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CHAPTER

ONE

RELEASE NOTES

1.1 2.6.4

Release date: September 14, 2022

• Added support for large models with artifact size between 2 and 6 GB. The large models can be saved to the
Model Catalog, downloaded from the Model Catalog, and deployed as a Model Deployment resource.

• Added delete() method to the GenericModel class. Deletes models and associated model deployments.

• The Model Input Schema is improved to return features sorted by the order attribute.

• Added user-friendly default names for created Jobs, Model Deployments, and Models.

1.2 2.6.3

Release date: August 4, 2022

• Deprecated the ads.dataflow.DataFlow class. It has been superseded by the ads.jobs.DataFlow class.

• Added prepare_save_deploy() method to the GenericModel class. Prepare model artifacts and deploy the
model with one command.

• Added support for binary payloads in model deployment.

• Updated AutoMLModel, GenericModel, LightgbmModel, PyTorchModel, SklearnModel,
TensorflowModel, and XgboostModel classes to support binary payloads in model deployment.

• The maximum runtime for a Job can be limited with the with_maximum_runtime_in_minutes()
method in the CondaRuntime, DataFlowNotebookRuntime, DataFlowRuntime, GitPythonRuntime,
NotebookRuntime, and ScriptRuntime classes.

• The ads.jobs.DataFlow class supports Published conda environments.
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1.3 2.6.2

Release date: June 21, 2022

• Added from_model_deployment() method to the GenericModel class. Now you can load a model directly
from an existing model deployment.

• Moved dependencies from being default into optional installation groups:

– all-optional

– bds

– boosted

– data

– geo

– notebook

– onnx

– opctl

– optuna

– tensorflow

– text

– torch

– viz

Use python3 -m pip install oracle-ads[XXX] where XXX are the group names.

1.4 2.6.1

Release date: June 1, 2022

• Added support for running a container as jobs using ads.jobs.ContainerRuntime.

• The ModelArtifact class is deprecated. Use the model serialization classes (GenericModel, PyTorchModel,
SklearnModel, etc.).

1.5 2.5.10

Release date: May 6, 2022

• Added BDSSecretKeeper to store and save configuration parameters to connect to Big Data service to the vault.

• Added the krbcontext and refresh_ticket functions to configure Kerberos authentication for the Big Data
service.

• Added authentication options to logging APIs to allow you to pass in the OCI API key configuration or signer.

• Added the configuration file path option in the set_auth method. This allows you to change the path of the OCI
configuration.

• Fixed a bug in AutoML for Text datasets.
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• Fixed bug in import ads.jobs to notify users installing ADS optional dependencies.

• Fixed a bug in the generated score.py file, where Pandas dataframe’s dtypes changed when deserializing. Now
you can recover it from the input schema.

• Updated requirements to oci>=2.59.0.

1.6 2.5.9

Release date: April 4, 2022

• Added framework-specific model serialization to add more inputs to the generated score.py file.

• Added the following framework-specific classes for fast and easy model deployment:

– AutoMLModel

– SKlearnModel

– XGBoostModel

– LightGBMModel

– PyTorchModel

– TensorFlowModel

• Added the GenericModel class for frameworks not included in the preceding list:

• You can now prepare, verify, save and deploy your models using the methods in these new classes:

– .prepare(): Creates score.py, runtime.yaml, and schema files for model deployment purpose, and adds
the model artifacts to the model catalog.

– .verify(): Helps test your model locally, before deploying it from the model catalog to an endpoint.

– .save(): Saves the model and model artifacts to the model catalog.

– .deploy(): Deploys a model from the model catalog to a REST endpoint.

– .predict(): Calls the endpoint and creates inferences from the deployed model.

• Added support to create jobs with managed egress.

• Fixed bug in jobs, where log entries were being dropped when there were a large number of logs in a short period
of time. Now you can list all logs with jobwatch().

1.7 2.5.8

Release date: March 3, 2022

• Fixed bug in automatic extraction of taxonomy metadata for Sklearn models.

• Fixed bug in jobs NotebookRuntime when using non-ASCII encoding.

• Added compatibility with Python 3.8 and 3.9.

• Added an enhanced string class, called ADSString. It adds functionality such as regular expression (RegEx)
matching, and natural language processing (NLP) parsing. The class can be expanded by registering custom
plugins to perform custom string processing actions.
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1.8 2.5.7

Release date: February 4, 2022

• Fixed bug in DataFlow Job creation.

• Fixed bug in ADSDataset get_recommendations raising HTML is not defined exception.

• Fixed bug in jobs ScriptRuntime causing the parent artifact folder to be zipped and uploaded instead of the
specified folder.

• Fixed bug in ModelDeployment raising TypeError exception when updating an existing model deployment.

1.9 2.5.6

Release date: January 21, 2022

• Added support for the storage_options parameter in ADSDataset .to_hdf().

• Fixed error message to specify overwrite_script or overwrite_archive option in data_flow.
create_app().

• Fixed output of multiclass evaluation plots when ADSEvaluatior() class uses a non-default legend_labels
option.

• Added support to connect to an Oracle Database that does not require a wallet file.

• Added support to read and write from MySQL using ADS DataFrame APIs.

1.10 2.5.5

Release date: December 9, 2021

• Fixed bug in model artifact prepare(), reload(), and prepare_generic_model() raising
ONNXRuntimeError caused by the mismatched version of skl2onnx.

1.11 2.5.4

Release date: December 3, 2021

The following features were added:

• Added support to read exported dataset from the consolidated export file for the Data Labeling service.

Following fixes were added:

• The DaskSeries class was marked as deprecated.

• The DaskSeriesAccessor class was marked as deprecated.

• The MLRuntime class was marked as deprecated.

• The ADSDataset.ddf attribute was marked as deprecated.
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1.12 2.5.3

Release date: November 29, 2021

The following features were added:

• Moved fastavro, pandavro and openpyxl to an optional dependency.

• Added the ability to specify the output annotation format to be spacy for the Entity Extraction dataset or yolo
for the Object Detection dataset in the Data Labeling service.

• Added support to load labeled datasets from OCI Data Labeling, and return the Pandas dataframe or generator
formats in the Data Labeling service.

• Added support to load labeled datasets by chunks in the Data Labeling service.

1.13 2.5.2

Release Notes: November 17, 2021

The following features were added:

• Added support to manage credentials with the OCI Vault service for ADB and Access Tokens.

• Improved model introspection functionality. The INFERENCE_ENV_TYPE and INFERENCE_ENV_SLUG parame-
ters are no longer required.

• Updated ADS dependency requirements. Relaxed the versions for the scikit-learn, scipy and onnx depen-
dencies.

• Moved dask, ipywidget and wordcloud to an optional dependency.

• The Boston Housing dataset was replaced with an alternative one.

• Migrated ADSDataset to use Pandas instead of Dask.

• Deprecated MLRuntime.

• Deprecated resource_analyze method.

• Added support for magic commands in notebooks when they run in a Job.

• Added support to download notebook and output after running it in a Job.

1.14 2.5.0

Release notes: October 20, 2021

The following features related to the Data Labeling service were added:

• Integrating with the Oracle Cloud Infrastructure Data Labeling service.

• Listing labeled datasets in the Data Labeling service.

• Exporting labeled datasets into Object Storage.

• Loading labeled datasets in the Pandas dataframe or generator formats.

• Visualizing the labeled entity extraction and object detection data.

• Converting the labeled entity extraction and object detection data to the Spacy and YOLO formats respectively.
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1.15 2.4.2

The following improvements were effected:

• Improve ads import time.

• Fix the version of the jsonschema package.

• Update numpy deps to >= 1.19.2 for compatibility with TensorFlow 2.6.

• Added progress bar when creating a Data Flow application.

• Fixed the file upload path in Data Flow.

• Added supporting tags when saving model artifacts to the model catalog.

• Updated Model Deployment authentication.

• Specify spark version in prepare_app() now works.

• Run a Job from a ZIP or folder.

This release has the following bug fixes:

• Fixed the default runtime.yaml template generated outside of a notebook session.

• Oracle DB mixin the batch size parameter is now passed downstream.

• ADSModel.prepare() and prepare_generic_model() force_overwrite deletes user-created folders.

• prepare_generic_model fails to create a successful artifact when taxonomy is extracted.

1.16 2.4.1

Release notes: September 27, 2021

The following dependencies were removed:

• pyarrow

• python-snappy

1.17 2.4.0

Release notes: September 22, 2021

The Data Science jobs feature is introduced and includes the following:

• Data Science jobs allow data scientists to run customized tasks outside of a notebook session.

• Running Data Science jobs and Data Flow applications through unified APIs by configuring job infrastructure
and runtime parameters.

• Configuring various runtime configurations for running code from Python/Bash script, packages including mul-
tiple modules, Jupyter notebook, or a Git repository.

• Monitoring job runs and streaming log messages using the Logging service.
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1.18 2.3.4

Release notes: September 20, 2021

This release has the following bug fixes:

• prepare_generic_model fails when used outside the Data Science notebook session

• TextDatasetFactory fails when used outside the Data Science notebook session

1.19 2.3.3

Release notes: September 17, 2021

• Removed dependency on plotly.

• print_user_message replaced with logger.

1.20 2.3.1

Release notes: August 3, 2021

This release of the model catalog includes these enhancements:

• Automatic extraction of model taxonomy metadata that lets data scientists document the use case, framework,
and hyperparameters of their models.

• Improvement to the model provenance metadata, including a reference to the model training resource (notebook
sessions) by passing in the training_id to the .save() method.

• Support for custom metadata which lets data scientists document the context around their models, automatic
extraction references to the conda environment used to train the model, the training and validation datasets, and
so on.

• Automatcal extraction of the model input feature vector and prediction schemas.

• Model introspection tests that are run on the model artifact before the model is saved to the model catalog.
Model introspection validates the artifact against a series of common issues and errors found with artifacts.
These introspection tests are part of the model artifact code template that is included.

Feature type is an additional added module which includes the following functionality:

• Support for Exploratory Data Analysis including feature count, feature plot, feature statistics, correlation, and
correlation plot.

• Support for the feature type manager that provides the tools to manage the handlers used to drive the feature type
system.

• Support for the feature type validators that are a way of performing data validation and also allow a feature type
to be dynamically extended so that the data validation process can be reproducible and shared across projects.

• Support for feature type warnings that allow you to automate the process of checking for data quality issues.
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1.21 2.2.1

Release notes: May 7, 2021

Improvements include:

• Requires Pandas >- 1.2 and Python == 3.7.

• Upgraded the scikit-learn dependency to 0.23.2.

• Added the ADSTextDataset and the ADS Text Extraction Framework.

• Updated the ADSTuner method .tune() to allow asynchronous tuning, including the ability to halt, resume,
and terminate tuning operations from the main process.

• Added the ability to load and save ADSTuner tuned trials to Object Storage. The tuning progress can now be
saved and loaded in a different ADSTuner object.

• Added the ability to update the ADSTuner tuning search space. Hyperparameters can be changed and distribution
ranges modified during tuning.

• Updated plotting functions to plot in real-time while ADSTuner asynchronous tuning operations proceed.

• Added methods to report on the remaining budget for running ADSTuner asynchronous tuner (trials and time-
based budgets).

• Added a method to report the difference between the optimal and current best score for ADSTuner tuning pro-
cesses with score-based stopping criteria.

• Added caching for model loading method to avoid model deserialization each time the predict method is called.

• Made the list of supported formats in DatasetFactory.open() more explicit.

• Moved the ADSEvaluator caption to above the table.

• Added a warning message in the get_recommendations() method when no recommendations can be made.

• Added a parameter in print_summary() to display the ranking table only.

• list_apps in the DataFlow class supports the optional parameter compartment_id.

• An exception occurs when using SVC or KNN on large datasets in OracleAutoMLProvider.

• Speed improvements in correlation calculations.

• Improved the name of the y-axis label in feature_selection_trials().

• Automatically chooses the y-label based on the score_metric set in train if you don’t set it.

• Increased the default timeout for uploading models to the model catalog.

• Improved the module documentation.

• Speed improvements in get_recommendations() on wide datasets.

• Speed improvements in DatasetFactory.open().

• Deprecated the frac keyword from DatasetFactory.open().

• Disabled writing requirements.txt when function_artifacts = False.

• Pretty printing of specific labels in ADSEvaluator.metrics.

• Removed the global setting as the only mechanism for choosing the authentication in OCIClientFactory.

• Added the ability to have defaults and to provide authentication information while instantiating a Provider Class.

• Added a larger time buffer for the plot_param_importance method.
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• Migrated the DatasetFactory reading engine from Dask to Pandas.

• Enabling Pandas to read lists and glob of files.

• DatasetFactory now supports reading from Object Storage using ocifs.

• The DatasetFactory URI pattern now supports namespaces and follows the HDFS Connector format.

• The url() method can generate PARs for Object Storage objects.

• DatasetFactory now has caching for Object Storage operations.

The following issues were fixed:

• Issue with multipart upload and download in DatasetFactory.

• Issues with log level in OracleAutoMLProvider.

• Issue with fill_value when running get_recommendations().

• Issue with an invalid training path when saving model provenance.

• Issue with errors during model deletion.

• Issues with deep copying ADSData.

• Evaluation plot KeyError.

• Dataset show_in_notebook issue.

• Inconsistency in preparing ADSModels and generic models.

• Issue with force_overwrite in prepare_generic_model not being properly triggered.

• Issue with OracleAutoMLProvider failing to visualize_tuning_trials.

• Issues with model_prepare trying to do feature transforms on keras and pytorch models.

• Erroneous creation of __pychache__.

• The AttributeError message when an ApplicationSummary or RunSummary object is being displayed in a
notebook.

• Issues with newer versions of Dask breaking DatasetFactory.

AutoML is upgraded to AutoML v1.0 and the changes include:

• Switched to using Pandas Dataframes internally. AutoML now uses Pandas dataframes internally instead of
Numpy dataframes, avoiding needless conversions.

• Pytorch is now an optional dependency. If Pytorch is installed, AutoML automatically considers multilayer
perceptrons in its search. If Pytorch is not found, deep learning models are ignored.

• Updated the Pipeline interface to include train(), which runs all the pipeline stages though doesn’t do the final
fitting of the model ( fit() API should be used if the final fit is needed).

• Updated the Pipeline interface to include refit() to allow you to refit the pipeline to an updated dataset without
re-running the full pipeline again. We recommend this for advanced users only. For best results, we recommended
that you rerun the full pipeline when the dataset changes.

• AutoML now reports memory usage for each trial as a part of its trial attributes. This information relies on the
maximum resident size metric reported by Linux, and can sometimes be unreliable.

• holidays is now an optional dependency. If holidays is installed, AutoML automatically uses it to add
holidays as a feature for engineering datetime columns.

• Added support for Anomaly Detection and Forecasting tasks (experimental).

• Downcast dataset to reduce pipeline training memory consumption.

1.21. 2.2.1 9
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• Set numpy BLAS parallelism to 1 to avoid CPU over subscription.

• Created interactive example notebooks for all supported tasks (classification, regression, anomaly detection, and
forecasting), see http://automl.oraclecorp.com/.

• Other general bug fixes.

MLX is upgraded to MLX v1.1.1 the changes include:

• Upgrading to Python 3.7

• Upgrading to support Numpy >= 1.19.4

• Upgrading to support Pandas >= 1.1.5

• Upgrading to support Scikit-learn >= 0.23.2

• Upgrading to support Statsmodel >= 0.12.1

• Upgrading to support Dask >= 2.30.0

• Upgrading to support Distributed >= 2.30.1

• Upgrading to support Xgboost >= 1.2.1

• Upgrading to support Category_encoders >= 2.2.2

• Upgrading to support Tqdm >= 4.36.1

• Fixed imputation issue when columns are all NaN.

• Fixed WhatIF internal index-reference issue.

• Fixed rare floating point problem in FD/ALE explainers.

1.22 January 13, 2021

• A full distribution of this release of ADS is found in the General Machine Learning for CPU and GPU environ-
ments. The Classic environments include the previous release of ADS.

• A distribution of ADS without AutoML and MLX is found in the remaining environments.

• DatasetFactory can now download files first before opening them in memory using the .download()method.

• Added support to archive files in creating Data Flow applications and runs.

• Support was added for loading Avro format data into ADS.

• Changed model serialization to use ONNX by default when possible on supported models.

• Added ADSTuner, which is a framework and model agnostic hyperparmater optimizer, use the adstuner.ipynb
notebook for examples of how to use this feature.

• Corrected the up_sample() method in get_recommendations() so that it does not fail when all features are
categorical. Up-sampling is possible for datasets containing continuous and categorical features.

• Resolved issues with serializing ndarray objects into JSON.

• A table of all of the ADS notebook examples can be found in our service documentation: Oracle Cloud Infras-
tructure Data Science

• Changed set_documentation_mode to false by default.

• Added unit-tests related to the dataset helper.

• Fixed the _check_object_exists to handle situations where the object storage bucket has more than 1000 objects.
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• Added option overwrite_script in the create_app() method to allow a user to override a pre-existing file.

• Added support for newer fsspec versions.

• Added support for the C library Snappy.

• Fixed issue with uploading model provenance data due to inconsistency with OCI interface.

• Resolved issue with multiple versions of Cryptography being installed when installing fbprophet.

AutoML is upgraded to AutoML v0.5.2 and the changes include:

• AutoML is now distributed in the General Machine Learning and Data Exploration conda environments.

• Support for ONNX. AutoML models can now be serialized using ONNX by calling the to_onnx() API on the
AutoML estimator.

• Pre-processing has been overhauled to use sklearn pipelines to allow serialization using ONNX. Numerical,
categorical, and text columns are supported for ONNX serialization. Datetime and time series columns are not
supported.

• Torch-based deep learning models, TorchMLPClassifier and TorchMLPRegressor, have been added.

• GPU support for XGBoost and torch-based models have been added. This is disabled by default and can be
enabled by passing in ‘gpu_id’: ‘auto’ in engine_opts in the constructor. ONNX serialization for GPUs
has not been tested.

• Adaptive sampling’s learning curve has been smoothened. This allows adaptive sampling to converge faster on
some datasets.

• Improvements to ranking performance in feature selection were added. Feature selection is now much faster on
large datasets.

• The default execution engine for AutoML has been switched to Dask. You can still use the Python multiprocess-
ing by passing engine='local', engine_opts={'n_jobs' : -1} to init()

• GuassianNB has been enabled in the interface by default.

• The AdaBoostClassifier has been disabled in the pipeline-interface by default. The ONNX converter for
AdaBoost should not be used.

• The issue ValueError: Found unknown categories during transform has been fixed.

• You can manually specify a hyperparameter search space to AutoML. A new parameter was added to the pipeline.
This allows you to freeze some hyperparameters or to expose further ones for tuning.

• New API: Refit an AutoML pipeline to another dataset. This is primarily used to handle updated training data,
where you train the pipeline once, and refit in on newer data.

• AutoML no longer closes a user-specified Dask cluster.

• AutoML properly cleans up any existing futures on the Dask cluster at the end of fit.

MLX is upgraded to MLX v1.0.16 the changes include:

• MLX is now distributed in the General Machine Learning conda environments.

• Updated the explanation descriptions to use a base64 representation of the static plots. This obviates the need
for creating a mlx_static directory.

• Replaced the boolean indexing in slicing Pandas dataFrame with integer indexing. After updating to Pandas >=
1.1.0 the boolean indexing caused some issues. Integer indexing addresses these issues.

• Fixed MLX-related import warnings.

• Corrected an issue with ALE when the target values are strings.
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• Removed the dependency on Paramiko.

• Addresses an issue with ALE when the target values are not of type list.

1.23 August 11, 2020

• Support was added to use resource principles as an authentication mechanism for ADS.

• Support was added to MLX for an additional model explanation diagnostic, Accumulated Local Effects (ALEs).

• Support was added to MLX for “What-if” scenarios in model explainability.

• Improvements were made to the correlation heatmap calculations in show_in_notebook().

• Improvements were made to the model artifact.

The following bugs were fixed:

• Data Flow applications inherit the compartment assignment of the client. Runs inherit from applications by
default. Compartment OCIDs can also be specified independently at the client, application, and run levels.

• The Data Flow log link for logs pulled from an application loaded into the notebook session is fixed.

• Progress bars now complete fully (in ADSModel.prepare() and prepare_generic_model()).

• BaselineModel is now significantly faster and can be opted out of.

MLX upgraded to MLX v1.0.10 the changes include:

• Added support to specify the mlx_static root path (used for ALE summary).

• Added support for making mlx_static directory hidden (for example, <path>/.mlx_static/).

• Fixed issue with the boolean features in ALE.

1.24 June 9, 2020

Numerous bug fixes including:

• Support for Data Flow applications and runs outside of a notebook session compartment. Support for specific
object storage logs and script buckets at the application and run levels.

• ADS detects small shapes and gives warnings for AutoML execution.

• Removal of triggers in the Oracle Cloud Infrastructure Functions func.yaml file.

• DatasetFactory.open() incorrectly yielding a classification dataset for a continuous target was fixed.

• LabelEncoder producing the wrong results for category and object columns was fixed.

• An untrusted notebook issue when running model explanation visualizations were fixed.

• A warning about adaptive sampling requiring at least 1000 data points was added.

• A dtype cast float to integer into DatasetFactory.open("csv") was added.

• An option to specify the bucket of Data Flow logs when you create the application was added.

AutoML upgraded to 0.4.2 the changes include:

• Reduced parallelization on low compute hardware.

• Support for passing in a custom logger object in automl.init(logger=).
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• Support for datetime columns. AutoML should automatically infer datetime columns based on the Pandas
dataframe, and perform feature engineering on them. This can also be forced by using the col_types argument
in pipeline.fit(). The supported types are: ['categorical', 'numerical', 'datetime']

MLX upgraded to MLX 1.0.7 the changes include:

• Updated the feature distributions in the PDP/ICE plots (performance improvement).

• All distributions are now shown as PMFs. Categorical features show the category frequency and continuous
features are computed using a NumPy histogram (with ‘auto’). They are also separate sub-plots, which are
interactive.

• Classification PDP: The y-axis for continuous features is now auto-scaled (not fixed to 0-1).

• 1-feature PDP/ICE: The x-axis for continuous features now shows the entire feature distribution, whereas the plot
may show a subset depending on the partial_range parameter (for example, partial_range=[0.2, 0.8]
computes the PDP between the 20th and 80th percentile. The plot now shows the full distribution on the x-axis,
but the line charts are only drawn between the specified percentile ranges).

• 2-feature PDP: The plot x and y axes are now auto-set to match the partial_range specified by the user. This
ensures that the heatmap fills the entire plot by default. However, the entire feature distribution can be viewed
by zooming out or clicking Autoscale in plotly.

• Support for plotting scatter plots using WebGL (show_in_notebook(..., use_webgl=True)) was added.

• The side issues that were causing the MLX Visualization Omitted warnings in JupyterLab were fixed.

1.25 April 30, 2020

• ADS integration with the Oracle Cloud Infrastructure Data Flow service provides a more efficient and convenient
to launch a Spark application and run Spark jobs

• show_in_notebook() has had “head” removed from accordion and is replaced with dataset “warnings”.

• get_recommendations() is deprecated and replaced with suggest_recommendations(), which returns a
Pandas dataframe with all the recommendations and suggested code to implement each action.

• A progress indication of Autonomous Data Warehouse reads has been added.

AutoML updated to version 0.4.1 from 0.3.1:

• More consistent handling of stratification and random state.

• Bug-fix for LightGBM and XGBoost crashing on AMD shapes was implemented.

• Unified Proxy Models across all stages of the AutoML Pipeline, ensuring leaderboard rankings are consistent
was implemented.

• Remove visual option from the interface.

• The default tuning metric for both binary and multi-class classification has been changed to neg_log_loss.

• Bug-fix in AutoML XGBoost, where the predicted probabilities were sometimes NaN, was implemented.

• Fixed several corner case issues in Hyperparameter Optimization.

