, can be local or in cloud storage.

	oci_model_deployment (ModelDeployment or CreateModelDeploymentDetails or UpdateModelDeploymentDetails or dict) – An OCI model or dict containing model deployment details.
The OCI model can be an instance of either ModelDeployment,
CreateModelDeploymentDetails or UpdateModelConfigurationDetails.

	config (dict) – ADS auth dictionary for OCI authentication.
This can be generated by calling ads.common.auth.api_keys() or
ads.common.auth.resource_principal().
If this is None, ads.common.default_signer(client_kwargs) will be used.

	kwargs – Users can also initialize the object by using keyword arguments.
The following keyword arguments are supported by OCI models:

	display_name,

	description,

	project_id,

	compartment_id,

	model_deployment_configuration_details,

	category_log_details,

	freeform_tags,

	defined_tags.

ModelDeploymentProperties also supports the following additional
keyward arguments:

	instance_shape,

	instance_count,

	bandwidth_mbps,

	access_log_group_id,

	access_log_id,

	predict_log_group_id,

	predict_log_id.

These additional arguments will be saved into appropriate properties
in the OCI model.

	Raises

	ValueError – model_id is None AND not specified in
 oci_model_deployment.model_deployment_configuration_details.model_configuration_details.

	
build() → oci.data_science.models.create_model_deployment_details.CreateModelDeploymentDetails

	Converts the deployment properties to OCI CreateModelDeploymentDetails object.
Converts a model URI into a model OCID if user passed in a URI.

	Returns

	A CreateModelDeploymentDetails instance ready for OCI API.

	Return type

	CreateModelDeploymentDetails

	
sub_properties = ['instance_shape', 'instance_count', 'bandwidth_mbps', 'access_log_group_id', 'access_log_id', 'predict_log_group_id', 'predict_log_id']

	

	
to_oci_model(oci_model)

	Convert properties into an OCI data model

	Parameters

	oci_model (class) – The class of OCI data model, e.g., oci.data_science_models.CreateModelDeploymentDetails

	
to_update_deployment() → oci.data_science.models.update_model_deployment_details.UpdateModelDeploymentDetails

	Converts the deployment properties to OCI UpdateModelDeploymentDetails object.

	Returns

	An UpdateModelDeploymentDetails instance ready for OCI API.

	Return type

	CreateModelDeploymentDetails

	
with_access_log(log_group_id: str, log_id: str)

	Adds access log config

	Parameters

	
	group_id (str) – Log group ID of OCI logging service

	log_id (str) – Log ID of OCI logging service

	Returns

	self

	Return type

	ModelDeploymentProperties

	
with_category_log(log_type: str, group_id: str, log_id: str)

	Adds category log configuration

	Parameters

	
	log_type (str) – The type of logging to be configured. Must be “access” or “predict”

	group_id (str) – Log group ID of OCI logging service

	log_id (str) – Log ID of OCI logging service

	Returns

	self

	Return type

	ModelDeploymentProperties

	Raises

	ValueError – When log_type is invalid

	
with_instance_configuration(config)

	with_instance_configuration creates a ModelDeploymentDetails object with a specific config

	Parameters

	config (dict) – dictionary containing instance configuration about the deployment.
The following keys are supported:

	instance_shape,

	instance_count,

	bandwidth_mbps.

The instance_shape and instance_count are required when creating a new deployment.
They are optional when updating an existing deployment.

	Returns

	self

	Return type

	ModelDeploymentProperties

	
with_logging_configuration(access_log_group_id: str, access_log_id: str, predict_log_group_id: Optional[str] = None, predict_log_id: Optional[str] = None)

	Adds OCI logging configurations for OCI logging service

	Parameters

	
	access_log_group_id (str) – Log group ID of OCI logging service for access log

	access_log_id (str) – Log ID of OCI logging service for access log

	predict_log_group_id (str) – Log group ID of OCI logging service for predict log

	predict_log_id (str) – Log ID of OCI logging service for predict log

	Returns

	self

	Return type

	ModelDeploymentProperties

	
with_predict_log(log_group_id: str, log_id: str)

	Adds predict log config

	Parameters

	
	group_id (str) – Log group ID of OCI logging service

	log_id (str) – Log ID of OCI logging service

	Returns

	self

	Return type

	ModelDeploymentProperties

	
with_prop(property_name: str, value: Any)

	Sets model deployment’s property_name attribute to value

	Parameters

	
	property_name (str) – Name of a model deployment property.

	value – New value for property attribute.

	Returns

	self

	Return type

	ModelDeploymentProperties

Module contents

 ads.model.framework package

ads.model.framework package

Submodules

ads.model.framework.automl_model module

	
class ads.model.framework.automl_model.AutoMLModel(estimator: Callable, artifact_dir: str, properties: Optional[ads.model.model_properties.ModelProperties] = None, auth: Optional[Dict] = None, **kwargs)

	Bases: ads.model.generic_model.GenericModel

AutoMLModel class for estimators from AutoML framework.

	
algorithm

	“ensemble”, the algorithm name of the model.

	Type

	str

	
artifact_dir

	Artifact directory to store the files needed for deployment.

	Type

	str

	
auth

	Default authentication is set using the ads.set_auth API. To override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
an authentication signer to instantiate an IdentityClient object.

	Type

	Dict

	
ds_client

	The data science client used by model deployment.

	Type

	DataScienceClient

	
estimator

	A trained automl estimator/model using oracle automl.

	Type

	Callable

	
framework

	“oracle_automl”, the framework name of the estimator.

	Type

	str

	
hyperparameter

	The hyperparameters of the estimator.

	Type

	dict

	
metadata_custom

	The model custom metadata.

	Type

	ModelCustomMetadata

	
metadata_provenance

	The model provenance metadata.

	Type

	ModelProvenanceMetadata

	
metadata_taxonomy

	The model taxonomy metadata.

	Type

	ModelTaxonomyMetadata

	
model_artifact

	This is built by calling prepare.

	Type

	ModelArtifact

	
model_deployment

	A ModelDeployment instance.

	Type

	ModelDeployment

	
model_file_name

	Name of the serialized model. Default to “model.pkl”.

	Type

	str

	
model_id

	The model ID.

	Type

	str

	
properties

	ModelProperties object required to save and deploy model.

	Type

	ModelProperties

	
runtime_info

	A RuntimeInfo instance.

	Type

	RuntimeInfo

	
schema_input

	Schema describes the structure of the input data.

	Type

	Schema

	
schema_output

	Schema describes the structure of the output data.

	Type

	Schema

	
serialize

	Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	Type

	bool

	
version

	The framework version of the model.

	Type

	str

	
delete_deployment(...)

	Deletes the current model deployment.

	
deploy(..., **kwargs)

	Deploys a model.

	
from_model_artifact(uri, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from the specified folder, or zip/tar archive.

	
from_model_catalog(model_id, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from model catalog.

	
introspect(...)

	Runs model introspection.

	
predict(data, ...)

	Returns prediction of input data run against the model deployment endpoint.

	
prepare(..., **kwargs)

	Prepare and save the score.py, serialized model and runtime.yaml file.

	
reload(...)

	Reloads the model artifact files: score.py and the runtime.yaml.

	
save(..., **kwargs)

	Saves model artifacts to the model catalog.

	
summary_status(...)

	Gets a summary table of the current status.

	
verify(data, ...)

	Tests if deployment works in local environment.

Examples

>>> import tempfile
>>> import logging
>>> import warnings
>>> from ads.automl.driver import AutoML
>>> from ads.automl.provider import OracleAutoMLProvider
>>> from ads.dataset.dataset_browser import DatasetBrowser
>>> from ads.model.framework.automl_model import AutoMLModel
>>> from ads.common.model_metadata import UseCaseType
>>> ds = DatasetBrowser.sklearn().open("wine").set_target("target")
>>> train, test = ds.train_test_split(test_size=0.1, random_state = 42)

>>> ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
>>> oracle_automl = AutoML(train, provider=ml_engine)
>>> model, baseline = oracle_automl.train(
... model_list=['LogisticRegression', 'DecisionTreeClassifier'],
... random_state = 42,
... time_budget = 500
...)

>>> automl_model.prepare(inference_conda_env=inference_conda_env, force_overwrite=True)
>>> automl_model.verify(...)
>>> automl_model.save()
>>> model_deployment = automl_model.deploy(wait_for_completion=False)

Initiates a AutoMLModel instance.

	Parameters

	
	estimator (Callable) – Any model object generated by automl framework.

	artifact_dir (str) – Directory for generate artifact.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	AutoMLModel instance.

	Return type

	AutoMLModel

	Raises

	TypeError – If the input model is not an AutoML model.

	
serialize_model(force_overwrite: Optional[bool] = False, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs: Dict)

	Serialize and save AutoML model using pkl.

	Parameters

	
	force_overwrite ((bool, optional). Defaults to False.) – If set as True, overwrite serialized model if exists.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate input schema.

	Returns

	Nothing.

	Return type

	None

ads.model.framework.lightgbm_model module

	
class ads.model.framework.lightgbm_model.LightGBMModel(estimator: Callable, artifact_dir: str, properties: Optional[ads.model.model_properties.ModelProperties] = None, auth: Optional[Dict] = None, **kwargs)

	Bases: ads.model.generic_model.GenericModel

LightGBMModel class for estimators from Lightgbm framework.

	
algorithm

	The algorithm of the model.

	Type

	str

	
artifact_dir

	Artifact directory to store the files needed for deployment.

	Type

	str

	
auth

	Default authentication is set using the ads.set_auth API. To override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
an authentication signer to instantiate an IdentityClient object.

	Type

	Dict

	
ds_client

	The data science client used by model deployment.

	Type

	DataScienceClient

	
estimator

	A trained lightgbm estimator/model using Lightgbm.

	Type

	Callable

	
framework

	“lightgbm”, the framework name of the model.

	Type

	str

	
hyperparameter

	The hyperparameters of the estimator.

	Type

	dict

	
metadata_custom

	The model custom metadata.

	Type

	ModelCustomMetadata

	
metadata_provenance

	The model provenance metadata.

	Type

	ModelProvenanceMetadata

	
metadata_taxonomy

	The model taxonomy metadata.

	Type

	ModelTaxonomyMetadata

	
model_artifact

	This is built by calling prepare.

	Type

	ModelArtifact

	
model_deployment

	A ModelDeployment instance.

	Type

	ModelDeployment

	
model_file_name

	Name of the serialized model.

	Type

	str

	
model_id

	The model ID.

	Type

	str

	
properties

	ModelProperties object required to save and deploy model.

	Type

	ModelProperties

	
runtime_info

	A RuntimeInfo instance.

	Type

	RuntimeInfo

	
schema_input

	Schema describes the structure of the input data.

	Type

	Schema

	
schema_output

	Schema describes the structure of the output data.

	Type

	Schema

	
serialize

	Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	Type

	bool

	
version

	The framework version of the model.

	Type

	str

	
delete_deployment(...)

	Deletes the current model deployment.

	
deploy(..., **kwargs)

	Deploys a model.

	
from_model_artifact(uri, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from the specified folder, or zip/tar archive.

	
from_model_catalog(model_id, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from model catalog.

	
introspect(...)

	Runs model introspection.

	
predict(data, ...)

	Returns prediction of input data run against the model deployment endpoint.

	
prepare(..., **kwargs)

	Prepare and save the score.py, serialized model and runtime.yaml file.

	
reload(...)

	Reloads the model artifact files: score.py and the runtime.yaml.

	
save(..., **kwargs)

	Saves model artifacts to the model catalog.

	
summary_status(...)

	Gets a summary table of the current status.

	
verify(data, ...)

	Tests if deployment works in local environment.

Examples

>>> import lightgbm as lgb
>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.lightgbm_model import LightGBMModel

>>> iris = load_iris()
>>> X, y = iris.data, iris.target

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> train = lgb.Dataset(X_train, label=y_train)
>>> param = {
... 'objective': 'multiclass', 'num_class': 3,
... }
>>> lightgbm_estimator = lgb.train(param, train)

>>> lightgbm_model = LightGBMModel(estimator=lightgbm_estimator,
... artifact_dir=tempfile.mkdtemp())

>>> lightgbm_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_overwrite=True)
>>> lightgbm_model.reload()
>>> lightgbm_model.verify(X_test)
>>> lightgbm_model.save()
>>> model_deployment = lightgbm_model.deploy(wait_for_completion=False)
>>> lightgbm_model.predict(X_test)

Initiates a LightGBMModel instance. This class wraps the Lightgbm model as estimator.
It’s primary purpose is to hold the trained model and do serialization.

	Parameters

	
	estimator – any model object generated by Lightgbm framework

	artifact_dir (str) – Directory for generate artifact.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	LightGBMModel instance.

	Return type

	LightGBMModel

	Raises

	TypeError – If the input model is not a Lightgbm model or not supported for serialization.:

Examples

>>> import lightgbm as lgb
>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.lightgbm_model import LightGBMModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> train = lgb.Dataset(X_train, label=y_train)
>>> param = {
... 'objective': 'multiclass', 'num_class': 3,
... }
>>> lightgbm_estimator = lgb.train(param, train)
>>> lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_dir=tempfile.mkdtemp())
>>> lightgbm_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
>>> lightgbm_model.verify(X_test)
>>> lightgbm_model.save()
>>> model_deployment = lightgbm_model.deploy()
>>> lightgbm_model.predict(X_test)
>>> lightgbm_model.delete_deployment()

	
generate_initial_types(X_sample: Any) → List

	Auto generate intial types.

	Parameters

	X_sample ((Any)) – Train data.

	Returns

	Initial types.

	Return type

	List

	
serialize_model(as_onnx: bool = False, initial_types: Optional[List[Tuple]] = None, force_overwrite: bool = False, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs: Dict)

	Serialize and save Lightgbm model using ONNX or model specific method.

	Parameters

	
	artifact_dir (str) – Directory for generate artifact.

	as_onnx ((boolean, optional). Defaults to False.) – If set as True, provide initial_types or X_sample to convert into ONNX.

	initial_types ((List[Tuple], optional). Defaults to None.) – Each element is a tuple of a variable name and a type.

	force_overwrite ((boolean, optional). Defaults to False.) – If set as True, overwrite serialized model if exists.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate initial_types.

	Returns

	Nothing.

	Return type

	None

	
to_onnx(initial_types: List[Tuple] = None, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs)

	Produces an equivalent ONNX model of the given Lightgbm model.

	Parameters

	
	initial_types ((List[Tuple], optional). Defaults to None.) – Each element is a tuple of a variable name and a type.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate initial_types.

	Returns

	An ONNX model (type

	Return type

	ModelProto) which is equivalent to the input Lightgbm model.

ads.model.framework.pytorch_model module

	
class ads.model.framework.pytorch_model.PyTorchModel(estimator: callable, artifact_dir: str, properties: Optional[ads.model.model_properties.ModelProperties] = None, auth: Dict = None, **kwargs)

	Bases: ads.model.generic_model.GenericModel

PyTorchModel class for estimators from Pytorch framework.

	
algorithm

	The algorithm of the model.

	Type

	str

	
artifact_dir

	Artifact directory to store the files needed for deployment.

	Type

	str

	
auth

	Default authentication is set using the ads.set_auth API. To override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
an authentication signer to instantiate an IdentityClient object.

	Type

	Dict

	
ds_client

	The data science client used by model deployment.

	Type

	DataScienceClient

	
estimator

	A trained pytorch estimator/model using Pytorch.

	Type

	Callable

	
framework

	“pytorch”, the framework name of the model.

	Type

	str

	
hyperparameter

	The hyperparameters of the estimator.

	Type

	dict

	
metadata_custom

	The model custom metadata.

	Type

	ModelCustomMetadata

	
metadata_provenance

	The model provenance metadata.

	Type

	ModelProvenanceMetadata

	
metadata_taxonomy

	The model taxonomy metadata.

	Type

	ModelTaxonomyMetadata

	
model_artifact

	This is built by calling prepare.

	Type

	ModelArtifact

	
model_deployment

	A ModelDeployment instance.

	Type

	ModelDeployment

	
model_file_name

	Name of the serialized model.

	Type

	str

	
model_id

	The model ID.

	Type

	str

	
properties

	ModelProperties object required to save and deploy model.

	Type

	ModelProperties

	
runtime_info

	A RuntimeInfo instance.

	Type

	RuntimeInfo

	
schema_input

	Schema describes the structure of the input data.

	Type

	Schema

	
schema_output

	Schema describes the structure of the output data.

	Type

	Schema

	
serialize

	Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	Type

	bool

	
version

	The framework version of the model.

	Type

	str

	
delete_deployment(...)

	Deletes the current model deployment.

	
deploy(..., **kwargs)

	Deploys a model.

	
from_model_artifact(uri, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from the specified folder, or zip/tar archive.

	
from_model_catalog(model_id, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from model catalog.

	
introspect(...)

	Runs model introspection.

	
predict(data, ...)

	Returns prediction of input data run against the model deployment endpoint.

	
prepare(..., **kwargs)

	Prepare and save the score.py, serialized model and runtime.yaml file.

	
reload(...)

	Reloads the model artifact files: score.py and the runtime.yaml.

	
save(..., **kwargs)

	Saves model artifacts to the model catalog.

	
summary_status(...)

	Gets a summary table of the current status.

	
verify(data, ...)

	Tests if deployment works in local environment.

Examples

>>> torch_model = PyTorchModel(estimator=torch_estimator,
... artifact_dir=tmp_model_dir)
>>> inference_conda_env = "generalml_p37_cpu_v1"

>>> torch_model.prepare(inference_conda_env=inference_conda_env, force_overwrite=True)
>>> torch_model.reload()
>>> torch_model.verify(...)
>>> torch_model.save()
>>> model_deployment = torch_model.deploy(wait_for_completion=False)
>>> torch_model.predict(...)

Initiates a PyTorchModel instance.

	Parameters

	
	estimator (callable) – Any model object generated by pytorch framework

	artifact_dir (str) – artifact directory to store the files needed for deployment.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	PyTorchModel instance.

	Return type

	PyTorchModel

	
serialize_model(as_onnx: bool = False, force_overwrite: bool = False, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs) → None

	Serialize and save Pytorch model using ONNX or model specific method.

	Parameters

	
	as_onnx ((bool, optional). Defaults to False.) – If set as True, convert into ONNX model.

	force_overwrite ((bool, optional). Defaults to False.) – If set as True, overwrite serialized model if exists.

	X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.) – A sample of input data that will be used to generate input schema and detect onnx_args.

	**kwargs (optional params used to serialize pytorch model to onnx,) –

	following (including the) – onnx_args: (tuple or torch.Tensor), default to None
Contains model inputs such that model(onnx_args) is a valid
invocation of the model. Can be structured either as: 1) ONLY A
TUPLE OF ARGUMENTS; 2) A TENSOR; 3) A TUPLE OF ARGUMENTS ENDING
WITH A DICTIONARY OF NAMED ARGUMENTS
input_names: (List[str], optional). Names to assign to the input
nodes of the graph, in order.
output_names: (List[str], optional). Names to assign to the output nodes of the graph, in order.
dynamic_axes: (dict, optional), default to None. Specify axes of tensors as dynamic (i.e. known only at run-time).

	Returns

	Nothing.

	Return type

	None

	
to_onnx(path: str = None, onnx_args=None, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, input_names: List[str] = ['input'], output_names: List[str] = ['output'], dynamic_axes=None)

	Exports the given Pytorch model into ONNX format.

	Parameters

	
	path (str, default to None) – Path to save the serialized model.

	onnx_args ((tuple or torch.Tensor), default to None) – Contains model inputs such that model(onnx_args) is a valid
invocation of the model. Can be structured either as: 1) ONLY A
TUPLE OF ARGUMENTS; 2) A TENSOR; 3) A TUPLE OF ARGUMENTS ENDING
WITH A DICTIONARY OF NAMED ARGUMENTS

	X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.) – A sample of input data that will be used to generate input schema and detect onnx_args.

	input_names ((List[str], optional). Defaults to ["input"].) – Names to assign to the input nodes of the graph, in order.

	output_names ((List[str], optional). Defaults to ["output"].) – Names to assign to the output nodes of the graph, in order.

	dynamic_axes ((dict, optional). Defaults to None.) – Specify axes of tensors as dynamic (i.e. known only at run-time).

	Returns

	Nothing

	Return type

	None

	Raises

	
	AssertionError – if onnx module is not support by the current version of torch

	ValueError – if X_sample is not provided
 if path is not provided

ads.model.framework.sklearn_model module

	
class ads.model.framework.sklearn_model.SklearnModel(estimator: Callable, artifact_dir: str, properties: Optional[ads.model.model_properties.ModelProperties] = None, auth: Optional[Dict] = None, **kwargs)

	Bases: ads.model.generic_model.GenericModel

SklearnModel class for estimators from sklearn framework.

	
algorithm

	The algorithm of the model.

	Type

	str

	
artifact_dir

	Artifact directory to store the files needed for deployment.

	Type

	str

	
auth

	Default authentication is set using the ads.set_auth API. To override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
an authentication signer to instantiate an IdentityClient object.

	Type

	Dict

	
ds_client

	The data science client used by model deployment.

	Type

	DataScienceClient

	
estimator

	A trained sklearn estimator/model using scikit-learn.

	Type

	Callable

	
framework

	“scikit-learn”, the framework name of the model.

	Type

	str

	
hyperparameter

	The hyperparameters of the estimator.

	Type

	dict

	
metadata_custom

	The model custom metadata.

	Type

	ModelCustomMetadata

	
metadata_provenance

	The model provenance metadata.

	Type

	ModelProvenanceMetadata

	
metadata_taxonomy

	The model taxonomy metadata.

	Type

	ModelTaxonomyMetadata

	
model_artifact

	This is built by calling prepare.

	Type

	ModelArtifact

	
model_deployment

	A ModelDeployment instance.

	Type

	ModelDeployment

	
model_file_name

	Name of the serialized model.

	Type

	str

	
model_id

	The model ID.

	Type

	str

	
properties

	ModelProperties object required to save and deploy model.

	Type

	ModelProperties

	
runtime_info

	A RuntimeInfo instance.

	Type

	RuntimeInfo

	
schema_input

	Schema describes the structure of the input data.

	Type

	Schema

	
schema_output

	Schema describes the structure of the output data.

	Type

	Schema

	
serialize

	Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	Type

	bool

	
version

	The framework version of the model.

	Type

	str

	
delete_deployment(...)

	Deletes the current model deployment.

	
deploy(..., **kwargs)

	Deploys a model.

	
from_model_artifact(uri, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from the specified folder, or zip/tar archive.

	
from_model_catalog(model_id, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from model catalog.

	
introspect(...)

	Runs model introspection.

	
predict(data, ...)

	Returns prediction of input data run against the model deployment endpoint.

	
prepare(..., **kwargs)

	Prepare and save the score.py, serialized model and runtime.yaml file.

	
reload(...)

	Reloads the model artifact files: score.py and the runtime.yaml.

	
save(..., **kwargs)

	Saves model artifacts to the model catalog.

	
summary_status(...)

	Gets a summary table of the current status.

	
verify(data, ...)

	Tests if deployment works in local environment.

Examples

>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from ads.model.framework.sklearn_model import SklearnModel
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.datasets import load_iris

>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> sklearn_estimator = LogisticRegression()
>>> sklearn_estimator.fit(X_train, y_train)

>>> sklearn_model = SklearnModel(estimator=sklearn_estimator,
... artifact_dir=tmp_model_dir)

>>> sklearn_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_overwrite=True)
>>> sklearn_model.reload()
>>> sklearn_model.verify(X_test)
>>> sklearn_model.save()
>>> model_deployment = sklearn_model.deploy(wait_for_completion=False)
>>> sklearn_model.predict(X_test)

Initiates a SklearnModel instance.

	Parameters

	
	estimator (Callable) – Sklearn Model

	artifact_dir (str) – Directory for generate artifact.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	SklearnModel instance.

	Return type

	SklearnModel

Examples

>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from ads.model.framework.sklearn_model import SklearnModel
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.datasets import load_iris

>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> sklearn_estimator = LogisticRegression()
>>> sklearn_estimator.fit(X_train, y_train)

>>> sklearn_model = SklearnModel(estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp())
>>> sklearn_model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
>>> sklearn_model.verify(X_test)
>>> sklearn_model.save()
>>> model_deployment = sklearn_model.deploy()
>>> sklearn_model.predict(X_test)
>>> sklearn_model.delete_deployment()

	
generate_initial_types(X_sample: Any) → List

	Auto generate intial types.

	Parameters

	X_sample ((Any)) – Train data.

	Returns

	Initial types.

	Return type

	List

	
static is_either_numerical_or_string_dataframe(data: pandas.core.frame.DataFrame) → bool

	Check whether all the columns are either numerical or string for dataframe.

	
serialize_model(as_onnx: Optional[bool] = False, initial_types: Optional[List[Tuple]] = None, force_overwrite: Optional[bool] = False, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs: Dict)

	Serialize and save scikit-learn model using ONNX or model specific method.

	Parameters

	
	as_onnx ((bool, optional). Defaults to False.) – If set as True, provide initial_types or X_sample to convert into ONNX.

	initial_types ((List[Tuple], optional). Defaults to None.) – Each element is a tuple of a variable name and a type.

	force_overwrite ((bool, optional). Defaults to False.) – If set as True, overwrite serialized model if exists.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate initial_types.

	Returns

	Nothing.

	Return type

	None

	
to_onnx(initial_types: List[Tuple] = None, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs)

	Produces an equivalent ONNX model of the given scikit-learn model.

	Parameters

	
	initial_types ((List[Tuple], optional). Defaults to None.) – Each element is a tuple of a variable name and a type.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate initial_types.

	Returns

	An ONNX model (type: ModelProto) which is equivalent to the input scikit-learn model.

	Return type

	onnx.onnx_ml_pb2.ModelProto

ads.model.framework.tensorflow_model module

ads.model.framework.xgboost_model module

	
class ads.model.framework.xgboost_model.XGBoostModel(estimator: callable, artifact_dir: str, properties: Optional[ads.model.model_properties.ModelProperties] = None, auth: Dict = None, **kwargs)

	Bases: ads.model.generic_model.GenericModel

XGBoostModel class for estimators from xgboost framework.

	
algorithm

	The algorithm of the model.

	Type

	str

	
artifact_dir

	Artifact directory to store the files needed for deployment.

	Type

	str

	
auth

	Default authentication is set using the ads.set_auth API. To override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
an authentication signer to instantiate an IdentityClient object.

	Type

	Dict

	
ds_client

	The data science client used by model deployment.

	Type

	DataScienceClient

	
estimator

	A trained xgboost estimator/model using Xgboost.

	Type

	Callable

	
framework

	“xgboost”, the framework name of the model.

	Type

	str

	
hyperparameter

	The hyperparameters of the estimator.

	Type

	dict

	
metadata_custom

	The model custom metadata.

	Type

	ModelCustomMetadata

	
metadata_provenance

	The model provenance metadata.

	Type

	ModelProvenanceMetadata

	
metadata_taxonomy

	The model taxonomy metadata.

	Type

	ModelTaxonomyMetadata

	
model_artifact

	This is built by calling prepare.

	Type

	ModelArtifact

	
model_deployment

	A ModelDeployment instance.

	Type

	ModelDeployment

	
model_file_name

	Name of the serialized model.

	Type

	str

	
model_id

	The model ID.

	Type

	str

	
properties

	ModelProperties object required to save and deploy model.

	Type

	ModelProperties

	
runtime_info

	A RuntimeInfo instance.

	Type

	RuntimeInfo

	
schema_input

	Schema describes the structure of the input data.

	Type

	Schema

	
schema_output

	Schema describes the structure of the output data.

	Type

	Schema

	
serialize

	Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

	Type

	bool

	
version

	The framework version of the model.

	Type

	str

	
delete_deployment(...)

	Deletes the current model deployment.

	
deploy(..., **kwargs)

	Deploys a model.

	
from_model_artifact(uri, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from the specified folder, or zip/tar archive.

	
from_model_catalog(model_id, model_file_name, artifact_dir, ..., **kwargs)

	Loads model from model catalog.

	
introspect(...)

	Runs model introspection.

	
predict(data, ...)

	Returns prediction of input data run against the model deployment endpoint.

	
prepare(..., **kwargs)

	Prepare and save the score.py, serialized model and runtime.yaml file.

	
reload(...)

	Reloads the model artifact files: score.py and the runtime.yaml.

	
save(..., **kwargs)

	Saves model artifacts to the model catalog.

	
summary_status(...)

	Gets a summary table of the current status.

	
verify(data, ...)

	Tests if deployment works in local environment.

Examples

>>> import xgboost as xgb
>>> import tempfile
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.xgboost_model import XGBoostModel

>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> xgboost_estimator = xgb.XGBClassifier()
>>> xgboost_estimator.fit(X_train, y_train)

>>> xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tmp_model_dir)
>>> xgboost_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_overwrite=True)
>>> xgboost_model.reload()
>>> xgboost_model.verify(X_test)
>>> xgboost_model.save()
>>> model_deployment = xgboost_model.deploy(wait_for_completion=False)
>>> xgboost_model.predict(X_test)

Initiates a XGBoostModel instance. This class wraps the XGBoost model as estimator.
It’s primary purpose is to hold the trained model and do serialization.

	Parameters

	
	estimator – XGBoostModel

	artifact_dir (str) – artifact directory to store the files needed for deployment.

	properties ((ModelProperties, optional). Defaults to None.) – ModelProperties object required to save and deploy model.

	auth ((Dict, optional). Defaults to None.) – The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

	Returns

	XGBoostModel instance.

	Return type

	XGBoostModel

Examples

>>> import xgboost as xgb
>>> import tempfile
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.xgboost_model import XGBoostModel

>>> iris = load_iris()
>>> X, y = iris.data, iris.target

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> train = xgb.DMatrix(X_train, y_train)
>>> test = xgb.DMatrix(X_test, y_test)
>>> xgboost_estimator = XGBClassifier()
>>> xgboost_estimator.fit(X_train, y_train)
>>> xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tempfile.mkdtemp())
>>> xgboost_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
>>> xgboost_model.verify(X_test)
>>> xgboost_model.save()
>>> model_deployment = xgboost_model.deploy()
>>> xgboost_model.predict(X_test)
>>> xgboost_model.delete_deployment()

	
generate_initial_types(X_sample: Any) → List

	Auto generate intial types.

	Parameters

	X_sample ((Any)) – Train data.

	Returns

	Initial types.

	Return type

	List

	
serialize_model(as_onnx: bool = False, initial_types: List[Tuple] = None, force_overwrite: bool = False, X_sample: Optional[Union[Dict, str, List, Tuple, numpy.ndarray, pandas.core.series.Series, pandas.core.frame.DataFrame]] = None, **kwargs)

	Serialize and save Xgboost model using ONNX or model specific method.

	Parameters

	
	artifact_dir (str) – Directory for generate artifact.

	as_onnx ((boolean, optional). Defaults to False.) – If set as True, provide initial_types or X_sample to convert into ONNX.

	initial_types ((List[Tuple], optional). Defaults to None.) – Each element is a tuple of a variable name and a type.

	force_overwrite ((boolean, optional). Defaults to False.) – If set as True, overwrite serialized model if exists.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate initial_types.

	Returns

	Nothing.

	Return type

	None

	
to_onnx(initial_types: List[Tuple] = None, X_sample: Union[list, tuple, pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray] = None, **kwargs)

	Produces an equivalent ONNX model of the given Xgboost model.

	Parameters

	
	initial_types ((List[Tuple], optional). Defaults to None.) – Each element is a tuple of a variable name and a type.

	X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series, pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such that model(X_sample) is a valid invocation of the model.
Used to generate initial_types.

	Returns

	An ONNX model (type: ModelProto) which is equivalent to the input xgboost model.

	Return type

	onnx.onnx_ml_pb2.ModelProto

Module contents

 ads.model.runtime package

ads.model.runtime package

Submodules

ads.model.runtime.env_info module

	
class ads.model.runtime.env_info.EnvInfo

	Bases: abc.ABC

Env Info Base class.

	
classmethod from_path(env_path: str) → ads.model.runtime.env_info.EnvInfo

	Initiate an object from a conda pack path.

	Parameters

	env_path (str) – conda pack path.

	Returns

	An EnvInfo instance.

	Return type

	EnvInfo

	
classmethod from_slug(env_slug: str, namespace: str = 'id19sfcrra6z', bucketname: str = 'service-conda-packs') → ads.model.runtime.env_info.EnvInfo

	Initiate an EnvInfo object from a slug. Only service pack is allowed to use this method.

	Parameters

	
	env_slug (str) – service pack slug.

	namespace ((str, optional)) – namespace of region.

	bucketname ((str, optional)) – bucketname of service pack.

	Returns

	An EnvInfo instance.

	Return type

	EnvInfo

	
class ads.model.runtime.env_info.InferenceEnvInfo(inference_env_slug: str = '', inference_env_type: str = '', inference_env_path: str = '', inference_python_version: str = '')

	Bases: ads.model.runtime.env_info.EnvInfo, ads.common.serializer.DataClassSerializable

Inference conda environment info.

	
inference_env_path: str = ''

	

	
inference_env_slug: str = ''

	

	
inference_env_type: str = ''

	

	
inference_python_version: str = ''

	

	
class ads.model.runtime.env_info.PACK_TYPE(value)

	Bases: enum.Enum

Conda Pack Type

	
SERVICE_PACK = 'data_science'

	

	
USER_CUSTOM_PACK = 'published'

	

	
class ads.model.runtime.env_info.TrainingEnvInfo(training_env_slug: str = '', training_env_type: str = '', training_env_path: str = '', training_python_version: str = '')

	Bases: ads.model.runtime.env_info.EnvInfo, ads.common.serializer.DataClassSerializable

Training conda environment info.

	
training_env_path: str = ''

	

	
training_env_slug: str = ''

	

	
training_env_type: str = ''

	

	
training_python_version: str = ''

	

ads.model.runtime.model_deployment_details module

	
class ads.model.runtime.model_deployment_details.ModelDeploymentDetails(inference_conda_env: ads.model.runtime.env_info.InferenceEnvInfo = <factory>)

	Bases: ads.common.serializer.DataClassSerializable

ModelDeploymentDetails class.

	
inference_conda_env: ads.model.runtime.env_info.InferenceEnvInfo

	

ads.model.runtime.model_provenance_details module

	
class ads.model.runtime.model_provenance_details.ModelProvenanceDetails(project_ocid: str = '', tenancy_ocid: str = '', training_code: ads.model.runtime.model_provenance_details.TrainingCode = <factory>, training_compartment_ocid: str = '', training_conda_env: ads.model.runtime.env_info.TrainingEnvInfo = <factory>, training_region: str = '', training_resource_ocid: str = '', user_ocid: str = '', vm_image_internal_id: str = '')

	Bases: ads.common.serializer.DataClassSerializable

ModelProvenanceDetails class.

	
project_ocid: str = ''

	

	
tenancy_ocid: str = ''

	

	
training_code: ads.model.runtime.model_provenance_details.TrainingCode

	

	
training_compartment_ocid: str = ''

	

	
training_conda_env: ads.model.runtime.env_info.TrainingEnvInfo

	

	
training_region: str = ''

	

	
training_resource_ocid: str = ''

	

	
user_ocid: str = ''

	

	
vm_image_internal_id: str = ''

	

	
class ads.model.runtime.model_provenance_details.TrainingCode(artifact_directory: str = '')

	Bases: ads.common.serializer.DataClassSerializable

TrainingCode class.

	
artifact_directory: str = ''

	

ads.model.runtime.runtime_info module

	
class ads.model.runtime.runtime_info.RuntimeInfo(model_artifact_version: str = '', model_deployment: ads.model.runtime.model_deployment_details.ModelDeploymentDetails = <factory>, model_provenance: ads.model.runtime.model_provenance_details.ModelProvenanceDetails = <factory>)

	Bases: ads.common.serializer.DataClassSerializable

RuntimeInfo class which is the data class represenation of the runtime yaml file.

	
classmethod from_env() → ads.model.runtime.runtime_info.RuntimeInfo

	Popolate the RuntimeInfo from environment variables.

	Returns

	A RuntimeInfo instance.

	Return type

	RuntimeInfo

	
model_artifact_version: str = ''

	

	
model_deployment: ads.model.runtime.model_deployment_details.ModelDeploymentDetails

	

	
model_provenance: ads.model.runtime.model_provenance_details.ModelProvenanceDetails

	

	
save()

	Save the RuntimeInfo object into runtime.yaml file under the artifact directory.

	Returns

	Nothing.

	Return type

	None

ads.model.runtime.utils module

	
class ads.model.runtime.utils.SchemaValidator(schema_file_path: str)

	Bases: object

Base Schema Validator which validate yaml file.

Initiate a SchemaValidator instance.

	Parameters

	schema_file_path ((str)) – schema file path. The schema is used to validate the yaml file.

	Returns

	A SchemaValidator instance.

	Return type

	SchemaValidator

	
validate(document: Dict) → bool

	Validate the schema.

	Parameters

	document ((Dict)) – yaml file content to validate.