MLX updated to version 1.0.3 from 1.0.0:

• Added support for specifying the ‘average’ parameter in sklearn metrics by <metric>_<average>, for exam-
lple F1_avg.

• Fixed an issue with the detailed scatter plot visualizations and cutoff feature/axis names.

• Fixed an issue with the balanced sampling in the Global Feature Permutation Importance explainer.
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• Updated the supported scoring metrics in MLX. The PermutationImportance explainer now supports a large
number of classification and regression metrics. Also, many of the metrics’ names were changed.

• Updated LIME and PermutationImportance explainer descriptions.

• Fixed an issue where sklearn.pipeline wasn’t imported.

• Fixed deprecated asscalar warnings.

1.26 March 18, 2020

Access to ADW performance has been improved significantly

Major improvements were made to the performance of the ADW dataset loader. Your data is now loaded much
faster, depending on your environment.

Change to DatasetFactory.open() with ADW

DatasetFactory.open() with format='sql' no longer requires the index_col to be specified. This was confus-
ing, since “index” means something very different in databases. Additionally, the table parameter may now be either
a table or a sql expression.

ds = DatasetFactory.open(
connection_string,
format = 'sql',
table = """
SELECT *
FROM sh.times
WHERE rownum <= 30

"""
)

No longer automatically starts an H2O cluster

ADS no longer instantiates an H2O cluster on behalf of the user. Instead, you need to import h2o on your own and
then start your own cluster.

Profiling Dask APIs

With support for Bokeh extension, you can now profile Dask operations and visualize profiler output. For more details,
see Dask ResourceProfiler.

You can use the ads.common.analyzer.resource_analyze decorator to visualize the CPU and memory utilization
of operations.

During execution, it records the following information for each timestep:

• Time in seconds since the epoch

• Memory usage in MB

• % CPU usage
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Example:

from ads.common.analyzer import resource_analyze
from ads.dataset.dataset_browser import DatasetBrowser
@resource_analyze
def fetch_data():

sklearn = DatasetBrowser.sklearn()
wine_ds = sklearn.open('wine').set_target("target")
return wine_ds

fetch_data()

The output shows two lines, one for the total CPU percentage used by all the workers, and one for total memory used.

Dask Upgrade

Dask is updated to version 2.10.1 with support for Oracle Cloud Infrastructure Object Storage. The 2.10.1 version
provides better performance than the older version.
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CHAPTER

TWO

OVERVIEW

The Oracle Accelerated Data Science (ADS) SDK is a Python library that is included as part of the Oracle Cloud
Infrastructure Data Science service. ADS offers a friendly user interface with objects and methods that describe the
steps involved in the lifecycle of machine learning models, from data acquisition to model evaluation and interpretation.

You access ADS when you launch a JupyterLab session from the Data Science service. ADS is pre-configured to
access Data Science and other Oracle Cloud Infrastructure resources, such as the models in the Data Science model
catalog or files in Oracle Cloud Infrastructure Object Storage.

The ADS SDK is also publicly available on PyPi, and can be installed with python3 -m pip install oracle-ads.

2.1 Main Features

• Connect to Data Sources

The Oracle JupyterLab environment is pre-installed with default storage options for reading from and writing
to Oracle Cloud Infrastructure Object Storage. However, you can load your datasets into ADS from almost
anywhere including:

– Amazon S3

– Blob

– Elastic Search instances

– Google Cloud Service

– Hadoop Distributed File System

– Local files

– Microsoft Azure

– MongoDB

– NoSQL DB instances

– Oracle Autonomous Data Warehouse

– Oracle Cloud Infrastructure Object Storage

– Oracle Database

These datasets can be numerous formats including:

– Apache server log files

– Excel

– HDF5
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– JSON

– Parquet

– SQL

– XML

– arff

– csv

– libsvm

– tsv

Fig. 1: Example of Opening a Dataset

• Perform Exploratory Data Analysis

The ADS data type discovery supports simple data types like categorical, continuous, ordinal to sophisticated
data types. For example, geo data, date time, zip codes, and credit card numbers.

Fig. 2: Example showing exploring the class imbalance of a target variable
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• Automatic Data Visualization

The ADSDataset object comes with a comprehensive plotting API. It allows you to explore data visually using
automatic plotting or create your own custom plots.

Fig. 3: Example showing Gaussian Heatmap Visualization

• Feature Engineering

Leverage ADS and the Pandas API to transform the content of a ADSDataset object with custom data transfor-
mations.

• Data Snapshotting for Training Reproducibility

Save and load a copy of any dataset in binary optimized Parquet format. By snapshotting a dataset, a URL is
returned that can be used by anyone with access to the resource to load the data exactly how it was at that point
with all transforms materialized.

• Model Training

The Oracle AutoML engine, that produces ADSModel models, automates:

– Feature Selection

– Algorithm Selection

– Feature Encoding

– Hyperparameter Tuning

2.1. Main Features 19
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Fig. 4: Example showing plotting lat/lon points on a map

Fig. 5: Example showing using ADS to drop columns and apply auto transforms

Fig. 6: Example showing a visualized Decision Tree
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Create your own models using any library. If they resemble sklearn estimators, you can promote them to
ADSModel objects and use them in evaluations, explanations, and model catalog operations. If they do not
support the sklearn behavior, you can wrap them in a Lambda then use them.

Fig. 7: Example showing how to invoke AutoML

Fig. 8: Example showing the AutoML hyper-parameter tuning trials

• Model Evaluations

Model evaluation generates a comprehensive suite of evaluation metrics and suitable visualizations to measure
model performance against new data, and can rank models over time to ensure optimal behavior in production.
Model evaluation goes beyond raw performance to take into account expected baseline behavior. It uses a cost
API so that the different impacts of false positives and false negatives can be fully incorporated.

ADS helps data scientists evaluate ADSModel instances through the ADSEvaluator object. This object provides
a comprehensive API that covers regression, binary, and multinomial classification use cases.

• Model Interpretation and Explainablility
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Fig. 9: Example showing how to evaluate a list of models

Fig. 10: Example showing some model evaluation plots
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Model explanation makes it easier to understand why machine learning models return the results that they do
by identifying relative importance of features and relationships between features and predictions. Data Science
offers the first commercial implementation of model-agnostic explanation. For example, a compliance officer
can be certain that a model is not making decisions in violation of GDPR or regulations against discrimination.

For data scientists, it enables them to ensure that any model they build is generating results based on predictors
that make sense. Understanding why a model behaves the way it does is critical to users and regulators. Data
Science ensures that deployed models are more accurate, robust, and compliant with relevant regulations.

Oracle provides Machine Learning Explainability (MLX), which is a package that explains the internal mechanics
of a machine learning system to better understand models. Models are in the ADSModel format. You use MLX
to explain models from different training platforms. You create an ADSModel from a REST end point then use
the ADS model explainability to explain a model that’s remote.

• Interact with the Model Catalog

You can upload the models that you create with ADS into the Data Science model catalog directly from ADS.
You can save all your models, with their provenance information, in the catalog and make them accessible to
anybody who needs to use them. Other users can then load the models and use them as an ADSModel object.
You can also use this feature to help put the models into production with Oracle Functions.
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CHAPTER

THREE

QUICK START

The Accelerated Data Science (ADS) SDK is a Oracle Cloud Infrastructure Data Science and Machine learning SDK
that data scientists can use for the entire life cycle of their workflows. You can also use Python methods in ADS to
interact with the following Data Science resources:

• Models (saved in the model catalog)

• Notebook Sessions

• Projects

3.1 Setting up ADS

3.1.1 Data Science Conda Environments

ADS is already installed in the environment.

3.1.2 Install in Your Local Environment

You have various options when installing ADS.

3.1.2.1 Installing the oracle-ads base package

$ python3 -m pip install oracle-ads

3.1.2.2 Installing extras libraries

The all-optional module will install all optional dependencies.

$ python3 -m pip install oracle-ads[all-optional]

To work with gradient boosting models, install the boosted module. This module includes XGBoost and LightGBM
model classes.

$ python3 -m pip install oracle-ads[boosted]

For big data use cases using Oracle Big Data Service (BDS), install the bds module. It includes the following libraries,
ibis-framework[impala], hdfs[kerberos] and sqlalchemy.

25



ADS Documentation, Release 2.6.4

$ python3 -m pip install oracle-ads[bds]

To work with a broad set of data formats (for example, Excel, Avro, etc.) install the data module. It includes the
fastavro, openpyxl, pandavro, asteval, datefinder, htmllistparse, and sqlalchemy libraries.

$ python3 -m pip install oracle-ads[data]

To work with geospatial data install the geo module. It includes the geopandas and libraries from the viz module.

$ python3 -m pip install oracle-ads[geo]

Install the notebook module to use ADS within the Oracle Cloud Infrastructure Data Science service Notebook Ses-
sion. This module installs ipywidgets and ipython libraries.

To work with ONNX-compatible run times and libraries designed to maximize performance and model portability, in-
stall the onnxmodule. It includes the following libraries, onnx, onnxruntime, onnxmltools, skl2onnx, xgboost, lightgbm
and libraries from the viz module.

$ python3 -m pip install oracle-ads[onnx]

For infrastructure tasks, install the opctl module. It includes the following libraries, oci-cli, docker, conda-pack,
nbconvert, nbformat, and inflection.

$ python3 -m pip install oracle-ads[opctl]

For hyperparameter optimization tasks install the optuna module. It includes the optuna and libraries from the viz
module.

$ python3 -m pip install oracle-ads[optuna]

Install the tensorflow module to include tensorflow and libraries from the viz module.

$ python3 -m pip install oracle-ads[tensorflow]

For text related tasks, install the text module. This will include the wordcloud, spacy libraries.

$ python3 -m pip install oracle-ads[text]

Install the torch module to include pytorch and libraries from the viz module.

$ python3 -m pip install oracle-ads[torch]

Install the viz module to include libraries for visualization tasks. Some of the key packages are bokeh, folium, seaborn
and related packages.

$ python3 -m pip install oracle-ads[viz]

Note

Multiple extra dependencies can be installed together. For example:

$ python3 -m pip install oracle-ads[notebook,viz,text]
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3.1.3 Getting Started

import ads

Turn debug mode on or off with:

ads.set_debug_mode(bool)

3.2 Getting Data into ADS

Before you can use ADS for anything involving a dataset (visualization, transformations, or model training), you have
to load your data. When ADS opens a dataset, you have the option to provide the name of the column to be the target
variable during modeling. The type of this target determines what type of modeling to use (regression, binary, and
multinomial classification, or time series forecasting).

There are several ways to turn data into an ADSDataset. The simplest way is to use DatasetFactory, which takes as its
first argument as a string URI or a Pandas Dataframe object. The URI supports many formats, such as Object Storage
or S3 files. The class documentation <https://docs.cloud.oracle.com/en-us/iaas/tools/ads-sdk/latest/modules.html>_
describes all classes.

For example:

• From a Pandas Dataframe instance:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df["species"] = data.target

from ads.dataset.factory import DatasetFactory

# these two are equivalent:
ds = DatasetFactory.open(df, target="species")
# OR
ds = DatasetFactory.from_dataframe(df, target="species")

The ds (ADSDataset) object is Pandas like. For example, you can use ds.head(). It’s an encapsulation of a Pandas
Dataframe with immutability. Any attempt to modify the data yields a new copy-on-write of the ADSDataset.

Note: Creating an ADSDataset object involves more than simply reading data to memory. ADS also samples the
dataset for visualization purposes, computes co-correlation of the columns in the dataset, and performs type discovery
on the different columns in the dataset. That is why loading a dataset with DatasetFactory can be slower than simply
reading the same dataset with Pandas. In return, you get the added data visualizations and data*profiling benefits of
the ADSDataset object.

• Load data from a URL:

import pandas as pd

(continues on next page)
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(continued from previous page)

ds = pd.read_csv("oci://hosted-ds-datasets@hosted-ds-datasets/iris/dataset.csv", target=
→˓"variety")

• To load data with ADS type discovery turned off:

import pandas as pd

pd.DataFrame({'c1':[1,2,3], 'target': ['yes', 'no', 'yes']}).to_csv('Users/ysz/data/
→˓sample.csv')

ds = DatasetFactory.open('Users/ysz/data/sample.csv',
target = 'target',
type_discovery = False, # turn off ADS type discovery
types = {'target': 'category'}) # specify target type

3.3 Data Visualization

ADS offers a smart visualization tool that automatically detects the type of your data columns and offers the best way
to plot your data. You can also create custom visualizations with ADS by using your preferred plotting libraries and
packages.

To get a quick overview of all the column types and how the column’s values are distributed:

ds.show_in_notebook()

To plot the target’s value distribution:

ds.target.show_in_notebook()

To plot a single column:

ds.plot("sepal.length").show_in_notebook(figsize=(4,4)) # figsize optional

To plot two columns against each other:

ds.plot(x="sepal.length", y="sepal.width").show_in_notebook()

You are not limited to the types of plots that ADS offers. You can also use other plotting libraries. Here’s an example
using Seaborn. For more examples, see Data Visualization or the ads_data_visualizations notebook example in
the notebook session environment.

import seaborn as sns
sns.set(style="ticks", color_codes=True)
sns.pairplot(df.dropna())
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3.4 Model Training

ADS includes the OracleAutoMLProvider class. It is an automated machine learning module that is simple to use,
fast to run, and performs comparably with its alternatives. You can also create your own machine learning provider
and let ADS take care of the housekeeping.

AutoML provides these features:

• An ideal feature set.

• Minimal sampling size.

• The best algorithm to use (you can also restrict AutoML to your favorite algorithms).

• The best set of algorithm specific hyperparameters.

How to train a model using ADSDataset:

import pandas as pd
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
from ads.dataset.factory import DatasetFactory

# this is the default AutoML provider for regression and classification problem types.
# over time Oracle will introduce other providers for other training tasks.
ml_engine = OracleAutoMLProvider()

# use an example where Pandas opens the dataset
df = pd.read_csv("https://raw.githubusercontent.com/darenr/public_datasets/master/iris_
→˓dataset.csv")
ds = DatasetFactory.open(df, target='variety')

train, test = ds.train_test_split()

automl = AutoML(train, provider=ml_engine)

model, baseline = automl.train(model_list=[
'LogisticRegression',
'LGBMClassifier',
'XGBClassifier',
'RandomForestClassifier'], time_budget=10)

At this point, AutoML has built a baseline model. In this case, it is a Zero-R model (majority class is always predicted),
along with a tuned model.
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You can use print(model) to get a model’s parameters and their values:

print(model)

Framework: automl.models.classification.sklearn.lgbm
Estimator class: LGBMClassifier
Model Parameters: {'boosting_type': 'dart', 'class_weight': None, 'learning_rate': 0.1,
→˓'max_depth': -1, 'min_child_weight': 0.001, 'n_estimators': 100, 'num_leaves': 31,
→˓'reg_alpha': 0, 'reg_lambda': 0}

You can get details about a model, such as its selected algorithm, training data size, and initial features using the
show_in_notebook() method:

model.show_in_notebook()

Model Name AutoML Classifier
Target Variable variety
Selected Algorithm LGBMClassifier
Task classification
Training Dataset Size (128, 4)
CV 5
Optimization Metric recall_macro
Selected Hyperparameters {'boosting_type': 'dart', 'class_weight': None, 'learning_
→˓rate': 0.1, 'max_depth': -1, 'min_child_weight': 0.001, 'n_estimators': 100, 'num_
→˓leaves': 31, 'reg_alpha': 0, 'reg_lambda': 0}
Is Regression None
Initial Number of Features 4
Initial Features [sepal.length, sepal.width, petal.length, petal.width]
Selected Number of Features 1
Selected Features [petal.width]

From here you have two ADSModel objects that can be used in ADS’s evaluation and explanation modules along with
any other ADSModel instances.

3.5 ADSModel with Third-Party Models

You are not limited to using models that were created using Oracle AutoML. You can promote other models to ADS
so that they too can be used in evaluations and explanations.

ADS provides a static method that promotes an estimator-like object to an ADSModel.

For example:

from xgboost import XGBClassifier
from ads.common.model import ADSModel

...

xgb_classifier = XGBClassifier()
xgb_classifier.fit(train.X, train.y)

ads_model = ADSModel.from_estimator(xgb_classifier)
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Optionally, the from_estimator() method can provide a list of target classes. If the estimator provides a classes_
attribute, then this list is not needed.

You can also provide a scalar or iterable of objects implementing transform functions.

3.6 Model Catalog

You can use ADS to save models built with ADS or generic models built outside of ADS to the model catalog. One
way to save an ADSModel is:

from os import environ
from ads.common.model_export_util import prepare_generic_model
from joblib import dump
import os.path
import tempfile
tempfilepath = tempfile.mkdtemp()
dump(model, os.path.join(tempfilepath, 'model.onnx'))
model_artifact = prepare_generic_model(tempfilepath)
compartment_id = environ['NB_SESSION_COMPARTMENT_OCID']
project_id = environ["PROJECT_OCID"]

...

mc_model = model_artifact.save(
project_id=project_id,
compartment_id=compartment_id,
display_name="random forest model on iris data",
description="random forest model on iris data",
training_script_path="model_catalog.ipynb",
ignore_pending_changes=False)

ADS also provides easy wrappers for the model catalog REST APIs. By constructing a ModelCatalog object for a
given compartment, you can list the models with the list_models() method:

from ads.catalog.model import ModelCatalog
from os import environ
mc = ModelCatalog(compartment_id=environ['NB_SESSION_COMPARTMENT_OCID'])
model_list = mc.list_models()

To load a model from the catalog, the model has to be fetched, extracted, and restored into memory so that it can be
manipulated. You must specify a folder where the download would extract the files to:

import os
path_to_my_loaded_model = os.path.join('/', 'home', 'datascience', 'model')
mc.download_model(model_list[0].id, path_to_my_loaded_model, force_overwrite=True)

Then construct or reconstruct the ADSModel object with:

from ads.common.model_artifact import ModelArtifact
model_artifact = ModelArtifact(path_to_my_loaded_model)

There’s more details to interacting with the model catalog in Model Catalog.
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3.7 Model Evaluations and Explanations

3.7.1 Model Evaluations

ADS can evaluate a set of models by calculating and reporting a variety of task-specific metrics. The set of models
must be heterogeneous and be based on the same test set.

The general format for model explanations (ADS or non-ADS models that have been promoted using the ADSModel.
from_estimator function) is:

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

evaluator = ADSEvaluator(test, models=[model, baseline], training_data=train)
evaluator.show_in_notebook()

If you assign a value to the optional training_datamethod, ADS calculates how the models generalize by comparing
the metrics on training with test datasets.

The evaluator has a property metrics, which can be used to access all of the calculated data. By default, in a notebook
the evaluator.metrics outputs a table highlighting for each metric which model scores the best.

evaluator.metrics
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If you have a binary classification, you can rank models by their calculated cost by using the calculate_cost()
method.

You can also add in your own custom metrics, see the Model Evaluation for more details.

3.7.2 Model Explanations

ADS provides a module called Machine learning explainability (MLX), which is the process of explaining and inter-
preting machine learning and deep learning models.

MLX can help machine learning developers to:

• Better understand and interpret the model’s behavior. For example:

– Which features does the model consider important?

– What is the relationship between the feature values and the target predictions?
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• Debug and improve the quality of the model. For example:

– Did the model learn something unexpected?

– Does the model generalize or did it learn something specific to the train/validation/test datasets?

• Increase confidence in deploying the model.

MLX can help end users of machine learning algorithms to:

• Understand why the model has made a certain prediction. For example: - Why was my bank loan denied?

Some useful terms for MLX:

• Explainability: The ability to explain the reasons behind a machine learning model’s prediction.

• Global Explanations: Understand the behavior of a machine learning model as a whole.

• Interpretability: The level at which a human can understand the explanation.

• Local Explanations: Understand why the machine learning model made a single prediction.

• Model-Agnostic Explanations: Explanations treat the machine learning model (and feature pre-processing) as
a black-box, instead of using properties from the model to guide the explanation.

MLX provides interpretable model-agnostic local and global explanations.

How to get global explanations:

from ads.explanations.explainer import ADSExplainer
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer

# our model explainer class
explainer = ADSExplainer(test, model)

# let's created a global explainer
global_explainer = explainer.global_explanation(provider=MLXGlobalExplainer())

# Generate the global feature importance explanation
importances = global_explainer.compute_feature_importance()

Visualize the top six features in a bar chart (the default).

# Visualize the top 6 features as a bar chart
importances.show_in_notebook(n_features=6)

Visualize the top five features in a detailed scatter plot:

# Visualize a detailed scatter plot
importances.show_in_notebook(n_features=5, mode='detailed')

Get the dictionary object that is used to generate the visualizations so that you can create your own:

# Get the dictionary object used to generate the visualizations
importances.get_global_explanation()

MLX can also do much more. For example, Partial Dependence Plots (PDP) and Individual Conditional Expectation
explanations along with local explanations can provide insights into why a machine learning model made a specific
prediction.

For more detailed examples and a thorough overview of MLX, see the MLX documentation.
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CONFIGURATION

4.1 Autonomous Database

There are two different configurations of the Autonomous Database (ADB). They are the Autonomous Data Warehouse
(ADW) and the Autonomous Transaction Processing (ATP). The steps to connect to ADW and ATP are the same.
To access an instance of the ADB from the notebook environment, you need the client credentials and connection
information. The client credentials include the wallet, which is required for all types of connections.

Use these steps to access Oracle ADB:

1. From the ADW or ATP instance page that you want to load a dataset from, click DB Connection.

2. Click Download Wallet to download the wallet file. You need to create a password to for the wallet to complete
the download. You don’t need this password to connect from the notebook.

3. Unzip the wallet.

4. Create a <path_to_wallet_folder> folder for your wallet on the notebook environment environment.

5. Upload your wallet files into the <path_to_wallet_folder> folder using the Jupyterlab Upload Files:

6. Open the sqlnet.ora file from the wallet files, then configure the METHOD_DATA:
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METHOD_DATA = (DIRECTORY="<path_to_wallet_folder>")

7. To find the location of the sqlnet.ora file, the TNS_ADMIN environment variable must point to that location.
We suggest that you create a Python dictionary to store all of the connection information. In this example, this
dictionary is called creds. It is generally poor security practice to store credentials in your notebook. We
recommend that you use the ads-examples/ADB_working_with.ipynb notebook example that demonstrates
how to store them outside the notebook in a configuration file.

The environment variable should be set in your notebooks. For example:

# Replace with your TNS_ADMIN value here:
creds = {}
creds['tns_admin'] = <path_to_wallet_folder>
os.environ['TNS_ADMIN'] = creds['tns_admin']

8. You can find SID names from the tnsname.ora file in the wallet file. Create a dictionary to manage your
credentials. In this example, the variable creds is used. The SID is an identifier that identifies the consumer
group of the the Oracle Database:

# Replace with your SID name here:
creds['sid'] = <your_SID_name>

9. Ask your database administrator for the username and password, and then add them to your creds dictionary.
For example:

creds['user'] = <database_user>
creds['password'] = <database_password>

10. Test the connection to the ADB by running these commands:

os.environ['TNS_ADMIN'] = creds['tns_admin']
connect = 'sqlplus ' + creds['user'] + '/' + creds['password'] + '@' + creds['sid']
print(os.popen(connect).read())

Messages similar to the following display if the connection is successful:

An introduction to loading data from ADB into ADS using cx_Oracle and SQLAlchemy is in Loading Data.
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4.2 Authentication

When you are working within a notebook session, you are operating as the datascience Linux user. This user does
not have an OCI Identity and Access Management (IAM) identity, so it has no access to the Oracle Cloud Infrastructure
(OCI) API. Oracle Cloud Infrastructure resources include Data Science projects and models, and the resources of other
OCI service, such as Object Storage, Functions, Vault, Data Flow, and so on. To access these resources from the
notebook environment, you must use one of the two provided authentication approaches:

4.2.1 Resource Principals

This is the generally preferred way to authenticate with an OCI service. A resource principal is a feature of IAM that
enables resources to be authorized principal actors that can perform actions on service resources. Each resource has its
own identity, and it authenticates using the certificates that are added to it. These certificates are automatically created,
assigned to resources, and rotated avoiding the need for you to upload credentials to your notebook session.

Data Science enables you to authenticate using your notebook session’s resource principal to access other OCI re-
sources. When compared to using the OCI configuration and key files approach, using resource principals provides a
more secure and easy way to authenticate to the OCI APIs.

Within your notebook session, you can choose to use the resource principal to authenticate while using the Acceler-
ated Data Science (ADS) SDK by running ads.set_auth(auth='resource_principal') in a notebook cell. For
example:

import ads
ads.set_auth(auth='resource_principal')
compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']
pc = ProjectCatalog(compartment_id=compartment_id)
pc.list_projects()

4.2.2 API Keys

This is the default method of authentication. You can also authenticate as your own personal IAM user by creating
or uploading OCI configuration and API key files inside your notebook session environment. The OCI configuration
file contains the necessary credentials to authenticate your user against the model catalog and other OCI services like
Object Storage. The example notebook, api_keys.ipynb demonstrates how to create these files.

The getting-started.ipynb notebook in the home directory of the notebook session environment demonstrates all
the steps needed to create the configuration file and the keys. Follow the steps in that notebook before importing and
using ADS in your notebooks.

Note: If you already have an OCI configuration file (config) and associated keys, you can upload them directly to
the /home/datascience/.oci directory using the JupyterLab Upload Files or the drag-and-drop option.
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4.2.3 Configuration File

The default authentication that is used by ADS is set with the set_auth() method. However, each relevant ADS
method has an optional parameter to specify the authentication method to use. The most common use case for this is
when you have different permissions in different API keys or there are differences between the permissions granted in
the resource principals and your API keys.

Most ADS methods do not require a signer to be explicitly given. By default, ADS uses the API keys to sign requests
to OCI resources. The set_auth() method is used to explicitly set a default signing method. This method accepts
one of two strings "api_key" or "resource_principal".

The ~/.oci/config configuration allow for multiple configurations to be stored in the same file. The set_auth()
method takes is oci_config_location parameter that specifies the location of the configuration, and the default
is "~/.oci/config". Each configuration is called a profile, and the default profile is DEFAULT. The set_auth()
method takes in a parameter profile. It specifies which profile in the ~/.oci/config configuration file to use. In
this context, the profile parameter is only used when API keys are being used. If no value for profile is specified,
then the DEFAULT profile section is used.

ads.set_auth("api_key") # default signer is set to API Keys
ads.set_auth("api_key", profile = "TEST") # default signer is set to API Keys and to use␣
→˓TEST profile
ads.set_auth("api_key", oci_config_location = "~/.test_oci/config") # default signer is␣
→˓set to API Keys and to use non-default oci_config_location

The authutil module has helper functions that return a signer which is used for authentication. The api_keys()
method returns a signer that uses the API keys in the .oci configuration directory. There are optional parameters to
specify the location of the API keys and the profile section. The resource_principal() method returns a signer that
uses resource principals. The method default_signer() returns either a signer for API Keys or resource principals
depending on the defaults that have been set. The set_auth() method determines which signer type is the default. If
nothing is set then API keys are the default.

from ads.common import auth as authutil
from ads.common import oci_client as oc

# Example 1: Create Object Storage client with the default signer.
auth = authutil.default_signer()
oc.OCIClientFactory(**auth).object_storage

# Example 2: Create Object Storage client with timeout set to 6000 using resource␣
→˓principal authentication.
auth = authutil.resource_principal({"timeout": 6000})
oc.OCIClientFactory(**auth).object_storag

# Example 3: Create Object Storage client with timeout set to 6000 using API Key␣
→˓authentication.
auth = authutil.api_keys(oci_config="/home/datascience/.oci/config", profile="TEST",␣
→˓kwargs={"timeout": 6000})
oc.OCIClientFactory(**auth).object_storage

In the this example, the default authentication uses API keys specified with the set_auth method. However, since the
os_auth is specified to use resource principals, the notebook session uses the resource principal to access OCI Object
Store.

set_auth("api_key") # default signer is set to api_key
os_auth = authutil.resource_principal() # use resource principal to as the preferred way␣

(continues on next page)
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→˓to access object store

4.3 core-site.xml

The core-site.xml is used to configure connections to Data Flow. This file can be configured manually or with
the aid of the odsc command-line tool. The best practice is to use the odsc core-site config command-line tool
when you want to connect to Data Flow. It gathers information about your environment and uses that to build the file.

The odsc core-site config command-line tool has no required parameters. Default values are used or values
are taken from your notebook session environment and OCI configuration file. Below is a discussion of common
parameters that you may need to override.

The --authentication option sets the authentication mode. It supports resource principal and API keys.
The preferred method for authentication is resource principal and this is sent with --authentication
resource_principal. If you want to use API keys then used the option --authentication api_key. If the
--authentication is not specified, API keys will be used. When API keys are used, information from the OCI
configuration file is used to create the core-site.xml file.

The Object Storage and the Data Flow are regional services. By default, the region is set to the region that your
notebook session is in. This information is taken from the environment variable NB_REGION. Use the --region option
to override this behavior.

The default location of the core-site.xml file is in the ~/spark_conf_dir directory, as defined in the
SPARK_CONF_DIR environment variable. Use the --output option to define the directory where the file is to be
written.

4.3.1 odsc Command-line

The odsc core-site config command-line tool is ideal for setting up the core-site.xml file as it gathers infor-
mation about your environment and uses that to build the file.

You will need to determine what settings are appropriate for your configuration. However, the following will work for
most configurations.

odsc core-site config --authentication resource_principal

If the option --authentication api_key is used, it will extract information from the OCI configuration file that is
stored in ~/.oci/config.

For details on the command-line option use the command:

odsc core-site config --help
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4.3.2 Manual

The odsc command-line tool is the preferred method for configuring the core-site.xml file. However, if you are not
in a notebook session or if you have special requirements, you may need to manually configure the file. This section
will guide you through the steps.

The core-site.xml file has the following format. The name of the parameter goes in between the <name> </name>
tags and the value goes in between the <value> </value> tags. Each parameter is in between the <property>
</property> tags.

<?xml version="1.0"?>
<configuration>
<property>
<name>NAME_1</name>
<value>VALUE_1</value>

</property>
<property>
<name>NAME_2</name>
<value>VALUE_2</value>

</property>
</configuration>

The fs.oci.client.hostname needs to be specified. It is the address of Object Storage. For example, https:/
/objectstorage.us-ashburn-1.oraclecloud.com You have to replace us-ashburn-1 with the region you are
in.

Depending on the authentication method that is to be used there are additional parameters that need to be set. See the
following sections for guidance.

4.3.2.1 Resource Principals

Update the core-site.xml file parameters to use resource principal to authenticate:

• fs.oci.client.custom.authenticator: Set the value to com.oracle.bmc.hdfs.auth.
ResourcePrincipalsCustomAuthenticator.

The following example core-site.xml file illustrates using resource principals for authentication to Object Storage:

<?xml version="1.0"?>
<configuration>
<property>
<name>fs.oci.client.hostname</name>
<value>https://objectstorage.us-ashburn-1.oraclecloud.com</value>

</property>
<property>
<name>fs.oci.client.custom.authenticator</name>
<value>com.oracle.bmc.hdfs.auth.ResourcePrincipalsCustomAuthenticator</value>

</property>
</configuration>

For details, see HDFS connector for Object Storage using a resource principal for authentication.
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4.3.2.2 API Keys

Update the core-site.xml file parameters to use API keys to authenticate:

• fs.oci.client.auth.fingerprint: Fingerprint for the key pair.

• fs.oci.client.auth.passphrase: An optional password phrase if the PEM key is encrypted.

• fs.oci.client.auth.pemfilepath: The fully qualified file name of the private key used for authentication.

• fs.oci.client.auth.tenantId: OCID of your tenancy.

• fs.oci.client.auth.userId: Your user OCID.

The values of these parameters are found in the OCI configuration file.

<?xml version="1.0"?>
<configuration>
<property>
<name>fs.oci.client.hostname</name>
<value>https://objectstorage.us-ashburn-1.oraclecloud.com</value>

</property>
<property>
<name>fs.oci.client.auth.tenantId</name>
<value>ocid1.tenancy.oc1..<unique_id></value>

</property>
<property>
<name>fs.oci.client.auth.userId</name>
<value>ocid1.user.oc1..<unique_id></value>

</property>
<property>
<name>fs.oci.client.auth.fingerprint</name>
<value>01:23:45:67:89:ab:cd:ef:01:23:45:67:89:ab:cd:ef</value>

</property>
<property>
<name>fs.oci.client.auth.pemfilepath</name>
<value>/home/datascience/.oci/<filename>.pem</value>

</property>
</configuration>

4.4 spark-defaults.conf

The spark-defaults.conf file is used to define the properties that are used by Spark. This file can be configured
manually or with the aid of the odsc command-line tool. The best practice is to use the odsc data-catalog config
command-line tool when you want to connect to Data Catalog. It gathers information about your environment and uses
that to build the file.

The odsc data-catalog config command-line tool uses the --metastore option to define the Data Catalog Meta-
store OCID. There are no required command-line options. Default values are used or values are taken from your note-
book session environment and OCI configuration file. Below is a discussion of common parameters that you may need
to override.

The --authentication option sets the authentication mode. It supports resource principal and API keys.
The preferred method for authentication is resource principal and this is sent with --authentication
resource_principal. If you want to use API keys then used the option --authentication api_key. If the
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--authentication is not specified, API keys will be used. When API keys are used, information from the OCI
configuration file is used to create the spark-defaults.conf file.

The Object Storage and Data Catalog are regional services. By default, the region is set to the region that your notebook
session is in. This information is taken from the environment variable NB_REGION. Use the --region option to override
this behavior.

The default location of the spark-defaults.conf file is in the ~/spark_conf_dir directory, as defined in the
SPARK_CONF_DIR environment variable. Use the --output option to define the directory where the file is to be
written.

4.4.1 odsc Command-line

The odsc data-catalog config command-line tool is ideal for setting up the spark-defaults.conf file as it
gathers information about your environment and uses that to build the file.

You will need to determine what settings are appropriate for your configuration. However, the following will work for
most configurations.

odsc data-catalog config --authentication resource_principal

If the option --authentication api_key is used, it will extract information from the OCI configuration file that is
stored in ~/.oci/config. Use the --config option to change the path and the --profile option to specify what
OCI configuration profile will be used. The default profile is DEFAULT.

A default Data Catalog Metastore OCID can be set using the --metastore option. This value can be overridden at
run-time.

odsc data-catalog config --authentication resource_principal --metastore <metastore_id>

The <metastore_id> must be replaced with the OCID for the Data Catalog Metastore that is to be used.

For details on the command-line option use the command:

odsc data-catalog config --help

4.4.2 Manual

The odsc command-line tool is the preferred method for configuring the spark-defaults.conf file. However, if
you are not in a notebook session or if you have special requirements, you may need to manually configure the file.
This section will guide you through the steps.

When a Data Science Conda environment is installed, it includes a template of the spark-defaults.conf file. The
following sections provide guidance to make the required changes.

These parameters define the Object Storage address that backs the Data Catalog entry. This is the location of the data
warehouse. You also need to define the address of the Data Catalog Metastore.

• spark.hadoop.fs.oci.client.hostname: Address of Object Storage for the data warehouse. For example,
https://objectstorage.us-ashburn-1.oraclecloud.com. Replace us-ashburn-1 with the region you
are in.

• spark.hadoop.oci.metastore.uris: The address of Data Catalog Metastore. For example, https://
datacatalog.us-ashburn-1.oci.oraclecloud.com/ Replace us-ashburn-1 with the region you are in.

You can set a default metastore with the following parameter. This can be overridden at run time. Setting it is optional.
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• spark.hadoop.oracle.dcat.metastore.id: The OCID of Data Catalog Metastore. For example, ocid1.
datacatalogmetastore..<unique_id>

Depending on the authentication method that is to be used there are additional parameters that need to be set. See the
following sections for guidance.

4.4.2.1 Resource Principal

Update the spark-defaults.conf file parameters to use resource principal to authenticate:

• spark.hadoop.fs.oci.client.custom.authenticator: Set the value to com.oracle.bmc.hdfs.auth.
ResourcePrincipalsCustomAuthenticator.

• spark.hadoop.oracle.dcat.metastore.client.custom.authentication_provider: Set the value to
com.oracle.bmc.hdfs.auth.ResourcePrincipalsCustomAuthenticator.

4.4.2.2 API Keys

Update the spark-defaults.conf file parameters to use API keys to authenticate:

• spark.hadoop.OCI_FINGERPRINT_METADATA: Fingerprint for the key pair being used.

• spark.hadoop.OCI_PASSPHRASE_METADATA: Passphrase used for the key if it is encrypted.

• spark.hadoop.OCI_PVT_KEY_FILE_PATH: The full path and file name of the private key used for authentica-
tion.

• spark.hadoop.OCI_REGION_METADATA: An Oracle Cloud Infrastructure region. Example: us-ashburn-1

• spark.hadoop.OCI_USER_METADATA: Your user OCID.

• spark.hadoop.fs.oci.client.auth.fingerprint: Fingerprint for the key pair being used.

• spark.hadoop.fs.oci.client.auth.passphrase: Passphrase used for the key if it is encrypted.

• spark.hadoop.fs.oci.client.auth.pemfilepath: The full path and file name of the private key used for
authentication.

• spark.hadoop.fs.oci.client.auth.tenantId: OCID of your tenancy.

• spark.hadoop.fs.oci.client.auth.userId: Your user OCID.

• spark.hadoop.fs.oci.client.custom.authenticator: Set the value to com.oracle.pic.dcat.
metastore.commons.auth.provider.UserPrincipalsCustomAuthenticationDetailsProvider

• spark.hadoop.spark.hadoop.OCI_TENANT_METADATA: OCID of your tenancy.

The values of these parameters are found in the OCI configuration file.
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LOAD DATA

5.1 Connecting to Data Sources

You can load data into ADS in several different ways from Oracle Cloud Infrastructure Object Storage, cx_Oracle, or
S3. Following are some examples.

Begin by loading the required libraries and modules:

import ads
import numpy as np
import pandas as pd
from ads.common.auth import default_signer

5.1.1 Object Storage

To load a dataframe from Object Storage using the API keys, you can use the following example, replacing the angle
bracketed content with the location and name of your file:

ads.set_auth(auth="api_key", oci_config_location="~/.oci/config", profile="DEFAULT")
bucket_name = <bucket-name>
file_name = <file-name>
namespace = <namespace>
df = pd.read_csv(f"oci://{bucket_name}@{namespace}/{file_name}", storage_options=default_
→˓signer())

For a list of pandas functions to read different file format, please refer to the Pandas documentation.

To load a dataframe from Object Storage using the resource principal method, you can use the following example,
replacing the angle bracketed content with the location and name of your file:

ads.set_auth(auth='resource_principal')
bucket_name = <bucket-name>
file_name = <file-name>
namespace = <namespace>
df = pd.read_csv(f"oci://{bucket_name}@{namespace}/{file_name}", storage_options=default_
→˓signer())
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5.1.2 Local Storage

To load a dataframe from a local source, use functions from pandas directly:

df = pd.read_csv("/path/to/data.data")

5.1.3 Oracle Database

When using the Oracle ADB with Python the most common representation of tabular data is a Pandas dataframe.
When you’re in a dataframe, you can perform many operations from visualization to persisting in a variety of formats.

5.1.3.1 Oracle ADB to Pandas

The Pandas read_sql(...) function is a general, database independent approach that uses the SQLAlchemy - Object
Relational Mapper to arbitrate between specific database types and Pandas.

Read SQL query or database table into a dataframe.

This function is a convenience wrapper around read_sql_table and read_sql_query (for backward com-
patibility). It delegates to the specific function depending on the provided input. A SQL query is routed
to read_sql_query, while a database table name is routed to read_sql_table.

Use the Pandas ADS accessor drop-in replacement, pd.DataFrame.ads.read_sql(...), instead of using pd.
read_sql.

Example

connection_parameters = {
"user_name": "<username>",
"password": "<password>",
"service_name": "<service_name_{high|med|low}>",
"wallet_location": "/full/path/to/my_wallet.zip",

}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(

"SELECT * FROM SH.SALES",
connection_parameters=connection_parameters,

)

# read of a SQL query into a dataframe with a bind variable. Use bind variables
(continues on next page)
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# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

"""
SELECT
*
FROM
SH.SALES
WHERE

ROWNUM <= :max_rows
""",
bind_variables={

max_rows : 100
}
,
connection_parameters=connection_parameters,

)

5.1.3.2 Oracle Database to Pandas - No Wallet

New in version 2.5.6..

If your database connection doesn’t require a wallet file, you can connect to the database by specifying host/port/
sid/service name.

Example

connection_parameters = {
"user_name": "<username>",
"password": "<password>",
"service_name": "<service_name>",
"host": "<database hostname>",
"port": "<database port number>""

}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(

"SELECT * FROM SH.SALES",
connection_parameters=connection_parameters,

)

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

"""
SELECT
*
FROM
SH.SALES
WHERE

ROWNUM <= :max_rows
(continues on next page)

5.1. Connecting to Data Sources 47



ADS Documentation, Release 2.6.4

(continued from previous page)

""",
bind_variables={

max_rows : 100
}
,
connection_parameters=connection_parameters,

)

5.1.3.3 Performance

The performance is limited by three things:

• Generational latency: How long the database takes to return rows, use of indexes and writing efficient SQL
mitigates this performance bottleneck.

• Network saturation: Once the network is saturated, data can’t be delivered between the database and notebook
environment any faster. OCI networking is very fast and this isn’t usually a concern. One exception is when the
network path goes over VPN or other more complex routing topologies.

• CPU latency in the notebook: Python has to collect the byte stream delivered by the database into Python data
types before being promoted to Numpy objects for Pandas. Additionally, there is a cryptographic CPU overhead
because the data in transit is secured with public key infrastructure (PKI).

5.1.3.4 Large Result Set

If a database query returns more rows than the memory of the client permits, you have a couple of options. The simplest
is to use a larger client shape, along with increased compute performance because larger shapes come with more RAM.
If that’s not an option, then you can use the pd.DataFrame.ads.read_sql mixin in chunk mode, where the result is
no longer a Pandas dataframe it is an iterator over a sequence of dataframes. You could use this read a large data set
and write it to Object storage or a local file system with the following example:

for i, df in enumerate(pd.DataFrame.ads.read_sql(
"SELECT * FROM SH.SALES",
chunksize=100000 # rows per chunk,
connection_parameters=connection_parameters,

))
# each df will contain up to 100000 rows (chunksize)
# to write the data to object storage use oci://bucket@namespace/part_{i}.

→˓csv"
df.to_csv(f"part_{i}.csv")

5.1.3.5 Very Large Result Set

If the data exceeds what’s practical in a notebook, then the next step is to use the Data Flow service to partition the data
across multiple nodes and handle data of any size up to the size of the cluster.
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5.1.3.6 Pandas to Oracle Database

Typically, you would do this using df.to_sql. However, this uses Oracle Resource Manager to collect data and is less
efficient than code that has been optimized for a specific database.

Instead, use the Pandas ADS accessor mixin.

With a df dataframe, writing this to the database is as simple as:

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters, # Should contain wallet location if you␣

→˓are connecting to ADB
if_exists="replace"

)

The resulting data types (if the table was created by ADS as opposed to inserting into an existing table), are governed
by the following:

Pandas Oracle
bool NUMBER(1)
int16 INTEGER
int32 INTEGER
int64 INTEGER
float16 FLOAT
float32 FLOAT
float64 FLOAT
datetime64 TIMESTAMP
string VARCHAR2 (Maximum length of the actual data.)

When a table is created, the length of any VARCHAR2 column is computed from the longest string in the column. The
ORM defaults to CLOB data, which is not correct or efficient. CLOBS are stored efficiently by the database, but the c
API to query them works differently. The non-LOB columns are returned to the client through a cursor, but LOBs are
handled differently resulting in an additional network fetch per row, per LOB column. ADS deals with this by creating
the correct data type, and setting the correct VARCHAR2 length.

5.1.4 MySQL

New in version 2.5.6..

To load a dataframe from a MySQL database, you must set engine=mysql in pd.DataFrame.ads.read_sql.

Example

connection_parameters = {
"user_name": "<username>",
"password": "<password>",
"host": "<database hostname>",
"port": "<database port number>",
"database": "<database name>"

}
import pandas as pd
import ads

(continues on next page)
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# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(

"SELECT * FROM EMPLOYEE",
connection_parameters=connection_parameters,
engine="mysql"

)

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

"""
SELECT
*
FROM
EMPLOYEE
WHERE

emp_no <= ?
""",
bind_variables=(1000,)
,
connection_parameters=connection_parameters,
engine="mysql"

)

To save the dataframe df to MySQL, use df.ads.to_sql API with engine=mysql

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters,
if_exists="replace",
engine="mysql"

)

The resulting data types (if the table was created by ADS as opposed to inserting into an existing table), are governed
by the following:

Pandas MySQL
bool NUMBER(1)
int16 INTEGER
int32 INTEGER
int64 INTEGER
float16 FLOAT
float32 FLOAT
float64 FLOAT
datetime64 DATETIME (Format: %Y-%m-%d %H:%M:%S)
string VARCHAR (Maximum length of the actual data.)
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5.1.5 BDS Hive

New in version 2.6.1..

To load a dataframe from BDS Hive, set engine="hive" in pd.DataFrame.ads.read_sql.

5.1.5.1 Connection Parameters

Work with BDS with Kerberos authentication

If you are working with BDS that requires Kerberos authentication, you can follow here to get connection parameters
required to connect with BDS, and then follow here to save the connection parameters as well as the files needed to
configure the kerberos authentication into vault. The connection_parameters can be set as:

connection_parameters = {
"host": "<hive hostname>",
"port": "<hive port number>",

}

Work with unsecure BDS

If you are working with unsecure BDS, you can set connection_parameters as:

connection_parameters = {
"host": "<hive hostname>",
"port": "<hive port number>",
"auth_mechanism": "PLAIN" # for connection with unsecure BDS

}

Example

connection_parameters = {
"host": "<database hostname>",
"port": "<database port number>",

}
import pandas as pd
import ads

# simple read of a SQL query into a dataframe with no bind variables
df = pd.DataFrame.ads.read_sql(

"SELECT * FROM EMPLOYEE",
connection_parameters=connection_parameters,
engine="hive"

)

# read of a SQL query into a dataframe with a bind variable. Use bind variables
# rather than string substitution to avoid the SQL injection attack vector.
df = pd.DataFrame.ads.read_sql(

"""
SELECT
*
FROM
EMPLOYEE
WHERE

(continues on next page)
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`emp_no` <= ?
""",
bind_variables=(1000,)
,
connection_parameters=connection_parameters,
engine="hive"

)

To save the dataframe df to BDS Hive, use df.ads.to_sql API with engine="hive".