	Raises

	DocumentError – Raised when the validation schema is missing, has the wrong format or contains errors.:

	Returns

	validation result.

	Return type

	bool

	
ads.model.runtime.utils.get_service_packs(namespace: str, bucketname: str) → Tuple[Dict, Dict]

	Get the service pack path mapping and service pack slug mapping.
Note: deprecated packs are also included.

	Parameters

	
	namespace (str) – namespace of the service pack.

	bucketname (str) – bucketname of the service pack.

	Returns

	Service pack path mapping(service pack path -> (slug, python version))
and the service pack slug mapping(service pack slug -> (pack path, python version)).

	Return type

	(Dict, Dict)

Module contents

 ads.oracledb package

ads.oracledb package

Submodules

ads.oracledb.oracle_db module

	
class ads.oracledb.oracle_db.OracleRDBMSConnection(user_name, password, service_name=None, wallet_file=None, sid=None, dsn=None, host=None, port=1521, **kwargs)

	Bases: cx_Oracle.Connection

	
insert(table_name: str, df: pandas.core.frame.DataFrame, if_exists: str, batch_size=100000)

	

	
query(sql: str, bind_variables: Optional[Dict], chunksize=None) → Union[pandas.core.frame.DataFrame, Iterator[pandas.core.frame.DataFrame]]

	

 ads.secrets package

ads.secrets package

Submodules

ads.secrets.secrets module

	
class ads.secrets.secrets.Secret

	Bases: object

Base class

	
serialize(self) → dict

	Serializes attributes as dictionary. Returns dictionary with the keys that are serializable.

	
to_dict(self) → dict

	returns dictionarry with the keys that has repr set to True and the value is not None or empty

	
export_dict -> dict

	returns dictionary with the keys that has repr set tp True

	
export_options -> dcit

	returns list of attributes with the fields that has repr set to True

	
export_dict() → dict

	Serializes attributes as dictionary.

	Returns

	returns dictionary of key/value pair where the value of the attribute is
not None and the field does not have repr`=`False

	Return type

	dict

	
export_options() → list

	Returns list of attributes that have repr=True.

	Returns

	returns list of fields that does not have repr=False

	Return type

	list

	
serialize() → dict

	Serializes attributes as dictionary. An attribute can be marked as not serializable by using
metadata field of the field constructor provided by the dataclasses module.

	Returns

	returns dictionay of key/value pair where the value of the attribute
is not None and not empty and the field does not have metadata = {“serializable”:False}.
Refer dataclass python documentation for more details about metadata

	Return type

	dict

	
to_dict() → dict

	Serializes attributes as dictionary. Returns only non empty attributes.

	Returns

	returns dictionary of key/value pair where the value of the attribute is not None or empty

	Return type

	dict

	
class ads.secrets.secrets.SecretKeeper(content: Optional[bytes] = None, encoded: Optional[str] = None, secret_id: Optional[str] = None, export_prefix: str = '', export_env: bool = False, **kwargs)

	Bases: ads.vault.vault.Vault, contextlib.ContextDecorator

SecretKeeper defines APIs required to serialize and deserialize secrets. Services
such as Database, Streaming, and Git require users to provide credentials.
These credentials need to be safely accessed at runtime.
OCI Vault provides a mechanism for safe storage and access. SecretKeeper uses
OCI Vault as a backend to store and retrieve the credentials.

The exact data structure of the credentials varies from service to service.

	Parameters

	
	vault_id ((str, optional). Default None) – ocid of the vault

	key_id ((str, optional). Default None) – ocid of the key that is used for encrypting the content

	compartment_id ((str, optional). Default None) – ocid of the compartment_id where the vault resides. When available in
environment variable - NB_SESSION_COMPARTMENT_OCID, will defult to that.

	secret_client_auth ((dict, optional, deprecated since 2.5.1). Default None.) – deprecated since 2.5.1. Use auth instead

	vault_client_auth ((dict, optional, deprecated since 2.5.1). Default None.) – deprecated since 2.5.1. Use auth instead

	auth ((dict, optional)) – Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
decode() → ads.secrets.secrets.SecretKeeper

	Decodes the content in self.encoded and sets the vaule in self.secret.

	
encode()

	Stores the secret in self.secret by calling serialize method on self.data.
Stores base64 encoded string of self.secret in self.encoded.

	
export_vault_details(filepath: str, format: str = 'json', storage_options: Optional[dict] = None)

	Save secret_id in a json file

	Parameters

	
	filepath (str) – Filepath to save the file.

	format (str) – Default is json. Valid values:

	yaml or yml - to store vault details in a yaml file

	json - to store vault details in a json file

	storage_options (dict, optional.) – storage_options dict as required by fsspec library

	Returns

	Returns None

	Return type

	None

	
classmethod load_secret(source: str, format: str = 'ocid', export_env: bool = False, export_prefix: str = '', auth=None, storage_options: Optional[dict] = None, **kwargs) → Union[dict, ads.secrets.secrets.SecretKeeper]

	Loads secret from vault using secret_id.

	Parameters

	
	source (str) – Source could be one of the following:

	OCID of the secret that has the secret content.

	file path that is json or yaml format with the key - secret_id: ocid1.vaultsecret..<unique_ID>

	format (str) – Defult is ocid. When ocid, the source must be a secret id
Value values:

	ocid - source is expected to be ocid of the secret

	yaml or yml - source is expected to be a path to a valid yaml file

	json - source is expected to be a path to a valid json file

	export_env (str, Default False) – When set to true, the credentails will be exported to the environment variable.
When load_secret is invoked using with statement, information exported as
environment variable is unset before leaving the with scope

	export_prefix (str, Default "") – Prefix to the environment variable that is exported.

	auth (dict, optional) – By default authentication will follow what is configured using ads.set_auth API.
Accepts dict returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal().

	storage_options (dict, optional) – storage_options dict as required by fsspec library

	kwargs – key word arguments accepted by the constructor of the class
from which this method is invoked.

	Returns

	
	dict – When called from within with block, Returns a dictionary containing the secret

	ads.secrets.SecretKeeper – When called without using with operator.

Examples

>>> from ads.secrets import APIKeySecretKeeper
>>> with APIKeySecretKeeper.load_secret(source="ocid1.vaultsecret.**<unique_ID>**",
... export_prefix="mykafka",
... export_env=True
...) as apisecret:
... import os
... print("Credentials inside environment variable:",
... os.environ.get('mykafka.api_key'))
... print("Credentials inside `apisecret` object: ", apisecret)
Credentials inside environment variable: <your api key>
Credentials inside `apisecret` object: {'api_key': 'your api key'}

>>> from ads.secrets import ADBSecretKeeper
>>> with ADBSecretKeeper.load_secret("ocid1.vaultsecret.**<unique_ID>**") as adw_creds2:
... import pandas as pd
... df2 = pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA",
... connection_parameters=adw_creds2)
... print(df2.head(2))
 JOBFUNCTION ATTRITION
0 Product Management No
1 Software Developer No

	
required_keys = ['secret_id']

	

	
save(name: str, description: str, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] = None) → ads.secrets.secrets.SecretKeeper

	Saves credentials to Vault and returns self.

	Parameters

	
	name (str) – Name of the secret when saved in the Vault.

	description (str) – Description of the secret when saved in the Vault.

	freeform_tags (dict, optional) – freeform_tags to be used for saving the secret in OCI console.

	defined_tags (dict, optional.) – Save the tags under predefined tags in OCI console.

	Returns

	Returns self object.

	Return type

	SecretKeeper

	
to_dict() → dict

	Returns dict of credentials retrieved from the vault or set through constructor arguments.

	Returns

	dict of credentials retrieved from the vault or set through constructor.

	Return type

	dict

ads.secrets.adb module

	
class ads.secrets.adb.ADBSecret(user_name: str, password: str, service_name: str, wallet_location: typing.Optional[str] = None, wallet_file_name: typing.Optional[str] = None, wallet_content: typing.Optional[dict] = None, wallet_secret_ids: list = <factory>)

	Bases: ads.secrets.secrets.Secret

Dataclass representing the attributes managed and serialized by ADBSecretKeeper

	
password: str

	

	
service_name: str

	

	
user_name: str

	

	
wallet_content: dict = None

	

	
wallet_file_name: str = None

	

	
wallet_location: str = None

	

	
wallet_secret_ids: list

	

	
class ads.secrets.adb.ADBSecretKeeper(user_name: Optional[str] = None, password: Optional[str] = None, service_name: Optional[str] = None, wallet_location: Optional[str] = None, wallet_dir: Optional[str] = None, repository_path: Optional[str] = None, repository_key: Optional[str] = None, **kwargs)

	Bases: ads.secrets.secrets.SecretKeeper

ADBSecretKeeper provides an interface to save ADW/ATP database credentials.
This interface does not store the wallet file by default.
For saving wallet file, set save_wallet=True while calling ADBSecretKeeper.save method.

Examples

>>> # Saving credentials without saving the wallet file
>>> from ads.secrets.adw import ADBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> connection_parameters={
... "user_name":"admin",
... "password":"<your password>",
... "service_name":"service_name_{high|low|med}",
... "wallet_location":"/home/datascience/Wallet_xxxx.zip"
... }
>>> adw_keeper = ADBSecretKeeper(vault_id=vault_id, key_id=key_id, **connection_parameters)
>>> adw_keeper.save("adw_employee", "My DB credentials", freeform_tags={"schema":"emp"}) # Does not save the wallet file
>>> print(adw_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> adw_keeper.export_vault_details("adw_employee_att.json", format="json") # Save the secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> from ads.secrets.adw import ADBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with ADBSecretKeeper.load_secret(source=secret_id,
 wallet_location='/home/datascience/Wallet_xxxxxx.zip') as adw_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_parameters=adw_creds)

>>> myadw_creds = ADBSecretKeeper.load_secret(source='adw_employee_att.json', format="json"
... wallet_location='/home/datascience/Wallet_xxxxxx.zip')
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_parameters=myadw_creds.to_dict()).head(2)

>>> # Saving and loading credentials with wallet storage
>>> # Saving credentials
>>> from ads.secrets.adw import ADBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key.oc1..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> connection_parameters={
... "user_name":"admin",
... "password":"<your password>",
... "service_name":"service_name_{high|low|med}",
... "wallet_location":"/home/datascience/Wallet_xxxx.zip"
... }
>>> adw_keeper = ADBSecretKeeper(vault_id=vault_id, key_id=key_id, **connection_parameters)
>>> adw_keeper.save("adw_employee", "My DB credentials", freeform_tags={"schema":"emp"}, save_wallet=True)
>>> print(adw_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> adw_keeper.export_vault_details("adw_employee_att.json") # Save the secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> from ads.secrets.adw import ADBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with ADBSecretKeeper.load_secret(source=secret_id) as adw_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_parameters=adw_creds)

>>> myadw_creds = ADBSecretKeeper.load_secret(source='adw_employee_att.json', format='json')
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_parameters=myadw_creds.to_dict()).head(2)

	Parameters

	
	user_name ((str, optioanl). Default None) – user_name of the databse

	password ((str, optional). Default None) – password for connecting to the database

	service_name ((str, optional). Default None) – service name of the ADB instance

	wallet_location ((str, optional). Default None) – full path to the wallet zip file used for connecting to ADB instance.

	wallet_dir ((str, optional). Default None) – local directory where the extracted wallet content is saved

	repository_path ((str, optional). Default None.) – Path to credentials repository. For more details refer ads.database.connection

	repository_key ((str, optional). Default None.) – Configuration key for loading the right configuration from repository. For more details refer ads.database.connection

	kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving secret.
key_id: str. OCID of the key used for encrypting the secret. Required for saving secret.
compartment_id: str. OCID of the compartment where the vault is located. Required for saving secret.
auth: dict. Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
decode() → ads.secrets.adb.ADBSecretKeeper

	Converts the content in self.secret to ADBSecret and stores in self.data

If the wallet_location is passed through the constructor, then retain it. We do not want to override what user has passed in
If the wallet_location was not passed, but the sercret has wallet_secret_ids, then we generate the wallet zip file in the location specified by wallet_dir in the constructor

	Returns

	Returns self object

	Return type

	ADBSecretKeeper

	
encode(serialize_wallet: bool = False) → ads.secrets.adb.ADBSecretKeeper

	Prepares content to save in vault. The user_name, password and service_name and the individual files inside the wallet zip file are base64 encoded and stored in self.secret

	Parameters

	serialize_wallet (bool, optional) – When set to True, loads the wallet zip file and encodes the content of each file in the zip file.

	Returns

	Returns self object

	Return type

	ADBSecretKeeper

	
save(name: str, description: str, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] = None, save_wallet: bool = False) → ads.secrets.adb.ADBSecretKeeper

	Saves credentials to Vault and returns self.

	Parameters

	
	name (str) – Name of the secret when saved in the Vault.

	description (str) – Description of the secret when saved in the Vault.

	freeform_tags ((dict, optional). Default is None) – freeform_tags to be used for saving the secret in OCI console.

	defined_tags ((dict, optional). Default is None) – Save the tags under predefined tags in OCI console.

	save_wallet ((bool, optional). Default is False) – If set to True, saves the contents of the wallet file as separate secret.

	Returns

	Returns self object

	Return type

	ADBSecretKeeper

ads.secrets.mysqldb module

	
class ads.secrets.mysqldb.MySQLDBSecret(user_name: str, password: str, host: str, port: str, database: Optional[str] = None)

	Bases: ads.secrets.secrets.Secret

Dataclass representing the attributes managed and serialized by MySQLDBSecretKeeper

	
database: str = None

	

	
host: str

	

	
password: str

	

	
port: str

	

	
user_name: str

	

	
class ads.secrets.mysqldb.MySQLDBSecretKeeper(user_name: Optional[str] = None, password: Optional[str] = None, host: Optional[str] = None, port: str = '3306', database: Optional[str] = None, repository_path: Optional[str] = None, repository_key: Optional[str] = None, **kwargs)

	Bases: ads.secrets.secrets.SecretKeeper

MySQLDBSecretKeeper provides an interface to save MySQL database credentials.
If you use Wallet file for connnecting to the database, please use ADBSecretKeeper.

Examples

>>> from ads.secrets.mysqldb import MySQLDBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> connection_parameters={
... "user_name":"<your user name>",
... "password":"<your password>",
... "host":"<db host>",
... "port":"<db port>",
... "database":"<database>",
... }
>>> mysqldb_keeper = MySQLDBSecretKeeper(vault_id=vault_id, key_id=key_id, **connection_parameters)
>>> mysqldb_keeper.save("mysqldb_employee", "My DB credentials", freeform_tags={"schema":"emp"})
>>> print(mysqldb_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> mysqldb_keeper.export_vault_details("mysqldb_employee_att.json") # Save the secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> from ads.secrets.mysqldb import MySQLDBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with MySQLDBSecretKeeper.load_secret(source=secret_id) as mysqldb_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_parameters=mysqldb_creds, engine="mysql")

>>> mymysqldb_creds = MySQLDBSecretKeeper.load_secret(source='mysqldb_employee_att.json', format="json")
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_parameters=mymysqldb_creds.to_dict(), engine="mysql").head(2)

	Parameters

	
	user_name ((str, optional). Default None) – user_name of the database

	password ((str, optional). Default None) – password for connecting to the database

	host ((str, optional). Default None) – Database host name

	port ((str, optional). Default 1521) – Port number

	database ((str, optional). Default None) – database name

	repository_path ((str, optional). Default None.) – Path to credentials repository. For more details refer ads.database.connection

	repository_key ((str, optional). Default None.) – Configuration key for loading the right configuration from repository. For more details refer ads.database.connection

	kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving secret.
key_id: str. OCID of the key used for encrypting the secret. Required for saving secret.
compartment_id: str. OCID of the compartment where the vault is located. Required for saving secret.
auth: dict. Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
decode() → ads.secrets.mysqldb.MySQLDBSecretKeeper

	Converts the content in self.encoded to MySQLDBSecret and stores in self.data

	Returns

	Returns self object

	Return type

	MySQLDBSecretKeeper

ads.secrets.oracledb module

	
class ads.secrets.oracledb.OracleDBSecret(user_name: str, password: str, host: str, port: str, service_name: Optional[str] = None, sid: Optional[str] = None, dsn: Optional[str] = None)

	Bases: ads.secrets.secrets.Secret

Dataclass representing the attributes managed and serialized by OracleDBSecretKeeper

	
dsn: str = None

	

	
host: str

	

	
password: str

	

	
port: str

	

	
service_name: str = None

	

	
sid: str = None

	

	
user_name: str

	

	
class ads.secrets.oracledb.OracleDBSecretKeeper(user_name: Optional[str] = None, password: Optional[str] = None, service_name: Optional[str] = None, sid: Optional[str] = None, host: Optional[str] = None, port: str = '1521', dsn: Optional[str] = None, repository_path: Optional[str] = None, repository_key: Optional[str] = None, **kwargs)

	Bases: ads.secrets.secrets.SecretKeeper

OracleDBSecretKeeper provides an interface to save Oracle database credentials.
If you use Wallet file for connnecting to the database, please use ADBSecretKeeper.

Examples

>>> from ads.secrets.oracledb import OracleDBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> connection_parameters={
... "user_name":"<your user name>",
... "password":"<your password>",
... "service_name":"service_name",
... "host":"<db host>",
... "port":"<db port>",
... }
>>> oracledb_keeper = OracleDBSecretKeeper(vault_id=vault_id, key_id=key_id, **connection_parameters)
>>> oracledb_keeper.save("oracledb_employee", "My DB credentials", freeform_tags={"schema":"emp"})
>>> print(oracledb_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> oracledb_keeper.export_vault_details("oracledb_employee_att.json") # Save the secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for authentication
>>> from ads.secrets.oracledb import OracleDBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with OracleDBSecretKeeper.load_secret(source=secret_id) as oracledb_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_parameters=oracledb_creds)

>>> myoracledb_creds = OracleDBSecretKeeper.load_secret(source='oracledb_employee_att.json', format="json")
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_parameters=myoracledb_creds.to_dict()).head(2)

	Parameters

	
	user_name ((str, optional). Default None) – user_name of the database

	password ((str, optional). Default None) – password for connecting to the database

	service_name ((str, optional). Default None) – service name of the Oracle DB instance

	sid ((str, optional). Default None) – Provide sid if service name is not available.

	host ((str, optional). Default None) – Database host name

	port ((str, optional). Default 1521) – Port number

	dsn ((str, optional). Default None) – dsn string for connecting with oracledb. Refer cx_Oracle documentation

	repository_path ((str, optional). Default None.) – Path to credentials repository. For more details refer ads.database.connection

	repository_key ((str, optional). Default None.) – Configuration key for loading the right configuration from repository. For more details refer ads.database.connection

	kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving secret.
key_id: str. OCID of the key used for encrypting the secret. Required for saving secret.
compartment_id: str. OCID of the compartment where the vault is located. Required for saving secret.
auth: dict. Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
decode() → ads.secrets.oracledb.OracleDBSecretKeeper

	Converts the content in self.encoded to OracleDBSecret and stores in self.data

	Returns

	Returns self object

	Return type

	OracleDBSecretKeeper

ads.secrets.big_data_service module

	
class ads.secrets.big_data_service.BDSSecret(principal: str, hdfs_host: str, hive_host: str, hdfs_port: str, hive_port: str, kerb5_path: typing.Optional[str] = None, kerb5_content: typing.Optional[dict] = None, keytab_path: typing.Optional[str] = None, keytab_content: typing.Optional[dict] = None, secret_id: str = <factory>)

	Bases: ads.secrets.secrets.Secret

Dataclass representing the attributes managed and serialized by BDSSecretKeeper.

	
principal

	The unique identity to which Kerberos can assign tickets.

	Type

	str

	
hdfs_host

	hdfs host name from the bds cluster.

	Type

	str

	
hive_host

	hive host name from the bds cluster.

	Type

	str

	
hdfs_port

	hdfs port from the bds cluster.

	Type

	str

	
hive_port

	hive port from the bds cluster.

	Type

	str

	
kerb5_path

	krb5.conf file path.

	Type

	str

	
kerb5_content

	Content of the krb5.conf.

	Type

	dict

	
keytab_path

	Path to the keytab file.

	Type

	str

	
keytab_content

	Content of the keytab file.

	Type

	dict

	
secret_id

	secret id where the BDSSecret is stored.

	Type

	str

	
hdfs_host: str

	

	
hdfs_port: str

	

	
hive_host: str

	

	
hive_port: str

	

	
kerb5_content: dict = None

	

	
kerb5_path: str = None

	

	
keytab_content: dict = None

	

	
keytab_path: str = None

	

	
principal: str

	

	
secret_id: str

	

	
class ads.secrets.big_data_service.BDSSecretKeeper(principal: Optional[str] = None, hdfs_host: Optional[str] = None, hive_host: Optional[str] = None, hdfs_port: Optional[str] = None, hive_port: Optional[str] = None, kerb5_path: Optional[str] = None, kerb5_content: Optional[str] = None, keytab_path: Optional[str] = None, keytab_content: Optional[str] = None, keytab_dir: Optional[str] = None, secret_id: Optional[str] = None, **kwargs)

	Bases: ads.secrets.secrets.SecretKeeper

BDSSecretKeeper provides an interface to save BDS hdfs and hive credentials.
This interface does not store the wallet file by default.
For saving keytab and krb5.cofig file, set save_files=True while calling BDSSecretKeeper.save method.

	
principal

	The unique identity to which Kerberos can assign tickets.

	Type

	str

	
hdfs_host

	hdfs host name from the bds cluster.

	Type

	str

	
hive_host

	hive host name from the bds cluster.

	Type

	str

	
hdfs_port

	hdfs port from the bds cluster.

	Type

	str

	
hive_port

	hive port from the bds cluster.

	Type

	str

	
kerb5_path

	krb5.conf file path.

	Type

	str

	
kerb5_content

	Content of the krb5.conf.

	Type

	dict

	
keytab_path

	Path to the keytab file.

	Type

	str

	
keytab_content

	Content of the keytab file.

	Type

	dict

	
secret_id

	secret id where the BDSSecret is stored.

	Type

	str

	
kwargs

vault_id

	
	Type

	str. OCID of the vault where the secret is stored. Required for saving secret.

	
key_id

	
	Type

	str. OCID of the key used for encrypting the secret. Required for saving secret.

	
compartment_id

	
	Type

	str. OCID of the compartment where the vault is located. Required for saving secret.

	
auth

	
	Type

	dict. Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	Parameters

	
	principal (str) – The unique identity to which Kerberos can assign tickets.

	hdfs_host (str) – hdfs host name from the bds cluster.

	hive_host (str) – hive host name from the bds cluster.

	hdfs_port (str) – hdfs port from the bds cluster.

	hive_port (str) – hive port from the bds cluster.

	kerb5_path (str) – krb5.conf file path.

	kerb5_content (dict) – Content of the krb5.conf.

	keytab_path (str) – Path to the keytab file.

	keytab_content (dict) – Content of the keytab file.

	keytab_dir ((str, optional).) – Default None. Local directory where the extracted keytab content is saved.

	secret_id (str) – secret id where the BDSSecret is stored.

vault_id: str. OCID of the vault where the secret is stored. Required for saving secret.
key_id: str. OCID of the key used for encrypting the secret. Required for saving secret.
compartment_id: str. OCID of the compartment where the vault is located. Required for saving secret.
auth: dict. Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
decode(save_files: bool = True) → ads.secrets.bds.BDSSecretKeeper

	Converts the content in self.secret to BDSSecret and stores in self.data

If the keytab_path and kerb5_path are passed through the constructor, then retain it. We do not want to override what user has passed in
If the keytab_path and kerb5_path are not passed, but the sercret has secret_id, then we generate the keytab file in the location specified by keytab_path in the constructor.

	Returns

	Returns self object

	Return type

	BDSSecretKeeper

	
encode(serialize: bool = True) → ads.secrets.bds.BDSSecretKeeper

	Prepares content to save in vault. The port, host name and the keytab and krb5.config files are base64 encoded and stored in self.secret

	Parameters

	serialize (bool, optional) – When set to True, loads the keytab and krb5.config file and encodes the content of both files.

	Returns

	Returns self object

	Return type

	BDSSecretKeeper

	
save(name: str, description: str, freeform_tags: dict = None, defined_tags: dict = None, save_files: bool = True) → ads.secrets.bds.BDSSecretKeeper

	Saves credentials to Vault and returns self.

	Parameters

	
	name (str) – Name of the secret when saved in the Vault.

	description (str) – Description of the secret when saved in the Vault.

	freeform_tags ((dict, optional). Default is None) – freeform_tags to be used for saving the secret in OCI console.

	defined_tags ((dict, optional). Default is None) – Save the tags under predefined tags in OCI console.

	save_files ((bool, optional). Default is False) – If set to True, saves the contents of the keytab and krb5 file as separate secret.

	Returns

	Returns self object

	Return type

	BDSSecretKeeper

ads.secrets.auth_token module

	
class ads.secrets.auth_token.AuthToken(auth_token: str)

	Bases: ads.secrets.secrets.Secret

AuthToken dataclass holds auth_token attribute

	
auth_token: str

	

	
class ads.secrets.auth_token.AuthTokenSecretKeeper(auth_token=None, **kwargs)

	Bases: ads.secrets.secrets.SecretKeeper

AuthTokenSecretKeeper uses ads.secrets.auth_token.AuthToken class to manage Auth Token credentials.
The credentials are stored in Vault as a dictionary with the following format - {“auth_token”:”user provided value”}

Examples

>>> from ads.secrets.auth_token import AuthTokenSecretKeeper
>>> import ads
>>> ads.set_auth("resource_principal") #If using resource principal for authentication
>>> # Save Auth Tokens or Acess Keys to the vault
>>>
>>>
>>> authtoken2 = AuthTokenSecretKeeper(vault_id=vault_id,
... key_id=key_id,
... auth_token="<your auth token>").save("my_xyz_auth_token2",
... "This is my auth token for git repo xyz",
... freeform_tags={"gitrepo":"xyz"})
>>> authtoken2.export_vault_details("my_git_token_vault_info.yaml", format="yaml")
>>> # Loading credentials
>>> with AuthTokenSecretKeeper.load_secret(source="ocid1.vaultsecret.oc1..<unique_ID>",
... export_prefix="mygitrepo",
... export_env=True
...) as authtoken:
... import os
... print("Credentials inside environment variable:", os.environ.get('mygitrepo.auth_token'))
... print("Credentials inside `authtoken` object: ", authtoken)
Credentials inside environment variable: <your auth token>
Credentials inside `authtoken` object: {'auth_token': '<your auth token>'}
>>> print("Credentials inside `authtoken` object: ", authtoken)
Credentials inside `authtoken` object: {'auth_token': None}
>>> print("Credentials inside environment variable:", os.environ.get('mygitrepo.auth_token'))
Credentials inside environment variable: None

	Parameters

	
	auth_token ((str, optional). Default None) – auth token string that needs to be stored in the vault

	kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving secret.
key_id: str. OCID of the key used for encrypting the secret. Required for saving secret.
compartment_id: str. OCID of the compartment where the vault is located. Required for saving secret.
auth: dict. Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
decode() → ads.secrets.auth_token.AuthTokenSecretKeeper

	Converts the content in self.encoded to AuthToken and stores in self.data

	Returns

	Returns the self object after decoding self.encoded and updates self.data

	Return type

	AuthTokenSecretKeeper

Module contents

 ads.text_dataset package

ads.text_dataset package

Submodules

ads.text_dataset.backends module

	
class ads.text_dataset.backends.Base

	Bases: object

Base class for backends.

	
convert_to_text(fhandler: fsspec.core.OpenFile, dst_path: str, fname: Optional[str] = None, storage_options: Optional[Dict] = None) → str

	Convert input file to a text file

	Parameters

	
	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	dst_path (str) – local folder or cloud storage prefix to save converted text files

	fname (str, optional) – filename for converted output, relative to dirname or prefix, by default None

	storage_options (dict, optional) – storage options for cloud storage

	Returns

	path to saved output

	Return type

	str

	
get_metadata(fhandler: fsspec.core.OpenFile) → Dict

	Get metadata of a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Returns

	dictionary of metadata

	Return type

	dict

	
read_line(fhandler: fsspec.core.OpenFile) → Generator[Union[str, List[str]], None, None]

	Read lines from a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Yields

	Generator – a generator that yields lines

	
read_text(fhandler: fsspec.core.OpenFile) → Generator[Union[str, List[str]], None, None]

	Read entire file into a string.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Yields

	Generator – a generator that yields text in the file

	
class ads.text_dataset.backends.PDFPlumber

	Bases: ads.text_dataset.backends.Base

	
convert_to_text(fhandler, dst_path, fname=None, storage_options=None)

	Convert input file to a text file

	Parameters

	
	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	dst_path (str) – local folder or cloud storage prefix to save converted text files

	fname (str, optional) – filename for converted output, relative to dirname or prefix, by default None

	storage_options (dict, optional) – storage options for cloud storage

	Returns

	path to saved output

	Return type

	str

	
get_metadata(fhandler)

	Get metadata of a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Returns

	dictionary of metadata

	Return type

	dict

	
read_line(fhandler)

	Read lines from a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Yields

	Generator – a generator that yields lines

	
read_text(fhandler)

	Read entire file into a string.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Yields

	Generator – a generator that yields text in the file

	
class ads.text_dataset.backends.Tika

	Bases: ads.text_dataset.backends.Base

	
convert_to_text(fhandler, dst_path, fname=None, storage_options=None)

	Convert input file to a text file

	Parameters

	
	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	dst_path (str) – local folder or cloud storage prefix to save converted text files

	fname (str, optional) – filename for converted output, relative to dirname or prefix, by default None

	storage_options (dict, optional) – storage options for cloud storage

	Returns

	path to saved output

	Return type

	str

	
detect_encoding(fhandler: fsspec.core.OpenFile)

	

	
get_metadata(fhandler)

	Get metadata of a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Returns

	dictionary of metadata

	Return type

	dict

	
read_line(fhandler)

	Read lines from a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Yields

	Generator – a generator that yields lines

	
read_text(fhandler)

	Read entire file into a string.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Yields

	Generator – a generator that yields text in the file

ads.text_dataset.dataset module

	
class ads.text_dataset.dataset.DataLoader(engine: Optional[str] = None)

	Bases: object

DataLoader binds engine, FileProcessor and File handler(in this case it is fsspec)
together to produce a dataframe of parsed text from files.

This class is expected to be used mainly from TextDatasetFactory class.

	
processor

	processor that is used for loading data.

	Type

	ads.text_dataset.extractor.FileProcessor

Examples

>>> import oci
>>> from ads.text_dataset.dataset import TextDatasetFactory as textfactory
>>> from ads.text_dataset.options import Options
>>> df = textfactory.format('pdf').engine('pandas').read_line(
... 'oci://<bucket-name>@<namespace>/<path>/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci", "config"))},
...)
>>> data_gen = textfactory.format('pdf').option(Options.FILE_NAME).backend('pdfplumber').read_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci", "config"))},
...)
>>> textfactory.format('docx').convert_to_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.docx',
... './extracted',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci", "config"))},
...)
>>> textfactory.format('docx').convert_to_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.docx',
... 'oci://<bucket-name>@<namespace>/<out_path>',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci", "config"))},
...)
>>> meta_gen = textfactory.format('docx').metadata_schema(
... 'oci://<bucket-name>@<namespace>/papers/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci", "config"))},
...)
>>> df = textfactory.format('pdf').engine('pandas').option(Options.FILE_METADATA, {'extract': ['Author']}).read_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci", "config"))},
... total_files=10,
...)
>>> df = textfactory.format('txt').engine('cudf').read_line(
... 'oci://<bucket-name>@<namespace>/<path>/*.log',
... udf=r'^\[(\S+)\s(\S+)\s(\d+)\s(\d+\:\d+\:\d+)\s(\d+)]\s(\S+)\s(\S+)\s(\S+)\s(\S+)',
... df_args={"columns":["day", "month", "date", "time", "year", "type", "method", "status", "file"]},
... n_lines_per_file=10,
...)

Initialize a DataLoader object.

	Parameters

	engine (str, optional) – dataframe engine, by default None.

	Return type

	None

	
backend(backend: Union[str, ads.text_dataset.backends.Base]) → None

	Set backend used for extracting text from files.

	Parameters

	backend ((str | ads.text_dataset.backends.Base)) – backend for extracting text from raw files.

	Return type

	None

	
convert_to_text(src_path: str, dst_path: str, encoding: str = 'utf-8', storage_options: Optional[Dict] = None) → None

	Convert files to plain text files.

	Parameters

	
	src_path (str) – path to source data file(s). can use glob pattern

	dst_path (str) – local folder or cloud storage (e.g., OCI object storage) prefix to save converted text files

	encoding (str, optional) – encoding for files, by default utf-8

	storage_options (Dict, optional) – storage options for cloud storage, by default None

	Return type

	None

	
engine(eng: str) → None

	Set engine for dataloader. Can be pandas or cudf.

	Parameters

	eng (str) – name of engine

	Return type

	None

	Raises

	NotSupportedError – raises error if engine passed in is not supported.

	
metadata_all(path: str, storage_options: Optional[Dict] = None, encoding: str = 'utf-8') → Generator[Dict[str, Any], None, None]

	Get metadata of all files that matches the given path. Return a generator.

	Parameters

	
	path (str) – path to data files. can use glob pattern.

	storage_options (Dict, optional) – storage options for cloud storage, by default None

	encoding (str, optional) – encoding of files, by default ‘utf-8’

	Returns

	generator of extracted metedata from files.

	Return type

	Generator

	
metadata_schema(path: str, n_files: int = 1, storage_options: Optional[Dict] = None, encoding: str = 'utf-8') → List[str]

	Get available fields in metadata by looking at the first n_files that
matches the given path.

	Parameters

	
	path (str) – path to data files. can have glob pattern

	n_files (int, optional) – number of files to look up, default to be 1

	storage_options (dict, optional) – storage options for cloud storage, by default None

	encoding (str, optional) – encoding of files, by default utf-8

	Returns

	list of available fields in metadata

	Return type

	List[str]

	
option(opt: ads.text_dataset.options.Options, spec: Optional[Any] = None) → None

	Set extraction options.

	Parameters

	
	opt (ads.text_dataset.options.Options) – an option defined in ads.text_dataset.options.Options

	spec (Any, optional) – specifications that will be passed to option handler, by default None

	Return type

	None

	
read_line(path: str, udf: Union[str, Callable] = None, n_lines_per_file: int = None, total_lines: int = None, df_args: Dict = None, storage_options: Dict = None, encoding: str = 'utf-8') → Union[Generator[Union[str, List[str]], None, None], DataFrame]

	Read each file into lines. If path matches multiple files, will combine lines from all files.

	Parameters

	
	path (str) – path to data files. can have glob pattern.

	udf ((callable | str), optional) – user defined function for processing each line, can be a callable or regex, by default None

	n_lines_per_file (int, optional) – max number of lines read from each file, by default None

	total_lines (int, optional) – max number of lines read from all files, by default None

	df_args (dict, optional) – arguments passed to dataframe engine (e.g. pandas), by default None

	storage_options (dict, optional) – storage options for cloud storage, by default None

	encoding (str, optional) – encoding of files, by default ‘utf-8’

	Returns

	returns either a data generator or a dataframe.

	Return type

	(Generator | DataFrame)

	
read_text(path: str, udf: Union[str, Callable] = None, total_files: int = None, storage_options: Dict = None, df_args: Dict = None, encoding: str = 'utf-8') → Union[Generator[Union[str, List[str]], None, None], DataFrame]

	Read each file into a text string. If path matches multiple files, each file corresponds to one record.

	Parameters

	
	path (str) – path to data files. can have glob pattern.

	udf ((callable | str), optional) – user defined function for processing each line, can be a callable or regex, by default None

	total_files (int, optional) – max number of files to read, by default None

	df_args (dict, optional) – arguments passed to dataframe engine (e.g. pandas), by default None

	storage_options (dict, optional) – storage options for cloud storage, by default None

	encoding (str, optional) – encoding of files, by default ‘utf-8’

	Returns

	returns either a data generator or a dataframe.

	Return type

	(Generator | DataFrame)

	
with_processor(processor_type: str) → None

	Set file processor.

	Parameters

	processor_type (str) – type of processor, which corresponds to format of the file.

	Return type

	None

	
class ads.text_dataset.dataset.TextDatasetFactory

	Bases: object

A class that generates a dataloader given a file format.

	
static format(format_name: str) → ads.text_dataset.dataset.DataLoader

	Instantiates DataLoader class and seeds it with the right kind of FileProcessor.
Eg. PDFProcessor for pdf. The FileProcessorFactory returns the processor based
on the format Type.

	Parameters

	format_name (str) – name of format

	Returns

	a DataLoader object.

	Return type

	ads.text_dataset.dataset.DataLoader

ads.text_dataset.extractor module

	
class ads.text_dataset.extractor.FileProcessor(backend: Union[str, ads.text_dataset.backends.Base] = 'default')

	Bases: object

Base class for all the file processor. Files are opened using fsspec library.
The default implementation in the base class assumes text files.