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters,
if_exists="replace",
engine="hive"

)

5.1.5.2 Partition

You can create table with partition, and then use df.ads.to_sql API with engine="hive", if_exists="append"
to insert data into the table.

create_table_sql = f'''
CREATE TABLE {table_name} (col1_name datatype, ...)
partitioned by (col_name datatype, ...)
'''

df.ads.to_sql(
"MY_TABLE",
connection_parameters=connection_parameters,
if_exists="append",
engine="hive"

)

5.1.5.3 Large Dataframe

If the dataframe waiting to be uploaded has many rows, and the .to_sql() method is slow, you have other options.
The simplest is to use a larger client shape, along with increased compute performance because larger shapes come
with more RAM. If that’s not an option, then you can follow these steps:

# Step1: Save your df as csv
df.to_csv(f"my_data.csv")

# Step2: Upload the csv to hdfs
hdfs_host = "<hdfs hostname>"
hdfs_port = "<hdfs port number>"
hdfs_config = {"host": hdfs_host, "port": hdfs_port, "protocol": "webhdfs"}
fs = fsspec.filesystem(**hdfs_config)
fs.upload(

lpath="./my_data.csv",
(continues on next page)

52 Chapter 5. Load Data



ADS Documentation, Release 2.6.4

(continued from previous page)

rpath="/user/hive/iris.csv"
)

# Step3: Create table
sql = f"""
CREATE TABLE IF NOT EXISTS {table_name} (col1_name datatype, ...)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
"""
cursor.execute(sql)

# Step4: Load data into Hive table from hdfs
hdfs_path = "./my_data.csv"
sql = f"LOAD DATA INPATH '{hdfs_path}' INTO TABLE {table_name}"
cursor.execute(sql)

5.1.6 HTTP(S) Sources

To load a dataframe from a remote web server source, use pandas directly and specify the URL of the data:

df = pd.read_csv('https://example.com/path/to/data.csv')

5.1.7 Convert Pandas DataFrame to ADSDataset

To convert a Pandas dataframe to ADSDataset, pass the pandas.DataFrame object directly into the ADS
DatasetFactory.open method:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.read_csv('/path/some_data.csv) # load data with Pandas

# use open...

ds = DatasetFactory.open(df) # construct **ADS** Dataset from DataFrame

# alternative form...

ds = DatasetFactory.from_dataframe(df)

# an example using Pandas to parse data on the clipboard as a CSV and construct an ADS␣
→˓Dataset object
# this allows easily transfering data from an application like Microsoft Excel, Apple␣
→˓Numbers, etc.

ds = DatasetFactory.from_dataframe(pd.read_clipboard())

# use Pandas to query a SQL database:

(continues on next page)
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from sqlalchemy import create_engine
engine = create_engine('dialect://user:pass@host:port/schema', echo=False)
df = pd.read_sql_query('SELECT * FROM mytable', engine, index_col = 'ID')
ds = DatasetFactory.from_dataframe(df)

5.1.8 Using PyArrow

ADS supports reading files into PyArrow dataset directly via ocifs. ocifs is installed as ADS dependencies.

import ocifs
import pyarrow.dataset as ds
bucket_name = <bucket_name>
namespace = <namespace>
path = <path>
fs = ocifs.OCIFileSystem(**default_signer())
ds = ds.dataset(f"{bucket_name}@{namespace}/{path}/", filesystem=fs)

5.2 Connect with DatasetFactory

You can load data into ADS in several different ways from Oracle Cloud Infrastructure Object Storage, cx_Oracle, or
S3. Following are some examples.

Begin by loading the required libraries and modules:

import ads
import numpy as np
import pandas as pd

from ads.dataset.dataset_browser import DatasetBrowser
from ads.dataset.factory import DatasetFactory

5.2.1 Object Storage

To open a dataset from Object Storage using the resource principal method, you can use the following example, replac-
ing the angle bracketed content with the location and name of your file:

import ads
import os

from ads.dataset.factory import DatasetFactory

ads.set_auth(auth='resource_principal')
bucket_name = <bucket-name>
file_name = <file-name>
namespace = <namespace>
storage_options = {'config':{}, 'tenancy': os.environ['TENANCY_OCID'], 'region': os.
→˓environ['NB_REGION']}
ds = DatasetFactory.open(f"oci://{bucket_name}@{namespace}/{file_name}", storage_
→˓options=storage_options)
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To open a dataset from Object Storage using the Oracle Cloud Infrastructure configuration file method, include the
location of the file using this format oci://<bucket_name>@<namespace>/<file_name> and modify the optional
parameter storage_options. Insert:

• The path to your Oracle Cloud Infrastructure configuration file,

• The profile name you want to use.

For example:

ds = DatasetFactory.open("oci://<bucket_name>@<namespace>/<file_name>", storage_options␣
→˓= {

"config": "~/.oci/config",
"profile": "DEFAULT"

})

5.2.2 Local Storage

To open a dataset from a local source, use DatasetFactory.open and specify the path of the data file:

ds = DatasetFactory.open("/path/to/data.data", format='csv', delimiter=" ")

5.2.2.1 Oracle Database

To connect to Oracle Databases from Python, you use the cx_Oracle package that conforms to the Python database
API specification.

You must have the client credentials and connection information to connect to the database. The client credentials
include the wallet, which is required for all types of connections. Use these steps to work with ADB and wallet files:

1. From the Console, go to the Oracle Cloud Infrastructure ADW or ATP instance page that you want to load the
dataset from, and then click DB Connection.

2. Click Download Wallet.

3. You have to enter a password. This password is used for some ADB connections, but not the ones that are used
in the notebook.

4. Create a folder for your wallet in the notebook environment (<path_to_wallet_folder>).

5. Upload your wallet files into <path_to_wallet_folder> folder using the Jupyterlab Upload Files button.

6. Open the sqlnet.ora file from the wallet files, and then configure the METHOD_DATA to be: METHOD_DATA
= (DIRECTORY="<path_to_wallet_folder>")

7. Set the env variable, TNS_ADMIN. TNS_ADMIN, to point to the wallet you want to use.
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In this example a Python dictionary, creds is used to store the creditionals. However, it is poor security practice to
store this information in a notebook. The notebook ads-examples/ADB_working_with.ipynb gives an example of
how to store them in Block Storage.

creds = {}
creds['tns_admin'] = <path_to_wallet_folder>
creds['sid'] = <your SID>
creds['user'] = <database username>
creds['password'] = <database password>

Once your Oracle client is setup, you can use cx_Oracle directly with Pandas as in this example:

import pandas as pd
import cx_Oracle
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']
with cx_Oracle.connect(creds['user'], creds['password'], creds['sid']) as ora_conn:

df = pd.read_sql('''
SELECT ename, dname, job, empno, hiredate, loc
FROM emp, dept
WHERE emp.deptno = dept.deptno
ORDER BY ename

''', con=ora_conn)

You can also use cx_Oracle within ADS by creating a connection string:

os.environ['TNS_ADMIN'] = creds['tns_admin']
from ads.dataset.factory import DatasetFactory
uri = 'oracle+cx_oracle://' + creds['user'] + ':' + creds['password'] + '@' + creds['sid
→˓']
ds = DatasetFactory.open(uri, format="sql", table=table, index_col=index_col)

5.2.3 Autonomous Database

Oracle has two configurations of Autonomous Databases. They are the Autonomous Data Warehouse (ADW) and
the Autonomous Transaction Processing (ATP) database. Both are fully autonomous databases that scale elastically,
deliver fast query performance, and require minimal database administration.

Note: To access ADW, review the Autonomous Database configuration section. It shows you how to get the client
credentials (wallet) and set up the proper environment variable.
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5.2.3.1 Load from ADB

After you have stored the ADB username, password, and database name (SID) as variables, you can build the URI as
your connection source.

uri = 'oracle+cx_oracle://' + creds['user'] + ':' + creds['password'] + '@' + creds['sid
→˓']

You can use ADS to query a table from your database, and then load that table as an ADSDataset object through
DatasetFactory. When you open DatasetFactory, specify the name of the table you want to pull using the table
variable for a given table. For SQL expressions, use the table parameter also. For example, (`table=”SELECT * FROM
sh.times WHERE rownum <= 30”`).

os.environ['TNS_ADMIN'] = creds['tns_admin']
ds = DatasetFactory.open(uri, format="sql", table=table, target='label')

5.2.3.2 Query ADB

• Query using Pandas

This example shows you how to query data using Pandas and sqlalchemy to read data from ADB:

from sqlalchemy import create_engine
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']
engine = create_engine(uri)
df = pd.read_sql('SELECT * from <TABLENAME>', con=engine)

You can convert the pd.DataFrame into ADSDataset using the DatasetFactory.from_dataframe() function.

ds = DatasetFactory.from_dataframe(df)

These two examples run a simple query on ADW data. With read_sql_query you can use SQL expressions not just
for tables, but also to limit the number of rows and to apply conditions with filters, such as (where).

ds = pd.read_sql_query('SELECT * from <TABLENAME>', uri)

ds = pd.read_sql_query('SELECT * FROM emp WHERE ROWNUM <= 5', uri)

• Query using cx_Oracle

You can also query data from ADW using cx_Oracle. Use the cx_Oracle 7.0.0 version with ADS. Ensure that you
change the dummy <TABLENAME> placeholder to the actual table name you want to query data from, and the dummy
<COLNAME> placeholder to the column name that you want to select:

import
import pandas as pd
import numpy as np
import os

os.environ['TNS_ADMIN'] = creds['tns_admin']
connection = cx_Oracle.connect(creds['user'], creds['password'], creds['sid'])
cursor = connection.cursor()

(continues on next page)
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(continued from previous page)

results = cursor.execute("SELECT * from <TABLENAME>")

data = results.fetchall()
df = pd.DataFrame(np.array(data))

ds = DatasetFactory.from_dataframe(df)

results = cursor.execute('SELECT <COLNAME> from <TABLENAME>').fetchall()

Close the cursor and connection using the .close() method:

cursor.close()
connection.close()

5.2.4 Train a Models with ADB

After you load your data from ADB, the ADSDataset object is created, which allows you to build models using Au-
toML.

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider

train, test = ds.train_test_split()
model, baseline = AutoML(train, provider= OracleAutoMLProvider()).train(model_list=[
→˓"LGBMClassifier"])

5.2.5 Update ADB Tables

To add predictions to a table, you can either update an existing table, or create a new table with the added predictions.
There are many ways to do this. One way is to use the model to update a CSV file, and then use Oracle SQL*Loader
or SQL*Plus.

This example adds predictions programmatically using cx_Oracle. It uses executemany to insert rows as tuples created
using the model’s predict method:

ds = DatasetFactory.open("iris.csv")

create_table = '''CREATE TABLE IRIS_PREDICTED (,
sepal_length number,
sepal_width number,
petal_length number,
petal_width number,
SPECIES VARCHAR2(20),
yhat VARCHAR2(20),

)'''

connection = cx_Oracle.connect(creds['user'], creds['password'], creds['sid'])
cursor = connection.cursor()
cursor.execute(create_table)

(continues on next page)

58 Chapter 5. Load Data



ADS Documentation, Release 2.6.4

(continued from previous page)

ds_res.to_sql('predicted_iris', con=engine, index=False, if_exists="append")\

rows = [tuple(x) for x in ds_res.values]

cursor.executemany("""
insert into IRIS_PREDICTED
(sepal_length, sepal_width, petal_length, petal_width, SPECIES, yhat)

values (:1, :2, :3, :4, :5, :6)""",
rows

)

connection.commit()
cursor.close()
connection.close()

For some models, you could also use predict_proba to get an array of predictions and their confidence probability.

5.2.6 Amazon S3

You can open Amazon S3 public or private files in ADS. For private files, you must pass the right credentials through
the ADS storage_options dictionary.If you have large S3 files, then you benefit from an increased blocksize.

ds = DatasetFactory.open("s3://bucket_name/iris.csv", storage_options = {
'key': 'aws key',
'secret': 'aws secret,
'blocksize': 1000000,
'client_kwargs': {

"endpoint_url": "https://s3-us-west-1.amazonaws.com"
}

})

5.2.7 HTTP(S) Sources

To open a dataset from a remote web server source, use DatasetFactory.open() and specify the URL of the data:

ds = DatasetFactory.open('https://example.com/path/to/data.csv', target='label')

5.2.8 DatasetBrowser

DatasetBrower allows easy access to datasets from reference libraries and index websites, such as scikit-learn. To
see the supported libraries, use the list() function:

DatasetBrowser.list()

['web', 'sklearn', 'seaborn', 'R']

To see which dataset is available from scikit-learn, use:
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sklearn = DatasetBrowser.sklearn()
sklearn.list()

['boston', 'breast_cancer', 'diabetes', 'iris', 'wine', 'digits']

Datasets are provided as a convenience. Datasets are considered Third Party Content and are not considered Materials
under Your agreement with Oracle applicable to the Services. Review the dataset license.

To explore one of the datasets, use open() specifying the name of the dataset:

ds = sklearn.open('wine')

5.3 DatasetFactory Formats

You can load data with different formats into DatasetFactory, see Loading Data in Loading Data. Following are
some examples.

5.3.1 ARFF

You can load ARFF file into DatasetFactory. The file format is recognized from the file name. You can load the file
from internet:

ds = DatasetFactory.open('https://*example.com/path/to/some_data.arff*')

5.3.2 Array

You can convert an array into a Pandas DataFrame and then open it with DatasetFactory:

generated_data_arr = [["ID", "Name", "GPA"], [1, "Bob", 3.7], [2, "Sam", 4.3], [3, "Erin
→˓", 2.6]]
generated_df1 = pd.DataFrame(generated_data_arr[1:], columns=generated_data_arr[0])
generated_ds1 = DatasetFactory.open(generated_df1)

5.3.3 Delimited Files

CSV and TSV are the most common delimited files. However, files can have other forms of delimitation. To read
them with the DatasetFactory.open() method, the delimiter parameter must be given with the delimiting value.
DatasetFactory.open() considers all delimited files as CSV so the format=csv or format=csv parameter must
also be specified even though the delimiter is not a comma or tab. DatasetFactory.open() attempts to determine
the column names from the first line of the file. Alternatively, the column_names option can be used to specify them.

In this example, a file is created that is delimited with a vertical bar (|), and then read in with the DatasetFactory.
open() method.

# Create a delimited file with a '|' as a separator
file = tempfile.NamedTemporaryFile()
for i in range(5):

for j in range(7):
(continues on next page)
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term = '|' if j != 6 else '\n'
file.write(bytes('{}.{}'.format(i, j) + term, 'utf-8'))

file.flush()

# Print the raw file
file.seek(0)
for line in file:

print(line.decode("utf-8"))

# Read in the delimited file and specify the column names.
ds = DatasetFactory.open(file.name, delimiter='|', format='csv', column_names=['a','b','c
→˓','d','e','f'])
file.close()
ds.head()

5.3.3.1 CSV

You can load a csv file into Dataset Factory using open():

ds = DatasetFactory.open("data/multiclass_fk_10k.csv")

Note: If your dataset does not include a header, then DatasetFactory assumes that each feature is named according
to the corresponding column from your first data-point. This feature naming may be undesirable and could lead to
subtle bugs appearing. Many CSVs use spaces for readability, which can lead to trouble when trying to set your target
variable within DatasetFactory.open().

The work around for this is to pass header=None to DatasetFactory:

ds = DatasetFactory.open("sample_data.csv", header=None)

All of your columns are given integer names beginning with 1.

5.3.3.2 TSV

You can open a tsv or a file with any arbitrary separation key with DatasetFactory, using open(). This is an
example of a tsv file being generated and opening it with DatasetFactory:

f = open("tmp_random_ds99.tsv","w+")
f.write('1 \t 2 \t 3 \t 4 \t 5 \t 6 \n 1.1 \t 2.1 \t 3.1 \t 4.1 \t 5.1 \t 6.1')
f.close()

ds = DatasetFactory.open("tmp_random_ds99.tsv", column_names=['a','b','c','d','e','f'])
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5.3.4 Dictionary

You can convert a dictionary into a Pandas DataFrame and then open it with DatasetFactory:

generated_data_dict = {"ID": [1.1, 2.0, 3.0],
"Name": ["Bob", "Sam", "Erin"],
"GPA": [3.7, 4.3, 2.6]}

generated_df2 = pd.DataFrame(generated_data_dict)
generated_ds2 = DatasetFactory.open(generated_df2)

5.3.5 Excel

Data scientists often have to work with Excel files as a data source. If the file extension is .xlsx, then
DatasetFactory.open() automatically processes it as an Excel file. If not, the format=xlsx can be used. By
default, the first sheet in the file is read in. This behavior can be modified with the sheetname parameter. It accepts
the sheet number (it is zero-indexed) or a string with the name of the sheet. DatasetFactory.open() reads in all
columns that have values. This behavior can be modified with the usecols parameter. It accepts a list of column
numbers to be read in, such as usecols=[1, 3, 5] or it can accept a range as a string, usecols=A:C.

# Create the Excel file to read in. Put the data on a sheet called 'wine'
file = tempfile.NamedTemporaryFile()
writer = pd.ExcelWriter(file.name, engine='xlsxwriter')
DatasetBrowser.sklearn().open('wine').to_pandas().to_excel(writer, sheet_name='wine')
writer.save()

# Read in the Excel file and clean up
ds = DatasetFactory.open(file.name, format='xlsx', sheetname='wine', usecols="A:C")
file.close()
ds.head()

5.3.6 HDF

You can load an HDF file into DatasetFactory. This example builds an HDF file, and then opens it with
DatasetFactory:

[ds_loc] = ds.to_hdf("tmp_random_ds99.h5", key='df')
ds_copy = DatasetFactory.open(ds_loc, key='df')

5.3.7 JSON

JSON files are supported by DatasetFactory.open() as long as the data can be restructured into a rectangular form.
There are two supported formats of JSON that are called orientations. The orientation is given by orient=index or
orient=records.

For the index orientation, there is a single JSON object. The format is:

{
<index>: <value>,
<index>: <value>

}
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For example:

{
"946684800000": {"id": 982, "name": "Yvonne", "x": -0.3289461521, "y": -0.4301831275}

→˓,
"946684801000": {"id": 1031, "name": "Charlie", "x": 0.9002882524, "y": -0.

→˓2144513329}
}

For the records format, there is a collection of JSON objects. No index value is given and there is no comma between
records. The format is:

{<key>: <value>, <key>: <value>}
{<key>: <value>, <key>: <value>}

For example:

{"id": 982, "name": "Yvonne", "x": -0.3289461521, "y": -0.4301831275}
{"id": 1031, "name": "Charlie", "x": 0.9002882524, "y": -0.2144513329}

In this example, a JSON file is created then read back in with DatasetFactory.open(). If the file extension ends in
.json, then the method loads it as a JSON file. If this is not the case, then set format=json.

# Create the JSON file that is to be read
[file] = DatasetBrowser.sklearn().open('wine').to_json(path.join(tempfile.mkdtemp(),
→˓"wine.json"),

orient='records')

# Read in the JSON file
ds = DatasetFactory.open(file, format='json', orient='records')
ds.head()

5.3.8 Pandas

You can pass the pandas.DataFrame object directly into the ADS DatasetFactory.open method:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.read_csv('/path/some_data.csv) # load data with Pandas

# use open...

ds = DatasetFactory.open(df) # construct **ADS** Dataset from DataFrame

# alternative form...

ds = DatasetFactory.from_dataframe(df)

# an example using Pandas to parse data on the clipboard as a CSV and construct an ADS␣
→˓Dataset object
# this allows easily transfering data from an application like Microsoft Excel, Apple␣
→˓Numbers, etc.

(continues on next page)
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ds = DatasetFactory.from_dataframe(pd.read_clipboard())

# use Pandas to query a SQL database:

from sqlalchemy import create_engine
engine = create_engine('dialect://user:pass@host:port/schema', echo=False)
df = pd.read_sql_query('SELECT * FROM mytable', engine, index_col = 'ID')
ds = DatasetFactory.from_dataframe(df)

You can also use a Pandas.DataFrame in the same way. More Pandas information.

5.3.9 Parquet

You can read Parquet files in ADS. This example builds a Parquet folder, and then opens it with DatasetFactory:

ds.to_parquet("tmp_random_ds99")

ds_copy = DatasetFactory.open("tmp_random_ds99", format='parquet')

5.4 Specify Data Types

When you open a dataset, ADS detects data types in the dataset. The ADS semantic dtypes assigned to features in
dataset, can be:

• Categorical

• Continuous

• Datetime

• Ordinal

ADS semantic dtypes are based on ADS low-level dtypes. They match with the Pandas dtypes ‘object’, ‘int64’, ‘float64’,
‘datetime64’, ‘category’, and so on. When you use an open() statement for a dataset, ADS detects both its semantic
and low-level data types. This example specifies the low-level data type, and then ADS detects its semantic type:

import pandas as pd
from ads.dataset.factory import DatasetFactory

df = pd.DataFrame({
'numbers': [5.0, 6.0, 8.0, 5.0],
'years': [2007, 2008, 2008, 2009],
'target': [1, 2, 3, 3]

})

ds = DatasetFactory.open(
df,
target = 'numbers',
types = {'numbers': 'int64'}

)
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You can inspect low level and semantic ADS dtypes with the feature_types property:

# print out detailed information on each column
ds.feature_types

# print out ADS "semantic" dtype of a column
print(ds.feature_types['numbers']['type'])

# print out ADS "low-level" dtype of a column
print(ds.feature_types['numbers']['low_level_type'])

ordinal
int64

You can also get the summary information on a dataset, including its feature details in a notebook output cell with
show_in_notebook:

ds.show_in_notebook()

Use numpy.dtype or Pandas dtypes in types parameter to specify your data type. When you update a type, ADS
changes both the semantic and the low-level types.

You can either specify a semantic or a low-level data type for types. This example shows how to load a dataset with
various types of data:

ds = DatasetFactory.open(
df,
target = 'years',
types = {'years': 'datetime'}

)
print(ds.feature_types['years']['type'])
print(ds.feature_types['years']['low_level_type'])

datetime
datetime64[ns]

ds = DatasetFactory.open(
df,
target = 'target',
types = {'target': 'categorical'}

)
print(ds.feature_types['target']['type'])
print(ds.feature_types['target']['low_level_type'])

categorical
category

You can find more examples about how to change column data types in Change Data Type.
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5.5 Supported Formats

You can load datasets into ADS, either locally or from network file systems.

You can open datasets with DatasetFactory, DatasetBrowser or pandas. DatasetFactory allows datasets to be
loaded into ADS.

DatasetBrowser supports opening the datasets from web sites and libraries, such as scikit-learn directly into ADS.

When you open a dataset in DatasetFactory, you can get the summary statistics, correlations, and visualizations of
the dataset.

ADS Supports:

Data Sources Amazon S3
Autonomous Databases: ADW and ATP
Blob
Elastic Search instances
Google Cloud Service
HTTP and HTTPs Sources
Hadoop Distributed File System
Local files
Microsoft Azure
MongoDB
NoSQL DB instances
Oracle Cloud Infrastructure Object Storage
Oracle Database with cx_Oracle

Data Formats Apache server log files
Array, Dictionary
Attribute-Relation File Format (ARFF)
Avro
Comma Separated Values (CSV)
HTML
Hierarchical Data Format 5 (HDF5)
Javascript Object Notation (JSON)
LIBSVM
Pandas.DataFrame, Dask.DataFrame
Parquet
PDF
Tab Separated Values (TSV)
xls, xlsx (Excel)
XML

Data Types Boolean Types (bool)
Numeric Types (int, float)
Text Types (str)

ADS Does Not Support:
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Data Formats DOCX
Raw Images
SAS
Text Files

Data Types Mapping Types (dict)
Set Types (set)
Sequence Types (list, tuple, range)

For reading text files, DOCX and PDF, see “Text Extraction” section.
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CHAPTER

SIX

DATA CATALOG METASTORE

6.1 Overview

This section demonstrates how to configure the spark-defaults.conf file so that you can connect with the Oracle
Cloud Infrastructure (OCI) Data Catalog Metastore. This connection is used to run a PySpark application using OCI
Data Flow and Data Science Jobs. The data will be stored in OCI Object Storage. Thus, you will work with data that
is stored in Object Storage, information about the location and structure of that data will be managed by Data Catalog
Metastore, compute will be provided by Data Flow and all of this will be run in a Job.

OCI Data Catalog is a metadata management service that helps data professionals discover data and support data
governance. The Data Catalog Metastore provides schema definitions for objects in structured and unstructured data
assets that reside in Object Storage. Use the metastore as a central metadata repository to manage data tables that are
backed by files in Object Storage.

OCI Data Flow is a fully managed Apache Spark service. This section demonstrates how to use PySpark to create
Spark applications.

Data Science Jobs allows you to run customized tasks outside of a notebook session. A Job is a template that describes
a task that you want to perform. In this section, that task is to run a PySpark application using Data Flow. Since the
Job is run outside of a notebook, command-line arguments can be passed to the Job such that it performs customized
activities. OCI Logging is used to capture events. You can also read and write data to Object Storage directly or with
the aid of Data Catalog.