This class is expected to be used inside ads.text_dataset.dataset.DataLoader.

	
backend(backend: Union[str, ads.text_dataset.backends.Base]) → None

	Set backend for file processor.

	Parameters

	backend (ads.text_dataset.backends.Base) – a backend for file processor

	Return type

	None

	Raises

	NotSupportedError – when specified backend is not supported.

	
backend_map = {'default': <class 'ads.text_dataset.backends.Base'>, 'tika': <class 'ads.text_dataset.backends.Tika'>}

	

	
convert_to_text(fhandler: fsspec.core.OpenFile, dst_path: str, fname: Optional[str] = None, storage_options: Optional[Dict] = None) → str

	Convert input file to a text file.

	Parameters

	
	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	dst_path (str) – local folder or cloud storage (e.g. OCI object storage) prefix to save converted text files

	fname (str, optional) – filename for converted output, relative to dirname or prefix, by default None

	storage_options (dict, optional) – storage options for cloud storage, by default None

	Returns

	path to saved output

	Return type

	str

	
get_metadata(fhandler: fsspec.core.OpenFile) → Dict

	Get metadata of a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Returns

	dictionary of metadata

	Return type

	dict

	
read_line(fhandler: fsspec.core.OpenFile, **format_reader_kwargs: Dict) → Generator[Union[str, List[str]], None, None]

	Yields lines from a file.

	Parameters

	fhandler (fsspec.core.OpenFile) – file handler returned by fsspec

	Returns

	a generator that yields lines from a file

	Return type

	Generator

	
read_text(fhandler: fsspec.core.OpenFile, **format_reader_kwargs: Dict) → Generator[Union[str, List[str]], None, None]

	Yield contents from the entire file.

	Parameters

	fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

	Returns

	a generator that yield text from a file

	Return type

	Generator

	
class ads.text_dataset.extractor.FileProcessorFactory

	Bases: object

Factory that manages all file processors.
Provides functionality to get a processor corresponding to a given file type,
or register custom processor for a specific file format.

Examples

>>> from ads.text_dataset.extractor import FileProcessor, FileProcessorFactory
>>> FileProcessorFactory.get_processor('pdf')
>>> class CustomProcessor(FileProcessor):
... # custom logic here
... pass
>>> FileProcessorFactory.register('new_format', CustomProcessor)

	
static get_processor(format)

	

	
processor_map = {'doc': <class 'ads.text_dataset.extractor.WordProcessor'>, 'docx': <class 'ads.text_dataset.extractor.WordProcessor'>, 'pdf': <class 'ads.text_dataset.extractor.PDFProcessor'>, 'txt': <class 'ads.text_dataset.extractor.FileProcessor'>}

	

	
classmethod register(fmt: str, processor: ads.text_dataset.extractor.FileProcessor) → None

	Register custom file processor for a file format.

	Parameters

	
	fmt (str) – file format

	processor (FileProcessor) – custom processor

	Raises

	TypeError – raised when processor is not a subclass of FileProcessor.

	
class ads.text_dataset.extractor.PDFProcessor(backend: Union[str, ads.text_dataset.backends.Base] = 'default')

	Bases: ads.text_dataset.extractor.FileProcessor

Extracts text content from PDF

	
backend_map = {'default': <class 'ads.text_dataset.backends.Tika'>, 'pdfplumber': <class 'ads.text_dataset.backends.PDFPlumber'>, 'tika': <class 'ads.text_dataset.backends.Tika'>}

	

	
class ads.text_dataset.extractor.WordProcessor(backend: Union[str, ads.text_dataset.backends.Base] = 'default')

	Bases: ads.text_dataset.extractor.FileProcessor

Extracts text content from doc or docx format.

	
backend_map = {'default': <class 'ads.text_dataset.backends.Tika'>, 'tika': <class 'ads.text_dataset.backends.Tika'>}

	

ads.text_dataset.options module

	
class ads.text_dataset.options.FileOption(dataloader: ads.text_dataset.dataset.DataLoader)

	Bases: ads.text_dataset.options.OptionHandler

	
handle(fhandler: fsspec.core.OpenFile, spec: Any) → Any

	

	
class ads.text_dataset.options.MetadataOption(dataloader: ads.text_dataset.dataset.DataLoader)

	Bases: ads.text_dataset.options.OptionHandler

	
handle(fhandler: fsspec.core.OpenFile, spec: Dict) → List

	

	
class ads.text_dataset.options.OptionFactory

	Bases: object

	
static option_handler(option: ads.text_dataset.options.Options) → ads.text_dataset.options.OptionHandler

	

	
option_handlers = {<Options.FILE_NAME: 1>: <class 'ads.text_dataset.options.FileOption'>, <Options.FILE_METADATA: 2>: <class 'ads.text_dataset.options.MetadataOption'>}

	

	
classmethod register_option(option: ads.text_dataset.options.Options, handler) → None

	

	
class ads.text_dataset.options.OptionHandler(dataloader: ads.text_dataset.dataset.DataLoader)

	Bases: object

	
handle(fhandler: fsspec.core.OpenFile, spec: Any) → Any

	

	
class ads.text_dataset.options.Options(value)

	Bases: enum.Enum

An enumeration.

	
FILE_METADATA = 2

	

	
FILE_NAME = 1

	

Module contents

 ads.vault package

ads.vault package

Submodules

ads.vault module

	
class ads.vault.vault.Vault(vault_id: Optional[str] = None, key_id: Optional[str] = None, compartment_id=None, secret_client_auth=None, vault_client_auth=None, auth=None)

	Bases: object

	Parameters

	
	vault_id ((str, optional). Default None) – ocid of the vault

	key_id ((str, optional). Default None) – ocid of the key that is used for encrypting the content

	compartment_id ((str, optional). Default None) – ocid of the compartment_id where the vault resides. When available in
environment variable - NB_SESSION_COMPARTMENT_OCID, will defult to that.

	secret_client_auth ((dict, optional, deprecated since 2.5.1). Default None.) – deprecated since 2.5.1. Use auth instead

	vault_client_auth ((dict, optional, deprecated since 2.5.1). Default None.) – deprecated since 2.5.1. Use auth instead

	auth ((dict, optional)) – Dictionay returned from ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth. Use this attribute to override the default.

	
create_secret(value: dict, secret_name: Optional[str] = None, description: Optional[str] = None, encode=True, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] = None) → str

	Saves value into vault as a secret.

	Parameters

	
	value (dict) – The value to store as a secret.

	secret_name (str, optional) – The name of the secret.

	description (str, optional) – The description of the secret.

	encode ((bool, optional). Default True) – Whether to encode using the default encoding.

	freeform_tags ((dict, optional). Default None) – freeform_tags as defined by the oci sdk

	defined_tags ((dict, optional). Default None) – defined_tags as defined by the oci sdk

	Return type

	The secret ocid that correspond to the value saved as a secret into vault.

	
get_secret(secret_id: str, decoded=True) → dict

	Retrieve secret content based on the secret ocid provided

	Parameters

	
	secret_id (str) – The secret ocid.

	decoded ((bool, optional). Default True) – Whether to decode the content that is retrieved from vault service using the default decoder.

	Return type

	The secret content as a dictionary.

	
update_secret(secret_id: str, secret_content: dict, encode: bool = True) → str

	Updates content of a secret.

	Parameters

	
	secret_id (str) – The secret id where the stored secret will be updated.

	secret_content (dict,) – The updated content.

	encode ((bool, optional). Default True) – Whether to encode the secret_content using default encoding

	Return type

	The secret ocid with updated content.

Module contents

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 ads	

 	
 	
 ads.automl	

 	
 	
 ads.automl.driver	

 	
 	
 ads.automl.provider	

 	
 	
 ads.bds	

 	
 	
 ads.bds.auth	

 	
 	
 ads.catalog	

 	
 	
 ads.catalog.model	

 	
 	
 ads.catalog.notebook	

 	
 	
 ads.catalog.project	

 	
 	
 ads.catalog.summary	

 	
 	
 ads.common	

 	
 	
 ads.common.auth	

 	
 	
 ads.common.card_identifier	

 	
 	
 ads.common.data	

 	
 	
 ads.common.decorator.deprecate	

 	
 	
 ads.common.decorator.runtime_dependency	

 	
 	
 ads.common.function.fn_util	

 	
 	
 ads.common.model	

 	
 	
 ads.common.model_export_util	

 	
 	
 ads.common.model_introspect	

 	
 	
 ads.common.model_metadata	

 	
 	
 ads.common.model_metadata_mixin	

 	
 	
 ads.common.utils	

 	
 	
 ads.config	

 	
 	
 ads.data_labeling	

 	
 	
 ads.data_labeling.boundingbox	

 	
 	
 ads.data_labeling.constants	

 	
 	
 ads.data_labeling.data_labeling_service	

 	
 	
 ads.data_labeling.interface.loader	

 	
 	
 ads.data_labeling.interface.parser	

 	
 	
 ads.data_labeling.interface.reader	

 	
 	
 ads.data_labeling.metadata	

 	
 	
 ads.data_labeling.mixin.data_labeling	

 	
 	
 ads.data_labeling.ner	

 	
 	
 ads.data_labeling.parser.export_metadata_parser	

 	
 	
 ads.data_labeling.parser.export_record_parser	

 	
 	
 ads.data_labeling.reader.dataset_reader	

 	
 	
 ads.data_labeling.reader.jsonl_reader	

 	
 	
 ads.data_labeling.reader.metadata_reader	

 	
 	
 ads.data_labeling.reader.record_reader	

 	
 	
 ads.data_labeling.record	

 	
 	
 ads.data_labeling.visualizer.image_visualizer	

 	
 	
 ads.data_labeling.visualizer.text_visualizer	

 	
 	
 ads.database	

 	
 	
 ads.database.connection	

 	
 	
 ads.dataflow	

 	
 	
 ads.dataflow.dataflow	

 	
 	
 ads.dataflow.dataflowsummary	

 	
 	
 ads.dataset	

 	
 	
 ads.dataset.classification_dataset	

 	
 	
 ads.dataset.correlation	

 	
 	
 ads.dataset.correlation_plot	

 	
 	
 ads.dataset.dataframe_transformer	

 	
 	
 ads.dataset.dataset	

 	
 	
 ads.dataset.dataset_browser	

 	
 	
 ads.dataset.dataset_with_target	

 	
 	
 ads.dataset.exception	

 	
 	
 ads.dataset.factory	

 	
 	
 ads.dataset.feature_engineering_transformer	

 	
 	
 ads.dataset.feature_selection	

 	
 	
 ads.dataset.forecasting_dataset	

 	
 	
 ads.dataset.helper	

 	
 	
 ads.dataset.label_encoder	

 	
 	
 ads.dataset.pipeline	

 	
 	
 ads.dataset.plot	

 	
 	
 ads.dataset.progress	

 	
 	
 ads.dataset.recommendation	

 	
 	
 ads.dataset.recommendation_transformer	

 	
 	
 ads.dataset.regression_dataset	

 	
 	
 ads.dataset.sampled_dataset	

 	
 	
 ads.dataset.target	

 	
 	
 ads.dataset.timeseries	

 	
 	
 ads.evaluations	

 	
 	
 ads.evaluations.evaluation_plot	

 	
 	
 ads.evaluations.evaluator	

 	
 	
 ads.evaluations.statistical_metrics	

 	
 	
 ads.feature_engineering	

 	
 	
 ads.feature_engineering.accessor.dataframe_accessor	

 	
 	
 ads.feature_engineering.accessor.mixin.correlation	

 	
 	
 ads.feature_engineering.accessor.mixin.eda_mixin	

 	
 	
 ads.feature_engineering.accessor.mixin.eda_mixin_series	

 	
 	
 ads.feature_engineering.accessor.mixin.feature_types_mixin	

 	
 	
 ads.feature_engineering.accessor.series_accessor	

 	
 	
 ads.feature_engineering.adsstring.common_regex_mixin	

 	
 	
 ads.feature_engineering.adsstring.oci_language	

 	
 	
 ads.feature_engineering.adsstring.string	

 	
 	
 ads.feature_engineering.exceptions	

 	
 	
 ads.feature_engineering.feature_type.address	

 	
 	
 ads.feature_engineering.feature_type.base	

 	
 	
 ads.feature_engineering.feature_type.boolean	

 	
 	
 ads.feature_engineering.feature_type.category	

 	
 	
 ads.feature_engineering.feature_type.constant	

 	
 	
 ads.feature_engineering.feature_type.continuous	

 	
 	
 ads.feature_engineering.feature_type.creditcard	

 	
 	
 ads.feature_engineering.feature_type.datetime	

 	
 	
 ads.feature_engineering.feature_type.discrete	

 	
 	
 ads.feature_engineering.feature_type.document	

 	
 	
 ads.feature_engineering.feature_type.gis	

 	
 	
 ads.feature_engineering.feature_type.handler.feature_validator	

 	
 	
 ads.feature_engineering.feature_type.handler.feature_warning	

 	
 	
 ads.feature_engineering.feature_type.handler.warnings	

 	
 	
 ads.feature_engineering.feature_type.integer	

 	
 	
 ads.feature_engineering.feature_type.ip_address	

 	
 	
 ads.feature_engineering.feature_type.ip_address_v4	

 	
 	
 ads.feature_engineering.feature_type.ip_address_v6	

 	
 	
 ads.feature_engineering.feature_type.lat_long	

 	
 	
 ads.feature_engineering.feature_type.object	

 	
 	
 ads.feature_engineering.feature_type.ordinal	

 	
 	
 ads.feature_engineering.feature_type.phone_number	

 	
 	
 ads.feature_engineering.feature_type.string	

 	
 	
 ads.feature_engineering.feature_type.text	

 	
 	
 ads.feature_engineering.feature_type.unknown	

 	
 	
 ads.feature_engineering.feature_type.zip_code	

 	
 	
 ads.feature_engineering.feature_type_manager	

 	
 	
 ads.hpo	

 	
 	
 ads.hpo.distributions	

 	
 	
 ads.hpo.search_cv	

 	
 	
 ads.hpo.stopping_criterion	

 	
 	
 ads.jobs	

 	
 	
 ads.jobs.ads_job	

 	
 	
 ads.jobs.builders.infrastructure.dataflow	

 	
 	
 ads.jobs.builders.infrastructure.dsc_job	

 	
 	
 ads.jobs.builders.runtimes.python_runtime	

 	
 	
 ads.model	

 	
 	
 ads.model.artifact	

 	
 	
 ads.model.deployment	

 	
 	
 ads.model.deployment.model_deployer	

 	
 	
 ads.model.deployment.model_deployment	

 	
 	
 ads.model.deployment.model_deployment_properties	

 	
 	
 ads.model.extractor.automl_extractor	

 	
 	
 ads.model.extractor.keras_extractor	

 	
 	
 ads.model.extractor.lightgbm_extractor	

 	
 	
 ads.model.extractor.model_info_extractor	

 	
 	
 ads.model.extractor.model_info_extractor_factory	

 	
 	
 ads.model.extractor.pytorch_extractor	

 	
 	
 ads.model.extractor.sklearn_extractor	

 	
 	
 ads.model.extractor.tensorflow_extractor	

 	
 	
 ads.model.extractor.xgboost_extractor	

 	
 	
 ads.model.framework	

 	
 	
 ads.model.framework.automl_model	

 	
 	
 ads.model.framework.lightgbm_model	

 	
 	
 ads.model.framework.pytorch_model	

 	
 	
 ads.model.framework.sklearn_model	

 	
 	
 ads.model.framework.xgboost_model	

 	
 	
 ads.model.generic_model	

 	
 	
 ads.model.model_properties	

 	
 	
 ads.model.runtime	

 	
 	
 ads.model.runtime.env_info	

 	
 	
 ads.model.runtime.model_deployment_details	

 	
 	
 ads.model.runtime.model_provenance_details	

 	
 	
 ads.model.runtime.runtime_info	

 	
 	
 ads.model.runtime.utils	

 	
 	
 ads.oracledb.oracle_db	

 	
 	
 ads.secrets	

 	
 	
 ads.secrets.adb	

 	
 	
 ads.secrets.auth_token	

 	
 	
 ads.secrets.big_data_service	

 	
 	
 ads.secrets.mysqldb	

 	
 	
 ads.secrets.oracledb	

 	
 	
 ads.secrets.secrets	

 	
 	
 ads.text_dataset	

 	
 	
 ads.text_dataset.backends	

 	
 	
 ads.text_dataset.dataset	

 	
 	
 ads.text_dataset.extractor	

 	
 	
 ads.text_dataset.options	

 	
 	
 ads.vault	

 	
 	
 ads.vault.vault	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	absa (ads.feature_engineering.adsstring.oci_language.OCILanguage property)

 	ACCESS (ads.model.deployment.model_deployment.ModelDeploymentLogType attribute)

 	access_log (ads.model.deployment.model_deployment.ModelDeployment property)

 	activate() (ads.catalog.model.Model method), [1]

 	ADBSecret (class in ads.secrets.adb)

 	ADBSecretKeeper (class in ads.secrets.adb)

 	add() (ads.common.model_metadata.ModelCustomMetadata method), [1]

 	(ads.dataset.pipeline.TransformerPipeline method)

 	add_metrics() (ads.evaluations.evaluator.ADSEvaluator method), [1]

 	add_models() (ads.evaluations.evaluator.ADSEvaluator method), [1]

 	address (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	Address (class in ads.feature_engineering.feature_type.address)

 	
 ads

 	module

 	
 ads.automl

 	module

 	
 ads.automl.driver

 	module

 	
 ads.automl.provider

 	module

 	
 ads.bds

 	module

 	
 ads.bds.auth

 	module

 	
 ads.catalog

 	module

 	
 ads.catalog.model

 	module

 	
 ads.catalog.notebook

 	module

 	
 ads.catalog.project

 	module

 	
 ads.catalog.summary

 	module

 	
 ads.common

 	module

 	
 ads.common.auth

 	module

 	
 ads.common.card_identifier

 	module

 	
 ads.common.data

 	module

 	
 ads.common.decorator.deprecate

 	module

 	
 ads.common.decorator.runtime_dependency

 	module

 	
 ads.common.function.fn_util

 	module

 	
 ads.common.model

 	module

 	
 ads.common.model_export_util

 	module

 	
 ads.common.model_introspect

 	module

 	
 ads.common.model_metadata

 	module

 	
 ads.common.model_metadata_mixin

 	module

 	
 ads.common.utils

 	module

 	
 ads.config

 	module

 	
 ads.data_labeling

 	module

 	
 ads.data_labeling.boundingbox

 	module

 	
 ads.data_labeling.constants

 	module

 	
 ads.data_labeling.data_labeling_service

 	module

 	
 ads.data_labeling.interface.loader

 	module

 	
 ads.data_labeling.interface.parser

 	module

 	
 ads.data_labeling.interface.reader

 	module

 	
 ads.data_labeling.metadata

 	module

 	
 ads.data_labeling.mixin.data_labeling

 	module

 	
 ads.data_labeling.ner

 	module

 	
 ads.data_labeling.parser.export_metadata_parser

 	module

 	
 ads.data_labeling.parser.export_record_parser

 	module

 	
 ads.data_labeling.reader.dataset_reader

 	module

 	
 ads.data_labeling.reader.jsonl_reader

 	module

 	
 ads.data_labeling.reader.metadata_reader

 	module

 	
 ads.data_labeling.reader.record_reader

 	module

 	
 ads.data_labeling.record

 	module

 	
 ads.data_labeling.visualizer.image_visualizer

 	module

 	
 ads.data_labeling.visualizer.text_visualizer

 	module

 	
 ads.database

 	module

 	
 ads.database.connection

 	module

 	
 ads.dataflow

 	module

 	
 ads.dataflow.dataflow

 	module

 	
 ads.dataflow.dataflowsummary

 	module

 	
 ads.dataset

 	module

 	
 ads.dataset.classification_dataset

 	module

 	
 ads.dataset.correlation

 	module

 	
 ads.dataset.correlation_plot

 	module

 	
 ads.dataset.dataframe_transformer

 	module

 	
 ads.dataset.dataset

 	module

 	
 ads.dataset.dataset_browser

 	module

 	
 ads.dataset.dataset_with_target

 	module

 	
 ads.dataset.exception

 	module

 	
 ads.dataset.factory

 	module

 	
 ads.dataset.feature_engineering_transformer

 	module

 	
 ads.dataset.feature_selection

 	module

 	
 ads.dataset.forecasting_dataset

 	module

 	
 ads.dataset.helper

 	module

 	
 ads.dataset.label_encoder

 	module

 	
 ads.dataset.pipeline

 	module

 	
 ads.dataset.plot

 	module

 	
 ads.dataset.progress

 	module

 	
 ads.dataset.recommendation

 	module

 	
 ads.dataset.recommendation_transformer

 	module

 	
 ads.dataset.regression_dataset

 	module

 	
 ads.dataset.sampled_dataset

 	module

 	
 ads.dataset.target

 	module

 	
 ads.dataset.timeseries

 	module

 	
 ads.evaluations

 	module

 	
 ads.evaluations.evaluation_plot

 	module

 	
 ads.evaluations.evaluator

 	module

 	
 ads.evaluations.statistical_metrics

 	module

 	
 ads.feature_engineering

 	module

 	
 ads.feature_engineering.accessor.dataframe_accessor

 	module

 	
 ads.feature_engineering.accessor.mixin.correlation

 	module

 	
 ads.feature_engineering.accessor.mixin.eda_mixin

 	module

 	
 ads.feature_engineering.accessor.mixin.eda_mixin_series

 	module

 	
 ads.feature_engineering.accessor.mixin.feature_types_mixin

 	module

 	
 ads.feature_engineering.accessor.series_accessor

 	module

 	
 ads.feature_engineering.adsstring.common_regex_mixin

 	module

 	
 ads.feature_engineering.adsstring.oci_language

 	module

 	
 ads.feature_engineering.adsstring.string

 	module

 	
 ads.feature_engineering.exceptions

 	module

 	
 ads.feature_engineering.feature_type.address

 	module

 	
 ads.feature_engineering.feature_type.base

 	module

 	
 ads.feature_engineering.feature_type.boolean

 	module

 	
 ads.feature_engineering.feature_type.category

 	module

 	
 ads.feature_engineering.feature_type.constant

 	module

 	
 ads.feature_engineering.feature_type.continuous

 	module

 	
 ads.feature_engineering.feature_type.creditcard

 	module

 	
 ads.feature_engineering.feature_type.datetime

 	module

 	
 ads.feature_engineering.feature_type.discrete

 	module

 	
 ads.feature_engineering.feature_type.document

 	module

 	
 ads.feature_engineering.feature_type.gis

 	module

 	
 ads.feature_engineering.feature_type.handler.feature_validator

 	module

 	
 ads.feature_engineering.feature_type.handler.feature_warning

 	module

 	
 	
 ads.feature_engineering.feature_type.handler.warnings

 	module

 	
 ads.feature_engineering.feature_type.integer

 	module

 	
 ads.feature_engineering.feature_type.ip_address

 	module

 	
 ads.feature_engineering.feature_type.ip_address_v4

 	module

 	
 ads.feature_engineering.feature_type.ip_address_v6

 	module

 	
 ads.feature_engineering.feature_type.lat_long

 	module

 	
 ads.feature_engineering.feature_type.object

 	module

 	
 ads.feature_engineering.feature_type.ordinal

 	module

 	
 ads.feature_engineering.feature_type.phone_number

 	module

 	
 ads.feature_engineering.feature_type.string

 	module

 	
 ads.feature_engineering.feature_type.text

 	module

 	
 ads.feature_engineering.feature_type.unknown

 	module

 	
 ads.feature_engineering.feature_type.zip_code

 	module

 	
 ads.feature_engineering.feature_type_manager

 	module

 	
 ads.hpo

 	module

 	
 ads.hpo.distributions

 	module

 	
 ads.hpo.search_cv

 	module

 	
 ads.hpo.stopping_criterion

 	module

 	
 ads.jobs

 	module

 	
 ads.jobs.ads_job

 	module

 	
 ads.jobs.builders.infrastructure.dataflow

 	module

 	
 ads.jobs.builders.infrastructure.dsc_job

 	module

 	
 ads.jobs.builders.runtimes.python_runtime

 	module

 	
 ads.model

 	module

 	
 ads.model.artifact

 	module

 	
 ads.model.deployment

 	module

 	
 ads.model.deployment.model_deployer

 	module

 	
 ads.model.deployment.model_deployment

 	module

 	
 ads.model.deployment.model_deployment_properties

 	module

 	
 ads.model.extractor.automl_extractor

 	module

 	
 ads.model.extractor.keras_extractor

 	module

 	
 ads.model.extractor.lightgbm_extractor

 	module

 	
 ads.model.extractor.model_info_extractor

 	module

 	
 ads.model.extractor.model_info_extractor_factory

 	module

 	
 ads.model.extractor.pytorch_extractor

 	module

 	
 ads.model.extractor.sklearn_extractor

 	module

 	
 ads.model.extractor.tensorflow_extractor

 	module

 	
 ads.model.extractor.xgboost_extractor

 	module

 	
 ads.model.framework

 	module

 	
 ads.model.framework.automl_model

 	module

 	
 ads.model.framework.lightgbm_model

 	module

 	
 ads.model.framework.pytorch_model

 	module

 	
 ads.model.framework.sklearn_model

 	module

 	
 ads.model.framework.xgboost_model

 	module

 	
 ads.model.generic_model

 	module

 	
 ads.model.model_properties

 	module

 	
 ads.model.runtime

 	module

 	
 ads.model.runtime.env_info

 	module

 	
 ads.model.runtime.model_deployment_details

 	module

 	
 ads.model.runtime.model_provenance_details

 	module

 	
 ads.model.runtime.runtime_info

 	module, [1]

 	
 ads.model.runtime.utils

 	module

 	
 ads.oracledb.oracle_db

 	module

 	
 ads.secrets

 	module

 	
 ads.secrets.adb

 	module

 	
 ads.secrets.auth_token

 	module

 	
 ads.secrets.big_data_service

 	module

 	
 ads.secrets.mysqldb

 	module

 	
 ads.secrets.oracledb

 	module

 	
 ads.secrets.secrets

 	module

 	
 ads.text_dataset

 	module

 	
 ads.text_dataset.backends

 	module

 	
 ads.text_dataset.dataset

 	module

 	
 ads.text_dataset.extractor

 	module

 	
 ads.text_dataset.options

 	module

 	
 ads.vault

 	module

 	
 ads.vault.vault

 	module

 	ADSData (class in ads.common.data)

 	ADSDataFrameAccessor (class in ads.feature_engineering.accessor.dataframe_accessor)

 	ADSDataset (class in ads.dataset.dataset)

 	ADSDatasetWithTarget (class in ads.dataset.dataset_with_target)

 	ADSEvaluator (class in ads.evaluations.evaluator)

 	ADSEvaluator.EvaluationMetrics (class in ads.evaluations.evaluator)

 	ADSFeatureTypesMixin (class in ads.feature_engineering.accessor.mixin.feature_types_mixin)

 	ADSModel (class in ads.common.model)

 	ADSSeriesAccessor (class in ads.feature_engineering.accessor.series_accessor)

 	ADSSeriesValidator (class in ads.feature_engineering.accessor.series_accessor)

 	ADSString (class in ads.feature_engineering.adsstring.string)

 	ADSTuner (class in ads.hpo.search_cv)

 	ALGORITHM (ads.common.model_metadata.MetadataTaxonomyKeys attribute)

 	algorithm (ads.model.extractor.automl_extractor.AutoMLExtractor property)

 	(ads.model.extractor.keras_extractor.KerasExtractor property)

 	(ads.model.extractor.lightgbm_extractor.LightgbmExtractor property)

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor property)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor property)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor property)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor property)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	algorithm() (ads.model.extractor.lightgbm_extractor.LightgbmExtractor method)

 	(ads.model.extractor.model_info_extractor.ModelInfoExtractor method), [1]

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor method)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor method)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor method)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor method)

 	annotation (ads.data_labeling.record.Record attribute), [1]

 	annotation_type (ads.data_labeling.metadata.Metadata attribute), [1]

 	AnnotationType (class in ads.data_labeling.constants)

 	ANOMALY_DETECTION (ads.common.model_metadata.UseCaseType attribute)

 	api_keys() (in module ads.common.auth)

 	application (ads.jobs.builders.infrastructure.dataflow.DataFlowLogs property)

 	archive_bucket (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime property)

 	archive_uri (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime property)

 	AritfactFolderStructureError

 	artifact (ads.jobs.builders.infrastructure.dsc_job.DSCJob property)

 	artifact_dir (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	artifact_directory (ads.model.runtime.model_provenance_details.TrainingCode attribute)

 	ARTIFACT_TEST_RESULT (ads.common.model_metadata.MetadataTaxonomyKeys attribute)

 	ArtifactNestedFolderError

 	ArtifactRequiredFilesError

 	assert_path_not_dirty() (ads.common.model_metadata.ModelProvenanceMetadata method)

 	assign_column() (ads.dataset.dataset.ADSDataset method)

 	astype() (ads.dataset.dataset.ADSDataset method)

 	ATTRIBUTE (ads.common.decorator.deprecate.TARGET_TYPE attribute)

 	attribute_map (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	auth (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	auth_token (ads.secrets.auth_token.AuthToken attribute)

 	AuthToken (class in ads.secrets.auth_token)

 	AuthTokenSecretKeeper (class in ads.secrets.auth_token)

 	auto_transform() (ads.dataset.classification_dataset.BinaryTextClassificationDataset method)

 	(ads.dataset.classification_dataset.ClassificationDataset method)

 	(ads.dataset.classification_dataset.MultiClassTextClassificationDataset method)

 	(ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	AutoML (class in ads.automl.driver)

 	AutoMLExtractor (class in ads.model.extractor.automl_extractor)

 	AutoMLFeatureSelection (class in ads.automl.provider)

 	AutoMLModel (class in ads.model.framework.automl_model)

 	AutoMLPreprocessingTransformer (class in ads.automl.provider)

 	AutoMLProvider (class in ads.automl.provider)

 	AVAILABLE (ads.model.generic_model.ModelState attribute)

B

 	
 	backend() (ads.text_dataset.dataset.DataLoader method)

 	(ads.text_dataset.extractor.FileProcessor method)

 	backend_map (ads.text_dataset.extractor.FileProcessor attribute)

 	(ads.text_dataset.extractor.PDFProcessor attribute)

 	(ads.text_dataset.extractor.WordProcessor attribute)

 	Base (class in ads.text_dataset.backends)

 	baseline (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	baseline_kwargs (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	BaselineAutoMLProvider (class in ads.automl.provider)

 	BaselineModel (class in ads.automl.provider)

 	BDSSecret (class in ads.secrets.big_data_service)

 	BDSSecretKeeper (class in ads.secrets.big_data_service)

 	BERT (ads.common.model_metadata.Framework attribute)

 	best_index (ads.hpo.search_cv.ADSTuner property)

 	best_params (ads.hpo.search_cv.ADSTuner property)

 	best_score (ads.hpo.search_cv.ADSTuner property)

 	best_scores() (ads.hpo.search_cv.ADSTuner method)

 	BINARY_CLASSIFICATION (ads.common.model_metadata.UseCaseType attribute)

 	(ads.common.utils.ml_task_types attribute)

 	
 	BINARY_TEXT_CLASSIFICATION (ads.common.utils.ml_task_types attribute)

 	BinaryClassificationDataset (class in ads.dataset.classification_dataset)

 	BinaryTextClassificationDataset (class in ads.dataset.classification_dataset)

 	block_storage_size (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	BokehHeatMap (class in ads.dataset.correlation_plot)

 	Boolean (class in ads.feature_engineering.feature_type.boolean)

 	BOOSTED (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	bottom_left (ads.data_labeling.boundingbox.BoundingBoxItem attribute), [1]

 	bottom_right (ads.data_labeling.boundingbox.BoundingBoxItem attribute), [1]

 	BOUNDING_BOX (ads.data_labeling.constants.AnnotationType attribute)

 	BoundingBoxItem (class in ads.data_labeling.boundingbox)

 	BoundingBoxItems (class in ads.data_labeling.boundingbox)

 	BoundingBoxRecordParser (class in ads.data_labeling.parser.export_record_parser)

 	boxes (ads.data_labeling.visualizer.image_visualizer.LabeledImageItem attribute), [1]

 	branch (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime property)

 	build() (ads.common.data.ADSData static method)

 	(ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method), [1]

C

 	
 	calculate_cost() (ads.evaluations.evaluator.ADSEvaluator method), [1]

 	calculate_sample_size() (in module ads.dataset.helper)

 	call() (ads.dataset.dataset.ADSDataset method)

 	cancel() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun method)

 	capitalize() (ads.feature_engineering.adsstring.string.ADSString method)

 	card_identify (class in ads.common.card_identifier)

 	case (ads.common.model_introspect.PrintItem attribute)

 	casefold() (ads.feature_engineering.adsstring.string.ADSString method)

 	cat_vs_cat() (in module ads.feature_engineering.accessor.mixin.correlation)

 	cat_vs_cont() (in module ads.feature_engineering.accessor.mixin.correlation)

 	CategoricalDistribution (class in ads.hpo.distributions)

 	CATEGORY (ads.common.model_metadata.MetadataCustomPrintColumns attribute)

 	category (ads.common.model_metadata.ModelCustomMetadataItem attribute)

 	(ads.common.model_metadata.ModelCustomMetadataItem property)

 	Category (class in ads.feature_engineering.feature_type.category)

 	center() (ads.feature_engineering.adsstring.string.ADSString method)

 	CLASS (ads.common.decorator.deprecate.TARGET_TYPE attribute)

 	classes (ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	ClassificationDataset (class in ads.dataset.classification_dataset)

 	clear() (ads.common.model_metadata.ModelCustomMetadata method), [1]

 	client (ads.jobs.builders.infrastructure.dataflow.DataFlowApp property)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun property)

 	CLIENT_LIBRARY (ads.common.model_metadata.MetadataCustomKeys attribute)

 	CLUSTERING (ads.common.model_metadata.UseCaseType attribute)

 	color_wheel (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	colors (ads.data_labeling.visualizer.image_visualizer.RenderOptions attribute), [1]

 	(ads.data_labeling.visualizer.text_visualizer.RenderOptions attribute), [1]

 	columns (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor attribute)

 	commit (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime property)

 	commit() (ads.catalog.model.Model method), [1]

 	CommonRegexMixin (class in ads.feature_engineering.adsstring.common_regex_mixin)

 	compartment_id (ads.data_labeling.metadata.Metadata attribute), [1]

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	(ads.model.model_properties.ModelProperties attribute)

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	COMPLETED (ads.hpo.search_cv.State attribute)

 	compute() (ads.dataset.dataset.ADSDataset method)

 	concatenate() (in module ads.dataset.helper)

 	conda (ads.jobs.builders.runtimes.python_runtime.CondaRuntime property)

 	CONDA_ENVIRONMENT (ads.common.model_metadata.MetadataCustomKeys attribute)

 	CONDA_ENVIRONMENT_PATH (ads.common.model_metadata.MetadataCustomKeys attribute)

 	CondaRuntime (class in ads.jobs.builders.runtimes.python_runtime)

 	config (ads.dataflow.dataflow.DataFlowApp property)

 	(ads.dataflow.dataflow.DataFlowRun property)

 	(ads.dataflow.dataflow.RunObserver property)

 	(ads.model.deployment.model_deployer.ModelDeployer attribute)

 	(ads.model.deployment.model_deployment.ModelDeployment attribute)

 	connect() (ads.database.connection.Connector method)

 	Connector (class in ads.database.connection)

 	CONST_ARCHIVE_BUCKET (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime attribute)

 	CONST_ARCHIVE_URI (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime attribute)

 	CONST_BLOCK_STORAGE (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_BRANCH (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime attribute)

 	CONST_COMMIT (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime attribute)

 	CONST_COMPARTMENT_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_CONDA (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	CONST_CONDA_REGION (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	CONST_CONDA_SLUG (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	CONST_CONDA_TYPE (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	
 	CONST_CONDA_TYPE_CUSTOM (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	CONST_CONDA_TYPE_SERVICE (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	CONST_CONDA_URI (ads.jobs.builders.runtimes.python_runtime.CondaRuntime attribute)

 	CONST_DISPLAY_NAME (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_ENTRYPOINT (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime attribute)

 	CONST_GIT_SSH_SECRET_ID (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime attribute)

 	CONST_GIT_URL (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime attribute)

 	CONST_JOB_INFRA (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_JOB_TYPE (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_LOG_GROUP_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_LOG_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_NOTEBOOK_ENCODING (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime attribute)

 	CONST_NOTEBOOK_PATH (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime attribute)

 	CONST_OUTPUT_URI (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime attribute)

 	CONST_PROJECT_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_SCRIPT_BUCKET (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime attribute)

 	CONST_SCRIPT_PATH (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime attribute)

 	(ads.jobs.builders.runtimes.python_runtime.ScriptRuntime attribute)

 	CONST_SHAPE_NAME (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_SKIP_METADATA (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime attribute)

 	CONST_SUBNET_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob attribute)

 	CONST_WORKING_DIR (ads.jobs.builders.runtimes.python_runtime.PythonRuntime attribute)

 	Constant (class in ads.feature_engineering.feature_type.constant)

 	cont_vs_cont() (in module ads.feature_engineering.accessor.mixin.correlation)

 	content (ads.data_labeling.record.Record attribute), [1]

 	Continuous (class in ads.feature_engineering.feature_type.continuous)

 	convert() (ads.jobs.builders.runtimes.python_runtime.DataFlowNotebookRuntime method)

 	(ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime method)

 	convert_columns() (in module ads.dataset.helper)

 	convert_dataframe_schema() (ads.common.model.ADSModel static method)

 	convert_to_html() (in module ads.dataset.helper)

 	convert_to_text() (ads.text_dataset.backends.Base method)

 	(ads.text_dataset.backends.PDFPlumber method)

 	(ads.text_dataset.backends.Tika method)

 	(ads.text_dataset.dataset.DataLoader method)

 	(ads.text_dataset.extractor.FileProcessor method)

 	convert_to_text_classification() (ads.dataset.classification_dataset.ClassificationDataset method)

 	copy_from_uri() (in module ads.common.utils)

 	corr() (ads.dataset.dataset.ADSDataset method)

 	correlation_ratio() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	correlation_ratio_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	count() (ads.feature_engineering.adsstring.string.ADSString method)

 	cramersv() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	cramersv_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	create() (ads.jobs.ads_job.Job method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowApp method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun method)

 	(ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	create_app() (ads.dataflow.dataflow.DataFlow method)

 	create_notebook_session() (ads.catalog.notebook.NotebookCatalog method)

 	create_project() (ads.catalog.project.ProjectCatalog method)

 	create_secret() (ads.vault.vault.Vault method)

 	credit_card (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	CreditCard (class in ads.feature_engineering.feature_type.creditcard)

 	CUML (ads.common.model_metadata.Framework attribute)

 	CustomFormatReaders (class in ads.dataset.factory)

D

 	
 	DATA (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	database (ads.secrets.mysqldb.MySQLDBSecret attribute)

 	DataFlow (class in ads.dataflow.dataflow)

 	(class in ads.jobs.builders.infrastructure.dataflow)

 	dataflow_job() (ads.jobs.ads_job.Job static method)

 	DataFlowApp (class in ads.dataflow.dataflow)

 	(class in ads.jobs.builders.infrastructure.dataflow)

 	DataFlowLog (class in ads.dataflow.dataflow)

 	DataFlowLogs (class in ads.jobs.builders.infrastructure.dataflow)

 	DataFlowNotebookRuntime (class in ads.jobs.builders.runtimes.python_runtime)

 	DataFlowRun (class in ads.dataflow.dataflow)

 	(class in ads.jobs.builders.infrastructure.dataflow)

 	DataFlowRuntime (class in ads.jobs.builders.runtimes.python_runtime)

 	DataFrameLabelEncoder (class in ads.dataset.label_encoder)

 	DataFrameTransformer (class in ads.dataset.dataframe_transformer)

 	DataLabeling (class in ads.data_labeling.data_labeling_service)

 	DataLabelingAccessMixin (class in ads.data_labeling.mixin.data_labeling)

 	DataLoader (class in ads.text_dataset.dataset)

 	datascience_job() (ads.jobs.ads_job.Job static method)

 	DataScienceJob (class in ads.jobs.builders.infrastructure.dsc_job)

 	DataScienceJobRun (class in ads.jobs.builders.infrastructure.dsc_job)

 	dataset_id (ads.data_labeling.metadata.Metadata attribute), [1]

 	dataset_name (ads.data_labeling.metadata.Metadata attribute), [1]

 	dataset_type (ads.data_labeling.metadata.Metadata attribute), [1]

 	DatasetBrowser (class in ads.dataset.dataset_browser)

 	DatasetDefaults (class in ads.dataset.helper)

 	DatasetError

 	DatasetFactory (class in ads.dataset.factory)

 	DatasetLoadException

 	DatasetNotFoundError

 	DatasetType (class in ads.data_labeling.constants)

 	date (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	DateTime (class in ads.feature_engineering.feature_type.datetime)

 	datetime_format (ads.catalog.project.ProjectSummaryList attribute)

 	ddf (ads.dataset.dataset.ADSDataset property)

 	deactivate() (ads.catalog.model.Model method), [1]

 	debug() (ads.dataset.correlation_plot.BokehHeatMap method)

 	decide_estimator() (ads.automl.provider.BaselineAutoMLProvider method)

 	decode() (ads.secrets.adb.ADBSecretKeeper method)

 	(ads.secrets.auth_token.AuthTokenSecretKeeper method)

 	(ads.secrets.big_data_service.BDSSecretKeeper method)

 	(ads.secrets.mysqldb.MySQLDBSecretKeeper method)

 	(ads.secrets.oracledb.OracleDBSecretKeeper method)

 	(ads.secrets.secrets.SecretKeeper method)

 	(in module ads.hpo.distributions)

 	default() (ads.common.utils.JsonConverter method)

 	(ads.hpo.distributions.DistributionEncode method)

 	default_color (ads.data_labeling.visualizer.image_visualizer.RenderOptions attribute), [1]

 	(ads.data_labeling.visualizer.text_visualizer.RenderOptions attribute), [1]

 	default_handler() (in module ads.feature_engineering.feature_type.address)

 	(in module ads.feature_engineering.feature_type.boolean)

 	(in module ads.feature_engineering.feature_type.creditcard)

 	(in module ads.feature_engineering.feature_type.datetime)

 	(in module ads.feature_engineering.feature_type.gis)

 	(in module ads.feature_engineering.feature_type.ip_address)

 	(in module ads.feature_engineering.feature_type.ip_address_v4)

 	(in module ads.feature_engineering.feature_type.ip_address_v6)

 	(in module ads.feature_engineering.feature_type.lat_long)

 	(in module ads.feature_engineering.feature_type.phone_number)

 	(in module ads.feature_engineering.feature_type.string)

 	(in module ads.feature_engineering.feature_type.zip_code)

 	DEFAULT_INFRA_TYPE (ads.jobs.builders.infrastructure.dsc_job.DSCJob attribute)

 	DEFAULT_LABELS_MAP (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics attribute)

 	default_signer() (in module ads.common.auth)

 	DEFAULT_SQL_ARRAYSIZE (ads.dataset.factory.CustomFormatReaders attribute)

 	DEFAULT_SQL_CHUNKSIZE (ads.dataset.factory.CustomFormatReaders attribute)

 	DEFAULT_SQL_CTU (ads.dataset.factory.CustomFormatReaders attribute)

 	DEFAULT_SQL_MIL (ads.dataset.factory.CustomFormatReaders attribute)

 	default_type (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor attribute)

 	(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor property)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor attribute)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor property)

 	del_metrics() (ads.evaluations.evaluator.ADSEvaluator method), [1]

 	del_models() (ads.evaluations.evaluator.ADSEvaluator method), [1]

 	delete() (ads.jobs.ads_job.Job method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowApp method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	(ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	(ads.model.deployment.model_deployer.ModelDeployer method), [1]

 	(ads.model.deployment.model_deployment.ModelDeployment method), [1]

 	delete_deployment() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	
 	delete_model() (ads.catalog.model.ModelCatalog method), [1]

 	delete_notebook_session() (ads.catalog.notebook.NotebookCatalog method)

 	delete_project() (ads.catalog.project.ProjectCatalog method)

 	deploy() (ads.model.deployment.model_deployer.ModelDeployer method), [1]

 	(ads.model.deployment.model_deployment.ModelDeployment method), [1]

 	(ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	deploy_from_model_uri() (ads.model.deployment.model_deployer.ModelDeployer method)

 	deployment_access_log_id (ads.model.model_properties.ModelProperties attribute)

 	deployment_bandwidth_mbps (ads.model.model_properties.ModelProperties attribute)

 	deployment_instance_count (ads.model.model_properties.ModelProperties attribute)

 	deployment_instance_shape (ads.model.model_properties.ModelProperties attribute)

 	deployment_log_group_id (ads.model.model_properties.ModelProperties attribute)

 	deployment_predict_log_id (ads.model.model_properties.ModelProperties attribute)

 	deployment_properties (ads.model.deployment.model_deployment.ModelDeployment attribute)

 	deprecate_default_value() (in module ads.dataset.helper)

 	deprecate_variable() (in module ads.dataset.helper)

 	deprecated() (in module ads.common.decorator.deprecate)

 	DESCRIPTION (ads.common.model_metadata.MetadataCustomPrintColumns attribute)

 	description (ads.common.model_metadata.ModelCustomMetadataItem attribute)

 	(ads.common.model_metadata.ModelCustomMetadataItem property)

 	(ads.feature_engineering.feature_type.address.Address attribute), [1]

 	(ads.feature_engineering.feature_type.base.FeatureType attribute)

 	(ads.feature_engineering.feature_type.boolean.Boolean attribute), [1]

 	(ads.feature_engineering.feature_type.category.Category attribute), [1]

 	(ads.feature_engineering.feature_type.constant.Constant attribute), [1]

 	(ads.feature_engineering.feature_type.continuous.Continuous attribute), [1]

 	(ads.feature_engineering.feature_type.creditcard.CreditCard attribute), [1]

 	(ads.feature_engineering.feature_type.datetime.DateTime attribute), [1]

 	(ads.feature_engineering.feature_type.discrete.Discrete attribute), [1]

 	(ads.feature_engineering.feature_type.document.Document attribute), [1]

 	(ads.feature_engineering.feature_type.gis.GIS attribute), [1]

 	(ads.feature_engineering.feature_type.integer.Integer attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address.IpAddress attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 attribute), [1]

 	(ads.feature_engineering.feature_type.lat_long.LatLong attribute), [1]

 	(ads.feature_engineering.feature_type.object.Object attribute), [1]

 	(ads.feature_engineering.feature_type.ordinal.Ordinal attribute), [1]

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber attribute), [1]

 	(ads.feature_engineering.feature_type.string.String attribute), [1]

 	(ads.feature_engineering.feature_type.text.Text attribute), [1]

 	(ads.feature_engineering.feature_type.unknown.Unknown attribute), [1]

 	(ads.feature_engineering.feature_type.zip_code.ZipCode attribute), [1]

 	detect_encoding() (ads.text_dataset.backends.Tika method)

 	df (ads.catalog.project.ProjectSummaryList attribute)

 	df_read_functions (ads.dataset.dataset.ADSDataset attribute)

 	DIMENSIONALITY_REDUCTION (ads.common.model_metadata.UseCaseType attribute)

 	Discrete (class in ads.feature_engineering.feature_type.discrete)

 	DiscreteUniformDistribution (class in ads.hpo.distributions)

 	Distribution (class in ads.hpo.distributions)

 	DistributionEncode (class in ads.hpo.distributions)

 	DLSDatasetReader (class in ads.data_labeling.reader.dataset_reader)

 	DLSMetadataReader (class in ads.data_labeling.reader.metadata_reader)

 	DOCUMENT (ads.data_labeling.constants.DatasetType attribute)

 	Document (class in ads.feature_engineering.feature_type.document)

 	DONE (ads.model.generic_model.ModelState attribute)

 	double_overlay_plots (ads.evaluations.evaluation_plot.EvaluationPlot attribute)

 	down_sample() (ads.dataset.classification_dataset.ClassificationDataset method)

 	(in module ads.dataset.helper)

 	download() (ads.dataset.factory.DatasetFactory static method)

 	(ads.jobs.ads_job.Job method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun method)

 	download_artifact() (ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	download_from_web() (in module ads.common.utils)

 	download_model() (ads.catalog.model.ModelCatalog method), [1]

 	driver (ads.jobs.builders.infrastructure.dataflow.DataFlowLogs property)

 	drop_columns() (ads.dataset.dataset.ADSDataset method)

 	ds_client (ads.model.deployment.model_deployer.ModelDeployer attribute)

 	(ads.model.deployment.model_deployment.ModelDeployment attribute)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	ds_composite_client (ads.model.deployment.model_deployer.ModelDeployer attribute)

 	(ads.model.deployment.model_deployment.ModelDeployment attribute)

 	DSCJob (class in ads.jobs.builders.infrastructure.dsc_job)

 	DSCJobRun (in module ads.jobs.builders.infrastructure.dsc_job)

 	dsn (ads.secrets.oracledb.OracleDBSecret attribute)

 	DummyProgressBar (class in ads.dataset.progress)

 	DuplicatedStudyError

E

 	
 	EDAMixin (class in ads.feature_engineering.accessor.mixin.eda_mixin)

 	EDAMixinSeries (class in ads.feature_engineering.accessor.mixin.eda_mixin_series)

 	ElaboratedPath (class in ads.dataset.helper)

 	ellipsis_strings() (in module ads.common.utils)

 	email (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	EMCEE (ads.common.model_metadata.Framework attribute)

 	EmptyMetadata

 	encode() (ads.feature_engineering.adsstring.string.ADSString method)

 	(ads.secrets.adb.ADBSecretKeeper method)

 	(ads.secrets.big_data_service.BDSSecretKeeper method)

 	(ads.secrets.secrets.SecretKeeper method)

 	(in module ads.hpo.distributions)

 	endswith() (ads.feature_engineering.adsstring.string.ADSString method)

 	engine() (ads.text_dataset.dataset.DataLoader method)

 	ENSEMBLE (ads.common.model_metadata.Framework attribute)

 	ENTITY_EXTRACTION (ads.data_labeling.constants.AnnotationType attribute)

 	EntityType (class in ads.data_labeling.parser.export_record_parser)

 	entrypoint (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime property)

 	ents (ads.data_labeling.visualizer.text_visualizer.LabeledTextItem attribute), [1]

 	EnvInfo (class in ads.model.runtime.env_info)

 	ENVIRONMENT_TYPE (ads.common.model_metadata.MetadataCustomKeys attribute)

 	est (ads.automl.provider.AutoMLProvider property)

 	estimator (ads.model.extractor.automl_extractor.AutoMLExtractor attribute)

 	(ads.model.extractor.keras_extractor.KerasExtractor attribute)

 	(ads.model.extractor.lightgbm_extractor.LightgbmExtractor attribute)

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor attribute)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor attribute)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor attribute)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor attribute)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	
 	ev_test (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics attribute)

 	ev_train (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics attribute)

 	EvaluationPlot (class in ads.evaluations.evaluation_plot)

 	evaluations (ads.evaluations.evaluator.ADSEvaluator attribute)

 	EXCLUDE_TAG (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime attribute)

 	exclude_tag (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime property)

 	executor (ads.jobs.builders.infrastructure.dataflow.DataFlowLogs property)

 	ExitCriterionError

 	expand_lambda_function() (in module ads.dataset.dataframe_transformer)

 	expandtabs() (ads.feature_engineering.adsstring.string.ADSString method)

 	EXPECTED_KEYS (ads.data_labeling.parser.export_metadata_parser.MetadataParser attribute)

 	export() (ads.data_labeling.data_labeling_service.DataLabeling method)

 	export_dict() (ads.secrets.secrets.Secret method)

 	export_options() (ads.secrets.secrets.Secret method)

 	export_vault_details() (ads.secrets.secrets.SecretKeeper method)

 	ExportMetadataReader (class in ads.data_labeling.reader.metadata_reader)

 	ExportReader (class in ads.data_labeling.reader.dataset_reader)

 	ExtendedEnumMeta (class in ads.common.model_metadata)

 	extract_info() (ads.model.extractor.model_info_extractor_factory.ModelInfoExtractorFactory static method)

 	extract_lib_dependencies_from_model() (in module ads.common.utils)

F

 	
 	failures (ads.common.model_introspect.ModelIntrospect property)

 	feature_count() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	feature_domain() (ads.feature_engineering.feature_type.address.Address class method)

 	(ads.feature_engineering.feature_type.boolean.Boolean class method)

 	(ads.feature_engineering.feature_type.category.Category class method)

 	(ads.feature_engineering.feature_type.constant.Constant class method)

 	(ads.feature_engineering.feature_type.continuous.Continuous class method)

 	(ads.feature_engineering.feature_type.creditcard.CreditCard class method)

 	(ads.feature_engineering.feature_type.datetime.DateTime class method)

 	(ads.feature_engineering.feature_type.discrete.Discrete class method)

 	(ads.feature_engineering.feature_type.document.Document class method)

 	(ads.feature_engineering.feature_type.gis.GIS class method)

 	(ads.feature_engineering.feature_type.integer.Integer class method)

 	(ads.feature_engineering.feature_type.ip_address.IpAddress class method)

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 class method)

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 class method)

 	(ads.feature_engineering.feature_type.lat_long.LatLong class method)

 	(ads.feature_engineering.feature_type.object.Object class method)

 	(ads.feature_engineering.feature_type.ordinal.Ordinal class method)

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber class method)

 	(ads.feature_engineering.feature_type.string.String class method)

 	(ads.feature_engineering.feature_type.text.Text class method)

 	(ads.feature_engineering.feature_type.unknown.Unknown class method)

 	(ads.feature_engineering.feature_type.zip_code.ZipCode class method)

 	feature_names() (ads.common.model.ADSModel method)

 	feature_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	(ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries method)

 	(ads.feature_engineering.feature_type.address.Address method)

 	(ads.feature_engineering.feature_type.address.Address static method)

 	(ads.feature_engineering.feature_type.boolean.Boolean method)

 	(ads.feature_engineering.feature_type.boolean.Boolean static method)

 	(ads.feature_engineering.feature_type.category.Category method)

 	(ads.feature_engineering.feature_type.category.Category static method)

 	(ads.feature_engineering.feature_type.constant.Constant method)

 	(ads.feature_engineering.feature_type.constant.Constant static method)

 	(ads.feature_engineering.feature_type.continuous.Continuous method)

 	(ads.feature_engineering.feature_type.continuous.Continuous static method)

 	(ads.feature_engineering.feature_type.creditcard.CreditCard method)

 	(ads.feature_engineering.feature_type.creditcard.CreditCard static method)

 	(ads.feature_engineering.feature_type.datetime.DateTime method)

 	(ads.feature_engineering.feature_type.datetime.DateTime static method)

 	(ads.feature_engineering.feature_type.discrete.Discrete method)

 	(ads.feature_engineering.feature_type.discrete.Discrete static method)

 	(ads.feature_engineering.feature_type.gis.GIS method)

 	(ads.feature_engineering.feature_type.gis.GIS static method)

 	(ads.feature_engineering.feature_type.integer.Integer method)

 	(ads.feature_engineering.feature_type.integer.Integer static method)

 	(ads.feature_engineering.feature_type.lat_long.LatLong method)

 	(ads.feature_engineering.feature_type.lat_long.LatLong static method)

 	(ads.feature_engineering.feature_type.ordinal.Ordinal method)

 	(ads.feature_engineering.feature_type.ordinal.Ordinal static method)

 	(ads.feature_engineering.feature_type.string.String method)

 	(ads.feature_engineering.feature_type.string.String static method)

 	(ads.feature_engineering.feature_type.text.Text method)

 	(ads.feature_engineering.feature_type.text.Text static method)

 	(ads.feature_engineering.feature_type.zip_code.ZipCode method)

 	(ads.feature_engineering.feature_type.zip_code.ZipCode static method)

 	feature_select() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor method), [1]

 	feature_stat() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	(ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries method)

 	(ads.feature_engineering.feature_type.address.Address method)

 	(ads.feature_engineering.feature_type.address.Address static method)

 	(ads.feature_engineering.feature_type.boolean.Boolean method)

 	(ads.feature_engineering.feature_type.boolean.Boolean static method)

 	(ads.feature_engineering.feature_type.category.Category method)

 	(ads.feature_engineering.feature_type.category.Category static method)

 	(ads.feature_engineering.feature_type.constant.Constant method)

 	(ads.feature_engineering.feature_type.constant.Constant static method)

 	(ads.feature_engineering.feature_type.continuous.Continuous method)

 	(ads.feature_engineering.feature_type.continuous.Continuous static method)

 	(ads.feature_engineering.feature_type.creditcard.CreditCard method)

 	(ads.feature_engineering.feature_type.creditcard.CreditCard static method)

 	(ads.feature_engineering.feature_type.datetime.DateTime method)

 	(ads.feature_engineering.feature_type.datetime.DateTime static method)

 	(ads.feature_engineering.feature_type.discrete.Discrete method)

 	(ads.feature_engineering.feature_type.discrete.Discrete static method)

 	(ads.feature_engineering.feature_type.gis.GIS method)

 	(ads.feature_engineering.feature_type.gis.GIS static method)

 	(ads.feature_engineering.feature_type.integer.Integer method)

 	(ads.feature_engineering.feature_type.integer.Integer static method)

 	(ads.feature_engineering.feature_type.ip_address.IpAddress method)

 	(ads.feature_engineering.feature_type.ip_address.IpAddress static method)

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 method)

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 static method)

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 method)

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 static method)

 	(ads.feature_engineering.feature_type.lat_long.LatLong method)

 	(ads.feature_engineering.feature_type.lat_long.LatLong static method)

 	(ads.feature_engineering.feature_type.ordinal.Ordinal method)

 	(ads.feature_engineering.feature_type.ordinal.Ordinal static method)

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber method)

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber static method)

 	(ads.feature_engineering.feature_type.string.String method)

 	(ads.feature_engineering.feature_type.string.String static method)

 	(ads.feature_engineering.feature_type.zip_code.ZipCode method)

 	(ads.feature_engineering.feature_type.zip_code.ZipCode static method)

 	feature_type (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor attribute)

 	(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor property)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor attribute)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor property)

 	feature_type_description (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor attribute)

 	(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor property)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor attribute)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor property)

 	feature_type_object() (ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	feature_type_register() (ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	feature_type_registered() (ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	feature_type_reset() (ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	
 	feature_type_unregister() (ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	FeatureBaseType (class in ads.feature_engineering.feature_type.base)

 	FeatureBaseTypeMeta (class in ads.feature_engineering.feature_type.base)

 	FeatureEngineeringTransformer (class in ads.dataset.feature_engineering_transformer)

 	FeatureImportance (class in ads.dataset.feature_selection)

 	FeatureType (class in ads.feature_engineering.feature_type.base)

 	FeatureTypeManager (class in ads.feature_engineering.feature_type_manager)

 	FeatureValidator (class in ads.feature_engineering.feature_type.handler.feature_validator)

 	FeatureValidatorMethod (class in ads.feature_engineering.feature_type.handler.feature_validator)

 	FeatureWarning (class in ads.feature_engineering.feature_type.handler.feature_warning)

 	fetch_log() (ads.dataflow.dataflow.DataFlowRun method)

 	fetch_training_code_details() (ads.common.model_metadata.ModelProvenanceMetadata class method)

 	FILE_METADATA (ads.text_dataset.options.Options attribute)

 	FILE_NAME (ads.text_dataset.options.Options attribute)

 	FileOption (class in ads.text_dataset.options)

 	FileOverwriteError

 	FileProcessor (class in ads.text_dataset.extractor)

 	FileProcessorFactory (class in ads.text_dataset.extractor)

 	filesystem() (ads.dataset.dataset_browser.DatasetBrowser static method)

 	filter() (ads.catalog.model.ModelSummaryList method), [1]

 	(ads.catalog.notebook.NotebookSummaryList method)

 	(ads.catalog.project.ProjectSummaryList method)

 	(ads.catalog.summary.SummaryList method)

 	(ads.dataflow.dataflowsummary.SummaryList method)

 	filter_list() (ads.dataset.dataset_browser.DatasetBrowser method)

 	find() (ads.feature_engineering.adsstring.string.ADSString method)

 	first_not_none() (in module ads.common.utils)

 	fit() (ads.automl.provider.AutoMLFeatureSelection method)

 	(ads.automl.provider.AutoMLPreprocessingTransformer method)

 	(ads.automl.provider.BaselineModel method)

 	(ads.common.model_export_util.ONNXTransformer method)

 	(ads.dataset.dataframe_transformer.DataFrameTransformer method)

 	(ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer method)

 	(ads.dataset.label_encoder.DataFrameLabelEncoder method)

 	(ads.dataset.recommendation_transformer.RecommendationTransformer method)

 	fit_transform() (ads.common.model_export_util.ONNXTransformer method)

 	(ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer method)

 	(ads.dataset.recommendation_transformer.RecommendationTransformer method)

 	fix_column_names() (in module ads.dataset.helper)

 	FLAIR (ads.common.model_metadata.Framework attribute)

 	flatten() (in module ads.common.utils)

 	flatten_corr_matrix() (ads.dataset.correlation_plot.BokehHeatMap method)

 	font_sz (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	ForecastingDataset (class in ads.dataset.forecasting_dataset)

 	format (ads.dataset.helper.ElaboratedPath property)

 	format() (ads.feature_engineering.adsstring.string.ADSString method)

 	(ads.text_dataset.dataset.TextDatasetFactory static method)

 	format_map() (ads.feature_engineering.adsstring.string.ADSString method)

 	Formats (class in ads.data_labeling.constants)

 	FRAMEWORK (ads.common.model_metadata.MetadataTaxonomyKeys attribute)

 	framework (ads.model.extractor.automl_extractor.AutoMLExtractor property)

 	(ads.model.extractor.keras_extractor.KerasExtractor property)

 	(ads.model.extractor.lightgbm_extractor.LightgbmExtractor property)

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor property)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor property)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor property)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor property)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	Framework (class in ads.common.model_metadata)

 	framework() (ads.model.extractor.lightgbm_extractor.LightgbmExtractor method)

 	(ads.model.extractor.model_info_extractor.ModelInfoExtractor method), [1]

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor method)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor method)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor method)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor method)

 	FRAMEWORK_VERSION (ads.common.model_metadata.MetadataTaxonomyKeys attribute)

 	from_dataflow_job() (ads.jobs.ads_job.Job static method)

 	from_dataframe() (ads.dataset.factory.DatasetFactory static method)

 	from_datascience_job() (ads.jobs.ads_job.Job static method)

 	from_dict() (ads.data_labeling.visualizer.image_visualizer.RenderOptions class method)

 	(ads.data_labeling.visualizer.text_visualizer.RenderOptions class method)

 	(ads.jobs.ads_job.Job class method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow class method)

 	from_DLS() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader class method)

 	(ads.data_labeling.reader.metadata_reader.MetadataReader class method)

 	(ads.data_labeling.reader.record_reader.RecordReader class method)

 	from_dls_dataset() (ads.data_labeling.metadata.Metadata class method)

 	from_dsc_job() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob class method)

 	from_env() (ads.model.runtime.runtime_info.RuntimeInfo class method), [1]

 	from_estimator() (ads.common.model.ADSModel static method)

 	from_export() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader class method)

 	(ads.data_labeling.reader.dataset_reader.LabeledDatasetReader method)

 	from_export_file() (ads.data_labeling.reader.metadata_reader.MetadataReader class method)

 	(ads.data_labeling.reader.record_reader.RecordReader class method)

 	from_id() (ads.jobs.builders.infrastructure.dataflow.DataFlow class method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob class method)

 	from_json() (ads.hpo.distributions.DistributionEncode static method)

 	from_model_artifact() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel class method)

 	(ads.model.generic_model.GenericModel method)

 	from_model_catalog() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel class method)

 	(ads.model.generic_model.GenericModel method)

 	from_ocid() (ads.jobs.builders.infrastructure.dsc_job.DSCJob class method)

 	from_path() (ads.model.runtime.env_info.EnvInfo class method)

 	from_slug() (ads.model.runtime.env_info.EnvInfo class method)

 	from_spacy() (ads.data_labeling.ner.NERItem class method)

 	from_uri() (ads.model.artifact.ModelArtifact class method)

 	from_yolo() (ads.data_labeling.boundingbox.BoundingBoxItem class method)

G

 	
 	generate_fn_artifacts() (in module ads.common.function.fn_util)

 	generate_heatmap() (ads.dataset.correlation_plot.BokehHeatMap method)

 	generate_initial_types() (ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	generate_requirement_file() (in module ads.common.utils)

 	generate_sample() (in module ads.dataset.helper)

 	generate_target_heatmap() (ads.dataset.correlation_plot.BokehHeatMap method)

 	GENERIC (ads.data_labeling.parser.export_record_parser.EntityType attribute)

 	GenericModel (class in ads.model.generic_model)

 	GENSIM (ads.common.model_metadata.Framework attribute)

 	get() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	get_app() (ads.dataflow.dataflow.DataFlow method)

 	get_base_modules() (in module ads.common.utils)

 	get_bootstrap_styles() (in module ads.common.utils)

 	get_compute_accelerator_ncores() (in module ads.common.utils)

 	get_cpu_count() (in module ads.common.utils)

 	get_dataframe_styles() (in module ads.common.utils)

 	get_distribution() (ads.hpo.distributions.Distribution method)

 	get_dtype() (in module ads.dataset.helper)

 	get_feature_type() (in module ads.dataset.helper)

 	get_files() (in module ads.common.utils)

 	get_fill_val() (in module ads.dataset.helper)

 	get_format_reader() (in module ads.dataset.factory)

 	get_function_config() (in module ads.common.function.fn_util)

 	get_init_types() (ads.common.model.ADSModel static method)

 	get_legend_labels() (ads.evaluations.evaluation_plot.EvaluationPlot class method)

 	(ads.evaluations.evaluation_plot.EvaluationPlot method)

 	get_metadata() (ads.text_dataset.backends.Base method)

 	(ads.text_dataset.backends.PDFPlumber method)

 	(ads.text_dataset.backends.Tika method)

 	(ads.text_dataset.extractor.FileProcessor method)

 	
 	get_metrics() (ads.evaluations.statistical_metrics.ModelEvaluator method), [1]

 	get_ml_task_type() (in module ads.automl.driver)

 	get_model() (ads.catalog.model.ModelCatalog method), [1]

 	get_model_deployment() (ads.model.deployment.model_deployer.ModelDeployer method), [1]

 	get_model_deployment_state() (ads.model.deployment.model_deployer.ModelDeployer method), [1]

 	get_notebook_session() (ads.catalog.notebook.NotebookCatalog method)

 	get_oci_config() (in module ads.common.utils)

 	get_processor() (ads.text_dataset.extractor.FileProcessorFactory static method)

 	get_progress_bar() (in module ads.common.utils)

 	get_project() (ads.catalog.project.ProjectCatalog method)

 	get_recommendations() (ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	get_repository() (in module ads.database.connection)

 	get_run() (ads.dataflow.dataflow.DataFlowApp method)

 	get_secret() (ads.vault.vault.Vault method)

 	get_service_packs() (in module ads.model.runtime.utils)

 	get_signer() (in module ads.common.auth)

 	get_sqlalchemy_engine() (in module ads.common.utils)

 	get_status() (ads.hpo.search_cv.ADSTuner method)

 	get_transformed_dataset() (ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	get_transformer_pipeline() (ads.automl.provider.AutoMLProvider method)

 	(ads.automl.provider.BaselineAutoMLProvider method)

 	(ads.automl.provider.OracleAutoMLProvider method)

 	getLogger() (in module ads)

 	GIS (class in ads.feature_engineering.feature_type.gis)

 	git_branch (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	git_commit (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	GitHub() (ads.dataset.dataset_browser.DatasetBrowser static method)

 	GitHubDatasets (class in ads.dataset.dataset_browser)

 	GitPythonRuntime (class in ads.jobs.builders.runtimes.python_runtime)

H

 	
 	H20 (ads.common.model_metadata.Framework attribute)

 	halt() (ads.hpo.search_cv.ADSTuner method)

 	HALTED (ads.hpo.search_cv.State attribute)

 	handle() (ads.text_dataset.options.FileOption method)

 	(ads.text_dataset.options.MetadataOption method)

 	(ads.text_dataset.options.OptionHandler method)

 	has_kerberos_ticket() (in module ads.bds.auth)

 	hdfs_host (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	hdfs_port (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	head() (ads.dataflow.dataflow.DataFlowLog method)

 	(ads.model.deployment.model_deployment.ModelDeploymentLog method)

 	hello() (in module ads)

 	help() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor method)

 	(ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin method), [1]

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor method)

 	(ads.feature_engineering.adsstring.string.ADSString method)

 	high_cardinality_handler() (in module ads.feature_engineering.feature_type.handler.warnings)

 	highlight_text() (in module ads.common.utils)

 	hive_host (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	hive_port (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	
 	horizontal_scrollable_div() (in module ads.common.utils)

 	host (ads.secrets.mysqldb.MySQLDBSecret attribute)

 	(ads.secrets.oracledb.OracleDBSecret attribute)

 	hyperparameter (ads.model.extractor.automl_extractor.AutoMLExtractor property)

 	(ads.model.extractor.keras_extractor.KerasExtractor property)

 	(ads.model.extractor.lightgbm_extractor.LightgbmExtractor property)

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor property)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor property)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor property)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor property)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	hyperparameter() (ads.model.extractor.lightgbm_extractor.LightgbmExtractor method)

 	(ads.model.extractor.model_info_extractor.ModelInfoExtractor method), [1]

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor method)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor method)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor method)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor method)

 	HYPERPARAMETERS (ads.common.model_metadata.MetadataTaxonomyKeys attribute)

I

 	
 	id (ads.jobs.ads_job.Job property)

 	identify_issue_network() (ads.common.card_identifier.card_identify method)

 	IMAGE (ads.data_labeling.constants.DatasetType attribute)

 	IMAGE_CLASSIFICATION (ads.common.model_metadata.UseCaseType attribute)

 	ImageLabeledDataFormatter (class in ads.data_labeling.visualizer.image_visualizer)

 	IMAGEOBJECTSELECTION (ads.data_labeling.parser.export_record_parser.EntityType attribute)

 	img (ads.data_labeling.visualizer.image_visualizer.LabeledImageItem attribute), [1]

 	import_wallet() (in module ads.database.connection)

 	index() (ads.feature_engineering.adsstring.string.ADSString method)

 	infer_target_type() (ads.dataset.factory.DatasetFactory class method)

 	inference_conda_env (ads.model.model_properties.ModelProperties attribute)

 	(ads.model.runtime.model_deployment_details.ModelDeploymentDetails attribute)

 	inference_env_path (ads.model.runtime.env_info.InferenceEnvInfo attribute)

 	inference_env_slug (ads.model.runtime.env_info.InferenceEnvInfo attribute)

 	inference_env_type (ads.model.runtime.env_info.InferenceEnvInfo attribute)

 	inference_python_version (ads.model.model_properties.ModelProperties attribute)

 	(ads.model.runtime.env_info.InferenceEnvInfo attribute)

 	InferenceEnvInfo (class in ads.model.runtime.env_info)

 	info() (ads.data_labeling.interface.reader.Reader method)

 	(ads.data_labeling.reader.dataset_reader.DLSDatasetReader method), [1]

 	(ads.data_labeling.reader.dataset_reader.ExportReader method), [1]

 	(ads.data_labeling.reader.dataset_reader.LabeledDatasetReader method), [1]

 	(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor method)

 	(ads.model.extractor.model_info_extractor.ModelInfoExtractor method), [1]

 	infrastructure (ads.jobs.ads_job.Job property)

 	init_ccache_with_keytab() (in module ads.bds.auth)

 	init_client() (ads.jobs.builders.infrastructure.dataflow.DataFlowApp class method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun class method)

 	INITIATED (ads.hpo.search_cv.State attribute)

 	inject_and_copy_kwargs() (in module ads.common.utils)

 	insert() (ads.oracledb.oracle_db.OracleRDBMSConnection method)

 	instance_shapes() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob class method)

 	Integer (class in ads.feature_engineering.feature_type.integer)

 	IntLogUniformDistribution (class in ads.hpo.distributions)

 	introspect() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	Introspectable (class in ads.common.model_introspect)

 	
 	IntrospectionNotPassed

 	IntUniformDistribution (class in ads.hpo.distributions)

 	InvalidFeatureType

 	InvalidStateTransition

 	ip (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	IpAddress (class in ads.feature_engineering.feature_type.ip_address)

 	IpAddressV4 (class in ads.feature_engineering.feature_type.ip_address_v4)

 	IpAddressV6 (class in ads.feature_engineering.feature_type.ip_address_v6)