Data Flow can access the Data Catalog Metastore to securely store and retrieve schema definitions for unstructured and
structured data assets in Object Storage. For integration with Data Flow, the metastore provides an invocation endpoint.
This endpoint is a Hive Metastore interface.

Apache Hive is a data warehousing framework that facilitates read, write, or manage operations on large datasets
residing in distributed file systems. The Data Catalog Metastore is backed by the Apache Hive Metastore. A Hive
Metastore is the central repository of metadata for a Hive cluster. It stores metadata for data structures such as databases,
tables, and partitions in a relational database, backed by files maintained in Object Storage. Apache Spark SQL makes
use of a Hive Metastore for this purpose.
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6.2 Prerequisite

To access the data in the Data Catalog or work with Data Flow, there are a number of steps that need to be completed.

To configure Data Flow you will need to:

• Data Flow requires a bucket to store the logs, and a data warehouse bucket. Refer to the Data Flow documentation
for setting up storage.

• Data Flow requires policies to be set in IAM to access resources to manage and run applications. Refer to the
Data Flow documentation on how to setup policies.

• The core-site.xml file needs to be configured.

To configure Data Catalog you will need to:

• Data Catalog requires policies to be set in IAM. Refer to the Data Catalog documentation on how to setup policies.

• The spark-defaults.conf file needs to be configured.

6.3 Quick Start

6.3.1 Data Flow

from ads.jobs import DataFlow, DataFlowRun, DataFlowRuntime

# Update these values
job_name = "<job_name>"
logs_bucket = "oci://<bucket_name>@<namespace>/<prefix>"
metastore_id = "<metastore_id>"
script_bucket = "oci://<bucket_name>@<namespace>/<prefix>"

compartment_id = os.environ.get("NB_SESSION_COMPARTMENT_OCID")
driver_shape = "VM.Standard2.1"
executor_shape = "VM.Standard2.1"
spark_version = "3.2.1"

# A python script to be run in Data Flow
script = '''
from pyspark.sql import SparkSession

def main():

database_name = "employee_attrition"
table_name = "orcl_attrition"

# Create a Spark session
spark = SparkSession \\

.builder \\

.appName("Python Spark SQL basic example") \\

.enableHiveSupport() \\

.getOrCreate()

# Load a CSV file from a public Object Storage bucket
(continues on next page)
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df = spark \\
.read \\
.format("csv") \\
.option("header", "true") \\
.option("multiLine", "true") \\
.load("oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.

→˓csv")

print(f"Creating {database_name}")
spark.sql(f"DROP DATABASE IF EXISTS {database_name} CASCADE")
spark.sql(f"CREATE DATABASE IF NOT EXISTS {database_name}")

# Write the data to the database
df.write.mode("overwrite").saveAsTable(f"{database_name}.{table_name}")

# Use Spark SQL to read from the database.
query_result_df = spark.sql(f"""

SELECT EducationField, SalaryLevel, JobRole FROM
→˓{database_name}.{table_name} limit 10

""")

# Convert the filtered Apache Spark DataFrame into JSON format and write it out to␣
→˓stdout

# so that it can be captured in the log.
print('\\n'.join(query_result_df.toJSON().collect()))

if __name__ == '__main__':
main()

'''

# Saves the python script to local path.
dataflow_base_folder = tempfile.mkdtemp()
script_uri = os.path.join(dataflow_base_folder, "example.py")

with open(script_uri, 'w') as f:
print(script.strip(), file=f)

dataflow_configs = DataFlow(
{

"compartment_id": compartment_id,
"driver_shape": driver_shape,
"executor_shape": executor_shape,
"logs_bucket_uri": log_bucket_uri,
"metastore_id": metastore_id,
"spark_version": spark_version

}
)

runtime_config = DataFlowRuntime(
{

"script_uri": pyspark_file_path,
"script_bucket": script_uri

(continues on next page)
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}
)

# creates a Data Flow application with DataFlow and DataFlowRuntime.
df_job = Job(name=job_name,

infrastructure=dataflow_configs,
runtime=runtime_config)

df_app = df_job.create()
df_run = df_app.run()

# check a job log
df_run.watch()

6.3.2 Interactive Spark

from pyspark.sql import SparkSession

# Update these values
warehouse_uri = "<warehouse_uri>"
metastore_id = "<metastore_id>"

database_name = "ODSC_DEMO"
table_name = "ODSC_PYSPARK_METASTORE_DEMO"

# create a spark session
spark = SparkSession \

.builder \

.appName("Python Spark SQL Hive integration example") \

.config("spark.sql.warehouse.dir", warehouse_uri) \

.config("spark.hadoop.oracle.dcat.metastore.id", metastore_id) \

.enableHiveSupport() \

.getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

# show the databases in the warehouse:
spark.sql("SHOW DATABASES").show()
spark.sql(f"DROP DATABASE IF EXISTS {database_name} CASCADE")
spark.sql(f"CREATE DATABASE {database_name}")

# Load the Employee Attrition data file from OCI Object Storage into a Spark DataFrame:
file_path = "oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.
→˓csv"
input_dataframe = spark.read.option("header", "true").csv(file_path)
input_dataframe.write.mode("overwrite").saveAsTable(f"{database_name}.{table_name}")

# explore data
spark_df = spark.sql(f"""

SELECT EducationField, SalaryLevel, JobRole FROM {database_name}.
→˓{table_name} limit 10

""")
spark_df.show()
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6.4 Data Flow

This example demonstrates how to create a Data Flow application that is connected to the Data Catalog Metastore. It
creates a PySpark script, then a Data Flow application. This application can be run by directly by Data Flow or as part
of a Job.

This section runs Hive queries using Data Flow. When the Data Catalog is being used the only changes that need to be
made are to provide the metastore OCID.

6.4.1 PySpark Script

A PySpark script is needed for the Data Flow application. The following code creates that script. The script will use
Spark to load a CSV file from a public Object Storage bucket. It will then create a database and write the file to Object
Storage. Finally, it will use Spark SQL to query the database and print the records in JSON format.

There is nothing in the PySpark script that is specific to using Data Catalog Metastore. The script treats the database
as a standard Hive database.

script = '''
from pyspark.sql import SparkSession

def main():

database_name = "employee_attrition"
table_name = "orcl_attrition"

# Create a Spark session
spark = SparkSession \\

.builder \\

.appName("Python Spark SQL basic example") \\

.enableHiveSupport() \\

.getOrCreate()

# Load a CSV file from a public Object Storage bucket
df = spark \\

.read \\

.format("csv") \\

.option("header", "true") \\

.option("multiLine", "true") \\

.load("oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.
→˓csv")

print(f"Creating {database_name}")
spark.sql(f"DROP DATABASE IF EXISTS {database_name} CASCADE")
spark.sql(f"CREATE DATABASE IF NOT EXISTS {database_name}")

# Write the data to the database
df.write.mode("overwrite").saveAsTable(f"{database_name}.{table_name}")

# Use Spark SQL to read from the database.
query_result_df = spark.sql(f"""

SELECT EducationField, SalaryLevel, JobRole FROM
→˓{database_name}.{table_name} limit 10

(continues on next page)
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""")

# Convert the filtered Apache Spark DataFrame into JSON format and write it out to␣
→˓stdout

# so that it can be captured in the log.
print('\\n'.join(query_result_df.toJSON().collect()))

if __name__ == '__main__':
main()

'''

# Save the PySpark script to a file
dataflow_base_folder = tempfile.mkdtemp()
script_uri = os.path.join(dataflow_base_folder, "example.py")

with open(script_uri, 'w') as f:
print(script.strip(), file=f)

6.4.2 Create Application

To create a Data Flow application you will need DataFlow and DataFlowRuntime objects. A DataFlow object stores
the properties that are specific to the Data Flow service. These would be things such as the compartment OCID, the
URI to the Object Storage bucket for the logs, the type of hardware to be used, the version of Spark, and much more.
If you are using a Data Catalog Metastore to manage a database, the metastore OCID is stored in this object. The
DataFlowRuntime object stores properties related to the script to be run. This would be the bucket to be used for the
script, the location of the PySpark script, and any command-line arguments.

Update the script_bucket, log_bucket, and metastore_id variables to match your tenancy’s configuration.

# Update values
log_bucket_uri = "oci://<bucket_name>@<namespace>/<prefix>"
metastore_id = "<metastore_id>"
script_bucket = "oci://<bucket_name>@<namespace>/<prefix>"

compartment_id = os.environ.get("NB_SESSION_COMPARTMENT_OCID")
drive_shape = "VM.Standard2.1"
executor_shape = "VM.Standard2.1"
spark_version = "3.2.1"

In the following example, a DataFlow is created and populated with the information that it needs to define the Data
Flow service. Since, we are connecting to the Data Catalog Metastore to work with a Hive database, the metastore
OCID must be given.

from ads.jobs import DataFlow, DataFlowRun, DataFlowRuntime

dataflow_configs = DataFlow(
{"compartment_id": compartment_id,
"driver_shape": driver_shape,
"executor_shape": executor_shape,
"logs_bucket_uri": log_bucket_uri,
"metastore_id": metastore_id,

(continues on next page)
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"spark_version": spark_version}
)

In the following example, a DataFlowRuntime is created and populated with the URI to the PySpark script and the
URI for the script bucket. The script URI specifies the path to the script. It can be local or remote (an Object Storage
path). If the path is local, then a URI to the script bucket must also be specified. This is because Data Flow requires a
script to be in Object Storage. If the specified path to the PySpark script is on a local drive, ADS will upload it for you.

runtime_config = DataFlowRuntime(
{

"script_bucket": script_uri
"script_uri": pyspark_file_path,

}
)

6.4.3 Run

The recommended approach for running Data Flow applications is to use a Job. This will prevent your notebook from
being blocked.

A Job requires a name, infrastructure, and runtime settings. Update the following code to give the job a unique name.
The infrastructure takes a DataFlow object and the runtime parameter takes a DataFlowRuntime object.

# Update values
job_name = "<job_name>"

df_job = Job(name=job_name,
infrastructure=dataflow_configs,
runtime=runtime_config)

df_app = df_job.create()
df_run = df_app.run()

6.5 Interactive Spark

This section demonstrates how to make connections to the Data Catalog Metastore and Object Storage. It uses Spark
to load data from a public Object Storage file and creates a database. The metadata for the database is managed by the
Data Catalog Metastore and the data is copied to your data warehouse bucket. Finally, Spark is used to make a Spark
SQL query on the database.

Specify the bucket URI that will act as the data warehouse. Use the warehouse_uri variable and it should have
the following format oci://<bucket_name>@<namespace_name>/<prefix>. Update the variable metastore_id
with the OCID of the Data Catalog Metastore.

Create a Spark session that connects to the Data Catalog Metastore and the Object Storage that will act as the data
warehouse.

from pyspark.sql import SparkSession

warehouse_uri = "<warehouse_uri>"
metastore_id = "<metastore_id>"

(continues on next page)
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spark = SparkSession \
.builder \
.appName("Python Spark SQL Hive integration example") \
.config("spark.sql.warehouse.dir", warehouse_uri) \
.config("spark.hadoop.oracle.dcat.metastore.id", metastore_id) \
.enableHiveSupport() \
.getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

Load a data file from Object Storage into a Spark DataFrame. Create a database in the Data Catalog Metastore and
then save the dataframe as a table. This will write the files to the location specified by the warehouse_uri variable.

database_name = "ODSC_DEMO"
table_name = "ODSC_PYSPARK_METASTORE_DEMO"
file_path = "oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.
→˓csv"

input_dataframe = spark.read.option("header", "true").csv(file_path)
spark.sql(f"DROP DATABASE IF EXISTS {database_name} CASCADE")
spark.sql(f"CREATE DATABASE {database_name}")
input_dataframe.write.mode("overwrite").saveAsTable(f"{database_name}.{table_name}")

Use Spark SQL to read from the database.

spark_df = spark.sql(f"""
SELECT EducationField, SalaryLevel, JobRole FROM {database_name}.

→˓{table_name} limit 10
""")

spark_df.show()

76 Chapter 6. Data Catalog Metastore



CHAPTER

SEVEN

DATA TRANSFORMATIONS

When datasets are loaded with DatasetFactory, they can be transformed and manipulated easily with the built-in func-
tions. Underlying, an ADSDataset object is a Pandas dataframe. Any operation that can be performed to a Pandas
dataframe can also be applied to an ADS Dataset.

7.1 Loading the Dataset

You can load a pandas dataframe into an ADSDataset by calling.

from ads.dataset.factory import DatasetFactory

ds = DatasetFactory.from_dataframe(df)

7.2 Automated Transformations

ADS has built in automatic transform tools for datasets. When the get_recommendations() tool is applied to an
ADSDataset object, it shows the user detected issues with the data and recommends changes to apply to the dataset.
You can accept the changes is as easy as clicking a button in the drop down menu. After all the changes are applied,
the transformed dataset can be retrieved by calling get_transformed_dataset().

wine_ds.get_recommendations()

Alternatively, you can use auto_transform() to apply all the recommended transformations at once.
auto_transform() returns a transformed dataset with several optimizations applied automatically. The optimiza-
tions include:

• Dropping constant and primary key columns, which has no predictive quality.

• Imputation to fill in missing values in noisy data.

• Dropping strongly co-correlated columns that tend to produce less generalizable models.

• Balancing a dataset using up or down sampling.

One optional argument to auto_transform() is fix_imbalance, which is set to True by default. When True,
auto_transform() corrects any imbalance between the classes. ADS downsamples the dominant class first unless
there are too few data points. In that case, ADS upsamples the minority class.

ds = wine_ds.auto_transform()
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You can visualize the transformation that has been performed on a dataset by calling visualize_transforms().

Note: visualize_transforms() is only applied to the automated transformations and does not capture any custom
transformations that you may have applied to the dataset.

ds.visualize_transforms()

7.3 Row Operations

The operations that can be applied to a Pandas dataframe can be applied to an ADSDataset object.

Examples of some of the most common row operations you can apply on an ADSDataset object follow.
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7.3.1 Delete Rows

Rows within a dataset can be filtered out by row numbers. The index of the new dataset can be reset accordingly.

#Filter out rows by row number and reset index of new data
ds_subset = ds.loc[10:100]
ds_subset = ds_subset.reset_index()

Do not try to insert index into dataset columns.

7.3.2 Reset Index

Reset the index to the default index. When you reset index, the old index is added as a column index and a new
sequential index is used. You can use the drop parameter to avoid the old index being added as a column:

ds_subset = ds.loc[10:100]
ds_subset = ds_subset.reset_index(drop=True)
ds_subset.head()

The index restarts at zero for each partition. This is due to the inability to statically know the full length of the index.

7.3.3 Append Rows

New rows can be added to an existing dataset:

#Create new row to be added
row_to_add = ds.loc[0]
row_to_add['target'] = 'class_0'

#Add in new row to existing dataset
new_addition_ds = ds.merge(row_to_add, how = 'outer')

Alternatively, you can use the append() method of a Pandas dataframe to achieve a similar result:

ds2 = wine_ds.df.append(ds)

The ds2 is created as a Pandas DataFrame object.

7.3.4 Row Filtering

Columns can be filtered out by the values:

ds_filtered = ds[(ds['alcohol'] > 13.0) & (ds['malic_acid'] < 2.5)]
ds_filtered.head()
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7.3.5 Removing Duplicated Rows

Duplicate rows can removed using the drop_duplicates function:

ds_without_dup = ds.drop_duplicates()

7.4 Column Operations

The column operations that can be applied to a Pandas dataframe can be applied to an ADS dataset as in the following
examples.

7.4.1 Delete a Column

To delete specific columns from the dataset, the drop_columns function can be used along with names of the columns
to be deleted from the dataset. The ravel Pandas command returns the flattened underlying data as an ndarray. The
name_of_df.columns[:].ravel() command returns the name of all the columns in a dataframe as an array.

ds_subset_columns = ds.drop_columns(['alcohol', 'malic_acid'])
ds_subset_columns.columns[:].ravel()

array(['ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols',
'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins',
'color_intensity', 'hue', 'od280/od315_of_diluted_wines',
'proline', 'target'], dtype=object)

7.4.2 Rename a Column

Columns can be renamed with the rename_columns() method:

ds_columns_rename = ds.rename_columns({'alcohol': 'alcohol_amount',
'malic_acid': 'malic_acid_amount'})

ds_columns_rename.columns[:].ravel()

array(['alcohol_amount', 'malic_acid_amount', 'ash', 'alcalinity_of_ash',
'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols',
'proanthocyanins', 'color_intensity', 'hue',
'od280/od315_of_diluted_wines', 'proline', 'target'], dtype=object)

7.4.3 Counts of Unique Values

The count per unique value can be obtained with the value_counts() method:

ds['target'].value_counts()

class_1 71
class_0 59
class_2 48
Name: target, dtype: int64
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7.4.4 Normalize a Column

You can apply a variety of normalization techniques to numerical columns (both continuous and discrete). You can
leverage the built in max() and min() methods to perform a minmax normalization:

max_alcohol = wine_ds['alcohol'].max()
min_alcohol = wine_ds['alcohol'].min()
alcohol_range = max_alcohol - min_alcohol
wine_ds.df['norm_alcohol'] = (wine_ds['alcohol'] / alcohol_range)

7.4.5 Combine Columns

This example creates a new column by performing operations to combine two or more columns together:

new_feature_col = ((0.4)*wine_ds['total_phenols'] + (0.6)*wine_ds['flavanoids'])
ds_new_feature = wine_ds.assign_column('new_feature', new_feature_col)
ds_new_feature.head()

Alternatively, you can create a new column directly in the Pandas dataframe attribute:

new_feature_col = ((0.4)*wine_ds['total_phenols'] + (0.6)*wine_ds['flavanoids'])
wine_ds.df['new_feature'] = new_feature_col
wine_ds.head()

To add new column, use a new name for it. You can add anew column and change it by combining with existing column:

noise = np.random.normal(0,.1,wine_ds.shape[0])
ds_noise = wine_ds.assign_column('noise', noise)

ds_ash = ds_noise.assign_column('noise', ds_noise['noise'] + ds_noise['ash'])
ds_ash = ds_ash.rename(columns={'noise':'ash_with_noise'})
ds_ash.head()

The resulting column is renamed with dict-like mapper.

7.4.6 Apply a Function to a Column

You can apply functions to update column values in existing column. This example updates the column in place using
lambda expression:

wine_ds.assign_column('proline', lambda x: x is None or x > 1000)
wine_ds.head()
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7.4.7 Change Data Type

You can change the data type columns with the astype() method. ADS uses the Pandas method, astype(), on
dataframe objects. For specifics, see astype for a Pandas Dataframe, using numpy.dtype, or Pandas dtypes.

When you change the type of a column, ADS updates its semantic type to categorical, continuous, datetime, or ordinal.
For example, if you update a column type to integer, its semantic type updates to ordinal. For data type details, see
ref:loading-data-specify-dtype.

This example converts a dataframe column from float, to the low-level integer type and ADS updates its semantic type
to ordinal:

wine_ds = wine_ds.astype(types={'proline': 'int64'})
print(wine_ds.feature_types['proline']['low_level_type'])
print(wine_ds.feature_types['proline']['type'])

# Note: When you cast a float column to integer, you lose precision.
wine_ds['proline'].head()

To convert a column of type float to categorical, you convert it to integer first. This example converts a column data
type from float to integer, then to categorical, and then the number of categories in the column is reduced:

# create a new dataset with a renamed column for binned data and update the values
ds = wine_ds.rename_columns({'color_intensity': 'color_intensity_bin'})
ds = ds.assign_column('color_intensity_bin', lambda x: x/3)

# convert the column from float to categorical:
ds = ds.astype(types={'color_intensity_bin': 'int64'})
ds = ds.astype(types={'color_intensity_bin': 'categorical'})

You can use feature_types to see if the semantic data type of the converted column is categorical:

wine_ds.feature_types['color_intensity_bin']['type']

'categorical'

The low-level type of the converted column is category:

ds['color_intensity_bin'].head()

0 1
1 1
2 1
3 2
4 1
Name: color_intensity_bin, dtype: category
Categories (5, int64): [0, 1, 2, 3, 4]
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7.5 Dataset Manipulation

ADS has built in functions that support categorical encoding, null values and imputation.

7.5.1 Categorical Encoding

ADS has a built in categorical encoder that can be accessed by calling from ads.dataset.label_encoder import
DataFrameLabelEncoder. This example encodes the three classes of wine that make up the dataset:

from ads.dataset.label_encoder import DataFrameLabelEncoder
ds_encoded = DataFrameLabelEncoder().fit_transform(ds.to_pandas())
ds_encoded['target'].value_counts()

1 71
0 59
2 48

7.5.2 One-Hot Encoding

One-hot encoding transforms one categorical column with n categories into n or n-1 columns with indicator variables.
You can prepare one of the columns to be categorical with categories low, medium, and high:

def convert_to_level(value):
if value < 12:

return 'low'
elif value > 13:

return 'high'
else:

return 'medium'

ds = wine_ds
ds = ds.assign_column('alcohol', convert_to_level)

You can use the Pandas method get_dummies() to perform one-hot encoding on a column. Use the prefix parameter
to assign a prefix to the new columns that contain the indicator variables. This example creates n columns with one-hot
encoding:

data = ds.to_pandas()['alcohol'] # data of which to get dummy indicators
onehot = pd.get_dummies(data, prefix='alcohol')

To create n-1 columns, use drop_first=Truewhen converting the categorical column. You can add a one-hot column
to the initial dataset with the merge() method:

data = ds.to_pandas()['alcohol'] # data of which to get dummy indicators
onehot = pd.get_dummies(data, prefix='alcohol', drop_first=False)
ds_onehot = ds.merge(onehot)

Encoding for all categorical columns can be accomplished with the fit_transform() method:

from ads.dataset.label_encoder import DataFrameLabelEncoder

(continues on next page)
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ds_encoded = DataFrameLabelEncoder().fit_transform(ds_onehot.to_pandas())
ds_encoded['alcohol'].value_counts()

0 92
2 67
1 19

To drop the initial categorical column that you transformed into one-hot, use one of these examples:

ds_onehot = ds_onehot.drop_columns('alcohol') # before ``fit_transform()`` method
# or
ds_encoded = ds_encoded.drop(columns='alcohol') # after ``fit_transform()`` method

7.5.3 Extract Null Values

To detect all nulls in a dataset, use the isnull function to return a boolean dataset matching the dimension of our
input:

ds_null = ds.isnull()
np.any(ds_null)

alcohol False
malic_acid False
ash False
alcalinity_of_ash False
magnesium False
total_phenols False
flavanoids False
nonflavanoid_phenols False
proanthocyanins False
color_intensity False
hue False
od280/od315_of_diluted_wines False
proline False
target False

7.5.4 Imputation

The fillna function ia used to replace null values with specific values. Generate a null value by replacing the entry
below a certain value with null, and then imputing it with a value:

ds_with_null = ds.assign_column("malic_acid", lambda x: None if x < 2 else x)
ds_with_null['malic_acid'].head()

0 NaN
1 NaN
2 2.36
3 NaN

(continues on next page)
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4 2.59
Name: malic_acid, dtype: float64

ds_impute = ds_with_null.fillna(method='bfill')
ds_impute['malic_acid'].head()

0 2.36
1 2.36
2 2.36
3 2.59
4 2.59
Name: malic_acid, dtype: float64

7.5.5 Combine Datasets

ADS datasets can be merged and combined together to form a new dataset.

7.5.5.1 Join Datasets

You can merge two datasets together with a database-styled join on columns or indexes by specifying the type of join
left, right, outer, or inner. These type are defined by:

• left: Use only keys from the left dataset, similar to SQL left outer join.

• right: Use only keys from the right dataset, similar to SQL right outer join.

• inner: Intersection of keys from both datasets, similar to SQL inner join.

• outer: Union of keys from both datasets, similar to SQL outer join.