 	IpythonProgressBar (class in ads.dataset.progress)

 	is_balanced() (ads.dataset.target.TargetVariable method)

 	is_classifier (ads.evaluations.evaluator.ADSEvaluator attribute)

 	is_classifier() (ads.common.model.ADSModel method)

 	is_completed() (ads.hpo.search_cv.ADSTuner method)

 	is_data_too_wide() (in module ads.common.utils)

 	is_debug_mode() (in module ads.common.utils)

 	is_documentation_mode() (in module ads.common.utils)

 	is_either_numerical_or_string_dataframe() (ads.model.framework.sklearn_model.SklearnModel static method)

 	is_halted() (ads.hpo.search_cv.ADSTuner method)

 	is_notebook() (in module ads.common.utils)

 	is_resource_principal_mode() (in module ads.common.utils)

 	is_running() (ads.hpo.search_cv.ADSTuner method)

 	is_same_class() (in module ads.common.utils)

 	is_terminated() (ads.hpo.search_cv.ADSTuner method)

 	is_test() (in module ads.common.utils)

 	is_text_data() (in module ads.dataset.helper)

 	is_type_registered() (ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	isalnum() (ads.feature_engineering.adsstring.string.ADSString method)

 	isalpha() (ads.feature_engineering.adsstring.string.ADSString method)

 	isascii() (ads.feature_engineering.adsstring.string.ADSString method)

 	isdecimal() (ads.feature_engineering.adsstring.string.ADSString method)

 	isdigit() (ads.feature_engineering.adsstring.string.ADSString method)

 	isempty() (ads.common.model_metadata.ModelCustomMetadata method), [1]

 	isidentifier() (ads.feature_engineering.adsstring.string.ADSString method)

 	islower() (ads.feature_engineering.adsstring.string.ADSString method)

 	isnumeric() (ads.feature_engineering.adsstring.string.ADSString method)

 	isprintable() (ads.feature_engineering.adsstring.string.ADSString method)

 	isspace() (ads.feature_engineering.adsstring.string.ADSString method)

 	istitle() (ads.feature_engineering.adsstring.string.ADSString method)

 	isupper() (ads.feature_engineering.adsstring.string.ADSString method)

 	items (ads.data_labeling.boundingbox.BoundingBoxItems attribute), [1]

 	(ads.data_labeling.ner.NERItems attribute), [1]

J

 	
 	job (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun property)

 	Job (class in ads.jobs.ads_job)

 	job_id (ads.jobs.builders.infrastructure.dataflow.DataFlow property)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	
 	job_infrastructure_type (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	job_type (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	join() (ads.feature_engineering.adsstring.string.ADSString method)

 	JsonConverter (class in ads.common.utils)

 	JsonlReader (class in ads.data_labeling.reader.jsonl_reader)

K

 	
 	KERAS (ads.common.model_metadata.Framework attribute)

 	KerasExtractor (class in ads.model.extractor.keras_extractor)

 	kerb5_content (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	kerb5_path (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	key (ads.common.model_introspect.PrintItem attribute)

 	KEY (ads.common.model_metadata.MetadataCustomPrintColumns attribute)

 	(ads.common.model_metadata.MetadataTaxonomyPrintColumns attribute)

 	key (ads.common.model_metadata.ModelCustomMetadataItem attribute)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem attribute)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem property)

 	
 	key_id (ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	key_phrase (ads.feature_engineering.adsstring.oci_language.OCILanguage property)

 	keys (ads.common.model_metadata.ModelMetadata property)

 	keytab_content (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	keytab_path (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	kind (ads.jobs.ads_job.Job property)

 	KRB5KinitError

 	krbcontext() (in module ads.bds.auth)

 	kwargs (ads.secrets.big_data_service.BDSSecretKeeper attribute)

L

 	
 	label (ads.data_labeling.ner.NERItem attribute), [1]

 	LabeledDatasetReader (class in ads.data_labeling.reader.dataset_reader)

 	LabeledImageItem (class in ads.data_labeling.visualizer.image_visualizer)

 	LabeledTextItem (class in ads.data_labeling.visualizer.text_visualizer)

 	labels (ads.data_labeling.boundingbox.BoundingBoxItem attribute), [1]

 	(ads.data_labeling.metadata.Metadata attribute), [1]

 	LABS (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	language_dominant (ads.feature_engineering.adsstring.oci_language.OCILanguage property)

 	language_model_cache (ads.feature_engineering.adsstring.string.ADSString attribute)

 	LatLong (class in ads.feature_engineering.feature_type.lat_long)

 	legend_labels (ads.evaluations.evaluator.ADSEvaluator attribute)

 	length (ads.data_labeling.ner.NERItem attribute), [1]

 	less_is_more (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics attribute)

 	LIGHT_GBM (ads.common.model_metadata.Framework attribute)

 	LightgbmExtractor (class in ads.model.extractor.lightgbm_extractor)

 	LightGBMModel (class in ads.model.framework.lightgbm_model)

 	link (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	list() (ads.dataset.dataset_browser.DatasetBrowser static method)

 	(ads.dataset.dataset_browser.GitHubDatasets method)

 	(ads.dataset.dataset_browser.LocalFilesystemDatasets method)

 	(ads.dataset.dataset_browser.SeabornDatasets method)

 	(ads.dataset.dataset_browser.SklearnDatasets method)

 	(ads.dataset.dataset_browser.WebDatasets method)

 	list_apps() (ads.dataflow.dataflow.DataFlow method)

 	list_dataset() (ads.data_labeling.data_labeling_service.DataLabeling method)

 	list_deployments() (ads.model.deployment.model_deployer.ModelDeployer method), [1]

 	list_jobs() (ads.jobs.builders.infrastructure.dataflow.DataFlow class method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob class method)

 	list_model_deployment() (ads.catalog.model.ModelCatalog method), [1]

 	list_models() (ads.catalog.model.ModelCatalog method), [1]

 	list_notebook_session() (ads.catalog.notebook.NotebookCatalog method)

 	list_projects() (ads.catalog.project.ProjectCatalog method)

 	
 	list_runs() (ads.dataflow.dataflow.DataFlowApp method)

 	list_snapshots() (ads.dataset.factory.DatasetFactory static method)

 	list_workflow_logs() (ads.model.deployment.model_deployment.ModelDeployment method), [1]

 	ljust() (ads.feature_engineering.adsstring.string.ADSString method)

 	load() (ads.common.model_export_util.ONNXTransformer static method)

 	(ads.data_labeling.interface.loader.Loader method)

 	load_app() (ads.dataflow.dataflow.DataFlow method)

 	load_dataset() (in module ads.dataset.factory)

 	load_model() (ads.catalog.model.Model class method)

 	(ads.catalog.model.Model method)

 	load_properties_from_env() (ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	load_secret() (ads.secrets.secrets.SecretKeeper class method)

 	Loader (class in ads.data_labeling.interface.loader)

 	local_dir (ads.dataflow.dataflow.DataFlowLog property)

 	(ads.dataflow.dataflow.DataFlowRun property)

 	(ads.dataflow.dataflow.RunObserver property)

 	local_path (ads.dataflow.dataflow.DataFlowLog property)

 	LocalFilesystemDatasets (class in ads.dataset.dataset_browser)

 	log_group_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun property)

 	log_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun property)

 	LOG_OUTPUTS (ads.dataflow.dataflow.DataFlowRun attribute)

 	log_stderr (ads.dataflow.dataflow.DataFlowRun property)

 	log_stdout (ads.dataflow.dataflow.DataFlowRun property)

 	logging (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun property)

 	logs (ads.jobs.builders.infrastructure.dataflow.DataFlowRun property)

 	logs() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun method)

 	(ads.model.deployment.model_deployment.ModelDeployment method)

 	LogUniformDistribution (class in ads.hpo.distributions)

 	lower() (ads.feature_engineering.adsstring.string.ADSString method)

 	lstrip() (ads.feature_engineering.adsstring.string.ADSString method)

M

 	
 	MACHINE_LEARNING (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	maketrans() (ads.feature_engineering.adsstring.string.ADSString method)

 	map_types() (in module ads.dataset.helper)

 	merge() (ads.dataset.dataset.ADSDataset method)

 	message (ads.common.model_introspect.PrintItem attribute)

 	Metadata (class in ads.data_labeling.metadata)

 	metadata_all() (ads.text_dataset.dataset.DataLoader method)

 	metadata_custom (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	metadata_provenance (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	metadata_schema() (ads.text_dataset.dataset.DataLoader method)

 	metadata_taxonomy (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	MetadataCustomCategory (class in ads.common.model_metadata)

 	MetadataCustomKeys (class in ads.common.model_metadata)

 	MetadataCustomPrintColumns (class in ads.common.model_metadata)

 	MetadataDescriptionTooLong

 	MetadataMixin (class in ads.common.model_metadata_mixin)

 	MetadataOption (class in ads.text_dataset.options)

 	MetadataParser (class in ads.data_labeling.parser.export_metadata_parser)

 	MetadataReader (class in ads.data_labeling.reader.metadata_reader)

 	MetadataSizeTooLarge

 	MetadataTaxonomyKeys (class in ads.common.model_metadata)

 	MetadataTaxonomyPrintColumns (class in ads.common.model_metadata)

 	MetadataValueTooLong

 	METHOD (ads.common.decorator.deprecate.TARGET_TYPE attribute)

 	metrics (ads.evaluations.evaluator.ADSEvaluator property)

 	(ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	metrics_to_show (ads.evaluations.evaluator.ADSEvaluator attribute)

 	missing_values_handler() (in module ads.feature_engineering.feature_type.handler.warnings)

 	ml_task_types (class in ads.common.utils)

 	model (ads.model.extractor.automl_extractor.AutoMLExtractor attribute)

 	(ads.model.extractor.keras_extractor.KerasExtractor attribute)

 	(ads.model.extractor.lightgbm_extractor.LightgbmExtractor attribute)

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor attribute)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor attribute)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor attribute)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor attribute)

 	Model (class in ads.catalog.model)

 	model_artifact (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	model_artifact_version (ads.model.runtime.runtime_info.RuntimeInfo attribute), [1]

 	MODEL_ARTIFACTS (ads.common.model_metadata.MetadataCustomKeys attribute)

 	model_deployment (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	(ads.model.runtime.runtime_info.RuntimeInfo attribute), [1]

 	model_deployment_id (ads.model.deployment.model_deployment.ModelDeployment attribute)

 	model_file_name (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	model_id (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties attribute)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	model_name (ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	model_provenance (ads.model.runtime.runtime_info.RuntimeInfo attribute), [1]

 	model_schema() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor method)

 	MODEL_SERIALIZATION_FORMAT (ads.common.model_metadata.MetadataCustomKeys attribute)

 	model_uri (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties attribute)

 	ModelArtifact (class in ads.model.artifact)

 	ModelCatalog (class in ads.catalog.model)

 	ModelCustomMetadata (class in ads.common.model_metadata)

 	ModelCustomMetadataItem (class in ads.common.model_metadata)

 	ModelDeployer (class in ads.model.deployment.model_deployer)

 	ModelDeployment (class in ads.model.deployment.model_deployment)

 	ModelDeploymentDetails (class in ads.model.runtime.model_deployment_details)

 	ModelDeploymentLog (class in ads.model.deployment.model_deployment)

 	ModelDeploymentLogType (class in ads.model.deployment.model_deployment)

 	ModelDeploymentProperties (class in ads.model.deployment.model_deployment_properties)

 	ModelEvaluator (class in ads.evaluations.statistical_metrics)

 	ModelInfoExtractor (class in ads.model.extractor.model_info_extractor)

 	ModelInfoExtractorFactory (class in ads.model.extractor.model_info_extractor_factory)

 	ModelIntrospect (class in ads.common.model_introspect)

 	ModelMetadata (class in ads.common.model_metadata)

 	ModelMetadataItem (class in ads.common.model_metadata)

 	ModelProperties (class in ads.model.model_properties)

 	ModelProvenanceDetails (class in ads.model.runtime.model_provenance_details)

 	ModelProvenanceMetadata (class in ads.common.model_metadata)

 	models (ads.evaluations.evaluator.ADSEvaluator attribute)

 	ModelState (class in ads.model.generic_model)

 	ModelSummaryList (class in ads.catalog.model)

 	ModelTaxonomyMetadata (class in ads.common.model_metadata)

 	ModelTaxonomyMetadataItem (class in ads.common.model_metadata)

 	ModelWithActiveDeploymentError

 	
 module

 	ads

 	ads.automl

 	ads.automl.driver

 	ads.automl.provider

 	ads.bds

 	ads.bds.auth

 	ads.catalog

 	ads.catalog.model

 	ads.catalog.notebook

 	ads.catalog.project

 	ads.catalog.summary

 	ads.common

 	ads.common.auth

 	ads.common.card_identifier

 	ads.common.data

 	ads.common.decorator.deprecate

 	ads.common.decorator.runtime_dependency

 	ads.common.function.fn_util

 	ads.common.model

 	ads.common.model_export_util

 	ads.common.model_introspect

 	ads.common.model_metadata

 	ads.common.model_metadata_mixin

 	ads.common.utils

 	ads.config

 	ads.data_labeling

 	ads.data_labeling.boundingbox

 	ads.data_labeling.constants

 	ads.data_labeling.data_labeling_service

 	ads.data_labeling.interface.loader

 	ads.data_labeling.interface.parser

 	ads.data_labeling.interface.reader

 	ads.data_labeling.metadata

 	ads.data_labeling.mixin.data_labeling

 	ads.data_labeling.ner

 	ads.data_labeling.parser.export_metadata_parser

 	ads.data_labeling.parser.export_record_parser

 	ads.data_labeling.reader.dataset_reader

 	ads.data_labeling.reader.jsonl_reader

 	ads.data_labeling.reader.metadata_reader

 	ads.data_labeling.reader.record_reader

 	ads.data_labeling.record

 	ads.data_labeling.visualizer.image_visualizer

 	ads.data_labeling.visualizer.text_visualizer

 	ads.database

 	ads.database.connection

 	ads.dataflow

 	ads.dataflow.dataflow

 	ads.dataflow.dataflowsummary

 	ads.dataset

 	ads.dataset.classification_dataset

 	ads.dataset.correlation

 	ads.dataset.correlation_plot

 	ads.dataset.dataframe_transformer

 	ads.dataset.dataset

 	ads.dataset.dataset_browser

 	ads.dataset.dataset_with_target

 	ads.dataset.exception

 	ads.dataset.factory

 	ads.dataset.feature_engineering_transformer

 	ads.dataset.feature_selection

 	ads.dataset.forecasting_dataset

 	ads.dataset.helper

 	ads.dataset.label_encoder

 	ads.dataset.pipeline

 	ads.dataset.plot

 	ads.dataset.progress

 	ads.dataset.recommendation

 	ads.dataset.recommendation_transformer

 	ads.dataset.regression_dataset

 	ads.dataset.sampled_dataset

 	ads.dataset.target

 	ads.dataset.timeseries

 	ads.evaluations

 	ads.evaluations.evaluation_plot

 	ads.evaluations.evaluator

 	ads.evaluations.statistical_metrics

 	ads.feature_engineering

 	ads.feature_engineering.accessor.dataframe_accessor

 	ads.feature_engineering.accessor.mixin.correlation

 	ads.feature_engineering.accessor.mixin.eda_mixin

 	ads.feature_engineering.accessor.mixin.eda_mixin_series

 	ads.feature_engineering.accessor.mixin.feature_types_mixin

 	ads.feature_engineering.accessor.series_accessor

 	ads.feature_engineering.adsstring.common_regex_mixin

 	ads.feature_engineering.adsstring.oci_language

 	ads.feature_engineering.adsstring.string

 	ads.feature_engineering.exceptions

 	ads.feature_engineering.feature_type.address

 	ads.feature_engineering.feature_type.base

 	ads.feature_engineering.feature_type.boolean

 	ads.feature_engineering.feature_type.category

 	ads.feature_engineering.feature_type.constant

 	ads.feature_engineering.feature_type.continuous

 	ads.feature_engineering.feature_type.creditcard

 	ads.feature_engineering.feature_type.datetime

 	ads.feature_engineering.feature_type.discrete

 	ads.feature_engineering.feature_type.document

 	ads.feature_engineering.feature_type.gis

 	ads.feature_engineering.feature_type.handler.feature_validator

 	ads.feature_engineering.feature_type.handler.feature_warning

 	ads.feature_engineering.feature_type.handler.warnings

 	ads.feature_engineering.feature_type.integer

 	ads.feature_engineering.feature_type.ip_address

 	ads.feature_engineering.feature_type.ip_address_v4

 	ads.feature_engineering.feature_type.ip_address_v6

 	ads.feature_engineering.feature_type.lat_long

 	ads.feature_engineering.feature_type.object

 	ads.feature_engineering.feature_type.ordinal

 	ads.feature_engineering.feature_type.phone_number

 	ads.feature_engineering.feature_type.string

 	ads.feature_engineering.feature_type.text

 	ads.feature_engineering.feature_type.unknown

 	ads.feature_engineering.feature_type.zip_code

 	ads.feature_engineering.feature_type_manager

 	ads.hpo

 	ads.hpo.distributions

 	ads.hpo.search_cv

 	ads.hpo.stopping_criterion

 	ads.jobs

 	ads.jobs.ads_job

 	ads.jobs.builders.infrastructure.dataflow

 	ads.jobs.builders.infrastructure.dsc_job

 	ads.jobs.builders.runtimes.python_runtime

 	ads.model

 	ads.model.artifact

 	ads.model.deployment

 	ads.model.deployment.model_deployer

 	ads.model.deployment.model_deployment

 	ads.model.deployment.model_deployment_properties

 	ads.model.extractor.automl_extractor

 	ads.model.extractor.keras_extractor

 	ads.model.extractor.lightgbm_extractor

 	ads.model.extractor.model_info_extractor

 	ads.model.extractor.model_info_extractor_factory

 	ads.model.extractor.pytorch_extractor

 	ads.model.extractor.sklearn_extractor

 	ads.model.extractor.tensorflow_extractor

 	ads.model.extractor.xgboost_extractor

 	ads.model.framework

 	ads.model.framework.automl_model

 	ads.model.framework.lightgbm_model

 	ads.model.framework.pytorch_model

 	ads.model.framework.sklearn_model

 	ads.model.framework.xgboost_model

 	ads.model.generic_model

 	ads.model.model_properties

 	ads.model.runtime

 	ads.model.runtime.env_info

 	ads.model.runtime.model_deployment_details

 	ads.model.runtime.model_provenance_details

 	ads.model.runtime.runtime_info, [1]

 	ads.model.runtime.utils

 	ads.oracledb.oracle_db

 	ads.secrets

 	ads.secrets.adb

 	ads.secrets.auth_token

 	ads.secrets.big_data_service

 	ads.secrets.mysqldb

 	ads.secrets.oracledb

 	ads.secrets.secrets

 	ads.text_dataset

 	ads.text_dataset.backends

 	ads.text_dataset.dataset

 	ads.text_dataset.extractor

 	ads.text_dataset.options

 	ads.vault

 	ads.vault.vault

 	
 	MULTI_CLASS_CLASSIFICATION (ads.common.utils.ml_task_types attribute)

 	MULTI_CLASS_TEXT_CLASSIFICATION (ads.common.utils.ml_task_types attribute)

 	MULTI_LABEL (ads.data_labeling.constants.AnnotationType attribute)

 	MultiClassClassificationDataset (class in ads.dataset.classification_dataset)

 	MultiClassTextClassificationDataset (class in ads.dataset.classification_dataset)

 	MultiLabelRecordParser (class in ads.data_labeling.parser.export_record_parser)

 	MULTINOMIAL_CLASSIFICATION (ads.common.model_metadata.UseCaseType attribute)

 	MXNET (ads.common.model_metadata.Framework attribute)

 	MYSQL (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	MySQLDBSecret (class in ads.secrets.mysqldb)

 	MySQLDBSecretKeeper (class in ads.secrets.mysqldb)

N

 	
 	n_trials (ads.hpo.search_cv.ADSTuner property)

 	name (ads.dataset.helper.ElaboratedPath property)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor attribute)

 	(ads.feature_engineering.feature_type.address.Address attribute)

 	(ads.feature_engineering.feature_type.base.FeatureType attribute)

 	(ads.feature_engineering.feature_type.boolean.Boolean attribute)

 	(ads.feature_engineering.feature_type.category.Category attribute)

 	(ads.feature_engineering.feature_type.constant.Constant attribute)

 	(ads.feature_engineering.feature_type.continuous.Continuous attribute)

 	(ads.feature_engineering.feature_type.creditcard.CreditCard attribute)

 	(ads.feature_engineering.feature_type.datetime.DateTime attribute)

 	(ads.feature_engineering.feature_type.discrete.Discrete attribute)

 	(ads.feature_engineering.feature_type.document.Document attribute)

 	(ads.feature_engineering.feature_type.gis.GIS attribute)

 	(ads.feature_engineering.feature_type.integer.Integer attribute)

 	(ads.feature_engineering.feature_type.ip_address.IpAddress attribute)

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 attribute)

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 attribute)

 	(ads.feature_engineering.feature_type.lat_long.LatLong attribute)

 	(ads.feature_engineering.feature_type.object.Object attribute)

 	(ads.feature_engineering.feature_type.ordinal.Ordinal attribute)

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber attribute)

 	(ads.feature_engineering.feature_type.string.String attribute)

 	(ads.feature_engineering.feature_type.text.Text attribute)

 	(ads.feature_engineering.feature_type.unknown.Unknown attribute)

 	(ads.feature_engineering.feature_type.zip_code.ZipCode attribute)

 	(ads.jobs.ads_job.Job property)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow property)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	
 	Name (class in ads.feature_engineering.feature_type.base)

 	NameAlreadyRegistered

 	NEEDSACTION (ads.model.generic_model.ModelState attribute)

 	NER (ads.common.model_metadata.UseCaseType attribute)

 	ner (ads.feature_engineering.adsstring.oci_language.OCILanguage property)

 	NERItem (class in ads.data_labeling.ner)

 	NERItems (class in ads.data_labeling.ner)

 	NERRecordParser (class in ads.data_labeling.parser.export_record_parser)

 	nlp_backend() (ads.feature_engineering.adsstring.string.ADSString method)

 	NLTK (ads.common.model_metadata.Framework attribute)

 	NoRestartError

 	normalize_hyperparameter() (in module ads.model.extractor.model_info_extractor)

 	NOT_PASSED (ads.common.model_introspect.TEST_STATUS attribute)

 	NOT_TESTED (ads.common.model_introspect.TEST_STATUS attribute)

 	NotActiveDeploymentError

 	NOTAVAILABLE (ads.model.generic_model.ModelState attribute)

 	NOTEBOOK (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	notebook_encoding (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime property)

 	notebook_uri (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime property)

 	NotebookCatalog (class in ads.catalog.notebook)

 	NotebookRuntime (class in ads.jobs.builders.runtimes.python_runtime)

 	NotebookSummaryList (class in ads.catalog.notebook)

 	NTrials (class in ads.hpo.stopping_criterion)

 	num_paths (ads.dataset.helper.ElaboratedPath property)

 	numeric_pandas_dtypes() (in module ads.common.utils)

O

 	
 	Object (class in ads.feature_engineering.feature_type.object)

 	OBJECT_LOCALIZATION (ads.common.model_metadata.UseCaseType attribute)

 	oci_config_file() (in module ads.common.utils)

 	oci_config_location() (in module ads.common.utils)

 	oci_config_profile() (in module ads.common.utils)

 	oci_key_location() (in module ads.common.utils)

 	oci_key_profile() (in module ads.common.utils)

 	oci_link (ads.dataflow.dataflow.DataFlowApp property)

 	(ads.dataflow.dataflow.DataFlowRun property)

 	(ads.dataflow.dataflow.RunObserver property)

 	oci_path (ads.dataflow.dataflow.DataFlowLog property)

 	OCILanguage (class in ads.feature_engineering.adsstring.oci_language)

 	offset (ads.data_labeling.ner.NERItem attribute), [1]

 	ONNXTransformer (class in ads.common.model_export_util)

 	OPCTL (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	open() (ads.dataset.dataset_browser.DatasetBrowser method)

 	(ads.dataset.dataset_browser.GitHubDatasets method)

 	(ads.dataset.dataset_browser.LocalFilesystemDatasets method)

 	(ads.dataset.dataset_browser.SeabornDatasets method)

 	(ads.dataset.dataset_browser.SklearnDatasets method)

 	(ads.dataset.dataset_browser.WebDatasets method)

 	(ads.dataset.factory.DatasetFactory static method)

 	(in module ads.config)

 	
 	open_to_pandas() (ads.dataset.factory.DatasetFactory static method)

 	optimizer() (ads.hpo.search_cv.ADSTuner static method)

 	option() (ads.text_dataset.dataset.DataLoader method)

 	option_handler() (ads.text_dataset.options.OptionFactory static method)

 	option_handlers (ads.text_dataset.options.OptionFactory attribute)

 	OptionalDependency (class in ads.common.decorator.runtime_dependency)

 	OptionFactory (class in ads.text_dataset.options)

 	OptionHandler (class in ads.text_dataset.options)

 	Options (class in ads.text_dataset.options)

 	ORACLE_AUTOML (ads.common.model_metadata.Framework attribute)

 	OracleAutoMLProvider (class in ads.automl.provider)

 	OracleConnector (class in ads.database.connection)

 	OracleDBSecret (class in ads.secrets.oracledb)

 	OracleDBSecretKeeper (class in ads.secrets.oracledb)

 	OracleRDBMSConnection (class in ads.oracledb.oracle_db)

 	Ordinal (class in ads.feature_engineering.feature_type.ordinal)

 	OTHER (ads.common.model_metadata.Framework attribute)

 	(ads.common.model_metadata.MetadataCustomCategory attribute)

 	(ads.common.model_metadata.UseCaseType attribute)

 	output_uri (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime property)

P

 	
 	PACK_TYPE (class in ads.model.runtime.env_info)

 	PandasDataset (class in ads.dataset.sampled_dataset)

 	parse() (ads.data_labeling.interface.parser.Parser method)

 	(ads.data_labeling.parser.export_metadata_parser.MetadataParser static method)

 	(ads.data_labeling.parser.export_record_parser.RecordParser method)

 	parse_apache_log_datetime() (in module ads.dataset.helper)

 	parse_apache_log_str() (in module ads.dataset.helper)

 	Parser (class in ads.data_labeling.interface.parser)

 	parser() (ads.data_labeling.parser.export_record_parser.RecordParserFactory static method)

 	partition() (ads.feature_engineering.adsstring.string.ADSString method)

 	PASSED (ads.common.model_introspect.TEST_STATUS attribute)

 	password (ads.secrets.adb.ADBSecret attribute)

 	(ads.secrets.mysqldb.MySQLDBSecret attribute)

 	(ads.secrets.oracledb.OracleDBSecret attribute)

 	path (ads.data_labeling.record.Record attribute), [1]

 	paths (ads.dataset.helper.ElaboratedPath property)

 	PDFPlumber (class in ads.text_dataset.backends)

 	PDFProcessor (class in ads.text_dataset.extractor)

 	pearson() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	pearson_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	perfect (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	perfect_kwargs (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	PERFORMANCE (ads.common.model_metadata.MetadataCustomCategory attribute)

 	phone_number_US (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	PhoneNumber (class in ads.feature_engineering.feature_type.phone_number)

 	plot() (ads.dataset.sampled_dataset.PandasDataset method)

 	(ads.dataset.timeseries.Timeseries method)

 	(ads.evaluations.evaluation_plot.EvaluationPlot class method)

 	(ads.evaluations.evaluation_plot.EvaluationPlot method)

 	plot_best_scores() (ads.hpo.search_cv.ADSTuner method)

 	plot_contour_scores() (ads.hpo.search_cv.ADSTuner method)

 	plot_correlation_heatmap() (ads.dataset.correlation_plot.BokehHeatMap method)

 	(in module ads.dataset.correlation_plot)

 	plot_edf_scores() (ads.hpo.search_cv.ADSTuner method)

 	plot_gis_scatter() (ads.dataset.sampled_dataset.PandasDataset method)

 	plot_hbar() (ads.dataset.correlation_plot.BokehHeatMap method)

 	plot_heat_map() (ads.dataset.correlation_plot.BokehHeatMap method)

 	plot_intermediate_scores() (ads.hpo.search_cv.ADSTuner method)

 	plot_parallel_coordinate_scores() (ads.hpo.search_cv.ADSTuner method)

 	plot_param_importance() (ads.hpo.search_cv.ADSTuner method)

 	Plotting (class in ads.dataset.plot)

 	plugin_clear() (ads.feature_engineering.adsstring.string.ADSString method)

 	plugin_list() (ads.feature_engineering.adsstring.string.ADSString method)

 	plugin_register() (ads.feature_engineering.adsstring.string.ADSString method)

 	plugins (ads.feature_engineering.adsstring.string.ADSString attribute), [1]

 	populate_metadata() (ads.common.model_metadata_mixin.MetadataMixin method)

 	port (ads.secrets.mysqldb.MySQLDBSecret attribute)

 	(ads.secrets.oracledb.OracleDBSecret attribute)

 	positive_class (ads.evaluations.evaluator.ADSEvaluator attribute)

 	(ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	Positive_Class_Names (ads.evaluations.evaluator.ADSEvaluator attribute)

 	Positive_Class_names (ads.evaluations.evaluator.ADSEvaluator attribute)

 	precision (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics property)

 	PREDICT (ads.model.deployment.model_deployment.ModelDeploymentLogType attribute)

 	
 	predict() (ads.automl.provider.BaselineModel method)

 	(ads.common.model.ADSModel method)

 	(ads.model.deployment.model_deployment.ModelDeployment method)

 	(ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	predict_log (ads.model.deployment.model_deployment.ModelDeployment property)

 	predict_proba() (ads.automl.provider.BaselineModel method)

 	(ads.common.model.ADSModel method)

 	prepare() (ads.common.model.ADSModel method)

 	(ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	prepare_app() (ads.dataflow.dataflow.DataFlow method)

 	prepare_fn_attributes() (in module ads.common.function.fn_util)

 	prepare_generic_model() (in module ads.common.model_export_util)

 	prepare_run() (ads.dataflow.dataflow.DataFlowApp method)

 	prepare_runtime_yaml() (ads.model.artifact.ModelArtifact method)

 	prepare_score_py() (ads.model.artifact.ModelArtifact method)

 	price (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	principal (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	print_summary() (ads.automl.provider.OracleAutoMLProvider method)

 	print_trials() (ads.automl.provider.OracleAutoMLProvider method)

 	print_user_message() (in module ads.common.utils)

 	PrintItem (class in ads.common.model_introspect)

 	prob_type (ads.evaluations.evaluation_plot.EvaluationPlot attribute), [1]

 	processor (ads.text_dataset.dataset.DataLoader attribute)

 	processor_map (ads.text_dataset.extractor.FileProcessorFactory attribute)

 	ProgressBar (class in ads.dataset.progress)

 	project_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	(ads.model.model_properties.ModelProperties attribute)

 	project_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	ProjectCatalog (class in ads.catalog.project)

 	ProjectSummaryList (class in ads.catalog.project)

 	properties (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	PROPHET (ads.common.model_metadata.Framework attribute)

 	PYMC3 (ads.common.model_metadata.Framework attribute)

 	PYOD (ads.common.model_metadata.Framework attribute)

 	PYSTAN (ads.common.model_metadata.Framework attribute)

 	PythonRuntime (class in ads.jobs.builders.runtimes.python_runtime)

 	PYTORCH (ads.common.model_metadata.Framework attribute)

 	PytorchExtractor (class in ads.model.extractor.pytorch_extractor)

 	PyTorchModel (class in ads.model.framework.pytorch_model)

Q

 	
 	query() (ads.oracledb.oracle_db.OracleRDBMSConnection method)

R

 	
 	random_valid_ocid() (in module ads.common.utils)

 	raw_metrics (ads.evaluations.evaluator.ADSEvaluator property)

 	read() (ads.data_labeling.interface.reader.Reader method)

 	(ads.data_labeling.reader.dataset_reader.DLSDatasetReader method), [1]

 	(ads.data_labeling.reader.dataset_reader.ExportReader method), [1]

 	(ads.data_labeling.reader.dataset_reader.LabeledDatasetReader method), [1]

 	(ads.data_labeling.reader.jsonl_reader.JsonlReader method)

 	(ads.data_labeling.reader.metadata_reader.DLSMetadataReader method)

 	(ads.data_labeling.reader.metadata_reader.ExportMetadataReader method)

 	(ads.data_labeling.reader.metadata_reader.MetadataReader method)

 	(ads.data_labeling.reader.record_reader.RecordReader method)

 	read_arff() (ads.dataset.factory.CustomFormatReaders static method)

 	read_avro() (ads.dataset.factory.CustomFormatReaders static method)

 	read_html() (ads.dataset.factory.CustomFormatReaders static method)

 	read_json() (ads.dataset.factory.CustomFormatReaders static method)

 	read_labeled_data() (ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin static method)

 	read_libsvm() (ads.dataset.factory.CustomFormatReaders static method)

 	read_line() (ads.text_dataset.backends.Base method)

 	(ads.text_dataset.backends.PDFPlumber method)

 	(ads.text_dataset.backends.Tika method)

 	(ads.text_dataset.dataset.DataLoader method)

 	(ads.text_dataset.extractor.FileProcessor method)

 	read_log() (ads.dataset.factory.CustomFormatReaders static method)

 	read_sql() (ads.dataset.factory.CustomFormatReaders class method)

 	read_text() (ads.text_dataset.backends.Base method)

 	(ads.text_dataset.backends.PDFPlumber method)

 	(ads.text_dataset.backends.Tika method)

 	(ads.text_dataset.dataset.DataLoader method)

 	(ads.text_dataset.extractor.FileProcessor method)

 	read_tsv() (ads.dataset.factory.CustomFormatReaders static method)

 	read_xml() (ads.dataset.factory.CustomFormatReaders static method)

 	ReadDatasetError

 	Reader (class in ads.data_labeling.interface.reader)

 	Recommendation (class in ads.dataset.recommendation)

 	recommendation_type_labels (ads.dataset.recommendation.Recommendation attribute)

 	recommendation_types (ads.dataset.recommendation.Recommendation attribute)

 	RecommendationTransformer (class in ads.dataset.recommendation_transformer)

 	RECOMMENDER (ads.common.model_metadata.UseCaseType attribute)

 	Record (class in ads.data_labeling.record)

 	RecordParser (class in ads.data_labeling.parser.export_record_parser)

 	RecordParserFactory (class in ads.data_labeling.parser.export_record_parser)

 	RecordReader (class in ads.data_labeling.reader.record_reader)

 	records_path (ads.data_labeling.metadata.Metadata attribute), [1]

 	redact() (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin method)

 	(ads.feature_engineering.adsstring.string.ADSString method)

 	redact_map (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin attribute)

 	refresh_ticket() (in module ads.bds.auth)

 	register() (ads.data_labeling.parser.export_record_parser.RecordParserFactory class method)

 	(ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator method), [1]

 	(ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod method), [1]

 	(ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning method), [1]

 	(ads.text_dataset.extractor.FileProcessorFactory class method)

 	register_option() (ads.text_dataset.options.OptionFactory class method)

 	registered() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator method), [1]

 	(ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod method), [1]

 	(ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning method), [1]

 	REGRESSION (ads.common.model_metadata.UseCaseType attribute)

 	(ads.common.utils.ml_task_types attribute)

 	RegressionDataset (class in ads.dataset.regression_dataset)

 	reload() (ads.model.artifact.ModelArtifact method)

 	(ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	
 	remove() (ads.common.model_metadata.ModelCustomMetadata method), [1]

 	rename() (ads.common.model.ADSModel method)

 	rename_columns() (ads.dataset.dataset.ADSDataset method)

 	(ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	rename_duplicate_cols() (in module ads.dataset.helper)

 	render() (ads.data_labeling.visualizer.text_visualizer.TextLabeledDataFormatter static method)

 	(in module ads.data_labeling.visualizer.image_visualizer), [1]

 	(in module ads.data_labeling.visualizer.text_visualizer), [1]

 	render_bounding_box() (ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin method)

 	render_item() (ads.data_labeling.visualizer.image_visualizer.ImageLabeledDataFormatter static method)

 	render_ner() (ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin method)

 	RenderOptions (class in ads.data_labeling.visualizer.image_visualizer)

 	(class in ads.data_labeling.visualizer.text_visualizer)

 	replace() (ads.feature_engineering.adsstring.string.ADSString method)

 	replace_spaces() (in module ads.common.utils)

 	repo (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	repository_url (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	required_keys (ads.secrets.secrets.SecretKeeper attribute)

 	reset() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method), [1]

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method), [1]

 	resource_principal() (in module ads.common.auth)

 	response (ads.catalog.project.ProjectSummaryList attribute)

 	result (ads.common.model_introspect.PrintItem attribute)

 	resume() (ads.hpo.search_cv.ADSTuner method)

 	rfind() (ads.feature_engineering.adsstring.string.ADSString method)

 	rindex() (ads.feature_engineering.adsstring.string.ADSString method)

 	rjust() (ads.feature_engineering.adsstring.string.ADSString method)

 	rollback() (ads.catalog.model.Model method), [1]

 	rpartition() (ads.feature_engineering.adsstring.string.ADSString method)

 	rsplit() (ads.feature_engineering.adsstring.string.ADSString method)

 	rstrip() (ads.feature_engineering.adsstring.string.ADSString method)

 	run() (ads.common.model_introspect.ModelIntrospect method), [1]

 	(ads.dataflow.dataflow.DataFlowApp method)

 	(ads.jobs.ads_job.Job method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	(ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	run_details_link (ads.jobs.builders.infrastructure.dataflow.DataFlowRun property)

 	run_list() (ads.jobs.ads_job.Job method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	(ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	RUNNING (ads.hpo.search_cv.State attribute)

 	RunObserver (class in ads.dataflow.dataflow)

 	runtime (ads.jobs.ads_job.Job property)

 	runtime_dependency() (in module ads.common.decorator.runtime_dependency)

 	runtime_info (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	RuntimeInfo (class in ads.model.runtime.runtime_info), [1]

 	RuntimeInfoInconsistencyError

S

 	
 	safe_metrics_call() (ads.evaluations.statistical_metrics.ModelEvaluator method), [1]

 	sample() (ads.dataset.dataset.ADSDataset method)

 	sampling_confidence_interval (ads.dataset.helper.DatasetDefaults attribute)

 	sampling_confidence_level (ads.dataset.helper.DatasetDefaults attribute)

 	save() (ads.common.model_export_util.ONNXTransformer method)

 	(ads.dataflow.dataflow.DataFlowLog method)

 	(ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	(ads.model.runtime.runtime_info.RuntimeInfo method), [1]

 	(ads.secrets.adb.ADBSecretKeeper method)

 	(ads.secrets.big_data_service.BDSSecretKeeper method)

 	(ads.secrets.secrets.SecretKeeper method)

 	schema_input (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	schema_output (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	SchemaValidator (class in ads.model.runtime.utils)

 	SCIKIT_LEARN (ads.common.model_metadata.Framework attribute)

 	score() (ads.common.model.ADSModel method)

 	score_remaining (ads.hpo.search_cv.ADSTuner property)

 	ScoreValue (class in ads.hpo.stopping_criterion)

 	scoring_name (ads.hpo.search_cv.ADSTuner property)

 	script_bucket (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime property)

 	script_uri (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime property)

 	(ads.jobs.builders.runtimes.python_runtime.ScriptRuntime property)

 	ScriptRuntime (class in ads.jobs.builders.runtimes.python_runtime)

 	seaborn() (ads.dataset.dataset_browser.DatasetBrowser static method)

 	SeabornDatasets (class in ads.dataset.dataset_browser)

 	search_space() (ads.hpo.search_cv.ADSTuner method)

 	Secret (class in ads.secrets.secrets)

 	secret_id (ads.secrets.big_data_service.BDSSecret attribute), [1]

 	(ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	SecretKeeper (class in ads.secrets.secrets)

 	select_best_features() (ads.dataset.classification_dataset.BinaryTextClassificationDataset method)

 	(ads.dataset.classification_dataset.MultiClassTextClassificationDataset method)

 	(ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	(ads.dataset.forecasting_dataset.ForecastingDataset method)

 	select_best_plot() (ads.dataset.plot.Plotting method)

 	selected_model_name() (ads.automl.provider.OracleAutoMLProvider method)

 	selected_score_label() (ads.automl.provider.OracleAutoMLProvider method)

 	SENTIMENT_ANALYSIS (ads.common.model_metadata.UseCaseType attribute)

 	serialize (ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	serialize() (ads.secrets.secrets.Secret method), [1]

 	serialize_model() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method)

 	(in module ads.common.model_export_util)

 	SerializeInputNotImplementedError

 	SerializeModelNotImplementedError

 	service_name (ads.secrets.adb.ADBSecret attribute)

 	(ads.secrets.oracledb.OracleDBSecret attribute)

 	SERVICE_PACK (ads.model.runtime.env_info.PACK_TYPE attribute)

 	set_auth() (in module ads)

 	set_debug_mode() (in module ads)

 	set_default_storage() (ads.dataset.factory.DatasetFactory static method)

 	set_description() (ads.dataset.dataset.ADSDataset method)

 	set_documentation_mode() (in module ads)

 	set_expert_mode() (in module ads)

 	set_name() (ads.dataset.dataset.ADSDataset method)

 	set_oci_config() (in module ads.common.utils)

 	set_positive_class() (ads.dataset.classification_dataset.BinaryClassificationDataset method)

 	set_target() (ads.dataset.dataset.ADSDataset method)

 	set_training_data() (ads.common.model_metadata.ModelCustomMetadata method)

 	set_validation_data() (ads.common.model_metadata.ModelCustomMetadata method)

 	setup() (ads.automl.provider.AutoMLProvider method)

 	shape_name (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	short_id_index (ads.catalog.project.ProjectSummaryList attribute)

 	show_all() (ads.dataflow.dataflow.DataFlowLog method)

 	
 	show_corr() (ads.dataset.dataset.ADSDataset method)

 	show_deployments() (ads.model.deployment.model_deployer.ModelDeployer method), [1]

 	show_full_name (ads.evaluations.evaluator.ADSEvaluator attribute)

 	show_in_notebook() (ads.catalog.model.Model method), [1]

 	(ads.catalog.summary.SummaryList method)

 	(ads.common.model.ADSModel method)

 	(ads.dataset.dataset.ADSDataset method)

 	(ads.dataset.feature_selection.FeatureImportance method)

 	(ads.dataset.plot.Plotting method)

 	(ads.dataset.recommendation.Recommendation method)

 	(ads.dataset.target.TargetVariable method)

 	(ads.evaluations.evaluator.ADSEvaluator method), [1]

 	(ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics method), [1]

 	show_logs() (ads.model.deployment.model_deployment.ModelDeployment method)

 	sid (ads.secrets.oracledb.OracleDBSecret attribute)

 	SINGLE_LABEL (ads.data_labeling.constants.AnnotationType attribute)

 	single_overlay_plots (ads.evaluations.evaluation_plot.EvaluationPlot attribute)

 	SingleLabelRecordParser (class in ads.data_labeling.parser.export_record_parser)

 	size() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method)

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method)

 	skew_handler() (in module ads.feature_engineering.feature_type.handler.warnings)

 	skip_metadata_update (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime property)

 	sklearn() (ads.dataset.dataset_browser.DatasetBrowser static method)

 	sklearn_datasets (ads.dataset.dataset_browser.SklearnDatasets attribute)

 	sklearn_steps (ads.hpo.search_cv.ADSTuner property)

 	SklearnDatasets (class in ads.dataset.dataset_browser)

 	SklearnExtractor (class in ads.model.extractor.sklearn_extractor)

 	SklearnModel (class in ads.model.framework.sklearn_model)

 	SKTIME (ads.common.model_metadata.Framework attribute)

 	SLUG_NAME (ads.common.model_metadata.MetadataCustomKeys attribute)

 	snapshot() (ads.dataset.dataset.ADSDataset method)

 	sort_by() (ads.catalog.model.ModelSummaryList method), [1]

 	(ads.catalog.notebook.NotebookSummaryList method)

 	(ads.catalog.project.ProjectSummaryList method)

 	(ads.catalog.summary.SummaryList method)

 	(ads.dataflow.dataflowsummary.SummaryList method)

 	source_path (ads.data_labeling.metadata.Metadata attribute), [1]

 	source_uri (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime property)

 	SPACY (ads.common.model_metadata.Framework attribute)

 	(ads.data_labeling.constants.Formats attribute)

 	SPARK_VERSION (class in ads.dataflow.dataflow)

 	split() (ads.feature_engineering.adsstring.string.ADSString method)

 	split_data() (in module ads.common.utils)

 	splitlines() (ads.feature_engineering.adsstring.string.ADSString method)

 	ssh_secret_ocid (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime property)

 	ssn (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	startswith() (ads.feature_engineering.adsstring.string.ADSString method)

 	state (ads.model.deployment.model_deployment.ModelDeployment attribute)

 	(ads.model.deployment.model_deployment.ModelDeployment property)

 	State (class in ads.hpo.search_cv)

 	STATSMODELS (ads.common.model_metadata.Framework attribute)

 	status (ads.common.model_introspect.ModelIntrospect property)

 	(ads.dataflow.dataflow.DataFlowRun property)

 	(ads.dataflow.dataflow.RunObserver property)

 	(ads.hpo.search_cv.ADSTuner property)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun property)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun property)

 	(ads.model.deployment.model_deployment.ModelDeployment property)

 	status() (ads.jobs.ads_job.Job method)

 	steps (ads.dataset.pipeline.TransformerPipeline attribute)

 	stream() (ads.model.deployment.model_deployment.ModelDeploymentLog method)

 	string (ads.feature_engineering.adsstring.string.ADSString attribute)

 	(ads.feature_engineering.adsstring.string.ADSString property)

 	String (class in ads.feature_engineering.feature_type.string)

 	strip() (ads.feature_engineering.adsstring.string.ADSString method)

 	sub_properties (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties attribute)

 	subnet_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob property)

 	suggest_recommendations() (ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	summary() (ads.common.model.ADSModel method)

 	(ads.dataset.sampled_dataset.PandasDataset method)

 	summary_status() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	SummaryList (class in ads.catalog.summary)

 	(class in ads.dataflow.dataflowsummary)

 	SummaryStatus (class in ads.model.generic_model)

 	swagger_types (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties attribute)

 	swapcase() (ads.feature_engineering.adsstring.string.ADSString method)

 	sync() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor method), [1]

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor method), [1]

T

 	
 	Tag (class in ads.feature_engineering.feature_type.base)

 	tags (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor attribute)

 	(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor property)

 	(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor attribute)

 	tail() (ads.dataflow.dataflow.DataFlowLog method)

 	(ads.model.deployment.model_deployment.ModelDeploymentLog method)

 	TARGET_TYPE (class in ads.common.decorator.deprecate)

 	TargetVariable (class in ads.dataset.target)

 	template() (ads.dataflow.dataflow.DataFlow method)

 	tenancy_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	TENSORFLOW (ads.common.model_metadata.Framework attribute)

 	TensorflowExtractor (class in ads.model.extractor.tensorflow_extractor)

 	TERMINAL_STATES (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun attribute)

 	terminate() (ads.hpo.search_cv.ADSTuner method)

 	TERMINATED (ads.hpo.search_cv.State attribute)

 	TERMINATED_STATES (ads.jobs.builders.infrastructure.dataflow.DataFlowRun attribute)

 	test_data (ads.evaluations.evaluator.ADSEvaluator attribute)

 	TEST_STATUS (class in ads.common.model_introspect)

 	TEXT (ads.common.decorator.runtime_dependency.OptionalDependency attribute)

 	(ads.data_labeling.constants.DatasetType attribute)

 	Text (class in ads.feature_engineering.feature_type.text)

 	text_classification (ads.feature_engineering.adsstring.oci_language.OCILanguage property)

 	TextDatasetFactory (class in ads.text_dataset.dataset)

 	TextLabeledDataFormatter (class in ads.data_labeling.visualizer.text_visualizer)

 	TEXTSELECTION (ads.data_labeling.parser.export_record_parser.EntityType attribute)

 	Tika (class in ads.text_dataset.backends)

 	time (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	time_elapsed (ads.hpo.search_cv.ADSTuner property)

 	time_remaining (ads.hpo.search_cv.ADSTuner property)

 	TIME_SERIES_FORECASTING (ads.common.model_metadata.UseCaseType attribute)

 	time_since_resume (ads.hpo.search_cv.ADSTuner property)

 	TimeBudget (class in ads.hpo.stopping_criterion)

 	Timeseries (class in ads.dataset.timeseries)

 	timeseries() (ads.dataset.sampled_dataset.PandasDataset method)

 	title() (ads.feature_engineering.adsstring.string.ADSString method)

 	to_adsstring() (in module ads.feature_engineering.adsstring.string)

 	to_avro() (ads.dataset.dataset.ADSDataset method)

 	to_csv() (ads.dataset.dataset.ADSDataset method)

 	to_dask() (ads.dataset.dataset.ADSDataset method)

 	to_dask_dataframe() (ads.dataset.dataset.ADSDataset method)

 	to_dataframe() (ads.catalog.model.Model method), [1]

 	(ads.catalog.summary.SummaryList method)

 	(ads.common.model_introspect.ModelIntrospect method), [1]

 	(ads.common.model_metadata.ModelCustomMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method), [1]

 	(ads.data_labeling.metadata.Metadata method)

 	(ads.dataflow.dataflowsummary.SummaryList method)

 	(in module ads.common.utils)

 	to_dict() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method)

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method)

 	(ads.data_labeling.metadata.Metadata method)

 	(ads.data_labeling.record.Record method)

 	(ads.data_labeling.visualizer.image_visualizer.RenderOptions method)

 	(ads.data_labeling.visualizer.text_visualizer.RenderOptions method)

 	(ads.jobs.ads_job.Job method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.secrets.secrets.Secret method), [1]

 	(ads.secrets.secrets.SecretKeeper method)

 	to_h2o() (ads.dataset.dataset.ADSDataset method)

 	to_h2o_dataframe() (ads.dataset.dataset.ADSDataset method)

 	to_hdf() (ads.dataset.dataset.ADSDataset method)

 	to_json() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method)

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method)

 	(ads.dataset.dataset.ADSDataset method)

 	to_json_file() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method)

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method)

 	to_list() (ads.common.model_introspect.PrintItem method)

 	to_oci_model() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method)

 	to_onnx() (ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	
 	to_onnxrt() (ads.common.data.ADSData method)

 	to_pandas() (ads.dataset.dataset.ADSDataset method)

 	to_pandas_dataframe() (ads.dataset.dataset.ADSDataset method)

 	to_parquet() (ads.dataset.dataset.ADSDataset method)

 	to_spacy() (ads.data_labeling.ner.NERItem method)

 	(ads.data_labeling.ner.NERItems method)

 	to_tuple() (ads.data_labeling.record.Record method)

 	to_update_deployment() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method)

 	to_xgb() (ads.dataset.dataset.ADSDataset method)

 	to_xgb_dmatrix() (ads.dataset.dataset.ADSDataset method)

 	to_yaml() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method)

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowApp method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun method)

 	to_yolo() (ads.data_labeling.boundingbox.BoundingBoxItem method)

 	(ads.data_labeling.boundingbox.BoundingBoxItems method)

 	top_left (ads.data_labeling.boundingbox.BoundingBoxItem attribute), [1]

 	top_right (ads.data_labeling.boundingbox.BoundingBoxItem attribute), [1]

 	TOPIC_MODELING (ads.common.model_metadata.UseCaseType attribute)

 	TqdmProgressBar (class in ads.dataset.progress)

 	train() (ads.automl.driver.AutoML method)

 	(ads.automl.provider.AutoMLProvider method)

 	(ads.automl.provider.BaselineAutoMLProvider method)

 	(ads.automl.provider.OracleAutoMLProvider method)

 	train_test_split() (ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	train_validation_test_split() (ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	TRAINING_AND_VALIDATION_DATASETS (ads.common.model_metadata.MetadataCustomCategory attribute)

 	training_code (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	training_compartment_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	training_conda_env (ads.model.model_properties.ModelProperties attribute)

 	(ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	training_data (ads.evaluations.evaluator.ADSEvaluator attribute)

 	TRAINING_DATASET (ads.common.model_metadata.MetadataCustomKeys attribute)

 	TRAINING_DATASET_NUMBER_OF_COLS (ads.common.model_metadata.MetadataCustomKeys attribute)

 	TRAINING_DATASET_NUMBER_OF_ROWS (ads.common.model_metadata.MetadataCustomKeys attribute)

 	TRAINING_DATASET_SIZE (ads.common.model_metadata.MetadataCustomKeys attribute)

 	TRAINING_ENV (ads.common.model_metadata.MetadataCustomCategory attribute)

 	training_env_path (ads.model.runtime.env_info.TrainingEnvInfo attribute)

 	training_env_slug (ads.model.runtime.env_info.TrainingEnvInfo attribute)

 	training_env_type (ads.model.runtime.env_info.TrainingEnvInfo attribute)

 	training_id (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	(ads.model.model_properties.ModelProperties attribute)

 	TRAINING_PROFILE (ads.common.model_metadata.MetadataCustomCategory attribute)

 	training_python_version (ads.model.model_properties.ModelProperties attribute)

 	(ads.model.runtime.env_info.TrainingEnvInfo attribute)

 	training_region (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	training_resource_id (ads.model.model_properties.ModelProperties attribute)

 	training_resource_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

 	training_script_path (ads.common.model_metadata.ModelProvenanceMetadata attribute)

 	(ads.model.model_properties.ModelProperties attribute)

 	TrainingCode (class in ads.model.runtime.model_provenance_details)

 	TrainingEnvInfo (class in ads.model.runtime.env_info)

 	transform() (ads.automl.provider.AutoMLFeatureSelection method)

 	(ads.automl.provider.AutoMLPreprocessingTransformer method)

 	(ads.automl.provider.BaselineModel method)

 	(ads.common.model.ADSModel method)

 	(ads.common.model_export_util.ONNXTransformer method)

 	(ads.dataset.dataframe_transformer.DataFrameTransformer method)

 	(ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer method)

 	(ads.dataset.label_encoder.DataFrameLabelEncoder method)

 	(ads.dataset.recommendation_transformer.RecommendationTransformer method)

 	transformer_log() (ads.dataset.recommendation_transformer.RecommendationTransformer method)

 	TransformerPipeline (class in ads.dataset.pipeline)

 	TRANSFORMERS (ads.common.model_metadata.Framework attribute)

 	translate() (ads.feature_engineering.adsstring.string.ADSString method)

 	trial_count (ads.hpo.search_cv.ADSTuner property)

 	trials (ads.hpo.search_cv.ADSTuner property)

 	trials_export() (ads.hpo.search_cv.ADSTuner method)

 	trials_import() (ads.hpo.search_cv.ADSTuner class method)

 	trials_remaining (ads.hpo.search_cv.ADSTuner property)

 	truncate_series_top_n() (in module ads.common.utils)

 	tune() (ads.hpo.search_cv.ADSTuner method)

 	txt (ads.data_labeling.visualizer.text_visualizer.LabeledTextItem attribute), [1]

 	type_of_target() (ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	TypeAlreadyAdded

 	TypeAlreadyRegistered

 	TypeNotFound

U

 	
 	UniformDistribution (class in ads.hpo.distributions)

 	Unknown (class in ads.feature_engineering.feature_type.unknown)

 	unregister() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator method), [1]

 	(ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod method), [1]

 	(ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning method), [1]

 	UNSUPPORTED (ads.common.utils.ml_task_types attribute)

 	up_sample() (ads.dataset.classification_dataset.ClassificationDataset method)

 	(in module ads.dataset.helper)

 	update() (ads.common.model_metadata.ModelCustomMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method), [1]

 	(ads.dataset.progress.DummyProgressBar method)

 	(ads.dataset.progress.IpythonProgressBar method)

 	(ads.dataset.progress.ProgressBar method)

 	(ads.dataset.progress.TqdmProgressBar method)

 	(ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	(ads.model.deployment.model_deployer.ModelDeployer method)

 	(ads.model.deployment.model_deployment.ModelDeployment method), [1]

 	update_action() (ads.model.generic_model.SummaryStatus method)

 	update_config() (ads.dataflow.dataflow.DataFlowRun method)

 	(ads.dataflow.dataflow.RunObserver method)

 	
 	update_model() (ads.catalog.model.ModelCatalog method), [1]

 	update_notebook_session() (ads.catalog.notebook.NotebookCatalog method)

 	update_project() (ads.catalog.project.ProjectCatalog method)

 	update_repository() (in module ads.database.connection)

 	update_secret() (ads.vault.vault.Vault method)

 	update_status() (ads.model.generic_model.SummaryStatus method)

 	upload() (ads.dataset.factory.DatasetFactory static method)

 	upload_artifact() (ads.jobs.builders.infrastructure.dsc_job.DSCJob method)

 	upload_model() (ads.catalog.model.ModelCatalog method), [1]

 	upper() (ads.feature_engineering.adsstring.string.ADSString method)

 	url (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime property)

 	(ads.model.deployment.model_deployment.ModelDeployment attribute)

 	USE_CASE_TYPE (ads.common.model_metadata.MetadataTaxonomyKeys attribute)

 	use_training (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics attribute)

 	UseCaseType (class in ads.common.model_metadata)

 	USER_CUSTOM_PACK (ads.model.runtime.env_info.PACK_TYPE attribute)

 	user_name (ads.secrets.adb.ADBSecret attribute)

 	(ads.secrets.mysqldb.MySQLDBSecret attribute)

 	(ads.secrets.oracledb.OracleDBSecret attribute)

 	user_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

V

 	
 	v2_4_4 (ads.dataflow.dataflow.SPARK_VERSION attribute)

 	v3_0_2 (ads.dataflow.dataflow.SPARK_VERSION attribute)

 	validate() (ads.common.model_metadata.ModelCustomMetadata method)

 	(ads.common.model_metadata.ModelCustomMetadataItem method), [1]

 	(ads.common.model_metadata.ModelMetadata method), [1]

 	(ads.common.model_metadata.ModelMetadataItem method), [1]

 	(ads.common.model_metadata.ModelTaxonomyMetadata method)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem method), [1]

 	(ads.model.runtime.utils.SchemaValidator method)

 	validate_size() (ads.common.model_metadata.ModelMetadata method)

 	VALIDATION_DATASET (ads.common.model_metadata.MetadataCustomKeys attribute)

 	VALIDATION_DATASET_NUMBER_OF_COLS (ads.common.model_metadata.MetadataCustomKeys attribute)

 	VALIDATION_DATASET_NUMBER_OF_ROWS (ads.common.model_metadata.MetadataCustomKeys attribute)

 	VALIDATION_DATASET_SIZE (ads.common.model_metadata.MetadataCustomKeys attribute)

 	ValidationError

 	validator (ads.feature_engineering.feature_type.address.Address attribute), [1]

 	(ads.feature_engineering.feature_type.base.FeatureType attribute)

 	(ads.feature_engineering.feature_type.boolean.Boolean attribute), [1]

 	(ads.feature_engineering.feature_type.category.Category attribute), [1]

 	(ads.feature_engineering.feature_type.constant.Constant attribute), [1]

 	(ads.feature_engineering.feature_type.continuous.Continuous attribute), [1]

 	(ads.feature_engineering.feature_type.creditcard.CreditCard attribute), [1]

 	(ads.feature_engineering.feature_type.datetime.DateTime attribute), [1]

 	(ads.feature_engineering.feature_type.discrete.Discrete attribute), [1]

 	(ads.feature_engineering.feature_type.document.Document attribute), [1]

 	(ads.feature_engineering.feature_type.gis.GIS attribute), [1]

 	(ads.feature_engineering.feature_type.integer.Integer attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address.IpAddress attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 attribute), [1]

 	(ads.feature_engineering.feature_type.lat_long.LatLong attribute), [1]

 	(ads.feature_engineering.feature_type.object.Object attribute), [1]

 	(ads.feature_engineering.feature_type.ordinal.Ordinal attribute), [1]

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber attribute), [1]

 	(ads.feature_engineering.feature_type.string.String attribute), [1]

 	(ads.feature_engineering.feature_type.text.Text attribute), [1]

 	(ads.feature_engineering.feature_type.unknown.Unknown attribute), [1]

 	(ads.feature_engineering.feature_type.zip_code.ZipCode attribute), [1]

 	validator_registered() (ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin method), [1]

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	ValidatorAlreadyExists

 	ValidatorNotFound

 	
 	ValidatorWithConditionAlreadyExists

 	ValidatorWithConditionNotFound

 	VALUE (ads.common.model_metadata.MetadataCustomPrintColumns attribute)

 	(ads.common.model_metadata.MetadataTaxonomyPrintColumns attribute)

 	value (ads.common.model_metadata.ModelCustomMetadataItem attribute)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem attribute)

 	(ads.common.model_metadata.ModelTaxonomyMetadataItem property)

 	values() (ads.common.model_metadata.ExtendedEnumMeta method), [1]

 	Vault (class in ads.vault.vault)

 	vault_id (ads.secrets.big_data_service.BDSSecretKeeper attribute)

 	verify() (ads.model.framework.automl_model.AutoMLModel method)

 	(ads.model.framework.lightgbm_model.LightGBMModel method)

 	(ads.model.framework.pytorch_model.PyTorchModel method)

 	(ads.model.framework.sklearn_model.SklearnModel method)

 	(ads.model.framework.xgboost_model.XGBoostModel method)

 	(ads.model.generic_model.GenericModel method), [1]

 	version (ads.model.extractor.automl_extractor.AutoMLExtractor property)

 	(ads.model.extractor.keras_extractor.KerasExtractor property)

 	(ads.model.extractor.lightgbm_extractor.LightgbmExtractor property)

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor property)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor property)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor property)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor property)

 	(ads.model.framework.automl_model.AutoMLModel attribute)

 	(ads.model.framework.lightgbm_model.LightGBMModel attribute)

 	(ads.model.framework.pytorch_model.PyTorchModel attribute)

 	(ads.model.framework.sklearn_model.SklearnModel attribute)

 	(ads.model.framework.xgboost_model.XGBoostModel attribute)

 	(ads.model.generic_model.GenericModel attribute)

 	version() (ads.model.extractor.lightgbm_extractor.LightgbmExtractor method)

 	(ads.model.extractor.model_info_extractor.ModelInfoExtractor method), [1]

 	(ads.model.extractor.pytorch_extractor.PytorchExtractor method)

 	(ads.model.extractor.sklearn_extractor.SklearnExtractor method)

 	(ads.model.extractor.tensorflow_extractor.TensorflowExtractor method)

 	(ads.model.extractor.xgboost_extractor.XgboostExtractor method)

 	visualize() (ads.dataset.pipeline.TransformerPipeline method)

 	visualize_adaptive_sampling_trials() (ads.automl.provider.OracleAutoMLProvider method)

 	visualize_algorithm_selection_trials() (ads.automl.provider.OracleAutoMLProvider method)

 	visualize_feature_selection_trials() (ads.automl.provider.OracleAutoMLProvider method)

 	visualize_transformation() (in module ads.dataset.helper)

 	visualize_transforms() (ads.common.model.ADSModel method)

 	(ads.dataset.dataset_with_target.ADSDatasetWithTarget method)

 	visualize_tuning_trials() (ads.automl.provider.OracleAutoMLProvider method)

 	vm_image_internal_id (ads.model.runtime.model_provenance_details.ModelProvenanceDetails attribute)

W

 	
 	wait() (ads.dataflow.dataflow.RunObserver method)

 	(ads.hpo.search_cv.ADSTuner method)

 	(ads.jobs.builders.infrastructure.dataflow.DataFlowRun method)

 	wallet_content (ads.secrets.adb.ADBSecret attribute)

 	wallet_file_name (ads.secrets.adb.ADBSecret attribute)

 	wallet_location (ads.secrets.adb.ADBSecret attribute)

 	wallet_secret_ids (ads.secrets.adb.ADBSecret attribute)

 	warning (ads.feature_engineering.feature_type.address.Address attribute), [1]

 	(ads.feature_engineering.feature_type.base.FeatureType attribute)

 	(ads.feature_engineering.feature_type.boolean.Boolean attribute), [1]

 	(ads.feature_engineering.feature_type.category.Category attribute), [1]

 	(ads.feature_engineering.feature_type.constant.Constant attribute), [1]

 	(ads.feature_engineering.feature_type.continuous.Continuous attribute), [1]

 	(ads.feature_engineering.feature_type.creditcard.CreditCard attribute), [1]

 	(ads.feature_engineering.feature_type.datetime.DateTime attribute), [1]

 	(ads.feature_engineering.feature_type.discrete.Discrete attribute), [1]

 	(ads.feature_engineering.feature_type.document.Document attribute), [1]

 	(ads.feature_engineering.feature_type.gis.GIS attribute), [1]

 	(ads.feature_engineering.feature_type.integer.Integer attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address.IpAddress attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4 attribute), [1]

 	(ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6 attribute), [1]

 	(ads.feature_engineering.feature_type.lat_long.LatLong attribute), [1]

 	(ads.feature_engineering.feature_type.object.Object attribute), [1]

 	(ads.feature_engineering.feature_type.ordinal.Ordinal attribute), [1]

 	(ads.feature_engineering.feature_type.phone_number.PhoneNumber attribute), [1]

 	(ads.feature_engineering.feature_type.string.String attribute), [1]

 	(ads.feature_engineering.feature_type.text.Text attribute), [1]

 	(ads.feature_engineering.feature_type.unknown.Unknown attribute), [1]

 	(ads.feature_engineering.feature_type.zip_code.ZipCode attribute), [1]

 	warning() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin method)

 	(ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries method)

 	warning_registered() (ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin method), [1]

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager class method)

 	(ads.feature_engineering.feature_type_manager.FeatureTypeManager method)

 	WarningAlreadyExists

 	WarningNotFound

 	watch() (ads.jobs.builders.infrastructure.dataflow.DataFlowRun method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun method)

 	web() (ads.dataset.dataset_browser.DatasetBrowser static method)

 	WebDatasets (class in ads.dataset.dataset_browser)

 	with_access_log() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method), [1]

 	with_archive_bucket() (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime method)

 	with_archive_uri() (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime method)

 	with_argument() (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime method)

 	with_block_storage_size() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_category_log() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method)

 	with_compartment_id() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_configuration() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_custom_conda() (ads.jobs.builders.runtimes.python_runtime.CondaRuntime method)

 	with_driver_shape() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	
 	with_entrypoint() (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime method)

 	with_exclude_tag() (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime method)

 	with_execute() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_executor_shape() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_id() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_infrastructure() (ads.jobs.ads_job.Job method)

 	with_instance_configuration() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method), [1]

 	with_job_infrastructure_type() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_job_type() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_language() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_log_group_id() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_log_id() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_logging_configuration() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method)

 	with_logs_bucket_uri() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_metastore_id() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_name() (ads.jobs.ads_job.Job method)

 	with_notebook() (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime method)

 	with_num_executors() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_output() (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime method)

 	with_predict_log() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method), [1]

 	with_processor() (ads.text_dataset.dataset.DataLoader method)

 	with_project_id() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_prop() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties method), [1]

 	with_runtime() (ads.jobs.ads_job.Job method)

 	with_script() (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime method)

 	with_script_bucket() (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime method)

 	with_script_uri() (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime method)

 	with_service_conda() (ads.jobs.builders.runtimes.python_runtime.CondaRuntime method)

 	with_shape_name() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_source() (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime method)

 	(ads.jobs.builders.runtimes.python_runtime.ScriptRuntime method)

 	with_spark_version() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_subnet_id() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob method)

 	with_warehouse_bucket_uri() (ads.jobs.builders.infrastructure.dataflow.DataFlow method)

 	with_working_dir() (ads.jobs.builders.runtimes.python_runtime.PythonRuntime method)

 	WORD2VEC (ads.common.model_metadata.Framework attribute)

 	WordProcessor (class in ads.text_dataset.extractor)

 	workflow_req_id (ads.model.deployment.model_deployment.ModelDeployment attribute)

 	workflow_state_progress (ads.model.deployment.model_deployment.ModelDeployment attribute)

 	workflow_steps (ads.model.deployment.model_deployment.ModelDeployment attribute)

 	working_dir (ads.jobs.builders.runtimes.python_runtime.PythonRuntime property)

 	wrap_lines() (in module ads.common.utils)

 	wrap_output_string() (in module ads.feature_engineering.adsstring.string)

 	write_parquet() (in module ads.dataset.helper)

 	write_score() (in module ads.common.function.fn_util)

 	WrongEntityFormat

 	WrongEntityFormatLabelIsEmpty

 	WrongEntityFormatLabelNotString

 	WrongEntityFormatLengthIsNegative

 	WrongEntityFormatLengthNotInteger

 	WrongEntityFormatOffsetIsNegative

 	WrongEntityFormatOffsetNotInteger

 	WrongHandlerMethodSignature

X

 	
 	XGBOOST (ads.common.model_metadata.Framework attribute)

 	
 	XgboostExtractor (class in ads.model.extractor.xgboost_extractor)

 	XGBoostModel (class in ads.model.framework.xgboost_model)

Y

 	
 	y_pred (ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	y_score (ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	
 	y_true (ads.evaluations.statistical_metrics.ModelEvaluator attribute)

 	YOLO (ads.data_labeling.constants.Formats attribute)

Z

 	
 	zeros_handler() (in module ads.feature_engineering.feature_type.handler.warnings)

 	zfill() (ads.feature_engineering.adsstring.string.ADSString method)

 	
 	zip_code (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin property)

 	ZipCode (class in ads.feature_engineering.feature_type.zip_code)

 <no title>

The following are the recommended steps to create a conda environment to connect to BDS:

	Open a terminal window then run the following commands:

	odsc conda install -s pyspark30_p37_cpu_v3: Install the PySpark conda environment.

	conda activate /home/datascience/conda/pyspark30_p37_cpu_v3: Activate the PySpark conda environment so that you can modify it.

	pip uninstall oracle_ads: Uninstall the old ADS package in this environment.

	pip install oracle_ads[bds]: Install the latest version of ADS that contains BDS support.

	conda install sasl: Install sasl.

 <no title>

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
 hdfs_config = {
 "protocol": "webhdfs",
 "host": cred["hdfs_host"],
 "port": cred["hdfs_port"],
 "kerberos": "True"
 }

fs = fsspec.filesystem(**hdfs_config)

 <no title>

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:
 with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
 cursor = hive.connect(host=cred["hive_host"],
 port=cred["hive_port"],
 auth='KERBEROS',
 kerberos_service_name="hive").cursor()

 <no title>

import ads
import fsspec
import os

from ads.bds.auth import refresh_ticket

ads.set_auth('resource_principal')
refresh_ticket(principal="<your_principal>", keytab_path="<your_local_keytab_file_path>",
 kerb5_path="<your_local_kerb5_config_file_path>")
cursor = hive.connect(host="<hive_host>", port="<hive_port>",
 auth='KERBEROS', kerberos_service_name="hive").cursor()

 <no title>

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

	wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If set to True, the method returns when the model deployment is deleted.

 <no title>

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name, instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following parameters:

	deployment_access_log_id: (str, optional): Defaults to None. The access log OCID for the access logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	deployment_bandwidth_mbps: (int, optional): Defaults to 10. The bandwidth limit on the load balancer in Mbps.

	deployment_instance_count: (int, optional): Defaults to 1. The number of instances used for deployment.

	deployment_instance_shape: (str, optional): Default to VM.Standard2.1. The shape of the instance used for deployment.

	deployment_log_group_id: (str, optional): Defaults to None. The OCI logging group OCID. The access log and predict log share the same log group.

	deployment_predict_log_id: (str, optional): Defaults to None. The predict log OCID for the predict logs, see logging [https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm].

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	wait_for_completion : (bool, optional): Defaults to True. Set to wait for the deployment to complete before proceeding.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken from the environment variables.

	max_wait_time : (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in seconds. A negative value implies an infinite wait time.

	poll_interval : (int, optional): Defaults to 60 seconds. Poll interval in seconds.

	project_id: (str, optional): Project OCID. If not specified, the value is taken from the environment variables.

 <no title>

The properties is an instance of the ModelProperties class and has the following predefined fields:

	compartment_id: str

	deployment_access_log_id: str

	deployment_bandwidth_mbps: int

	deployment_instance_count: int

	deployment_instance_shape: str

	deployment_log_group_id: str

	deployment_predict_log_id: str

	inference_conda_env: str

	inference_python_version: str

	project_id: str

	training_conda_env: str

	training_id: str

	training_python_version: str

	training_resource_id: str

	training_script_path: str

By default, properties is populated from the appropriate environment variables if it’s
not specified. For example, in a notebook session, the environment variables
for project id and compartment id are preset and stored in PROJECT_OCID and
NB_SESSION_COMPARTMENT_OCID by default. So properties populates these variables
from the environment variables and uses the values in methods such as .save() and .deploy().
However, you can explicitly pass in values to overwrite the defaults.
When you use a method that includes an instance of properties, then properties records the values that you pass in.
For example, when you pass inference_conda_env into the .prepare() method, then properties records this value.
To reuse the properties file in different places, you can export the properties file using the .to_yaml() method and reload it into a different machine using the .from_yaml() method.

 Model Artifact

Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory, in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the serialization model class. The .from_model_artifact() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save and deploy the model.

	uri: str: The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the URI is copied to the artifact_dir folder.

 Model Catalog

Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog() method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and update the serialization model object. The .from_model_catalog() method takes the following parameters:

	artifact_dir: str: Artifact directory to store the files needed for deployment.

	auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal() and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient object.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	model_id: str: The model OCID.

	model_file_name: str: The serialized model file name.

	properties: (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

	
	**kwargs:
	
	compartment_id: (str, optional): Compartment OCID. If not specified, the value will be taken from the environment variables.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

 <no title>

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The .save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST endpoint.

 <no title>

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .predict() method sends a request to the deployed endpoint, and computes the inference values based on the data that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes the following parameters:

 <no title>

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using the following parameters:

	as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

	force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

	ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

	inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

	inference_python_version: (str, optional): Defaults to None. The version of Python to use in the model deployment.

	max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate the input schema if the input data has more than this number of features.

	model_file_name: (str): Name of the serialized model.

	namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the service environment is from when you provide a slug to the inference_conda_env or training_conda_env parameters.

	training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the conda environment that was used to train the model. You can only pass in a slug if the conda environment is a Data Science service environment.

	training_id: (str, optional): Defaults to value from environment variables. The training OCID for the model. Can be a notebook session or job OCID.

	training_python_version: (str, optional): Defaults to None. The version of Python used to train the model.

	training_script_path: str: Defaults to None. The training script path.

	use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

	X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of the input data. It is used to generate the input schema.

	y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A sample of output data. It is used to generate the output schema.