This is an example of performing an outer join on two datasets. The datasets are subsets of the wine dataset, and each
dataset contains only one class of wine.

ds_class1 = ds[ds['target']=='class_1']
ds_class2 = ds[ds['target']=='class_2']
ds_merged_outer = ds_class1.merge(ds_class2, how='outer')
ds_merged_outer['target'].value_counts()

class_1 71
class_2 48
class_0 0
Name: target, dtype: int64
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7.5.5.2 Concatenate Datasets

Two datasets can be concatenated along a particular axis (vertical or horizontal) with the option of performing set logic
(union or intersection) of the indexes on the other axes. You can stack two datasets vertically with:

ds_concat = pd.concat([ds_class1, ds_class2], axis = 0)
ds_concat['target'].value_counts()

class_1 71
class_2 48
class_0 0
Name: target, dtype: int64

7.6 Train/Test Datasets

After all data transformations are complete, you can split the data into a train and test or train, test, and validation set.
To split data into a train and test set with a train size of 80% and test size of 20%:

from ads.dataset.dataset_browser import DatasetBrowser
sklearn = DatasetBrowser.sklearn()
wine_ds = sklearn.open('wine')
ds = wine_ds.auto_transform()
train, test = ds.train_test_split(test_size=0.2)

For a train, test, and validation set, the defaults are set to 80% of the data for training, 10% for testing, and 10% for
validation. This example sets split to 70%, 15%, and 15%:

data_split = wine_ds.train_validation_test_split(
test_size=0.15,
validation_size=0.15

)
train, validation, test = data_split
print(data_split) # print out shape of train, validation, test sets in split

The resulting three data subsets each have separate data (X) and labels (y).

print(train.X) # print out all features in train dataset
print(train.y) # print out labels in train dataset

You can split the dataset right after the DatasetFactory.open() statement:

ds = DatasetFactory.open("path/data.csv").set_target('target')
train, test = ds.train_test_split(test_size=0.25)
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EIGHT

DATA VISUALIZATION

Data visualization is an important aspect of data exploration, analysis, and communication. Generally, visualization of
the data is one of the first steps in any analysis. It allows the analysts to efficiently gain an understanding of the data
and guides the exploratory data analysis (EDA) and the modeling process.

An efficient and flexible data visualization tool can provide a lot of insight into the data. ADS provides a smart visual-
ization tool. It automatically detects the data type and renders plots that optimally represent the characteristics of the
data. Within ADS, custom visualizations can be created using any plotting library.

8.1 Automatic

The ADS show_in_notebook() method creates a comprehensive preview of all the basic information about a dataset
including:

• The predictive data type (for example, regression, binary classification, or multinomial classification).

• The number of columns and rows.

• Feature type information.

• Summary visualization of each feature.

• The correlation map.

• Any warnings about data conditions that you should be aware of.

To improve plotting performance, the ADS show_in_notebook() method uses an optimized subset of the data. This
smart sample is selected so that it is statistically representative of the full dataset. The correlation map is only displayed
when the data only has numerical (continuous or oridinal) columns.

ds.show_in_notebook()

To visualize the correlation, call the show_corr() method. If the correlation matrices have not been cached, this call
triggers the corr() function which calculates the correlation matrices.

corr() uses the following methods to calculate the correlation based on the data types:

• Continuous-Continuous: `Pearson method <https://en.wikipedia.org/wiki/Pearson_correlation_
coefficient>`__. The correlations range from -1 to 1.

• Categorical-Categorical: `Cramer's V method <https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V>`__.
The correlations range from 0 to 1.

• Continuous-Categorical: `Correlation Ratio method <https://en.wikipedia.org/wiki/Correlation_
ratio>`__. The correlations range from 0 to 1.
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Correlations are displayed independently because the correlations are calculated using different methodologies and the
ranges are not the same. Consolidating them into one matrix could be confusing and inconsistent.

Note: Continuous features consist of continuous and ordinal types. Categorical features consist of
categorical and zipcode types.

ds.show_corr(nan_threshold=0.8, correlation_methods='all')

By default, nan_threshold is set to 0.8. This means that if more than 80% of the values in a column are missing,
that column is dropped from the correlation calculation. nan_threshold should be between 0 and 1. Other options
includes:

• correlation_methods: Methods to calculate the correlation. By default, only pearson correlation is calcu-
lated and shown. Can select one or more from pearson, cramers v, and correlation ratio. Or set to all
to show all correlation charts.

• correlation_target: Defaults to None. It can be any columns of type continuous, ordinal, categorical
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or zipcode. When correlation_target is set, only pairs that contain correlation_target display.

• correlation_threshold: Apply a filter to the correlation matrices and only exhibit the pairs whose correlation
values are greater than or equal to the correlation_threshold.

• force_recompute: Defaults to False. Correlation matrices are cached. Set force_recompute to True
to recalculate the correlation. Note that both corr() and show_corr() method can trigger calculation of
correlation matrices if run with force_recompute set to be True, or when there is no cached value exists.
show_in_notebook() calculates the correlation only when there are only numerical columns in the dataset.

• frac: Defaults to 1. The portion of the original data to calculate the correlation on. frac must be between 0
and 1.

• plot_type: Defaults to heatmap. Valid values are heatmap and bar. If bar is chosen, correlation_target
also has to be set and the bar chart will only show the correlation values of the pairs which have the target in
them.

ds.show_corr(correlation_target='col01', plot_type='bar')

To explore features, use the smart plot() method. It accepts one or two feature names. The show_in_notebook()
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method automatically determines the best type of plot based on the type of features that are to be plotted.

Three different examples are described. They use a binary classification dataset with 1,500 rows and 21 columns. 13
of the columns have a continuous data type, and 8 are categorical. There are three different examples.

• A single categorical feature: The plot() method detects that the feature is categorical because it only has the
values of 0 and 1. It then automatically renders a plot of the count of each category.

ds.plot("col02").show_in_notebook(figsize=(4,4))

• Categorical and continuous feature pair: ADS chooses the best plotting method, which is a violin plot.

ds.plot("col02", y="col01").show_in_notebook(figsize=(4,4))

• A pair of continuous features: ADS chooses a Gaussian heatmap as the best visualization. It generates a scatter
plot and assigns a color to each data point based on the local density (Gaussian kernel).

ds.plot("col01", y="col03").show_in_notebook()
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8.2 Customized

ADS provides intelligent default options for your plots. However, the visualization API is flexible enough to let you
customize your charts or choose your own plotting library. You can use the ADS call() method to select your own
plotting routine.

8.2.1 Seaborn

In this example, a dataframe is passed directly to the Seaborn pair plot function. It does a faceted, pairwise plot between
all the features in the dataset. The function creates a grid of axises such that each variable in the data is shared in the y-
axis across a row and in the x-axis across a column. The diagonal axises are treated differently by drawing a histogram
of each feature.

import seaborn as sns
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
sns.set(style="ticks", color_codes=True)
sns.pairplot(df.dropna())

8.2.2 Matplotlib

• Using Matplotlib:

import matplotlib.pyplot as plt
from numpy.random import randn

df = pd.DataFrame(randn(1000, 4), columns=list('ABCD'))

def ts_plot(df, figsize):
ts = pd.Series(randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df.set_index(ts)
df = df.cumsum()
plt.figure()
df.plot(figsize=figsize)
plt.legend(loc='best')

ts_plot(df, figsize=(7,7))

• Using a Pie Chart:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data = {'data': [1109, 696, 353, 192, 168, 86, 74, 65, 53]}
df = pd.DataFrame(data, index = ['20-50 km', '50-75 km', '10-20 km', '75-100 km',
→˓'3-5 km', '7-10 km', '5-7 km', '>100 km', '2-3 km'])

explode = (0, 0, 0, 0.1, 0.1, 0.2, 0.3, 0.4, 0.6)
(continues on next page)
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(continued from previous page)

colors = ['#191970', '#001CF0', '#0038E2', '#0055D4', '#0071C6', '#008DB8', '#00AAAA
→˓',

'#00C69C', '#00E28E', '#00FF80', ]

def bar_plot(df, figsize):
df["data"].plot(kind='pie', fontsize=17, colors=colors, explode=explode)
plt.axis('equal')
plt.ylabel('')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show()

bar_plot(df, figsize=(7,7))
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8.2.3 Geographic Information System (GIS)

This example uses the California earthquake data retrieved from United States Geological Survey (USGS) earthquake
catalog. It visualizes the location of major earthquakes.

earthquake.plot_gis_scatter(lon="longitude", lat="latitude")
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NINE

MODEL TRAINING

• Oracle AutoML

• Keras

• scikit-learn

• XGBoost

• ADSTuner

9.1 Oracle AutoML

Oracle AutoML automates the machine learning experience. It replaces the laborious and time consuming tasks of the
data scientist whose workflow is as follows:

1. Select a model from a large number of viable candidate models.

2. For each model, tune the hyperparameters.

3. Select only predictive features to speed up the pipeline and reduce over fitting.

4. Ensure the model performs well on unseen data (also called generalization).
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Oracle AutoML automates this workflow and provides you with an optimal model given a time budget. In addition
to incorporating these typical machine learning workflow steps, Oracle AutoML is also optimized to produce a high
quality model very efficiently. You can achieve this with the following:

• Scalable design: All stages in the Oracle AutoML pipeline exploit both internode and intranode parallelism,
which improves scalability and reduces runtime.

• Intelligent choices reduce trials in each stage: Algorithms and parameters are chosen based on dataset charac-
teristics. This ensures that the selected model is accurate and is efficiently selected. You can achieve this using
meta learning throughout the pipeline. Meta learning is used in:

– Algorithm selection to choose an optimal model class.

– Adaptive sampling to identify the optimal set of samples.

– Feature selection to determine the ideal feature subset.

– Hyperparameter optimization.

The following topics detail the Oracle AutoML pipeline and individual stages of the pipeline:

9.1.1 Pipeline

An AutoML Pipeline consists of these four main stages:

The stages operate in sequence:

Contents

• Pipeline

– Algorithm Selection

– Adaptive Sampling

– Feature Selection

– Hyperparameter Tuning

9.1.1.1 Algorithm Selection

With a given dataset and a prediction task, the goal is to identify the algorithm that maximizes the model score. This
best algorithm is not always intuitive and simply picking a complex model is suboptimal for many use cases. The ADS
algorithm selection stage is designed to rank algorithms based on their estimated predictive performance on the given
dataset.
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For a given dataset, the algorithm selection process is as follows:

1. Extract relevant dataset characteristics, such as dataset shape, feature correlations, and appropriate meta-features.

2. Invoke specialized score-prediction metamodels that were learned to predict algorithm performance across a
wide variety of datasets and domains.

3. Rank algorithms based on their predicted performance.

4. Select the optimal algorithm.

9.1.1.2 Adaptive Sampling

Adaptive sampling iteratively subsamples the dataset and evaluates each sample to obtain a score for a specific algo-
rithm. The goal is to find the smallest sample size that adequately represents the full dataset. It is used in subsequent
pipeline stages without sacrificing the quality of the model.

The adaptive sampling process is as follows:

1. For a given algorithm and dataset, identify a representative sample.

2. Leverage meta-learning to predict algorithm performance on the given sample.

3. Iterate until the score converges.
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4. The identified sample is then used for subsequent stages of the AutoML Pipeline.

9.1.1.3 Feature Selection

The feature selection stage aims to select a subset of features that are highly predictive of the target. This speeds up
model training without loss of predictive performance. The ADS feature selection approach leverages meta-learning
to intelligently identify the optimal feature subset for a given algorithm and dataset. The high level process is:

For a given dataset, the feature selection process is as follows:

1. Obtain the dataset meta-features, similar to those obtained in the algorithm selection stage.

2. Rank all features using multiple ranking algorithms. Feature rankings are ordered lists of features from most to
least important.

3. For each feature ranking, the optimal feature subset is identified.

4. Algorithm performance is predicted by leveraging meta-learning on a given feature subset.

5. Iterating over multiple feature subsets, the optimal subset is determined.

9.1.1.4 Hyperparameter Tuning

The hyperparameter tuning stage determines the optimal values for the model’s hyperparameters. Generally, tuning is
the most time-consuming stage of an AutoML pipeline. Therefore, the hyperparameter tuning process is designed with
efficiency and scalability as first-order requirements. The ADS tuning strategy is summarized as:
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9.1.2 Using OracleAutoMLProvider

To demonstrate the OracleAutoMLProviderAPI, this example builds a classifier using the OracleAutoMLProvider
tool for the public Census Income dataset. The dataset is a binary classification dataset and more details about the
dataset are found at https://archive.ics.uci.edu/ml/datasets/Adult. Various options provided by the Oracle AutoML
tool are explored allowing you to exercise control over the AutoML training process. The different models trained by
Oracle AutoML are then evaluated.

9.1.2.1 Setup

Load the necessary modules:

import seaborn as sns
import pickle
import pandas as pd
import matplotlib.pyplot as plt
import logging
import gzip

from ads.evaluations.evaluator import ADSEvaluator
from ads.dataset.factory import DatasetFactory
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML

plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams['font.size'] = 15
sns.set(color_codes=True)
sns.set(font_scale=1.5)
sns.set_palette("bright")
sns.set_style("whitegrid")
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9.1.2.2 Dataset

Start by reading in the dataset from UCI. The dataset is not properly formatted, the separators have spaces between
them, and the test set has a corrupt row at the top. These options are specified to the Pandas CSV reader. The dataset
has already been pre-split into training and test sets. The training set is used to create a machine learning model using
Oracle AutoML, and the test set is used to evaluate the model’s performance on unseen data.

column_names = [
'age',
'workclass',
'fnlwgt',
'education',
'education-num',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'capital-gain',
'capital-loss',
'hours-per-week',
'native-country',
'income',

]

df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.
→˓data',

names=column_names, sep=',\s*', na_values='?')
test_df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/
→˓adult.test',

names=column_names, sep=',\s*', na_values='?', skiprows=1)

Retrieve some of the values in the data:

df.head()
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Table 1: Adult :header-rows: 1
age work-

class
fnl-
wgt

ed-
u-
ca-
tion

education-
num

marital-
status

occu-
pa-
tion

re-
la-
tion-
ship

race sex capital-
gain

capital-
loss

hours-
per-
week

native-
country

in-
come_level

39 State-
gov

77516 Bach-
e-
lors

13 Never-
married

Adm-
clerical

Not-
in-
family

White Male 2174 0 40 United-
States

<=50K

50 Self-
emp-
not-
inc

83311 Bach-
e-
lors

13 Married-
civ-
spouse

Exec-
managerial

Hus-
band

White Male 0 0 13 United-
States

<=50K

38 Pri-
vate

215646HS-
grad

9 Di-
vorced

Handlers-
cleaners

Not-
in-
family

White Male 0 0 40 United-
States

<=50K

53 Pri-
vate

23472111th 7 Married-
civ-
spouse

Handlers-
cleaners

Hus-
band

Black Male 0 0 40 United-
States

<=50K

28 Pri-
vate

338409Bach-
e-
lors

13 Married-
civ-
spouse

Prof-
specialty

Wife Black Fe-
male

0 0 40 Cuba <=50K

37 Pri-
vate

284582Mas-
ters

14 Married-
civ-
spouse

Exec-
managerial

Wife White Fe-
male

0 0 40 United-
States

<=50K

The Adult dataset contains a mix of numerical and string data, making it a challenging problem to train machine
learning models on.

pd.DataFrame({'Data type': df.dtypes}).T

Table 2: Adult Data Types
age work-

class
fnl-
wgt

ed-
u-
ca-
tion

education-
num

marital-
status

oc-
cu-
pa-
tion

re-
la-
tion-
ship

race sex capital-
gain

capital-
loss

hours-
per-
week

native-
country

in-
come_level

int64 ob-
ject

int64 ob-
ject

int64 ob-
ject

ob-
ject

ob-
ject

ob-
ject

ob-
ject

int64 int64 int64 ob-
ject

ob-
ject

The dataset is also missing many values, further adding to its complexity. The Oracle AutoML solution automatically
handles missing values by intelligently dropping features with too many missing values, and filling in the remaining
missing values based on the feature type.

pd.DataFrame({'% missing values': df.isnull().sum() * 100 / len(df)}).T
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Table 3: Adult Data Types
age work-

class
fnl-
wgt

ed-
u-
ca-
tion

education-
num

marital-
status

oc-
cu-
pa-
tion

re-
la-
tion-
ship

race sex capital-
gain

capital-
loss

hours-
per-
week

native-
country

in-
come_level

%
miss-
ing
val-
ues

0.0 5.6386470.0 0.0 0.0 0.0 5.6601460.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Visualize the distribution of the target variable in the training data.

target_col = 'income'
sns.countplot(x="income", data=df)

The test set has a different set of labels from the training set. The test set labels have an extra period (.) at the end
causing incorrect scoring.

print(df[target_col].unique())
print(test_df[target_col].unique())

['<=50K' '>50K']
['<=50K.' '>50K.']

Remove the trailing period (.) from the test set labels.

test_df[target_col] = test_df[target_col].str.rstrip('.')
print(test_df[target_col].unique())

['<=50K' '>50K']

Convert the Pandas dataframes to ADSDataset to use with ADS APIs.
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train = DatasetFactory.open(df).set_target(target_col)
test = DatasetFactory.open(test_df).set_target(target_col)

If the data is not already pre-split into train and test sets, you can split it with the train_test_split() or
train_validation_test_split() method. This example of loading the data and splitting it into an 80%/20%
train and test set.

ds = DatasetFactory.open("path/data.csv").set_target('target')
train, test = ds.train_test_split(test_size=0.2)

Splitting the data into train, validation, and test returns three data subsets. If you don’t specify the test and validation
sizes, the data is split 80%/10%/10%. This example assigns a 70%/15%/15% split:

data_split = ds.train_validation_test_split(
test_size=0.15,
validation_size=0.15

)
train, validation, test = data_split
print(data_split) # print out shape of train, validation, test sets in split

9.1.2.3 OracleAutoMLProvider

The Oracle AutoML solution automatically provides a tuned machine learning pipeline that best models the given a
training dataset and prediction task at hand. The dataset can be any supervised prediction task. For example, classifi-
cation or regression where the target can be a simple binary or a multinomial value or a real valued column in a table,
respectively.

The Oracle AutoML solution is selected using the OracleAutoMLProvider object that delegates model training to
the AutoML package.

AutoML consists four main modules:

1. Algorithm Selection - Identify the right algorithm for a given dataset, choosing from:

• AdaBoostClassifier

• DecisionTreeClassifier

• ExtraTreesClassifier

• KNeighborsClassifier

• LGBMClassifier

• LinearSVC

• LogisticRegression

• RandomForestClassifier

• SVC

• XGBClassifier

2. Adaptive Sampling - Choose the right subset of samples for evaluation while trying to balance classes at the
same time.

3. Feature Selection - Choose the right set of features that maximize score for the chosen algorithm.

4. Hyperparameter Tuning - Find the right model parameters that maximize score for the given dataset.
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All these modules are readily combined into a simple AutoML pipeline that automates the entire machine learning
process with minimal user input and interaction. The OracleAutoMLProvider class supports two arguments:

1. n_jobs: Specifies the degree of parallelism for Oracle AutoML. -1 (the default) means that AutoML uses all
available cores.

2. loglevel: The verbosity of output for Oracle AutoML. Can be specified using the Python logging module.

Create an OracleAutoMLProvider object that uses all available cores and disable any logging.

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)

9.1.2.4 Train

The AutoML API is quite simple to work with. Create an instance of Oracle AutoML (oracle_automl). Then the
training data is passed to the fit() function that does the following:

1. Preprocesses the training data.

2. Identifies the best algorithm.

3. Identifies the best set of features.

4. Identifies the best set of hyperparameters for this data.

A model is then generated that can be used for prediction tasks. ADS uses the roc_auc scoring metric to evaluate the
performance of this model on unseen data (X_test).

oracle_automl = AutoML(train, provider=ml_engine)
automl_model1, baseline = oracle_automl.train()
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Table 4: Adult :header-rows: 1
Rank
based
on
Perfor-
mance

Algorithm #Sam-
ples

#Fea-
tures

Mean
Vali-
dation
Score

Hyperparameters CPU
Time

2 LGBM-
Classi-
fier_HT

32561 9 0.9230 {‘boosting_type’: ‘gbdt’, ‘class_weight’: ‘balanced’,
‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 0}

5.7064

3 LGBM-
Classi-
fier_HT

32561 9 0.9230 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’:
0.0012000000000000001, ‘n_estimators’: 100,
‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

4.0975

4 LGBM-
Classi-
fier_HT

32561 9 0.9230 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’:
0.0011979297617518694, ‘n_estimators’: 100,
‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

3.1736

5 LGBM-
Classi-
fier_HT

32561 9 0.9227 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001,
‘n_estimators’: 127, ‘num_leaves’: 31, ‘reg_alpha’: 0,
‘reg_lambda’: 0}

5.9078

6 LGBM-
Classi-
fier_HT

32561 9 0.9227 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’: 0,
‘reg_lambda’: 0}

3.9490

. . . . . . . . . . . . . . . . . . . . .
188 LGBM-

Classi-
fier_FRanking_FS

32561 1 0.7172 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.5153

189 LGBM-
Classi-
fier_AVGRanking_FS

32561 1 0.7081 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.5611

190 LGBM-
Classi-
fier_RFRanking_FS

32561 2 0.7010 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.9917

191 LGBM-
Classi-
fier_AdaBoostRanking_FS

32561 1 0.5567 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.7886

192 LGBM-
Classi-
fier_RFRanking_FS

32561 1 0.5190 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.0109

During the Oracle AutoML process, a summary of the optimization process is printed:

1. Information about the training data.

2. Information about the AutoML Pipeline. For example,the selected features that AutoML found to be most pre-
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dictive in the training data, the selected algorithm that was the best choice for this data, and the model hyperpa-
rameters for the selected algorithm.

3. A summary of the different trials that AutoML performs in order to identify the best model.

The Oracle AutoML Pipeline automates much of the data science process, trying out many different machine learning
parameters quickly in a parallel fashion. The model provides a print_trials API to output all the different trials
performed by Oracle AutoML. The API has two arguments:

1. max_rows: Specifies the total number of trials that are printed. By default, all trials are printed.

2. sort_column: Column to sort results by. Must be one of:

• Algorithm

• #Samples

• #Features

• Mean Validation Score

• Hyperparameters

• CPU Time

oracle_automl.print_trials(max_rows=20, sort_column='Mean Validation Score')
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Table 5: :header-rows: 1
Rank
based
on
Perfor-
mance

Algorithm #Sam-
ples

#Fea-
tures

Mean
Vali-
dation
Score

Hyperparameters CPU
Time

2 LGBM-
Classi-
fier_HT

32561 9 0.9230 {‘boosting_type’: ‘gbdt’, ‘class_weight’: ‘balanced’,
‘learning_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 0}

5.7064

3 LGBM-
Classi-
fier_HT

32561 9 0.9230 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’:
0.0012000000000000001, ‘n_estimators’: 100,
‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

4.0975

4 LGBM-
Classi-
fier_HT

32561 9 0.9230 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’:
0.0011979297617518694, ‘n_estimators’: 100,
‘num_leaves’: 31, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

3.1736

5 LGBM-
Classi-
fier_HT

32561 9 0.9227 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001,
‘n_estimators’: 127, ‘num_leaves’: 31, ‘reg_alpha’: 0,
‘reg_lambda’: 0}

5.9078

6 LGBM-
Classi-
fier_HT

32561 9 0.9227 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: 8, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’: 0,
‘reg_lambda’: 0}

3.9490

. . . . . . . . . . . . . . . . . . . . .
188 LGBM-

Classi-
fier_FRanking_FS

32561 1 0.7172 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.5153

189 LGBM-
Classi-
fier_AVGRanking_FS

32561 1 0.7081 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.5611

190 LGBM-
Classi-
fier_RFRanking_FS

32561 2 0.7010 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.9917

191 LGBM-
Classi-
fier_AdaBoostRanking_FS

32561 1 0.5567 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.7886

192 LGBM-
Classi-
fier_RFRanking_FS

32561 1 0.5190 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.0109

ADS also provides the ability to visualize the results of each stage of the AutoML pipeline. The following plot shows
the scores predicted by algorithm selection for each algorithm. The horizontal line shows the average score across
all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are
colored teal. You can see that the LightGBM classifier achieved the highest predicted score (orange bar) and is chosen
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for subsequent stages of the pipeline.

oracle_automl.visualize_algorithm_selection_trials()

After algorithm selection, adaptive sampling aims to find the smallest dataset sample that can be created without com-
promising validation set score for the algorithm chosen (LightGBM).