	
	**kwargs:
	
	impute_values: (dict, optional): The dictionary where the key is the column index (or names is accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

 <no title>

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the .save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

	defined_tags : (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

	description: (str, optional): Defaults to None. The description of the model.

	display_name: (str, optional): Defaults to None. The name of the model.

	freeform_tags : Dict(str, str): Defaults to None. Free form tags for the model.

	ignore_introspection: (bool, optional): Defaults to None. Determines whether to ignore the result of model introspection or not. If set to True, then .save() ignores all model introspection errors.

	
	**kwargs:
	
	compartment_id : (str, optional): Compartment OCID. If not specified, the value is taken either from the environment variables or model properties.

	project_id: (str, optional): Project OCID. If not specified, the value is taken either from the environment variables or model properties.

	timeout: (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk. This will pick up any changes that have been made to those files. If ignore_introspection=False then it conducts an introspection test to determine if the model deployment might have issues. If potential problems are detected, it will suggest possible remedies. Lastly, it uploads the artifacts to the model catalog, and returns the model OCID. You can also call .instrospect() to conduct the test any time after you call .prepare().

 <no title>

You can call the .summary_status() method after a model serialization instance such as AutoMLModel, GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status() method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those actions.

The following image displays an example summary status table created after a user initiates a model instance. The table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(), deploy(), and predict() methods for the model. The Status column displays which method is available next. After the initiate step, the prepare() method is available. The next step is to call the prepare() method.

[image: user_guide/model_serialization/boilerplate/figure/summary_status.png]

 <no title>

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the model. With the .verify() method, you can debug your code without having to save the model to the model catalog and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following parameter:

_images/ads_mlx_titanic_pdp_pclass_age.png
PDP - True

pelass

_images/ads_mlx_titanic_pdp_sex.png
PDP

1.0

08

(enan)d

female

sex

_images/ads_mlx_titanic_pdp_age_dataframe.png
age mean False std False mean True std True
0 0166700 0219623 0186594 0780077 0.186594
13000000 0195860 0201552 0804140 0201552
2 9000000 0213672 0194057 0786128 0.194057
3 14172014 0519562 0313260 0480458 0313260
4 17000000 0665385 032477 0384614 032477
5 18000000 0665386 023477 033614 0323477
6 19000000 060367 036272 0396133 0329272
7 20000000 0590466 0324003 0409534 0324003
8 21000000 0594511 032571 0.405489 0325671
9 22000000 0570493 0324753 0429507 0324753
10 23000000 0568903 0325895 0431097 0325895
112000000 0572269 0324574 0427731 0324574
12 25000000 056427 0321411 0435373 0321411
13 26000000 0SISTI 0320828 0436429 0320828
14 27000000 0581065 0317451 0418935 0317451
15 28000000 0626350 0329872 0373650 0329872
16 20000000 0620764 0330370 0376236 0330370
17 30000000 0620620 0332168 0370871 0332168
18 3000000 0521126 0300484 0.47BET6 0300484
19 33000000 0617107 0339613 0382693 0.339613
20 34982750 0617107 0339613 0382693 0.339613
21 3000000 0622497 033593 0377503 0338593
22 300000 0632185 0342626 0367814 0342626
23 40000000 063341 0342012 0364659 0342012
24 43000000 0632703 033087 0367297 0.338097
25 45000000 063305 0337756 0365695 0337756
26 49000000 0596556 033167 0403444 0338167
27 54000000 0644757 0337328 0355243 0337328
28 60000000 06SGHTS 0342264 0343621 0342264
20 80000000 0660127 0341311 0339673 034111

_images/ads_mlx_titanic_pdp_age_diagnostics.png
{'feature_correlations': {},
explanation stats': (‘Runtime analysis's {‘samples': {'valus': [0.1648237705230713,
117607676962879639),
work': (2, 301},
samples average’ ! 0.9627957344055176,
Samples total': 1.9255914688110352,
work average': 16.0,
work total's 32,
Samples throughput': 16.618270551311976,
Samples latency : 0.06017473340034185)),
Pdp’: ({‘age’: 0.1667,
mean': [0.21962339, 0.78037661,
sea’s (0.1s6s9113, 0. 186534131,
rage's 3.0,
mean’: (0019585957, 0.6041404],
sea’s 0.20185172, 0. 3015517215,
rage's 9.0,
mean': [0.21387196, 0.786128),
std’s 0.1900s662, 0. 194056621,
(rage’s 1a.17201379310305,
mean': [0.5195417, 0.4804583],
Std’s (0.31328987, 0 3132598715,
age’: 1700, ‘mean’: [0.6653859, 0.3306141),
age’: 1810] ‘mean': (016653859, 0 3346141,
age’: 1900] ‘mean': (016038667, 039613341,
age': 2000,
mean’s (0.5904662, 010953377,
Std’s 0.32000262, 03240026215,
rages 210,
mean’s (0.59451133, 0.4054887],

(03234773, 03237731},
(013234773, 03237731}
(013292721, 032927211},

sed’s (0.32557142, 0.3285714215
("age’: 22.0, ‘mean’: [0.5704925, 0.4295075], 'std’: (0.3247535, 0.32475351),
Cages 2300,

mean’: (0.56890285, 0.43109715),

Std’s 0.32589153, 0.325894531)
rage's 2400,

mean's (0.5722691, 0.4217309),

Std’s 0.32057417, 0.32457417]),
rage's 2500,

mean’: (0.5646265, 0.43537345],

std’s (0.32101125, 0321112515,
rage's 2600,

mean’: (0.56357104, 0.43642896),

Std’s 0.32082796, 0.32082961) |
rages 2220,

mean’: (0.58106536, 0.41893464),

std’s 0.31745076, 0.317450761) |
rages 2800,

mean’: (0.62635016, 0.37364992],

Std’s 0.32087198, 0.329871981) |
rages 2900,

mean’ s (0.6237644, 0376235631,

std’s 10.3303695, 033036951},
rage's 3000,

mean’: (0.62962914, 0.370370861,

std’s 0.3321680s, 0.332168461)
rages 310,

mean’s (0.52112424, 0.4788758],

Std’s 10.3004837, 0.300483671),
Cages 3300,

mean’: (0.61710674, 0.38289332),

std’s 10.3396127, 0.339612121),

(rage’: 3a.38275862068985,

mean’: (0.61710674, 0.35289332],
std’s 10.3396127, 0.339612721),
rages 3600,
mean’: (0.62249655, 0377503181,
Std’s 10.33859333, 0.338593331)
rages 3800,
mean’: (0.6321857, 0367814331,
Std’s (0.34262608, 0302626481,

3ge: 4000, ‘mean’s [0.6353405, 036465951, 'std’: (0.3420124, 0.34201241),
age': 430,
mean’: (0.6327028, 0.367297141,
Std’s 0.33809677, 013380967711,
rage's 4500,

mean’: (0.6343053, 0.36569482],

Std’s 0.33775553, 0337758531,
rages 4900,

mean’: (0.5965565, 0.10344357],

std’s [0.3381666, 033816661},
rage's s,

mean’: (0.64475715, 0.35524285),

sed’s 10.3373284, 0.33732841),
rage's 6000,

mean’: (0.6563791, 0.34362087],

Std’s (0.34226355, 0342263551,
rage's 800,

mean’: (0.6601273, 0.33987272],
Std': [0.34131002, 0.34131092131)

_images/ads_mlx_titanic_pi_bar.png
Importance

sex|
pelass|
age
sibsp|
fare

embarked

_images/multiclass_jaccard_by_label.png
25

2.0

15

1.0

0.5

0.0

LogisticRegression

0.8571

0.0 0.2 0.4 0.6
Jaccard Score

0.8

2.5

2.0

15

1.0

0.5

0.0

RandomForestClassifier

0.8462

0.0 0.2 0.4 0.6 0.8
Jaccard Score

1.0

_images/ads_mlx_titanic_pi_box.png
sex

pelass

age

sibsp

embarked

0.05 01 0.15 02

Importance

0.25

_images/ner.png
COFFEE, SUGAR AND COCOA EXCHANGE NAMES CHAIRMAN The New York city Coffee, Sugar and Cocoa Exchange (CSCE COMPANY) elected
former first vice chairman Gerald PERSON Clancy to a two-year term as chairman of the board of managers, replacing previous chairman 'Howard
Katz PERSON . Katz PERSON , chairman since 1985, will remain a board member. |Clancy PERSON currently serves on the Exchange board of
managers as chairman of its appeals, executive, pension and political action committees. The CSCE COMPANY also elected 'Charles Nastro PERSON |,
executive vice president of Shearson Lehman Bros COMPANY , as first vice chairman. 'Anthony Maccia PERSON , vice president of

Woodhouse cOMPANY , Drake PERSON and Carey PERSON , was named second vice chairman, and | Clifford Evans PERSON , president of

Demico Futures PERSON , was elected treasurer.

_images/multiclass_precision_by_label.png
25

2.0

15

1.0

0.5

0.0

LogisticRegression

0.9231

0.2

0.4 0.6
Precision

0.8

2.5

2.0

15

1.0

0.5

0.0

RandomForestClassifier

1.0000
0.0 0.2 0.4 0.6 0.8
Precision

1.0

_images/ner_df.png
Path Content Annotations

oci://hosted-ds- (CORRECTED) - MOBIL &It;MOB> TO [(56, 66, company), (149, 157, city),
datasets@bigdatadatasciencelar... UPGRADE REFINE... (161, 16...
oci://hosted-ds- COFFEE, SUGAR AND COCOA EXCHANGE [(54, 62, city), (99, 103, company),
datasets@bigdatadatasciencelar... NAMES CHAIRMA... (140, 146...
oci://hosted-ds- N.Z. TRADING BANK DEPOSIT GROWTH RISES [(50, 61, country), (189, 201,
datasets@bigdatadatasciencelar... SLIGHTL... company)]
oci://hosted-ds- CANADA OIL EXPORTS RISE 20 PCT IN 1986\n [(O, 6, country), (41, 49, country),
datasets@bigdatadatasciencelar... Cana... (210, 216...
oci://hosted-ds- U.K. GROWING IMPATIENT WITH JAPAN - [(62, 79, person), (128, 133,

datasets@bigdatadatasciencelar... THATCHER\n... country), (5009, ...

_images/ner1.png
]
12

Pl

|

True
False
False
False
False
False
False
False
False
False
False
False

False

Length Offset Score Entity
23 0 10 Lawrence Joseph Ellison
15 30 10 August 17, 1944
8 215 10 Oracle Corporation
12 241 10 October 2019

6 284 10 Forbes
13 339 10 United States
13 425 10 $69.1 billion
13 467 10 $54.5 billion

8 484 10 2018.[4]
13 560 10 United States

5 575 10 Lanai
1 588 10 Hawailan Islands

4 648 10 3000

Type
PERSON
DATE
ORG
DATE
ORG

GPE
MONEY
MONEY
DATE
GPE

GPE
LOCATION
CARDINAL

_images/nltk_pos.png
E" I

Word
Joseph

Ellison

born

Label
NNP

NNP

VBN

_images/ner_pic.png
The Japanese minister for post and telecommunications was reported as saying that he opposed Cable and Wireless company having a managerial role in the new

company.

_images/optimizationhistory.png
Best Score

Optimization History Plot

0.98
0975
0.97

0.965

10

15

#Trials

20

25

30

35

_images/open-dataset.png
ds = DatasetFactory.open("data/orcl_attrition.csv", target="Attrition")
.set_positive_class('Yes"')

_images/multiclass_eval_metrics.png
Evaluation Metrics (testing data):

accuracy
hamming loss
Kappa score
procision weighted
precision micro
rocall weightod
rocall micro

11 weighted

#1_micro

LogisticRogression

09333

006667

028964

0381

033

09333

09333

038

09333

RandomForestClassifir

0333

006667

o971

03408

0333

0333

0333

026

0333

_images/multiclass_confusion_matrix.png
True label

LogisticRegression

0.9091 [10] 0.0909 [1]

1 0.9231[12] 0
21 0.0 [0] 0.0 [0]
0 3

Predicted label

0.0 [0]

.0769 [1]

2

True label

RandomForestClassifier

0 1.0[11) 0.0 [0] 0.0 [0]
14 0.0769[1] 0.8462 [11] 0.0769 [1]
2 0.0 [0] 0.0 [0]

\) 3 2

Predicted label

_images/ads_mlx_titanic_local_diagnostics.png
Tt

T R R P

Rerhoira

et

e T s,

e B L e,

e Lo el g B ronroes,

S e C—
it fuflle s,

SRS,

530,

P :
Sringremertt { Ton o aecadgarror s 0.0130068s806723,
e e (L Eembreinint s g somacssn,

trizen e e G

sttt
Rt Re

:5:;5::;;::;;,;,?
SR,

It

_images/ads_mlx_titanic_pdp_age.png
P(True)

PDP

1.0
— True

02|

u}.. B 7 T
0

20 40 60 80

age

_images/ads_mlx_titanic_ice_sex.png
P(True)

ICE - True

_images/ads_mlx_titanic_local.png
Model

Model Predictions X Instance to Explain
Modet ads commonmoset ADSMocel
e trge vele: e Feature Value
Modelprciion e Al
- fmae
peess 0
ambares s
aee 0

Prediction Probabilties

rlse L 006

- e
e I |05
Explainer
Surrogate Explainer Configuration Explanation Legend
[r— Y S —
Suroqatemodet O S
St e geosor Cooficiants Satdconicirtsfrom sursga model (o 1.
o —— PR, Datanc Eucdan)sewean i and o e
ot o xplinr. e dtest s o (1 an Gt
Numborof syrinets ances st . san0 i spaces B o
o e o s o e oot vakston sl s 5252
Dt et Soindte 8 pecanties oo dtrces T
Sesocoutints: e
Tt e) 2
Explanations

Feature Importances

3 PlIue)

Explanation Quality

‘Sample Distance Distibutions Evaluation Metrics

‘Sampl Space | root mean sqared emror | Peersen
" o e
2 Com=0.980
2 o P=5.60858-140
5 oroant
Z oxe Pz s0ate-124
carasen
thte o P=1.93260-61
Pertormance
£ Explanation ime fsec): osm

_images/model-evaluation-performance.png
Precision Recall Curve

ROC Curve

ROC Curve

— Automn, T
— RandomrorestClassier (ecison Scoe: 0.4444)
DumemyClasatie (recision scor: 01304)

« Mo Emor fate

— AukouL Clasifr (AUC: 0.7651)
— RandomrorestClasifr (AUC: 0.7562)
ummyClasifer (AUC: 0.3159)

« Youden's) statistc

False Positive Rate.

in Chart

Gain Chart

" Recal
Lift chart, G:
Lift Chart
[Ep——
" Randorrorestcasser
= bummychster 3
H
£

— AckomL Clssiter
" RandomporestClasser
— DummyClasifer

Percentage of Population

Percentage of Population

_images/ml_steps.png
Access

Test Explore
Deploy Prepare
Validate Model

Train

_images/model_catalog_save.png
Data Science » Projects » wy_test

ACTIVE

Resources

Notebook Sessions

List Scope

wy_test

Edit ‘ Move Resource H Add Tags ’

Project Information

Tags

Description: No Value

OCID: ...gjjidtxq Show Copy.

Created On: Tue, Jan 28, 2020, 01:25:35 UTC

Models in ociodscdev (root) Compartment

Create Model

Status

Created By

Created On

random forest model on iris
dataset

@ Active

wendy.yip@oracle.com

Fri, Jan 31, 2020, 03:06:42 UTC

_images/model-evaluation.png
from ads.evaluations.evaluator import ADSEvaluator
from ads. conmon. data import MLData

evaluator = ADSEvaluator (test, models=[model, my_model, baselinel, training_data=train)
evaluator. show_in_notebook()

_images/multiclass_F1_by_label.png
LogisticRegression

1.0 0.9231

0.0 0.2 0.4 0.6 0.8
F1 Score

RandomForestClassifier

1.0 0.9167

0.0 0.2 0.4 0.6
F1 Score

0.8

1.0

_images/motivation.png
LYY

Data scientist Tuned Model

Features - Labels

_images/multiclass_ROC_curve.png
True Positive Rate

10

0.8

0.6

0.4

0.2

0.0

ROC Curve

ROC Curve

— class_0 (AUC: 0.9952)
— class_1 (AUC: 0.9864)
—— class_2 (AUC: 1.0000)
* Youden's | Statistic

True Positive Rate

°
N

°

°
®

°
S

°
S

°
°

— class_0 (AUC: 0.9928)
—— class_1 (AUC: 0.9932)
—— class_2 (AUC: 1.0000)
* Youden's | Statistic

0.0 02 04 06 08 10
False Positive Rate

00 02 04 06 08 10
False Positive Rate

_images/multiclass_PR_curve.png
Precision

°

°
®

°
S

°
S

°
N

°
°

Precision Recall Curve

Precision Recall Curve

- =

—— class_0 (Precision Score: 1.0000)

—— class_1 (Precision Score: 0.9231)

—— class_2 (Precision Score: 0.8571)
* Minimum Error Rate

1 [1§

—— class_0 (Precision Score: 0.8462)

—— class_1 (Precision Score: 1.0000)

—— class_2 (Precision Score: 0.8571)
* Minimum Error Rate

0.0 02 04 06 08 10
Recall

00 02 04 06 08 10
Recall

_images/matplotlib.png
I Using entire dataset for graphing (1000 rows)

TIP:
+Use show_in_notebook() to visualize the dataset.
+Use get_recommendations() toview and apply recommendations for dataset optimization.

<Figure size 432x288 with 0 Axes>

1 20 00 &0 0 1000

_images/loaded_df.png
& e N

Path
ocklhosted-ds-datasets@bigdatadatasciencelar...
ocklhosted-ds-datasets@bigdatadatasciencelar...
ocklhosted-ds-datasets@bigdatadatasciencelar...
ocklhosted-ds-datasets@bigdatadatasciencelar.

oci/Jhosted-ds-datasets@bigdatadatasciencelar...

Content
From: luriem@alleg.edu(Michael Lurie) The Libe..
From: nsmca@auroraalaska.edulnSubject: 30826
From: aws@iti.org (Allen W. Sherzer)\nSubject:..
Subject: Re: quick way to tell if your local b..

Subject: Best Sportwriters..\nFrom: csc2imd@c.

Annotations.

_images/metadata_taxonomy.png
Key Value

o Algorithm RandomForestClassifier

(key': 'score_py, ‘category': 'Mandatory Files Check' 'description’: ‘Check that the file "score.py” exists and i

the top level directory of the artifact directory’,
‘error_msg’ ‘The file'score.py' is missing!, 'success': True), runtime_yam' {‘category’

"Mandatory Files Check’, ‘description’: ‘Check that the file *runtime.yaml exists and is in the
top level directory of the artifact directory, ‘error_msg': 'The fle ‘runtime yam ing., 'success" Truel, 'score_syntax' {'category': 'score.py, 'description': ‘Check for Python
syntax errors!, ‘error_msg': ‘There is Syntax error in score.py: , 'success': True}, ‘score_load_model' {'category': ‘score.py, ‘description': ‘Check that load_model() is defined

error_msg': 'Function load_maodel is not present in score.py., 'success': True), 'score_predict': {category": ‘score.py’ ‘description’: ‘Check that predict() is defined’ ‘error_msg':

*Function predict is not present in score.py:, ‘success": True), ‘score_predict_data': {'category'": ‘score.py’, ‘description’: ‘Check that the only required argument for predict() is named

“data", ‘error_msg': ‘The predict function in score.py must have a formal argument named ‘datat’ ‘success: True}, ‘score_predict_arg" {'category": ‘score.py, 'description’: ‘Check

il ST Bl Sl T T e S C e A e e S e O e A LU o

argument,‘success'; True), 'runtime_version': {'category':‘runtime yaml, ‘description': ‘Check that field MODEL_ARTIFACT VERSION is set to 3.0, ‘error_msg’ ‘In runtime.yami, the

ey MODEL ARTIFACT VERSION must b 56t to 5.0+ ‘success" Tre), runtime. 5. pythan’ (category rconda.env. ‘descripton’ -Chock that feld

1 ArtifactTestResults MODEL DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher, ‘error_msg': 'In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION
must be set to a value of 3.6 or higher:, 'success": True, 'value®: ‘32101, ‘runtime_env_type": {'category" ‘conda_env’, 'description’: ‘Check that field

MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is set to a value in (published, data_science), error_msg: 'In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE

must be set to published or data_science!, ‘success': True, 'value's ‘published), ‘runtime_en._slug*: {'category': ‘conda_env, 'description': ‘Check that field

MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG is set’, ‘error_msg’: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG must have a value., 'success" True,

‘value': database_p37.cpu.v1.0%), runtime_env.path': {category' ‘conda_en’, description': ‘Check that field MODEL_DEPLOYMENT.INFERENCE _ENV_PATH is set, ‘rror_msg: ‘In

runtime.yaml, the key MODEL DEPLOYMENT.INFERENCE_ENV_PATH must have a value!, 'success': True, 'alue': ociy/licence_checker@ociodscdev/conda_environments/cpu/Oracle
Database/1.0/database_p37.cpu_v1.0'}, ‘runtime._path_exist' {'category': ‘conda_env', ‘description': 'f MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science and
MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG is set, check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct!, ‘error_msg': ‘In runtime.yami, the key
MODEL_DEPLOYMENT.INFERENCE _ENV_PATH does not exist.}, ‘runtime_slug_exist': {'category'": ‘conda_env!, ‘description’: if MODEL_DEPLOYMENT.INFERENCE _ENV_TYPE is

data_science, check that the slug listed in MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG exists., ‘error_msg': 'In runtime.yaml, the value of the key INFERENCE_ENV_SLUG is

“slug_value" and it doesn't exist in the bucket "bucket_url". Ensure that the value INFERENCE_ENV_SLUG and the bucket url are correct }}

2 Framework scikit-learn
3 FrameworkVersion 0242

{'bootstrap': True, ‘ccp_alpha': 0.0, ‘clas:
Hyperparameters 'min_impurity_decrease': 0.0, ‘min_impurity._split': None, ‘mi

eight: None, ‘criterion': ‘g, ‘max_depth': None, ‘max_features' ‘auta), 'max.leaf nodes': None, 'max_samples': None,
_samples_leaf" 1, 'min_samples_spli \ weight fraction._leaf': 0.0, 'n_estimators": 10, lone, ‘oob_score':
False, ‘random_state': None, 'verbose': 0, ‘warm_start': False}

&

5 UseCaseType binary_classification

_images/pipeline.png
Dataset

Algorithm

Selection

Identify top k
algorithms

Select a suitable
subsample for the
chosen model

Feature

Selection

Select relevant
features

Hyperparameter

Tuning

Identify optimal
hyperparameters

Tuned
Model

_images/profile_ds_open.png
Profile Results

960

§ 8
(aw) Aowsspy

H

880

_images/production-training.png

_images/regression_eval_metrics.png
Evaluation Metrics (testing data):

2.sc0r0 as7as
mso 230
explained variance 0s7ss

3348

_images/project_list.png
id

sI55ra

shhtwa

jidtxq

y45j3a

4iwxeq

mxnitq

iuercq

i6o7ja

display_name

yuding-demo-
project

yuding-
second-
project

wy_test

kiran-test-
jan27

mlabprd

linus-new-
demo

Deployment
0.55.0_73 Test
-oc1

model catalog
artifact
upload test
project

description

None

None

None

kiran-test-
jan27

testing in
production

None

None

model
catalog
artifact
upload test
proiect

time_created

2020-01-31
18:31:29

2020-01-29
19:28:42

2020-01-28
01:25:35

2020-01-27
23:42:32

2020-01-27
22:34:33

2020-01-24
21:17:42

2020-01-22
03:38:53

2020-01-22
00:36:09

lifecycle_state

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

user_name

yuding.sun@oracle.com

yuding.sun@oracle.com

wendy.yip@oracle.com

kiran.mudemela.sathya@oracle.com

mayoor.rao@oracle.com

linus.dabre@oracle.com

david.a.arias@oracle.com

jason.slepicka@oracle.com

compartment_id defined_tags freeform_tags

...ojkldq

...ojkldq

...ojkldq

...ojkldq

...ojkldq

...ojkldq

...ojkldq

...ojkldq

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

yuc

yuc

we

kiran.mudemele

linu

davic

_images/regression_residual_qq.png
Sample Quantiles

LinearRegression Lasso
3.00 A 3.00 A
.
2.00 A . 2.00 1
Jt".“] d'"
1.00 A /.f % 1.00 A -
©
3
0.00 A O 0.00 A
[
g
s
-1.00 - v & -1.001 R
. . : . .
-2.00 A -2.00 A
-300 L T T T T T -300 1 T T T T T
-2.00 -1.00 0.00 1.00 2.00 -2.00 -1.00 0.00 1.00 2.00

Theoretical Quantiles

Theoretical Quantiles

_images/regression_observed_vs_predicted.png
Predicted Values

LinearRegression

Lasso

50.00 4

40.00 1

30.00 1

20.00 1

10.00 4

0.00 A

Predicted Values

50.00 4

40.00 A

30.00 4

20.00 4

10.00 A

0.00 A

20.00 30.00 40.00

Observed Values

30.00
Observed Values

_images/regression_residual_vs_predicted.png
Residuals

LinearRegression

25.00 1

20.00 1

15.00 1

10.00 4

5.00 A

0.00 A

-5.00 A

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Predicted Values

Residuals

Lasso

25.00 4

20.00 4

15.00 A

10.00 A

5.00 A

0.00 A

-5.00 4

. . .
J. | - .
T T LTSNS
PR "*-.,-‘:' X
. ‘% e

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00
Predicted Values

_images/regression_residual_vs_observed.png
Residuals

LinearRegression

25.00 1

20.00 1

15.00 1

=
o
o
S
|

5.00 A

0.00 A

-5.00 A

30.00 40.00

Observed Values

20.00

50.00

Residuals

Lasso

25.00 4

20.00 4

15.00 A

10.00 A

5.00 A

0.00 A

-5.00 4

20.00

30.00 40.00

Observed Values

50.00

_images/retrieved.png
display_name
description
freeform_tags
d

ed_tags
repository_url
git_branch
git_commit

script_dir

ing_script

RF Clas:

.
A sample Random Forest classifier

o

o

ssh://git@bitbucket.oci oraclecorp.com:7999/odsc/odsc-notebooks.git
ODSC-17198/model_catalog
4673397deebB4e6283578690c8820c63ad07d5

/tmp/tmparfnjiu3

None

_images/output_30_0.png
Algorithm Selection Trials

[svonsresun

[sv uoissaibaydnsibol
[sv iauisse|peai uoisinag

I sv ouisseDsaaienxg

I sv ouisse|Disalo wopuey
I sv ayisse|isoogepy
I v oyisse|DgoxX

[T sveussepNgon

0.925
0.900
0.875
0.850

_images/output_15_1.png
count

25000
20000
15000
10000

5000

<=50K

>50K

income

_images/output_34_0.png
Predicted model score

25

Feature Selection Trials

5.0 75 100 125
Number of Features

_images/output_32_0.png
Predicted model score

Adaptive Sampling (LGBMClassifier ADS)
0.92 . "
0.91
0.90

2000 4000 6000 8000

Dataset sample size

_images/output_48_4.png
Normalized Confusion Matrix

_images/output_36_0.png
Computer model score

0.9

0.8

Hyperparameter Tuning Trials

25 50 75 100 125
Iteration n

_images/pairgrid.png
I Using entire dataset for graphing (150 rows)

Use set_target() totypethe dataset for a particular learning task

<seaborn.axisgrid.PairGrid at 0x1153adc8g>

sepal_length_(cm)

05

i s o 1 2
petal_length_(cm) petal_width_(cm)

_images/output_48_5.png
AutoML_Default

False 0.941 [11701] 0.059 [734]
©
Q
©
[
=}
2
=
True 0.3502 [1347] 0.6498 [2499]
cas® e
Predicted label
AutoML_ScoringString
False 0.9402 [11691] 0.0598 [744]
©
Q
©
[
=}
2
=
True 0.3471 [1335] 0.6529 [2511]
cas® e
Predicted label
AutoML_TimeBudget
False 0.9965 [1. 0.0035 [43]
©
Q
©
[
=}
2
=
True 0.9048 [3480] 0.0952 [366]
cas® e
Predicted label
DummyClassifier
False 0.7557 [9397] 0.2443 [3038]
©
Q
©
[
=}
2
=
True 0.7501 [2885] 0.2499 [961]

cas® e
Predicted label

AutoML_ModelList

False 0.9419 [11712] 0.0581 [723]

©
Q
o
[
=}
2
=
True 0.551[2119]
cas® e
Predicted label
AutoML_ScoringFunction
False 0.9402 [116 0.0598 [743]
©
Q
o
[
=}
2
=
True 0.3502 [1347] 0.6498 [2499]
cas® e
Predicted label
AutoML_MinFeatures
False 0.9441 [11740] 0.0559 [695]
©
Q
o
[
=}
2
=
True 0.3557 [1368] 0.6443 [2478]

cas® e
Predicted label

_images/piechart.png
I Using entire dataset for graphing (9 rows)

Use set_target() totype the dataset for a particular learning task

0
1
-
-3
-
-5
-
-7
- g

_images/parallelcoordinate.png
Parallel Coordinate Plot

098222

095
03
085

08
079564

S,

0.071618

008

004

0.000258

Uy,

2
Objective Value
0.95
5 0.9
0.85
08
e
2
oty

_images/oracle-logo.png
ORACLE’

_images/ads_feature_type_EDA_40_2.png
TravelForWork

infrequent

often

400

00
Count

a00

1000

_images/ads_feature_type_EDA_40_3.png
JobFunction

Product Management

Software Developer

Admin

200

400

Count

600

a00

1000

_images/ads_feature_type_EDA_4.png
Metric Value
o count 1470

1 unigue 3

_images/ads_feature_type_EDA_40_1.png
Attrition

No

200

400

00
Count

a00

1000

1200

_images/ads_feature_type_EDA_6.png
Column
Attrition

Atriion
TravelForWork
TravelForWork
JobFunction
JobFunction
JobFunction
JobFunction
JobFunction
TrainingTimesLastYear
TrainingTimesLastYear
TrainingTimesLastYear
TrainingTimesLastYear
TrainingTimesLastYear
TrainingTimesLastYear
TrainingTimesLastYear

TrainingTimesLastYear

Metric
count

unique

count

unique

Product Management
Software Developer
Software Manager
Admin

™

count

mean

standard deviation
sample minimum
lower quartile

median

upper quartile

‘sample maximum

Value
1470000000
2000000
1470000000
3000000
446.000000
961000000
0000000
63000000
0000000
1470000000
2799320
1289271
0000000
2000000
3000000
3000000

6000000

_images/ads_feature_type_EDA_7.png
Metric Admin

Column

TrainingTimesLastYear

TravelForWork

NaN
630
NaN

NaN

Product Management

NaN
4460
NaN

NaN

Software Developer

NaN
9610
NaN

NaN

Software Manager TPM

NaN
00
NaN

NaN

NaN
00
NaN

NaN

count

700

NaN
700
14700

lower quartile

NaN
NaN
20

NaN

mean

NaN
NaN
279932

NaN

median

NaN
NaN
30

NaN

sample maximum

NaN
NaN
60

NaN

sample minimum

NaN
NaN
00

NaN

standard deviation

NaN
NaN
1280271

NaN

unique

20
NaN
NaN

30

upper quartile

NaN
NaN
20

NaN

_images/ads_feature_type_EDA_40_4.png
——

1 2 3 4
TrainingTimesLastYear

_images/ads_feature_type_EDA_5.png
°

s e N

Metric
Product Management
Software Developer
Software Manager
Admin

M

Value
ass
961
o

o3

o

_images/ads_feature_type_manager_1.png
Class
Address
Boolean

Category
Constant
Continuous
CreditCard
DateTime
Discrete
Document
ais

Integer
IpAddress
IpAddressVa
IpAddressV6
LatLong
Object
Ordinal
PhoneNumber
String

Text
Unknown

ZipCode

Name
address
boolean

category
constant
continuous
credit_card
date_time
discrete
document
gs

integer
ip_address
ip_address v
ip_address v6
Iat long
obiect

ordinal
phone_number
string

text

unknown

2ip_code

Description
Type representing address.

Type representing binary values True/False.
Type representing discrete unordered values.
Type representing constant values.

Type representing continuous values.

Type representing credit card numbers.
Type representing date andjor time.

Type representing discrete values.

Type representing document values.

Type representing geographic information.
Type representing integer values.

Type representing IP Address.

Type representing IP Address Va.

Type representing IP Address V6.

Type representing longitude and latitute.
Type representing object.

Type representing ordered values.

Type representing phone numbers.

Type representing string values.

Type representing text values.

Type representing unknown type.

Type representing postal code.

_images/binary_lift_gain_chart.png
Lift Chart Gain Chart
600 A L .
—— LogisticRegression 100 4
—— RandomForestClassifier "
500 1]
o
O 80
400 A G>J
E=
§ 60 -
& 300
E ‘s
o 404
200 1 g
S
@
o 20 A
100 1 g
—— LogisticRegression
0 01 —— RandomForestClassifier
20 40 60 80 100 20 40 60 80 100

Percentage of Population

Percentage of Population

_images/ads_feature_type_manager_2.png
12
1
1
s
16
”
18
19
20
7
2

Class
Address
Boolean
Category
Constant
Continuous.
Creditcard
DateTime
Discrete
Document
ois

Integer
IpAddress
IpAddressva
IpAddressV6
LatLong
MyFeatureType
Object
Ordinal
PhoneNumber
String

Text

Unknown

ZipCode

Name.
address
boolean

category
constant
continuous
credit_card
date_time
discrete
document

ais

integer
ip_address
ip_address va
ip_address v6
lat_long
my_feature_type
object

ordinal
phone_number
string

text

unknown

zip_code

Type representing address.
Type representing binary values True/False.
Type representing discrete unordered values.
Type representing constant values.

Type representing continuous values.

Type representing credit card numbers.
Type representing date andjor time.

Type representing discrete values.

Type representing document values.

‘Type representing geographic information.
Type representing integer values.

Type representing IP Address.

Type representing IP Address Va.

Type representing IP Address V6.

Type representing longitude and latitute.
This is an exmaple of custom feature type.
Type representing object.

Type representing ordered values.

Type representing phone numbers.

Type representing string values.

Type representing text values.

Type representing unknown type.

Type representing postal code.