Note: If you have fewer than 1000 data points in your dataset, adaptive sampling is not run and visualizations are not
generated.

oracle_automl.visualize_adaptive_sampling_trials()
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After finding a sample subset, the next goal of Oracle AutoML is to find a relevant feature subset that maximizes score
for the chosen algorithm. Oracle AutoML feature selection follows an intelligent search strategy. It looks at various
possible feature rankings and subsets, and identifies that smallest feature subset that does not compromise on score
for the chosen algorithm ExtraTreesClassifier). The orange line shows the optimal number of features chosen
by feature selection (9 features - [age, workclass, education, education-num, occupation, relationship, capital-gain,
capital-loss, hours-per-week]).

oracle_automl.visualize_feature_selection_trials()

Hyperparameter tuning is the last stage of the Oracle AutoML pipeline It focuses on improving the chosen algorithm’s
score on the reduced dataset (given by adaptive sampling and feature selection). ADS uses a novel algorithm to search
across many hyperparamter dimensions. Convergence is automatic when optimal hyperparameters are identified. Each
trial in the following graph represents a particular hyperparamter combination for the selected model.

oracle_automl.visualize_tuning_trials()
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9.1.2.5 Model List

The Oracle AutoML solution also has a model_list argument, allowing you to control the what algorithms AutoML
considers during its optimization process. model_list is specified as a list of strings, which can be any combination
of the following:

For classification:

• AdaBoostClassifier

• DecisionTreeClassifier

• ExtraTreesClassifier

• KNeighborsClassifier

• LGBMClassifier

• LinearSVC

• LogisticRegression

• RandomForestClassifier

• SVC

• XGBClassifier

For regression:

• AdaBoostRegressor

• DecisionTreeRegressor

• ExtraTreesRegressor

• KNeighborsRegressor

• LGBMRegressor

• LinearSVR

• LinearRegression

• RandomForestRegressor

• SVR

116 Chapter 9. Model Training



ADS Documentation, Release 2.6.4

• XGBRegressor

This example specifies that AutoML only consider the LogisticRegression classifier because it is a good algorithm
for this dataset.

automl_model2, _ = oracle_automl.train(model_list=['LogisticRegression'])

Table 6: :header-rows: 1
Rank based
on Perfor-
mance

Algorithm #Sam-
ples

#Fea-
tures

Mean
Validation
Score

Hyperparameters CPU
Time

2 LogisticRegres-
sion_HT

32561 13 0.8539 {‘C’: 57.680029607093125,
‘class_weight’: ‘balanced’, ‘solver’:
‘lbfgs’}

2.4388

3 LogisticRegres-
sion_HT

32561 13 0.8539 {‘C’: 57.680029607093125,
‘class_weight’: None, ‘solver’:
‘newton-cg’}

6.8440

4 LogisticRegres-
sion_HT

32561 13 0.8539 {‘C’: 57.680029607093125,
‘class_weight’: None, ‘solver’:
‘warn’}

1.6099

5 LogisticRegres-
sion_HT

32561 13 0.8539 {‘C’: 57.680029607093125,
‘class_weight’: ‘balanced’, ‘solver’:
‘warn’}

3.2381

6 LogisticRegres-
sion_HT

32561 13 0.8539 {‘C’: 57.680029607093125,
‘class_weight’: ‘balanced’, ‘solver’:
‘liblinear’}

3.0313

. . . . . . . . . . . . . . . . . . . . .
71 LogisticRegres-

sion_MIRanking_FS
32561 2 0.6867 {‘C’: 1.0, ‘class_weight’: ‘balanced’,

‘solver’: ‘liblinear’, ‘random_state’:
12345}

1.4268

72 LogisticRegres-
sion_AVGRanking_FS

32561 1 0.6842 {‘C’: 1.0, ‘class_weight’: ‘balanced’,
‘solver’: ‘liblinear’, ‘random_state’:
12345}

0.2242

73 LogisticRegres-
sion_RFRanking_FS

32561 2 0.6842 {‘C’: 1.0, ‘class_weight’: ‘balanced’,
‘solver’: ‘liblinear’, ‘random_state’:
12345}

1.2302

74 LogisticRegres-
sion_AdaBoostRanking_FS

32561 1 0.5348 {‘C’: 1.0, ‘class_weight’: ‘balanced’,
‘solver’: ‘liblinear’, ‘random_state’:
12345}

0.2380

75 LogisticRegres-
sion_RFRanking_FS

32561 1 0.5080 {‘C’: 1.0, ‘class_weight’: ‘balanced’,
‘solver’: ‘liblinear’, ‘random_state’:
12345}

0.2132
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9.1.2.6 Built-in Scoring Metric

The Oracle AutoML tool tries to maximize a given scoring metric, by looking at different algorithms, features, and
hyperparameter choices. By default, the score metric is set to roc_auc for binary classification, recall_macro for
multinomial classification, and neg_mean_squared_error for regression. You can also provide your own scoring
metric using the score_metric argument, allowing AutoML to maximize using that metric. The scoring metric can
be specified as a string.

• For binary classification, the supported metrics are ‘roc_auc’, ‘accuracy’, ‘f1’, ‘precision’, ‘recall’, ‘f1_micro’,
‘f1_macro’, ‘f1_weighted’, ‘f1_samples’, ‘recall_micro’, ‘recall_macro’, ‘recall_weighted’, ‘recall_samples’,
‘precision_micro’, ‘precision_macro’, ‘precision_weighted’, and ‘precision_samples’.

• For multinomial classification, the supported metrics are ‘recall_macro’, ‘accuracy’, ‘f1_micro’, ‘f1_macro’,
‘f1_weighted’, ‘f1_samples’, ‘recall_micro’, ‘recall_weighted’, ‘recall_samples’, ‘precision_micro’, ‘preci-
sion_macro’, ‘precision_weighted’, ‘precision_samples’ - For regression, one of ‘neg_mean_squared_error’, ‘r2’,
‘neg_mean_absolute_error’, ‘neg_mean_squared_log_error’, and ‘neg_median_absolute_error’.

• In this example, AutoML will optimize on the ‘f1_macro’ scoring metric:

automl_model3, _ = oracle_automl.train(score_metric='f1_macro')

9.1.2.7 Custom Scoring Metric

Alternatively, the score_metric can be specified as a user-defined function of the form.

def score_fn(y_true, y_pred):
logic here
return score

The scoring function needs to the be encapsulated as a scikit-learn scorer using the make_scorer function.

This example leverages the scikit-learn’s implementation of the balanced accuracy scoring function. Then a scorer
function is created (score_fn) and passed to the score_metric argument of train.

import numpy as np
from sklearn.metrics import make_scorer, f1_score

# Define the scoring function
score_fn = make_scorer(f1_score, greater_is_better=True, needs_proba=False, average=
→˓'macro')
automl_model4, _ = oracle_automl.train(score_metric=score_fn)
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Table 7: :header-rows: 1
Rank
based
on
Perfor-
mance

Algorithm #Sam-
ples

#Fea-
tures

Mean
Vali-
dation
Score

Hyperparameters CPU
Time

2 LGBM-
Classi-
fier_HT

32561 9 0.7892 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
0.0023949484694617373, ‘reg_lambda’: 0}

3.6384

3 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
1e-10, ‘reg_lambda’: 0}

4.0626

4 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
1.0000099999e-05, ‘reg_lambda’: 0}

5.3854

5 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: ‘balanced’,
‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
0, ‘reg_lambda’: 0}

2.7319

6 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.0012000000000000001, ‘n_estimators’: 100,
‘num_leaves’: 32, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

4.9743

. . . . . . . . . . . . . . . . . . . . .
182 LGBM-

Classi-
fier_AdaBoostRanking_FS

32561 2 0.5889 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

4.0190

183 LGBM-
Classi-
fier_AVGRanking_FS

32561 1 0.5682 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.3313

184 LGBM-
Classi-
fier_RFRanking_FS

32561 2 0.5645 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.8365

185 LGBM-
Classi-
fier_AdaBoostRanking_FS

32561 1 0.5235 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.2191

186 LGBM-
Classi-
fier_RFRanking_FS

32561 1 0.4782 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.9353
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9.1.2.8 Time Budget

The Oracle AutoML tool also supports a user given time budget in seconds. This time budget works as a hint, and
AutoML tries to terminate computation as soon as the time budget is exhausted by returning the current best model.
The model returned depends on the stage that AutoML was in when the time budget was exhausted.

If the time budget is exhausted before:

1. Preprocessing completes, then a Naive Bayes model is returned for classification and Linear Regression for
regression.

2. Algorithm selection completes, the partial results for algorithm selection are used to evaluate the best candidate
that is returned.

3. Hyperparameter tuning completes, then the current best known hyperparameter configuration is returned.

Given the small size of this dataset, a small time budget of 10 seconds is specified using the time_budget argu-
ment. The time budget in this case is exhausted during algorithm selection, and the currently known best model
(LGBMClassifier) is returned.

automl_model5, _ = oracle_automl.train(time_budget=10)
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Table 8: :header-rows: 1
Rank
based
on
Perfor-
mance

Algorithm #Sam-
ples

#Fea-
tures

Mean
Vali-
dation
Score

Hyperparameters CPU
Time

2 LGBM-
Classi-
fier_HT

32561 9 0.7892 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
0.0023949484694617373, ‘reg_lambda’: 0}

3.6384

3 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
1e-10, ‘reg_lambda’: 0}

4.0626

4 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
1.0000099999e-05, ‘reg_lambda’: 0}

5.3854

5 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: ‘balanced’,
‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.001, ‘n_estimators’: 100, ‘num_leaves’: 32, ‘reg_alpha’:
0, ‘reg_lambda’: 0}

2.7319

6 LGBM-
Classi-
fier_HT

32561 9 0.7890 {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘learn-
ing_rate’: 0.1, ‘max_depth’: -1, ‘min_child_weight’:
0.0012000000000000001, ‘n_estimators’: 100,
‘num_leaves’: 32, ‘reg_alpha’: 0, ‘reg_lambda’: 0}

4.9743

. . . . . . . . . . . . . . . . . . . . .
182 LGBM-

Classi-
fier_AdaBoostRanking_FS

32561 2 0.5889 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

4.0190

183 LGBM-
Classi-
fier_AVGRanking_FS

32561 1 0.5682 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.3313

184 LGBM-
Classi-
fier_RFRanking_FS

32561 2 0.5645 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.8365

185 LGBM-
Classi-
fier_AdaBoostRanking_FS

32561 1 0.5235 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

2.2191

186 LGBM-
Classi-
fier_RFRanking_FS

32561 1 0.4782 {‘boosting_type’: ‘gbdt’, ‘learning_rate’: 0.1,
‘max_depth’: -1, ‘min_child_weight’: 0.001,
‘n_estimators’: 100, ‘num_leaves’: 31, ‘reg_alpha’:
0, ‘reg_lambda’: 1, ‘class_weight’: ‘balanced’}

1.9353
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9.1.2.9 Minimum Feature List

The Oracle AutoML Pipeline also supports a min_features argument. AutoML ensures that these features are part
of the final model that it creates, and these are not dropped during the feature selection phase.

It can take three possible types of values:

• If int, 0 < min_features <= n_features

• If float, 0 < min_features <= 1.0

• If list, names of features to keep. For example, [‘a’, ‘b’] means keep features ‘a’ and ‘b’.

automl_model6, _ = oracle_automl.train(min_features=['fnlwgt', 'native-country'])

9.1.2.10 Compare Models

A model trained using AutoML can easily be deployed into production because it behaves similar to any standard
Machine Learning model. This example evaluates the model on unseen data stored in test. Each of the generated
AutoML models is renamed making them easier to visualize. ADS uses ADSEvaluator to visualize behavior for each
of the models on the test set, including the baseline.

automl_model1.rename('AutoML_Default')
automl_model2.rename('AutoML_ModelList')
automl_model3.rename('AutoML_ScoringString')
automl_model4.rename('AutoML_ScoringFunction')
automl_model5.rename('AutoML_TimeBudget')
automl_model6.rename('AutoML_MinFeatures')
evaluator = ADSEvaluator(test, models=[automl_model1, automl_model2, automl_model3,␣
→˓automl_model4, automl_model5, automl_model6, baseline],

training_data=train, positive_class='>50K')
evaluator.show_in_notebook(plots=['normalized_confusion_matrix'])
evaluator.metrics
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9.2 Keras

Keras is an open source neural network library. It can run on top of TensorFlow, Theano, and Microsoft Cognitive
Toolkit. By default, Keras uses TensorFlow as the backend. Keras is written in Python, but it has support for R and
PlaidML, see About Keras.

These examples examine a binary classification problem predicting churn. This is a common type of problem that can
be solved using Keras, Tensorflow, and scikit-learn.

If the data is not cached, it is pulled from github, cached, and then loaded.

from os import path
import numpy as np
import pandas as pd
import requests

import logging
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)

churn_data_file = '/tmp/churn.csv'
if not path.exists(churn_data_file):

# fetch sand save some data
print('fetching data from web...', end =" ")
r = requests.get('oci://hosted-ds-datasets@hosted-ds-datasets/churn/dataset.csv')
with open(churn_data_file, 'wb') as fd:

fd.write(r.content)
print("Done")

df = pd.read_csv(churn_data_file)

Keras needs to be imported and scikit-learn needs to be imported to generate metrics. Most of the data prepro-
cessing and modeling can be done using the ADS library. However, the following example demonstrates how to do
these tasks with external libraries:

from keras.layers import Dense
from keras.models import Sequential
from sklearn.metrics import confusion_matrix, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import StandardScaler

The first step is data preparation. From the pandas.DataFrame, you extract the X and Y-values as numpy arrays.
The feature selection is performed manually. The next step is feature encoding using sklearn LabelEncoder. This
converts categorical variables into ordinal values (‘red’, ‘green’, ‘blue’ –> 0, 1, 2) to be compatible with Keras. The
data is then split using a 80/20 ratio. The training is performed on 80% of the data. Model testing is performed on the
remaining 20% of the data to evaluate how well the model generalizes.

feature_name = ['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary']

response_name = ['Exited']
data = df[[val for sublist in [feature_name, response_name] for val in sublist]].copy()

# Encode the category columns
(continues on next page)
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for col in ['Geography', 'Gender']:
data.loc[:, col] = LabelEncoder().fit_transform(data.loc[:, col])

# Do an 80/20 split for the training and test data
train, test = train_test_split(data, test_size=0.2, random_state=42)

# Scale the features and split the features away from the response
sc = StandardScaler() # Feature Scaling
X_train = sc.fit_transform(train.drop('Exited', axis=1).to_numpy())
X_test = sc.transform(test.drop('Exited', axis=1).to_numpy())
y_train = train.loc[:, 'Exited'].to_numpy()
y_test = test.loc[:, 'Exited'].to_numpy()

The following shows the neural network architecture. It is a sequential model with an input layer with 10 nodes. It has
two hidden layers with 255 densely connected nodes and the ReLu activation function. The output layer has a single
node with a sigmoid activation function because the model is doing binary classification. The optimizer is Adam and
the loss function is binary cross-entropy. The model is optimized on the accuracy metric. This takes several minutes
to run.

keras_classifier = Sequential()
keras_classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid'))
keras_classifier.add(Dense(units=255, kernel_initializer='uniform', activation='relu'))
keras_classifier.add(Dense(units=255, kernel_initializer='uniform', activation='relu',␣
→˓input_dim=10))
keras_classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy
→˓'])
keras_classifier.fit(X_train, y_train, batch_size=10, epochs=25)

To evaluate this model, you could use sklearn or ADS.

This example uses sklearn:

y_pred = keras_classifier.predict(X_test)
y_pred = (y_pred > 0.5)

cm = confusion_matrix(y_test, y_pred)
auc = roc_auc_score(y_test, y_pred)

print("confusion_matrix:\n", cm)
print("roc_auc_score", auc)

This example uses the ADS evaluator package:

from ads.common.data import MLData
from ads.common.model import ADSModel
from ads.evaluations.evaluator import ADSEvaluator

eval_test = MLData.build(X = pd.DataFrame(sc.transform(test.drop('Exited', axis=1)),␣
→˓columns=feature_name),

y = pd.Series(test.loc[:, 'Exited']),
name = 'Test Data')

eval_train = MLData.build(X = pd.DataFrame(sc.transform(train.drop('Exited', axis=1)),␣
→˓columns=feature_name),

(continues on next page)
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y = pd.Series(train.loc[:, 'Exited']),
name = 'Training Data')

clf = ADSModel.from_estimator(keras_classifier, name="Keras")
evaluator = ADSEvaluator(eval_test, models=[clf], training_data=eval_train)

9.3 Scikit-Learn

The sklearn pipeline can be used to build a model on the same churn dataset that was used in the Keras section. The
pipeline allows the model to contain multiple stages and transformations. Typically, there are pipeline stages for feature
encoding, scaling, and so on. In this pipeline example, a LogisticRegression estimator is used:

from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

pipeline_classifier = Pipeline(steps=[
('clf', LogisticRegression())

])

pipeline_classifier.fit(X_train, y_train)

You can evaluate this model using sklearn or ADS.

9.4 XGBoost

XGBoost is an optimized, distributed gradient boosting library designed to be efficient, flexible, and portable. It imple-
ments machine learning algorithms under the Gradient Boosting framework. XGBoost provides parallel tree boosting
(also known as Gradient Boosting Decision Tree, Gradient Boosting Machines [GBM]) and can be used to solve a
variety of data science applications. The unmodified code runs on several distributed environments (Hadoop, SGE,
andMPI) and can processes billions of observations, see the XGBoost Documentation.

Import XGBoost with:

from xgboost import XGBClassifier

xgb_classifier = XGBClassifier(nthread=1)
xgb_classifier.fit(eval_train.X, eval_train.y)

From the three estimators, we create three ADSModel objects. A Keras classifier, a sklearn pipeline with a single
LogisticRegression stage, and an XGBoost model:

from ads.common.model import ADSModel
from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLDataa

keras_model = ADSModel.from_estimator(keras_classifier)
lr_model = ADSModel.from_estimator(lr_classifier)
xgb_model = ADSModel.from_estimator(xgb_classifier)

evaluator = ADSEvaluator(eval_test, models=[keras_model, lr_model, xgb_model], training_
(continues on next page)
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→˓data=eval_train)
evaluator.show_in_notebook()

9.5 ADSTuner

In addition to the other services for training models, ADS includes a hyperparameter tuning framework called
ADSTuner.

ADSTuner supports using several hyperparameter search strategies that plug into common model architectures like
sklearn.

ADSTuner further supports users defining their own search spaces and strategies. This makes ADSTuner functional
and useful with any ML library that doesn’t include hyperparameter tuning.

First, import the packages:

import category_encoders as ce
import lightgbm
import logging
import numpy as np
import os
import pandas as pd
import pytest
import sklearn
import xgboost

from ads.hpo.distributions import *
from ads.hpo.search_cv import ADSTuner, NotResumableError
from ads.hpo.stopping_criterion import *
from lightgbm import LGBMClassifier
from sklearn import preprocessing
from sklearn.compose import ColumnTransformer
from sklearn.datasets import load_iris, load_boston
from sklearn.decomposition import PCA
from sklearn.ensemble import AdaBoostRegressor, AdaBoostClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.impute import SimpleImputer
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.metrics import make_scorer, f1_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBClassifier

This is an example of running the ADSTuner on a support model SGD from sklearn:

model = SGDClassifier() ##Initialize the model
X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
tuner = ADSTuner(model, cv=3) ## cv is cross validation splits
tuner.search_space() ##This is the default search space
tuner.tune(X_train, y_train, exit_criterion=[NTrials(10)])
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ADSTuner generates a tuning report that lists its trials, best performing hyperparameters, and performance statistics
with:

You can use tuner.best_score to get the best score on the scoring metric used (accessible as``tuner.scoring_name``)
The best selected parameters are obtained with tuner.best_params and the complete record of trials with tuner.
trials

If you have further compute resources and want to continue hyperparameter optimization on a model that has already
been optimized, you can use:

tuner.resume(exit_criterion=[TimeBudget(5)], loglevel=logging.NOTSET)
print('So far the best {} score is {}'.format(tuner.scoring_name, tuner.best_score))
print("The best trial found was number: " + str(tuner.best_index))

ADSTuner has some robust visualization and plotting capabilities:

tuner.plot_best_scores()
tuner.plot_intermediate_scores()
tuner.search_space()
tuner.plot_contour_scores(params=['penalty', 'alpha'])
tuner.plot_parallel_coordinate_scores(params=['penalty', 'alpha'])
tuner.plot_edf_scores()

These commands produce the following plots:
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ADSTuner supports custom scoring functions and custom search spaces. This example uses a different model:

model2 = LogisticRegression()
tuner = ADSTuner(model2,

strategy = {
'C': LogUniformDistribution(low=1e-05, high=1),
'solver': CategoricalDistribution(['saga']),
'max_iter': IntUniformDistribution(500, 1000, 50)},
scoring=make_scorer(f1_score, average='weighted'),
cv=3)

tuner.tune(X_train, y_train, exit_criterion=[NTrials(5)])

ADSTuner doesn’t support every model. The supported models are:

• ‘Ridge’,

• ‘RidgeClassifier’,

• ‘Lasso’,

• ‘ElasticNet’,

• ‘LogisticRegression’,
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• ‘SVC’,

• ‘SVR’,

• ‘LinearSVC’,

• ‘LinearSVR’,

• ‘DecisionTreeClassifier’,

• ‘DecisionTreeRegressor’,

• ‘RandomForestClassifier’,

• ‘RandomForestRegressor’,

• ‘GradientBoostingClassifier’,

• ‘GradientBoostingRegressor’,

• ‘XGBClassifier’,

• ‘XGBRegressor’,

• ‘ExtraTreesClassifier’,

• ‘ExtraTreesRegressor’,

• ‘LGBMClassifier’,

• ‘LGBMRegressor’,

• ‘SGDClassifier’,

• ‘SGDRegressor’

The AdaBoostRegressor model is not supported. This is an example of a custom strategy to use with this model:

model3 = AdaBoostRegressor()
X, y = load_boston(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
tuner = ADSTuner(model3, strategy={'n_estimators': IntUniformDistribution(50, 100)})
tuner.tune(X_train, y_train, exit_criterion=[TimeBudget(5)])

Finally, ADSTuner supports sklearn pipelines:

df, target = pd.read_csv(os.path.join('~', 'advanced-ds', 'tests', 'vor_datasets', 'vor_
→˓titanic.csv')), 'Survived'
X = df.drop(target, axis=1)
y = df[target]

numeric_features = X.select_dtypes(include=['int64', 'float64', 'int32', 'float32']).
→˓columns
categorical_features = X.select_dtypes(include=['object', 'category', 'bool']).columns

y = preprocessing.LabelEncoder().fit_transform(y)

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.3, random_
→˓state=42)

num_features = len(numeric_features) + len(categorical_features)

(continues on next page)
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numeric_transformer = Pipeline(steps=[
('num_imputer', SimpleImputer(strategy='median')),
('num_scaler', StandardScaler())

])

categorical_transformer = Pipeline(steps=[
('cat_imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('cat_encoder', ce.woe.WOEEncoder())

])

preprocessor = ColumnTransformer(
transformers=[

('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)

]
)

pipe = Pipeline(
steps=[

('preprocessor', preprocessor),
('feature_selection', SelectKBest(f_classif, k=int(0.9 * num_features))),
('classifier', LogisticRegression())

]
)

def customerize_score(y_true, y_pred, sample_weight=None):
score = y_true == y_pred
return np.average(score, weights=sample_weight)

score = make_scorer(customerize_score)
ads_search = ADSTuner(

pipe,
scoring=score,
strategy='detailed',
cv=2,
random_state=42

)
ads_search.tune(X=X_train, y=y_train, exit_criterion=[NTrials(20)])

9.5.1 Example

A hyperparameter is a parameter that is used to control a learning process. This is in contrast to other parameters
that are learned in the training process. The process of hyperparameter optimization is to search for hyperparameter
values by building many models and assessing their quality. This notebook provides an overview of the ADSTuner
hyperparameter optimization engine. ADSTuner can optimize any estimator object that follows the scikit-learn API.

import category_encoders as ce
import lightgbm
import logging
import numpy as np
import os

(continues on next page)
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import pandas as pd
import sklearn
import time

from ads.hpo.stopping_criterion import *
from ads.hpo.distributions import *
from ads.hpo.search_cv import ADSTuner, State

from sklearn import preprocessing
from sklearn.compose import ColumnTransformer
from sklearn.datasets import load_iris, load_boston
from sklearn.decomposition import PCA
from sklearn.impute import SimpleImputer
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.metrics import make_scorer, f1_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif

9.5.1.1 Introduction

Hyperparameter optimization requires a model, dataset, and an ADSTuner object to perform the search.