_images/bounding_box.png

_images/binary_normalized_confusion_matrix.png
True label

False

True

LogisticRegression

0.9999 [44033] 0.0001 [4]

0.5595 [47] 0.4405 [37]

?a\c—'e ’(Voe
Predicted label

True label

False

True

RandomForestClassifier

0.9999 [44034] 0.0001 [3]

0.4167 [35] 0.5833 [49]

?a\se ’(V\)e
Predicted label

_images/custom_metadata.png
Key Value Description

ClientLibrary ADS

CondaEnvironment database_p37.cpu_vi.0 The conda env where model was trained

icence_checker@ociodscdev/conda_environments/cpu/Oracle ath of the conda env where model was

CondaEnvironmentPath

Database/1.0/database_p37.cpu_v1.0 trained
T published The env type, could be published conda or
datascience conda

ModelArtitacts score.py, runtime.yaml, onnx_data_transformer.json, model.onnx, .model-ignore The list of files located in artifacts folder
ModelSerializationFormat onnx ‘The model serialization format
SlugName database.p37.cpu1o The slug name of the conda env where model was

trained

test testl None

Category
Other

Training
Environment

Training
Environment

Training
Environment

Training
Environment

Training Profile

Training
Environment

Training
Environment

_images/contourplot.png
penalty

Contour Plot

noney

12

L

° 0.001

alpha

0.01

\<

Objectve Value
——o0.96
o

Boss

u.a

_images/automl-hyperparameter-tuning.png
autonl.visualize_tuning_trials()

Hyperparameter Tuning Trials

0837

°
®
2
&

Computer model score
° °
@ &
] 8
b &

05833

o 5 10 15 20 25 30
Iteration n

_images/algorithm_selection.png
|

New Dataset

=\ w

Extract Dataset
Characteristics

Invoke
Score Prediction Models

»

Rank Algorithms
based on Predicted
Scores

Top K
Algorithms

_images/balance-dataset.png
t_na = transport_binary.drop_colunns(["departure_date",
“TransporterDelay’
“CodeBDelay",
“CodeEDelay",
“CancellationCode",
“DrivingTine",
“TruckID",
“CodeCDelay",
“CodeDDelay"])

transport_clean = t_na.auto_transforn(fix_inbalanc

_images/automl.png
from ads.autonl.driver import AutoML
train, test = transformed_ds.train_test_split()
autonl = AutoML(train, provider=nl_engine)

model, baseline = autonl.train(model_list=[
*LogisticRegression",
‘LGBMClassifier’,
‘XGBClassifier’,
*RandonForestClassifier'])

_images/binary_eval_metrics.png
Evaluation Metrics (testing data):

Logistiegression RandomForestCiassifior
accuracy 09088 0091
hamming loss ac0t1s6 ao00ssan
Kappa score 05015 07288
procision 0s024 0s814
rocal 04405 ost9
" 0se2 oz
e 09245 0s0i2

Evaluation Metrics (training data):

Logistiegression RandomForestCiassifior
accuracy 09089 0099
hamming loss ac0t10s aootate
Kappa_score 058 03603
procision 08255 o626
rocal 045tz 0002
" 05835 03604

aue 09184 1

_images/binary_PR_ROC_curve.png
Precision Recall Curve

ROC Curve

1.0

o
o

Precision
°
s

0.0

—— LogisticRegression (Precision Score: 0.902
—— RandomForestClassifier (Precision Score: 0.94
* Minimum Error Rate

True Positive Rate

1.0

0.8

0.6

0.4

0.2

0.0

—— LogisticRegression (AUC: 0.9245)

—— RandomForestClassifier (AUC: 0.9221)
* Youden's] Statistic

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4 0.6 0.8 1.0
False Positive Rate

_images/ads_feature_type_validator_10.png
Validator Condition Handler
0 is_credit card 0 default handler
1 is_credit card (‘card_type’) s any_card_handler

2 isvisacard 0 is.visa_card_handler

_images/ads_feature_type_validator_11.png
Validator Condition Handler
0 is_credit card 0 default handler

1 isvisa_card () is.visa_card_handler

_images/ads_feature_type_manager_4.png
© N o e s ow N

10

12
1
1a
15
16
”
18
10
20
7
2
23
2
25
26
27
28
20

Feature Type
continuous
continuous
continuous

date_time
date_time
category
category
ordinal
boolean
string

string
lat_long
phone_number
phone_number
zip_code
zip_code
credit_card
credit_card
object

object
integer
integer
address
constant
document

ais
ip_address va
ip_address v6
ip_address

text

Warning
missing values
zeros
skew_handler
missing values
high_cardinality
missing values
high_cardinality
missing values
missing values
missing values
high_cardinality
missing values
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
zeros

missing values
missing values
missing values
missing values
missing values
missing values
missing values

missing values

Handler
missing values handler

zeros_handler

skew_handler
missing_values_handler
high cardinality_handler
missing_values_handler
high cardinality_handler
missing_values_handler
missing values handler
missing_values_handler
high cardinality_handler
missing_values_handler
missing values handler
high cardinality_handler
missing values handler
high cardinality_handler
missing values handler
high cardinality_handler
missing values handler
high cardinality_handler
missing values handler

zeros_handler
missing values handler
missing_values_handler
missing values handler
missing_values_handler
missing values handler
missing_values_handler
missing values handler

missing_values_handler

_images/ads_feature_type_validator_1.png
Feature Type
date_time
boolean

string

lat_long
phone_number
zip_code
credit_card

address

ip_address

Validator
is_datetime
is_boolean

is string
is_Jat_long
is_phone_number
is_zip_code
is_credit card
is_address

is_gis

_address v

is.ip_address v6

is.ip_address

Condi

Handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler
defauit_handler

default_handler

_images/ads_feature_type_validator_3.png
Feature Type Validator Condition Handler
0 credit.card is_credit card () default_handler

1 string is_string () default_handler

_images/ads_feature_type_validator_4.png
RN

Column Feature Type

Attrition
Attrition
TravelForWork
JobFunction

EducationalLevel

boolean
string
string
string

string

Vs

is_boolean

ator Condi

Handler
default_handler
default_handler
default_handler
default_handler

default_handler

_images/ads_feature_type_validator_12.png
Validator Condition Handler

0 s credit_card () default_handler

_images/ads_feature_type_validator_2.png
Validator Condition Handler

0 is_credit card 0 default_handler

_images/ads_feature_type_validator_5.png
validator Condition Handler
0 is_credit_card 0 default_handler

1 isvisa card () is.visa_card_handler

_images/ads_mlx_titanic_pi_scatter.png
petass £
age
s
sibsp- 5
fare]
3
ombarkea:
T T T T T T 1 o

000 005 010 015 020 025
Importance

_images/ads_mlx_titanic_pi_diagnostics.png
{'explanations': [{'feature': 'sex',
‘attribution’: 0.21124298808944758,
‘attribution std': 0.02617818201628649,
‘confidence': 0.9929626508892098,
‘confidence_std': 0.016704326572772182},
{'feature': 'pclass’,
‘attribution': 0.059492724602767874,
‘attribution std': 0.018261289784839586,
‘confidence': 0.9421497725417008,
‘confidence_std': 0.04336997475992779},
{'feature': ‘age’,
‘attribution’: 0.057728878073588355,
‘attribution std': 0.017633783394690756,
‘confidence': 0.9606087248537752,
‘confidence_std': 0.031929775401309375},
{'feature': 'sibsp’,
‘attribution’: 0.02371181564197248,
‘attribution std': 0.009087998301193395,
‘confidence': 0.9422402486313869,
‘confidence_std': 0.03738023968977173},
‘feature': 'fare’,
‘attribution’: 0.019121222158654673,
‘attribution std': 0.014307567871540862,
‘confidence': 0.9597909343483199,
‘confidence_std': 0.025478489355540486),
{'feature': 'embarked',
‘attribution': 0.006731802664474656,
‘attribution std': 0.010294686196767218,
‘confidence': 0.9824752088136544,
‘confidence_std': 0.03584913237068881}],
"explanations_stats': {'n_iterations': 20,
‘total_runtime': 8.949006080627441,

'iteration_average runtime': 0.44195606708526614}}

_images/adw.png

_images/adstuner.png
[T 2020-10-23 21:56:17,630]
422001.

[T 2020-10-23 21:56:17,674]
2527.

[T 2020-10-23 21:56:17,792]
1484116.

[T 2020-10-23 21:56:17,891]
484116.

[T 2020-10-23 21:56:17,903]
84116,

[T 2020-10-23 21:56:17,937]
31484116.

[T 2020-10-23 21:56:
484116.

[T 2020-10-23 21:56:
[T 2020-10-23 21:56
74205.

[T 2020-10-23 21:56:18,101]
574205.

7,940]

7,955]
8,007]

Trial

Trial

Trial

Trial

Trial

Trial

Trial

Trial
Trial

Trial

CPU times: user 16.4 s, sys: 8.99

Wall time

16.4 s

s,

finished with
finished with
finished with
finished with
finished with
finished with
finished with

pruned. trial
finished with

finished with

total: 25.3 s

value:

value:

value:

value:

value:

value:

value:

0.8316737790422001

0.9106211474632527

0.9642010431484116

0.7956377430061642

0.9551920341394027

0.9642010431484116

0.9551920341394026

and

and

and

and

and

and

and

was pruned at iteration 99.

value:

value:

0.9732100521574205

0.9642010431484116

and

and

parameters: {‘alpha': 0.0002576226059719444,

parameters: {'alpha

parameters: {‘alpha': 0.006158601374396708,

parameters: {‘alpha': 0.0008008011222908228,

parameters: {‘alpha': 0.002629113116871369,

parameters: {‘alpha': 0.0007283968106220585,

parameters: {‘alpha': 0.0003638169088886491,

parameters: {‘alpha': 0.006335356664818435,

parameters: {‘alpha': 0.0013210136796797667,

0.07161796713234189, 'penalty

‘penalty’: '12'}. Best is trial 9 with value: 0.8316737790

12'}. Best is trial 5 with value: 0.910621147463
‘penalty’: 'none'}. Best is trial 3 with value: 0.964201043
‘penalty’: '12'}. Best is trial 3 with value: 0.9642010431
‘penalty’: 'W1'}. Best is trial 3 with value: 0.96420104314
‘penalty’: 'none'}. Best is trial 3 with value: 0.96420104

‘penalty’: '11'}. Best is trial 3 with value: 0.9642010431

‘penalty’: 'W1'}. Best is trial 8 with value: 0.97321005215

‘penalty’: 'l1'}. Best is trial 8 with value: 0.9732100521

_images/ads_feature_type_manager_3.png
Class
Address
Boolean

Category
Constant
Continuous
CreditCard
DateTime
Discrete
Document
ais

Integer
IpAddress
IpAddressVa
IpAddressV6
LatLong
Object
Ordinal
PhoneNumber
String

Text
Unknown

ZipCode

Name
address
boolean

category
constant
continuous
credit_card
date_time
discrete
document
gs

integer
ip_address
ip_address v
ip_address v6
Iat long
obiect

ordinal
phone_number
string

text

unknown

2ip_code

Description
Type representing address.

Type representing binary values True/False.
Type representing discrete unordered values.
Type representing constant values.

Type representing continuous values.

Type representing credit card numbers.
Type representing date andjor time.

Type representing discrete values.

Type representing document values.

Type representing geographic information.
Type representing integer values.

Type representing IP Address.

Type representing IP Address Va.

Type representing IP Address V6.

Type representing longitude and latitute.
Type representing object.

Type representing ordered values.

Type representing phone numbers.

Type representing string values.

Type representing text values.

Type representing unknown type.

Type representing postal code.

_images/ads_feature_type_warnings_1.png
© N o e s ow N

10

12
1
1a
15
16
”
18
10
20
7
2
23
2
25
26
27
28
20

Feature Type
continuous
continuous
continuous

date_time
date_time
category
category
ordinal
boolean
string

string
lat_long
phone_number
phone_number
zip_code
zip_code
credit_card
credit_card
object

object
integer
integer
address
constant
document

ais
ip_address va
ip_address v6
ip_address

text

Warning
missing values
zeros
skew_handler
missing values
high_cardinality
missing values
high_cardinality
missing values
missing values
missing values
high_cardinality
missing values
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
zeros

missing values
missing values
missing values
missing values
missing values
missing values
missing values

missing values

Handler
missing values handler

zeros_handler

skew_handler
missing_values_handler
high cardinality_handler
missing_values_handler
high cardinality_handler
missing_values_handler
missing values handler
missing_values_handler
high cardinality_handler
missing_values_handler
missing values handler
high cardinality_handler
missing values handler
high cardinality_handler
missing values handler
high cardinality_handler
missing values handler
high cardinality_handler
missing values handler

zeros_handler
missing values handler
missing_values_handler
missing values handler
missing_values_handler
missing values handler
missing_values_handler
missing values handler

missing_values_handler

_images/ads_feature_type_warnings_11.png
Warning Handler
0 missing values missing values_handler

1 high_cardinality high_cardinality_handler

2 invalid_credit card _invalid_credit_card_handler

_images/ads_feature_type_validator_8.png
Validator
is_credit_card
is_credit_card
is_credit card

is visa_card

Condition
0

{rcard_type': 'Visa'}
(card_type})

0

Handler

default_handler
is visa_card_handler
is_any_card_handler

is visa_card_handler

_images/ads_feature_type_validator_9.png
Validator Condition Handler
is_credit_card 0 default_handler
s_credit_card {'card_type': 'Visa') is_visa_card_handler
is_credit_card (‘card_type!) is_any_card_handler

is.visa_card () is.visa_card_handier

_images/ads_feature_type_warnings_4.png
Warning Handler
0 missingvalues missing values handler
1 high_cardinality high_cardinality_handler

2 invalid_credit card _invalid_credit card_handler

_images/ads_feature_type_warnings_6.png
Warning Handler

0 missingvalues missing values handier

1 invalid_credit_card invalid_credit card_handler

_images/ads_feature_type_warnings_2.png
EEEN Y

Feature Type
credit_card
credit_card
credit_card

string
string

string

Warning
missing
missing

high-cardinality
missing
missing

high-cardinality

Message
2missing values
13.3% missing values
16 unique values
2missing values
13.3% missing values

15 unique values

Metric
count
percentage
count
count
percentage

count

Value

1333
15

1333
15

_images/ads_feature_type_warnings_3.png
Warning Handler
0 missing values missing_values_handler

1 high_cardinality high._cardinality_handler

_images/gis_scatter.png
100 0

150

_images/introspection.png
© ® N o a

10
]
12
13

Testkey
runtime_env_path
e_env_python
runtime_env_slug
runtime._env._type

runtime_path_exist

runtime_slug_exist

e.version
runtime._yaml
score_load_model
score_predict
score_predict_arg
score_predict data
score_py

score_syntax

Test name

Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set

Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to value of 3.6 o higher

Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG is set

Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is set to a value in (published, data_science)

If MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science and MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG is set, check that the file path in

MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.

If MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science, check that the slug listed in MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG exists.

Check that field MODEL_ARTIFACT_VERSION is set to 3.0

Check that the file *runtime.yaml* exists and is in the top level directory of the artifact directory

Check that load_model() is defined
Check that predict() is defined

Check that all other arguments in predict() are optional and have default values

Check that the fil

Check that the only required argument for predict() is named "data"
“score.py" exists and is in the top level directory of the artifact directory

Check for Python syntax errors.

Result Message
Passed
Passed
Passed

Passed
Skipped

Skipped
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Passed

_images/intermediatevalues.png
Intermediate Value

Intermediate Values Plot

T
LS

/

_images/language_dominant.png
Code Language Score

0 en English 0999678

_images/key_phrase.png
o a & v N

~

1n
12
13
14
15
16
17
18
19
20

Score
1.000000
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999811
0.999239
0.999239
0.999239
0.999239
0.999239
0.999239
0.997934
0.973272

Text

united states

lawrence joseph ellison
august 17

american business magnate
executive chairman
chief technology officer
oracle corporation
october 2019

forbes magazine
fourth-wealthiest person
fortune of $69.1 billion
41t largest island
hawailian islands
philanthropist
co-founder

cto

sixth-wealthiest

lanai

population

investor

owner

_images/list_model.png
display_name

RF Classifier
RF Classifier

time_created

2021-07-29 22:38:13
2021-07-29 223

:56

lifecycle_state compartment_id project_id

ACTIVE .Igx2cq .wha2xa
ACTIVE .Igx2cq ..wha2xa

freeform_tags defined_tags

@ o
@ o

_images/list_apps.png
9c7g7q

bpaysq

Isyhra

mnx6fa

kyhgia

display_name

sample new
df app.

sample new
df app.

my new df
ap

sample new
df app.

sample new
df app.

time_created

2020-04-22
234851

2020-04-22
234542

2020-04-22
234432

2020-04-22
21:12:07

2020-04-22
210857

lifecycle_state

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

compartment_id

ocid1.compartment.oct..aasaaaaadc2etahfinsoknc...

ocid1.compartment.oc1..aasaaaaadc2etahfinsoknc...

ocid1.compartment.oct..aasaaaaadc2etahfinsoknc...

ocid1.compartment.oc1..aasaaaaadc2etahfinsoknc...

ocid1.compartment.oct..aasaaaaadc2etahfinsoknc...

defined_tags

{Oracle-Tag
{CreatedBy':

{Oracle-Tags"
{CreatedBy

{Oracle-Tags":
{CreatedBy':

{Oracle-Tags":
{CreatedBy':

freeform_tags

o

o

o

o

o

language

PYTHON

PYTHON

PYTHON

PYTHON

PYTHON

ocid.use

ocid.use

ocid.use

ocidl.user.

ocidl.user.

_images/gaussian_heatmap.png
NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)

_GAUSSIAN_HEATMAP, "col01" (continuous) vs "col03" (continuous)

s ooirs
50 a0ts0
25 00125
Qg o o010
8
25 00075
0 00050
s
00025

100

_images/flow.png
Prepare

* Runtime.yaml
e Score.py

* Model
serialization

* metadata

Verify

Save

¢ Introspect
¢ Upload Model

Deploy

e access_log.tail()
e predict_log.tail()

Predict

_images/generic_taxonomy.png
ERENETY

Key

Algorithm
ArtifactTestResuits
Framework
FrameworkVersion
Hyperparameters

UseCaseType

Value
GammaRegressor
None

scikit-learn

0232

{alpha': 1.0, ‘fit_intercept': True, 'max_iter": 100, ‘tol': 0.0001, 'verbose': 0, 'warm_start'; False}

None

_images/generic_custom.png
Key
Clientlibrary

CondaEnvironment

CondaEnvironmentPath

EnvironmentType

ModelArtifacts

izationFormat

SlugName

Value

ADS
database_p37.cpu_vi.0

ocii/flicence_checker@ociodscdev/conda_environments/cpu/Oracle
Database/1.0/database_p37.cpu_v1.0

published

score.py, runtime yaml
None

database_p37.cpu_vi.0

The conda env where model was trained

‘The oci path of the conda env where model was
trained

The env type, could be published conda or
datascience conda

The

of files located in artifacts folder

‘The model serialization format

‘The slug name of the conda env where model was
trained

Category
Other

Training
Environment

Training
Environment

Training
Environment

Training
Environment

g Profile

Training
Environment

_images/ads_feature_type_validator_6.png
Validator Condition Handler
0 is_credit_card 0 default_handler

1 is_credit card {'card_typ

Wisa} s visa_card_handler

2 isvisa card 0 is.visa_card_handler

_images/ads_feature_type_validator_7.png
Validator Condition Handler
is_credit_card 0 default_handler
is_credit_card {'card_type": Visa} is.visa_card_handler
is_credit_card (card_type!) is_any_card_handler

is.visa_card () is.visa_card_handler

_images/ads_mlx_boston_whatif_explore_predictions_1.png
s

“

0
10

suompasd

0

0

AGE

_images/ads_mlx_boston_whatif_explore_predictions_2.png
crim

2

2

s

10

AGE

w0

predicions

_images/ads_mlx_ale_pdp_x1.png
Target

PDP

05
05

s
I e e e

x1

—— Target

_images/ads_mlx_ale_x1.png
Target

ALE

o

-2

~
I e e e

x1

—— Target

_images/ads_mlx_titanic_ice_age.png
ICE - True

age

_images/ads_mlx_boston_whatif_explore_predictions_3.png
predictions

s

“

20

0

10

100300

200400

400500

5006.00

600800

8002400

_images/ads_mlx_boston_whatif_explore_sample.png
Select and Explore Sample

Row Selection

Select a sample betwaen 0.and 101

Rowndex: [0 Selsctsample
Sample (Row: 0)
crm [aoss0s o wous 218
curs [0 nox [aass aw [707
e 542 ois a6z wo |2
222 praatio [187 D
Lsmar [533

Model Predictions

Sample Values

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD
Original Sample 006905 00 218 00 0458 717 542 60822 30
Modified Sample 006905 00 218 00 0458 7147 512 60622 30
“ Show al features

Model Predictions

Pradiction (Trus value: 36.2)

Original Sample

Madified Sample

32.50857142857136.
32.50857142857136.

TAX PTRATIO B LSTAT
2220 187 aes 53z
220 187 69 533

_images/evaluation-training.png
Evaluation Metrics (training data):

AutoML Classifier RandomForestClassifier DummyClassifier

accuracy 0.8833 0.9849 0.7304

hamming_loss 0.1167 0.01506 0.2696
kappa_score_ 0.4314 0.9416 -0.02033

precision 0.8202 1 0.1422

recall 0.3443 0.9057 0.1368

f1 0.485 0.9505 0.1394

auc 0.8579 0.9998 0.5073

_images/evaluation-test.png
Evaluation Metrics (testing data):

AutoML Classifier RandomForestClassifier DummyClassifier

accuracy
hamming_loss
kappa_score_
precision
recall

f1

0.8169

0.1831

0.1567

0.4444

0.16

0.2353

0.7562

0.7042

0.2958

-0.05259

0.1304

0.12

0.125

0.5159

_images/feature-visualization-2.png
earthquake.plot_gis_scatter(lon=

longitude”, lat="latitude")

25

50

54

150

-100

50

100

150

_images/feature-visualization-1.png
ds_preview.plot("colo1", y="col03").show_in_notebook()

NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)

_GAUSSIAN_HEATMAP, "col01" (continuous) vs "col03" (continuous)

s ooirs
50 oors0
25 00125
g o o010
8
25 00075
0 00050
75
00025

100

_images/first_cell.png
OCI Data Science - Useful Tips

Everything stored in the /home/datascience folder is now stored on your block volume drive. The ads-examples folder has moved outside of your
working space and is now made available through a symbolic link to ads-examples (found at /home/datascience/ads-examples.)

» 1. Check for Public Internet Access

» 2. OCI Configuration and Key Files Set Up
» 3. Helpful Documentation

» 4. Typical Cell Imports and Settings

>

5. Useful Environment Variables

_images/feature_selection.png
$

New Dataset

---»

EEEEN
ML Algorithm

s
[

=, 9

Extract Dataset
Characteristics

Predict best
Feature Set

Rank Features

\
N

Measure
Model Score

Repeat for multiple
Ranking Algorithms

Reduced
Dataset

_images/diagram_model.png
Do | want to export the model outside
the OCI Data Science service?

_images/cx_Oracle.jpeg

_images/empiricaldistribution.png
Cumulative Probability

Empirical Distribution Function Plot

08

06

04

02

08

0.82

0.84

0.86

0.88

Objective Value

09

0.92

0.94

0.96

0.98

_images/dot-decision-tree.png
worst radius @4 16.795
valie 2 (159, 267)
eliga < g

value =[21, 11]
R

_images/evaluation-cost.png
model cost
0o AutoML Classifier 173
1 RandomForestClassifier 177

2 DummyClassifier 207

_images/ads_feature_type_warnings_9.png
Column Feature Type Warning ~Message Metric Value

0 Monthiyncome continuous skew 1370 skew skew 137

_images/ads_mlx_ale.png
predictions

predictions

PDP

xt

PDP

0 » o 20 o

predictions

predictions

ICE - predictions

xt

ICE - predictions

I -

«

prediction

prediction

ALE

x

ALE

o » 0 2]

2

_images/ads_feature_type_warnings_8.png
Column
Age

Age

Atrition
Attrition
Atrition
Attrition
Atrition
JobFunction
JobFunction
JobFunction
JobFunction
EducationalLevel
EducationalLevel
EducationalLevel
EducationalLevel
EducationField
EducationField
EducationField
EducationField
Gender

Gender

Gender

Gender

JobRole

JobRole

JobRole

JobRole
Monthlyincome
Monthlyincome
Monthlyincome
Monthlyincome

Monthlyincome

Feature Type
integer
integer

boolean
category
category
string
string
category
category
string
string
category
category
string
string
category
category
string
string
category
category
string
string
category
category
string
string
continuous
continuous
continuous
integer

integer

Warning
missing values
zeros

missing values
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
high_cardinality
missing values
zeros
skew_handler
missing values

zeros

Handler
missing_values_handler

zeros_handler
missing_values_handier
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler
high.cardinality.handler
missing values_handler

zeros handler

skew_handler
missing_values_handier

zeros_handler

nav.xhtml

 Table of Contents

 		
 Oracle Accelerated Data Science SDK (ADS)

_images/DB-Connection.png
Autonomous Database » Autonomous Database Details

AVAILABLE

ads- -test

DB Connection | | Performance Hub || [> Service Console

Autonomous Database Information | Tools | Tags

General Information

Database name: ads.
Workioad Type: Data Warehouse
Compartment: paasdevdatasc (root/ssk-distributed

OCID: ..7bctéa Show Copy

Created: Thu, Oct 17, 2019, 17:25:21 UTG

OCPU Count: 4

Scale Up/Down

Stop

Actions ~

_images/Download-Wallet.png
Database Connection help close

You will need the client credentials and connection information to connect to your database.The client credentials include the wallet,
Which is required for all types of connections.

Download Client Credentials (Wallet)

To download your client credentials, select the type of wallet, then click Download Wallet. You will be asked to create a password
for the wallet.

Wallet Type ©

Download Wallet | Rotate Wallet

Wallet last rotated: -

_images/Test_connection.png
SQL*Plus: Release 19.8.6.0.8 - Production on Wed Jan 29 10:34:30 2020
Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. ALL rights reserved.

Last Successful login time: Wed Jan 29 2020 10:33:50 -08:00
Connected <
Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 - Production
Version 18.4.0.0.0

SaL> Disconnected from Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 - Production
Version 18.4.0.0.0

_images/Upload_Wallet.png
View Run Kernel Tab

s El"

i / block storage /

o Neme - Last Modified

_images/absa.png
Length Offset Sentiment Text Negative Neutral Positive
6 4 Positive driver 00 3.484637e-09 1.000000e+00

4 40 Negative taxi 10 0.000000e+00 5.187591e-10

_images/ads_feature_type_2.png
Feature Type Description
0 credit.card Type representing credit card numbers.

1 string Type representing string values.

_images/ads_feature_type_3.png
s e N

Column Feature Type

Attrition
Attrition
TravelForWork
JobFunction

EducationalLevel

boolean
string
string
string

string

Validator

boolean

is.string

_string

is.string

_string

Condition

Handler
default_handler
default_handler
default_handler
default_handler

default_handler

_images/adaptive_sampling.png
New Dataset

EEEEN
ML Algorithm

-

Optimize until

Identify Optimized
Sample

<, '\ convergence

Measure Model
Score

Reduced
Dataset

_images/ads_feature_type_10.png
1265
1266
1267
1a68
1269

TravelForWork
infrequent
often
infrequent
often

infrequent

often
infrequent
infrequent

often

infrequent

JobFunction EducationalLevel

Product Management
Software Developer
Software Developer
Software Developer

Software Developer

Software Developer
Software Developer
Software Developer

Product Management

Software Developer

1470 rows x 3 columns

L2
u
L2
La
u

L2
u
Ls
1s
Ls

_images/ads_feature_type_EDA_10.png
Column1
Age

Age

Age

Age

Age

Yearsinindusiry
Yearsinindusiry
Yearsinindusiry
Yearsinindusiry
Yearsinindusiry
YearsOnJob
YearsOnJob
YearsOnJob
YearsOnJob
YearsOnJob
YearsAtCurrentLevel
YearsAtCurrentLevel
YearsAtCurrentLevel
YearsAtCurrentLevel
YearsAtCurrentLevel
YearsWithCuriManager
YearsWithCurrManager
YearsWithCuriManager
YearsWithCurrManager

YearsWithCurrManager

Column 2
Age

Yearsinindustry
YearsOnJob
YearsAtCurrentLevel
YearsWithCuriManager
Age

Yearsinindustry
YearsOnJob
YearsAtCurrentLevel
YearsWithCurrManager
Age

Yearsinindustry
YearsOnJob
YearsAtCurrentLevel
YearsWithCuriManager
Age

Yearsinindustry
YearsOnJob
YearsAtCurrentLevel
YearsWithCurrManager
Age

Yearsinindustry
YearsOnJob
YearsAtCurrentLevel

YearsWithCurrManager

Value
10000
06804
0ans
0219
02021
06804
10000
06281
04504
0592
0ans
06281
10000
07588
07692
0219
04504
07588
10000
07144
02021
0592
07692
07144
10000

_images/ads_feature_type_EDA_11.png
Column 1
Age

Age

JobFunction
JobFunction
JobFunction
JobFunction
JobFunction
JobFunction
YearsAtCurrentLevel
YearshtCurrentLevel
YearsOnJob
YearsOnJob
YearsWithCurrManager
YearsWithCurrManager
Yearsinindustry

Yearsinindustry

Column 2
Age

JobFunction

Age

JobFunction
YearsatCurrentLevel
YearsOnJob
YearsWithCurrManager
Yearsinindustry
JobFunction
YearsAtCurrentLevel
JobFunction
YearsOnJob
JobFunction
YearsWithCurrManager
JobFunction

Yearsinindustry

Value
10000
00323
00323
10000
00580
00322
00361
oots8
00580
10000
00322
10000
00361
10000
oots8

10000

_images/ads_feature_type_9.png
Attrition

0 ves
1N
2 ves
ERS
4 N
1aes No
1466 No
7 No
168 No
1469 No

1470 rows x 1 columns

_images/ads_feature_type_EDA_1.png
s e N

Attrition TravelForWork JobFunction TrainingTimesLastYear

Yes infrequent Product Management 0
No often Software Developer 3
Yes infrequent Software Developer 3
No often Software Developer 3
No infrequent Software Developer 3

_static/file.png

_static/oracle_logo.png
z

_static/minus.png

_static/plus.png

_images/ads_feature_type_EDA_13.png
w

Column
Attrtion
TravelForWork
JobFunction

TrainingTimesLastYear

Plot
AxesSubplot(0.125,0.125;0.775x0.755)
AxesSubplot(0.125,0.125;0.775x0.755)
AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

_images/ads_feature_type_EDA_14.png
Amex Visa Diners Club Unknown missing MasterCard
Issuing Financial Institution

_images/ads_feature_type_EDA_12.png
Column 1
EducationField
EducationField
EducationField
EducationField

EducationalLevel

EducationalLevel

EducationalLevel

EducationalLevel

JobFunction
JobFunction
JobFunction
JobFunction
TravelForWork
TravelForWork
TravelForWork

TravelForWork

Column 2
EducationField
EducationalLevel
JobFunction
TravelForWork
EducationField
EducationalLevel
JobFunction
TravelForWork
EducationField
EducationalLevel
JobFunction
TravelForWork
EducationField
EducationalLevel
JobFunction

TravelForWork.

Value
10000
00552
05880
00000
00552
10000
00000
00000
05880
00000
10000
00000
00000
00000
00000

10000

_images/ads_feature_type_EDA_3.png
N o @ s w N

Metric
count

mean

standard deviation
sample minimum
lower quartile
median

upper quartile

sample maximum

Value
1470000000
2799320
1289271
0000000
2000000
3000000
3000000

6000000

_images/ads_feature_type_EDA_30_1.png
Correlation Ratio

10
sge
08
JobFunction -
‘earsAtCurrentLevel - 0
*earsOnjob - ™
‘earsWithCurManager -
02

‘earsinindustry -

H

bFunction -
‘earshtCurentLevel
earsOnjob -
‘earsiinCurManager -
earsinindustry

_images/ads_feature_type_EDA_2.png
Feature Type Count Primary

boolean
category
string

integer

1
3
3

1
2

_images/ads_feature_type_EDA_27_1.png
Pearson’s Correlation

10

09

08
‘earsAtCurrentLevel -

07

YearsOnjob - 06
05
‘earsWithCurManager -

s

Yearsinindustry o2

‘earsinindustry

‘earshtCurrentevel
‘earsWithCurManager -

_images/ads_feature_type_EDA_38_1.png
TravelForWork

Count of the Number of Employees and How Much they Travel

infrequent

often

o 200 400 00 B0 1000
Count

_images/ads_feature_type_EDA_34_1.png
Cramer's V

10
EducationField

08
Educationalevel - 06
JobFunction o4
-02

TavelFortork -
-00

Educationfield -
JobFunction -
FavelForliork

Educationallevel -

_images/ads_feature_type_EDA_36_1.png
TravelForWork

infrequent

often

400

00
Count

a00

1000

_images/violin_plot.png
NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)

_VIOLIN_PLOT, "col02" (categorical) vs "col01" (continuous)

col01

col02

_images/visual_transform.png
- partition(s):

- rows: 178 prepare
- columns: 14

£ix_column_names

type_discovery

convert_columns

RecommendationTransformer

FeatureEngineeringTransformer

\
LT

_images/show_in_notebook_features.png
~ Features (49)

« Note these are computed on the entire dataset.

count mean std min 25% 50% 75% max missing skew
class 150000053 05 0 0 11 0 011541953
col01 150000001 368 1622 -247 001 247 1648 0 0001944536
col02 150000101 03 0 0 10 10 N 0 2670402
<0103 150000 0 221 052 148 0 15 994 0O 00021300788
col04 150000079 2006 -889.09 -134.85 0.22 13636 1124.37 0 00021092156
col05 150000-0 012 -068 -005 005 07 0 0022465346
col0 150000-001 301 -1508 -201 -001 201 149 0 -0.0033007577
col07 150000 9.3 046 10 -10 9 0 -087149529
colO8 1500001009 03 100 101 101 101 101 0 -2.6545245
col09 150000-93 046 10 10 9 -9 -9 0 087139146

col010 1500000 04 165 027 027 183 0 0.00080830709
col011 150000100099 1.4 1000 1000 1000 10031 10031 0 077117106

col012 150000102 0.4 10 0 0 10 m o 14987655

_images/single_column_count_plot.png
NOTE

Visualizations use a sampled dataset of size 10,000 (confidence level: 95, confidence interval: 1.0)
Setyscaletooneof 'linear', 'log', 'symlog', 'logit’ toapplyscaletoy axis

_SINGLE_COLUMN_COUNT_PLOT, "col02" (categorical)

€
s
8

c0l02

_images/show_in_notebook_summary.png
~ Summary

Name: DataFrame from oracle_classification_dataset1_150K.csv
Type: BinaryClassificationDataset

150,000 Rows, 49 Columns

Column Types:

« continuous: 39 features

« categorical: 10 features

Note: Visualizations use a sampled subset of the dataset, this is to improve plotting performance. The sample size is calculated to be statistically significant within the confidence level: 95 and confidence interval: 1.0. The sampled data

has 10,000 rows

« The confidence level refers to the long-term success rate of the method, that is, how often this type of interval will capture the parameter of interest.
- A specific confidence interval gives a range of plausible values for the parameter of interest

» Features (49)

» Correlations

» Warnings (3)

_images/spacy_pos.png
E"EEN)

Word
Joseph

Ellison

(

born

Label
PROPN
PROPN
PUNCT

VERB

_images/sorted_model.png
display_name time_created lifecycle_state compartment_id project_id freeform_tags ~defined_tags

id
y62sca Update Display Name 2021-07-26 03:31:55 ACTIVE ..rgx2cq .wha2xa {isUpdated’: ‘True'} o
6fzhnq RF Classifier 2021-07-26 04:32:35 ACTIVE gx2cq ..wha2xa o o

_images/target-visualization.png
ds.target.show_in_notebook()

Set yscale toone of 'linear', 'log', 'symlog',6 'logit' to apply scale toy axis

_SINGLE_COLUMN_COUNT_PLOT, "Attrition" (categorical)

1200

1000

200

True

E
£

_images/summary_status.png
Step
initiate

prepare()

verify()

save()

deploy()
predict()

Status

Done

Available

Not Available

Not Av:

ble

Not Available
Not Available

Details
Initiated the model
Generated runtime.yaml
Generated score.py

Ses

ized model
Populated metadata(Custom, Taxonomy and Provenance)
Local tested .predict from score.py

Conducted Introspect Test

Uploaded artifact to model catalog

Deployed the model

Called deployment predict endpoint

Actions Needed

_images/tuning.png
w

New Dataset

iim

ML Algorithm

0
S
iy

7
Measure
Model Score
Next
Hyperparameter Hyperparameter
choice choice
Prediction
Models
. Pl

Optimize until
convergence

»

Tuned
Model

_images/text_classification.png
Label Score

0 Finance/investing 0.369175

_images/updated.png
display_name

descri

freeform_tags
defined_tags
repository_url
git_branch
git_commit

script.

r

training_script

Update Display Name
This description has been updated

{isUpdated: ‘True'}

o

ssh://git@bitbucket.oci oraclecorp.com:7999/odsc/odsc-notebooks.git
ODSC-17198/model_catalog
4673397deebB4e6283578690c8820c63ad07d5

/tmp/tmparfnjiu3

None

_images/sec_callable_udf.png
A W N

token count text

1 notes
0
2 Geography Proper

94 Generally, geographers before the 70s were con...

100 A great example of this is Cuba - think of it ...

_images/save.png
display_name RF Classifier

description A sample Random Forest classifier
freeform_tags o
defined_tags o
repository_url ssh://git@bitbucket.oci oraclecorp.com:7999/odsc/odsc-notebooks.git
git_branch ODSC-17198/model_catalog

€4673397deeb84e628b3578690c8820c63ad07d5
/tmp/tmparfnjiu3

None

[{'dtype': ‘float64’, ‘feature._type': uous', ‘name': 'col01, 'domain': {'values': ‘Continuous’ 'stats': {'count': 465.0, 'mean': 0.273, 'standard deviation': 3.703, 'sample
-12.816, 'lower quartile': -2.08, ‘median': 0.284, 'upper quartile': 2.704, ‘sample maximum'; 14.722, ‘skew': -0.135}, ‘constraints': [{'expression‘: (z < 20)and(x > -20)',
‘language' ‘python'}]}, ‘required': True, ‘descripti 0107}, {'dtype': float6a’, ‘feature_type': ‘Continuous’, ‘name': ‘col036', ‘domain': {'values': ‘Continuous’ 'stats": {'count': 465.0,
‘mean’: 100.211, 'standard deviation': 0.408, 'sample minimum': 100.0, 'lower quartile': 100.0, ‘median’: 100.0, ‘upper quartile': 100.0, ‘sample maximum': 101.0, ‘skew': 1.423),
‘constraints": [1}, 'required': True, ‘description’: 'col036'), {'dtype': ‘float64', feature_type': ‘Continuous!, 'name': ‘col045', ‘domain' {'values' ‘Continuous’, 'stats": {'count': 465.0,
‘mean’: 0,025, 'standard deviation': 0.978, ‘sample minimum'; -2.271, 'lower quartile': -0.634, 'median': 0.064, 'upper quartile': 0.62, ‘sample maximum': 2.759, ‘skew': 0.098),
‘constraints": [1}