ADSTuner() Performs a hyperparameter search using cross-validation. You can specify the number of folds you want
to use with the cv parameter.

The ADSTuner() needs a search space to tune the hyperparameters in so you use the strategy parameter. This
parameter can be set in two ways. You can specify detailed search criteria or you can use the built-in defaults. For
the supported model classes, ADSTuner provides perfunctoryand detailed search spaces that are optimized for
the class of model that is being used. The perfunctory option is optimized for a small search space so that the most
important hyperparameters are tuned. Generally, this option is used early in your search as it reduces the computational
cost and allows you to assess the quality of the model class that you are using. The detailed search space instructs
ADSTuner to cover a broad search space by tuning more hyperparameters. Typically, you would use it when you have
determined what class of model is best suited for the dataset and type of problem you are working on. If you have
experience with the dataset and have a good idea of what the best hyperparameter values are, you can explicitly specify
the search space. You pass a dictionary that defines the search space into the strategy.

The parameter storage takes a database URL. For example, sqlite:////home/datascience/example.db. When
storage is set to the default value None, a new sqlite database file is created internally in the tmp folder with a unique
name. The name format is sqlite:////tmp/hpo_*.db. study_name is the name of this study for this ADSTuner
object. One ADSTuner object only has one study_name. However, one database file can be shared among different
ADSTuner objects. load_if_exists controls whether to load an existing study from an existing database file. If
False, it raises a DuplicatedStudyError when the study_name exists.

The loglevel parameter controls the amount of logging information displayed in the notebook.

This notebook uses the scikit-learn SGDClassifer() model and the iris dataset. This model object is a regularized
linear model with stochastic gradient descent (SGD) used to optimize the model parameters.

The next cell creates the SGDClassifer() model, initialize an ADSTuner object, and loads the iris data.

tuner = ADSTuner(SGDClassifier(), cv=3, loglevel=logging.WARNING)
X, y = load_iris(return_X_y=True)
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A new study created with name: hpo_22cfd4d5-c512-4e84-b7f8-d6d9c721ff05

Each model class has a set of hyperparameters that you need to optimized. The strategy attribute returns what
strategy is being used. This can be perfunctory, detailed, or a dictionary that defines the strategy. The method
search_space() always returns a dictionary of hyperparameters that are to be searched. Any hyperparameter that is
required by the model, but is not listed, uses the default value that is defined by the model class. To see what search
space is being used for your model class when strategy is perfunctory or detailed use the search_space()
method to see the details.

The adstuner_search_space_update.ipynb notebook has detailed examples about how to work with and update
the search space.

The following code snippet shows the search strategy and the search space.

print(f'Search Space for strategy "{tuner.strategy}" is: \n {tuner.search_space()}')

Search Space for strategy "perfunctory" is:
{'alpha': LogUniformDistribution(low=0.0001, high=0.1), 'penalty':␣
→˓CategoricalDistribution(choices=['l1', 'l2', 'none'])}

The tune() method starts a tuning process. It has a synchronous and asynchronous mode for tuning. The mode is set
with the synchronous parameter. When it is set to False, the tuning process runs asynchronously so it runs in the
background and allows you to continue your work in the notebook. When synchronous is set to True, the notebook
is blocked until tune() finishes running. The adntuner_sync_and_async.ipynb notebook illustrates this feature
in a more detailed way.

The ADSTuner object needs to know when to stop tuning. The exit_criterion parameter accepts a list of criteria
that cause the tuning to finish. If any of the criteria are met, then the tuning process stops. Valid exit criteria are:

• NTrials(n): Run for n number of trials.

• ScoreValue(s): Run until the score value exceeds s.

• TimeBudget(t): Run for t seconds.

The default behavior is to run for 50 trials (NTrials(50)).

The stopping criteria are listed in the ads.hpo.stopping_criterion module.

9.5.1.2 Synchronous Tuning

This section demonstrates how to perform a synchronous tuning process with the exit criteria based on the number of
trials. In the next cell, the synchronous parameter is set to True and the exit_criterion is set to [NTrials(5)].

tuner.tune(X, y, exit_criterion=[NTrials(5)], synchronous=True)

You can access a summary of the trials by looking at the various attributes of the tuner object. The scoring_name
attribute is a string that defines the name of the scoring metric. The best_score attribute gives the best score of all
the completed trials. The best_params parameter defines the values of the hyperparameters that have to lead to the
best score. Hyperparameters that are not in the search criteria are not reported.

print(f"So far the best {tuner.scoring_name} score is {tuner.best_score} and the best␣
→˓hyperparameters are {tuner.best_params}")

So far the best mean accuracy score is 0.9666666666666667 and the best hyperparameters␣
→˓are {'alpha': 0.002623793623610696, 'penalty': 'none'}
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You can also look at the detailed table of all the trials attempted:

tuner.trials.tail()

9.5.1.3 Asynchronously Tuning

ADSTuner() tuner can be run in an asynchronous mode by setting synchronous=False in the tune() method. This
allows you to run other Python commands while the tuning process is executing in the background. This section
demonstrates how to run an asynchronous search for the optimal hyperparameters. It uses a stopping criteria of five
seconds. This is controlled by the parameter exit_criterion=[TimeBudget(5)].

The next cell starts an asynchronous tuning process. A loop is created that prints the best search results that have been
detected so far by using the best_score attribute. It also displays the remaining time in the time budget by using the
time_remaining attribute. The attribute status is used to exit the loop.

# This cell will return right away since it's running asynchronous.
tuner.tune(exit_criterion=[TimeBudget(5)])
while tuner.status == State.RUNNING:

print(f"So far the best score is {tuner.best_score} and the time left is {tuner.time_
→˓remaining}")

time.sleep(1)

So far the best score is 0.9666666666666667 and the time left is 4.977275848388672
So far the best score is 0.9666666666666667 and the time left is 3.9661824703216553
So far the best score is 0.9666666666666667 and the time left is 2.9267797470092773
So far the best score is 0.9666666666666667 and the time left is 1.912914752960205
So far the best score is 0.9733333333333333 and the time left is 0.9021461009979248
So far the best score is 0.9733333333333333 and the time left is 0

The attribute best_index gives you the index in the trials data frame where the best model is located.

tuner.trials.loc[tuner.best_index, :]

number 10
value 0.98
datetime_start 2021-04-21 20:04:17.013347
datetime_complete 2021-04-21 20:04:18.623813
duration 0 days 00:00:01.610466
params_alpha 0.014094
params_penalty l1
user_attrs_mean_fit_time 0.16474
user_attrs_mean_score_time 0.024773
user_attrs_mean_test_score 0.98
user_attrs_metric mean accuracy
user_attrs_split0_test_score 1.0
user_attrs_split1_test_score 1.0
user_attrs_split2_test_score 0.94
user_attrs_std_fit_time 0.006884
user_attrs_std_score_time 0.00124
user_attrs_std_test_score 0.028284
state COMPLETE
Name: 10, dtype: object
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The attribute n_trials reports the number of successfully complete trials that were conducted.

print(f"The total of trials was: {tuner.n_trials}.")

The total of trials was: 11.

9.5.1.4 Inspect Trials

You can inspect the tuning trials performance using several built in plots.

Note: If the tuning process is still running in the background, the plot runs in real time to update the new changes until
the tuning process completes.

# tuner.tune(exit_criterion=[NTrials(5)], loglevel=logging.WARNING) # uncomment this␣
→˓line to see the real-time plot.
tuner.plot_best_scores()

Plot the intermediate training scores.

tuner.plot_intermediate_scores()

Create a contour plot of the scores

tuner.plot_contour_scores(params=['penalty', 'alpha'])

Create a parallel coordinate plot of the scores.

tuner.plot_parallel_coordinate_scores(params=['penalty', 'alpha'])

Plot the empirical density function.

tuner.plot_edf_scores()

Plot how important each parameter is.

tuner.plot_param_importance()

9.5.1.5 Custom Search Space and Score

Instead of using a perfunctory or detailed strategy, define a custom search space strategy.

The next cell, creates a LogisticRegression() model instance then defines a custom search space strategy for the
three LogisticRegression() hyperparameters, C, solver, and max_iter parameters.

You can define a custom scoring parameter, see Optimizing a scikit-learn Pipeline() though this example uses the
standard weighted average 𝐹1, f1_score.

tuner = ADSTuner(LogisticRegression(),
strategy = {'C': LogUniformDistribution(low=1e-05, high=1),

'solver': CategoricalDistribution(['saga']),
'max_iter': IntUniformDistribution(500, 2000, 50)},

scoring=make_scorer(f1_score, average='weighted'),
cv=3)

tuner.tune(X, y, exit_criterion=[NTrials(5)], synchronous=True, loglevel=logging.WARNING)
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9.5.1.5.1 Change the Search Space

You can change the search space in the following three ways:

• Add new hyperparameters

• Remove existing hyperparameters

• Modify the range of existing non-categorical hyperparameters

Note: You can’t change the distribution of an existing hyperparameter or make any changes to a hyperparameter that
is based on a categorical distribution. You need to initiate a new ADSTuner object for those cases. For more detailed
information, review the adstuner_search_space_update.ipynb notebook.

The code snippet switches to a detailed strategy. All previous values set for C, solver, and max_iter are
kept, and ADSTuner infers distributions for the remaining hyperparameters. You can force an overwrite by setting
overwrite=True.

tuner.search_space(strategy='detailed')

{'C': LogUniformDistribution(low=1e-05, high=10),
'solver': CategoricalDistribution(choices=['saga']),
'max_iter': IntUniformDistribution(low=500, high=2000, step=50),
'dual': CategoricalDistribution(choices=[False]),
'penalty': CategoricalDistribution(choices=['elasticnet']),
'l1_ratio': UniformDistribution(low=0, high=1)}

Alternatively, you can edit a subset of the search space by changing the range.

tuner.search_space(strategy={'C': LogUniformDistribution(low=1e-05, high=1)})

{'C': LogUniformDistribution(low=1e-05, high=1),
'solver': CategoricalDistribution(choices=['saga']),
'max_iter': IntUniformDistribution(low=500, high=2000, step=50),
'dual': CategoricalDistribution(choices=[False]),
'penalty': CategoricalDistribution(choices=['elasticnet']),
'l1_ratio': UniformDistribution(low=0, high=1)}

Here’s an example of using overwrite=True to reset to the default values for detailed:

tuner.search_space(strategy='detailed', overwrite=True)

{'C': LogUniformDistribution(low=1e-05, high=10),
'dual': CategoricalDistribution(choices=[False]),
'penalty': CategoricalDistribution(choices=['elasticnet']),
'solver': CategoricalDistribution(choices=['saga']),
'l1_ratio': UniformDistribution(low=0, high=1)}

tuner.tune(X, y, exit_criterion=[NTrials(5)], synchronous=True, loglevel=logging.WARNING)
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9.5.1.6 Optimizing a scikit-learn Pipeline

The following example demonstrates how the ADSTuner hyperparameter optimization engine can optimize the sklearn
Pipeline() objects.

You create a scikit-learn Pipeline() model object and use ADSTuner to optimize its performance on the iris dataset
from sklearn.

The dataset is then split into X and y, which refers to the training features and the target feature respectively. Again,
applying a train_test_split() call splits the data into training and validation datasets.

X, y = load_iris(return_X_y=True)
X = pd.DataFrame(data=X, columns=["sepal_length", "sepal_width", "petal_length", "petal_
→˓width"])
y = pd.DataFrame(data=y)

numeric_features = X.select_dtypes(include=['int64', 'float64', 'int32', 'float32']).
→˓columns
categorical_features = y.select_dtypes(include=['object', 'category', 'bool']).columns

y = preprocessing.LabelEncoder().fit_transform(y)

num_features = len(numeric_features) + len(categorical_features)

numeric_transformer = Pipeline(steps=[
('num_imputer', SimpleImputer(strategy='median')),
('num_scaler', StandardScaler())

])

categorical_transformer = Pipeline(steps=[
('cat_imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('cat_encoder', ce.woe.WOEEncoder())

])

preprocessor = ColumnTransformer(
transformers=[

('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)

]
)

pipe = Pipeline(
steps=[

('preprocessor', preprocessor),
('feature_selection', SelectKBest(f_classif, k=int(0.9 * num_features))),
('classifier', LogisticRegression())

]
)

You can define a custom score function. In this example, it is directly measuring how close the predicted y-values are
to the true y-values by taking the weighted average of the number of direct matches between the y-values.

def custom_score(y_true, y_pred, sample_weight=None):
score = (y_true == y_pred)
return np.average(score, weights=sample_weight)

(continues on next page)
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score = make_scorer(custom_score)

Again, you instantiate the ADSTuner() object and use it to tune the iris dataset:

ads_search = ADSTuner(
pipe,
scoring=score,
strategy='detailed',
cv=2,
random_state=42)

ads_search.tune(X=X, y=y, exit_criterion=[NTrials(20)], synchronous=True,␣
→˓loglevel=logging.WARNING)

The ads_search tuner can provide useful information about the tuning process, like the best parameter that was
optimized, the best score achieved, the number of trials, and so on. . .. code-block:: python3

ads_search.sklearn_steps

{'classifier__C': 9.47220908749299,
'classifier__dual': False,
'classifier__l1_ratio': 0.9967712201895031,
'classifier__penalty': 'elasticnet',
'classifier__solver': 'saga'}

ads_search.best_params

{'C': 9.47220908749299,
'dual': False,
'l1_ratio': 0.9967712201895031,
'penalty': 'elasticnet',
'solver': 'saga'}

ads_search.best_score

0.9733333333333334

ads_search.best_index

12

ads_search.trials.head()

ads_search.n_trials

20
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TEN

BIG DATA SERVICE

New in version 2.5.10.

10.1 Overview

The Oracle Big Data Service (BDS) is an Oracle Cloud Infrastructure (OCI) service designed for a diverse set of big
data use cases and workloads. From short-lived clusters used to tackle specific tasks to long-lived clusters that manage
data lakes. BDS scales to meet an organization’s requirements at a low cost and with the highest levels of security. To
be able to connect to the BDS from the notebook session, the cluster created must have Kerberos enabled.

10.2 Quick Start

10.2.1 Set Up A Conda Environment

The following are the recommended steps to create a conda environment to connect to BDS:

• Open a terminal window then run the following commands:

• odsc conda install -s pyspark30_p37_cpu_v5: Install the PySpark conda environment.

10.2.2 Connect from a Notebook

10.2.2.1 Using the Vault

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:

with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
cursor = hive.connect(host=cred["hive_host"],

port=cred["hive_port"],
auth='KERBEROS',
kerberos_service_name="hive").cursor()
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10.2.2.2 Without Using the Vault

import ads
import fsspec
import os

from ads.bds.auth import refresh_ticket

ads.set_auth('resource_principal')
refresh_ticket(principal="<your_principal>", keytab_path="<your_local_keytab_file_path>",

kerb5_path="<your_local_kerb5_config_file_path>")
cursor = hive.connect(host="<hive_host>", port="<hive_port>",

auth='KERBEROS', kerberos_service_name="hive").cursor()

10.3 Conda Environment

To work with BDS in a notebook session or job, you must have a conda environment that supports the BDS module
in ADS along with support for PySpark. This section demonstrates how to modify a PySpark Data Science conda
environment to work with BDS. It also demonstrates how to publish this conda environment so that you can be share
it with team members and use it in jobs.

10.3.1 Create

The following are the recommended steps to create a conda environment to connect to BDS:

• Open a terminal window then run the following commands:

• odsc conda install -s pyspark30_p37_cpu_v5: Install the PySpark conda environment.

10.3.2 Publish

• Create an Object Storage bucket to store published conda environments.

• Open a terminal window then run the following commands and actions:

• odsc conda init -b <bucket_name> -b <namespace> -a <resource_principal or api_key>:
Initialize the environment so that you can work with Published Conda Environments.

• odsc conda publish -s pyspark30_p37_cpu_v3: Publish the conda environment.

• In the OCI Console, open Data Science.

• Select a project.

• Select a click the notebook session’s name, or the Actions menu, and click Open to open the notebook session’s
JupyterLab interface in another tab..

• Click Published Conda Environments in the Environment Explorer tab to list all the published conda environ-
ments that are available in your designated Object Storage bucket.

• Select the Environment Version that you specified.

• Click the copy button adjacent to the Source conda environment to copy the file source path to use when installing
the conda environment in other notebook sessions or to use with jobs.
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10.4 Connect

10.4.1 Notebook Session

Notebook sessions require a conda environment that has the BDS module of ADS installed.

10.4.1.1 Using the Vault

The preferred method to connect to a BDS cluster is to use the BDSSecretKeeper class. This allows you to store the
BDS credentials in the vault and not the notebook. It also provides a greater level of access control to the secrets and
allows for credential rotation without breaking connections from various sources.

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:

with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
cursor = hive.connect(host=cred["hive_host"],

port=cred["hive_port"],
auth='KERBEROS',
kerberos_service_name="hive").cursor()

10.4.1.2 Without Using the Vault

BDS requires a Kerberos ticket to authenticate to the service. The preferred method is to use the vault and
BDSSecretKeeper because it is more secure, and prevents private information from being stored in a notebook. How-
ever, if this is not possible, you can use the refresh_ticket() method to manually create the Kerberos ticket. This
method requires the following parameters:

• kerb5_path: The path to the krb5.conf file. You can copy this file from the master node of the BDS cluster
located in /etc/krb5.conf.

• keytab_path: The path to the principal’s keytab file. You can download this file from the master node on the
BDS cluster.

• principal: The unique identity to that Kerberos can assign tickets to.

import ads
import fsspec
import os

from ads.bds.auth import refresh_ticket

ads.set_auth('resource_principal')
refresh_ticket(principal="<your_principal>", keytab_path="<your_local_keytab_file_path>",

kerb5_path="<your_local_kerb5_config_file_path>")
cursor = hive.connect(host="<hive_host>", port="<hive_port>",

auth='KERBEROS', kerberos_service_name="hive").cursor()
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10.4.2 Jobs

A job requires a conda environment that has the BDS module of ADS installed. It also requires secrets and configuration
information that can be used to obtain a Kerberos ticket for authentication. You must copy the keytab and krb5.conf
files to the jobs instance and can be copied as part of the job. We recommend that you save them into the vault then
use BDSSecretKeeper to access them. This is secure because the vault provides access control and allows for key
rotation without breaking exiting jobs. You can use the notebook to load configuration parameters like hdfs_host,
hdfs_port, hive_host, hive_port, and so on. The keytab and krb5.conf files are securely loaded from the vault
then saved in the jobs instance. The krbcontext() method is then used to create the Kerberos ticket. Once the ticket
is created, you can query BDS.

10.5 File Management

This section demonstrates various methods to work with files on BDS’ HDFS, see the individual framework’s docu-
mentation for details.

A Kerberos ticket is needed to connect to the BDS cluster. This authentication ticket can be obtained with the
refresh_ticket() method or with the use of the Vault and a BDSSercretKeeper object. This section will demon-
strate the use of the BDSSecretKeeper object as this is more secure and is the preferred method.

10.5.1 FSSpec

The fsspec or Filesystem Spec is an interface that allows access to local, remote, and embedded file systems. You use
it to access data stored in the BDS’ HDFS. This connection is made with the WebHDFS protocol.

The fsspec library must be able to access BDS so a Kerberos ticket must be generated. The secure and recommended
method to do this is to use BDSSecretKeeper that stores the BDS credentials in the vault not the notebook session.

This section outlines some common file operations, see the fsspec API Reference for complete details on the features
that are demonstrated and additional functionality.

Pandas and PyArrow can also use fsspec to perform file operations.

10.5.1.1 Connect

Credentials and configuration information is stored in the vault. This information is used to obtain a Kerberos ticket
and define the hdfs_config dictionary. This configuration dictionary is passed to the fsspec.filesystem() method to
make a connection to the BDS’ underlying HDFS storage.

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:

with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
hdfs_config = {

"protocol": "webhdfs",
"host": cred["hdfs_host"],
"port": cred["hdfs_port"],

(continues on next page)
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"kerberos": "True"
}

fs = fsspec.filesystem(**hdfs_config)

10.5.1.2 Delete

Delete files from HDFS using the .rm() method. It accepts a path of the files to delete.

fs.rm("/data/biketrips/2020??-tripdata.csv", recursive=True)

10.5.1.3 Download

Download files from HDFS to a local storage device using the .get() method. It takes the HDFS path of the files to
download, and the local path to store the files.

fs.get("/data/biketrips/20190[123456]-tripdata.csv", local_path="./first_half/",␣
→˓overwrite=True)

10.5.1.4 List

The .ls() method lists files. It returns the matching file names as a list.

fs.ls("/data/biketrips/2019??-tripdata.csv")

['201901-tripdata.csv',
'201902-tripdata.csv',
'201903-tripdata.csv',
'201904-tripdata.csv',
'201905-tripdata.csv',
'201906-tripdata.csv',
'201907-tripdata.csv',
'201908-tripdata.csv',
'201909-tripdata.csv',
'201910-tripdata.csv',
'201911-tripdata.csv',
'201912-tripdata.csv']

10.5.1.5 Upload

The .put() method is used to upload files from local storage to HDFS. The first parameter is the local path of the files
to upload. The second parameter is the HDFS path where the files are to be stored. .upload() is an alias of .put(). ..
code-block:: python3

fs.put(
lpath=”./first_half/20200[456]-tripdata.csv”, rpath=”/data/biketrips/second_quarter/”

)
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10.5.2 Ibis

Ibis is an open-source library by Cloudera that provides a Python framework to access data and perform analyt-
ical computations from different sources. Ibis allows access to the data ising HDFS. You use the ibis.impala.
hdfs_connect() method to make a connection to HDFS, and it returns a handler. This handler has methods such as
.ls() to list, .get() to download, .put() to upload, and .rm() to delete files. These operations support globbing.
Ibis’ HDFS connector supports a variety of additional operations.

10.5.2.1 Connect

After obtaining a Kerberos ticket, the hdfs_connect() method allows access to the HDFS. It is a thin wrapper around
a fsspec file system. Depending on your system configuration, you may need to define the ibis.options.impala.
temp_db and ibis.options.impala.temp_hdfs_path options.

import ibis

with BDSSecretKeeper.load_secret("<secret_id>") as cred:
with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):

hdfs = ibis.impala.hdfs_connect(host=cred['hdfs_host'], port=cred['hdfs_port'],
use_https=False, verify=False,
auth_mechanism='GSSAPI', protocol='webhdfs')

10.5.2.2 Delete

Delete files from HDFS using the .rm() method. It accepts a path of the files to delete.

hdfs.rm("/data/biketrips/2020??-tripdata.csv", recursive=True)

10.5.2.3 Download

Download files from HDFS to a local storage device using the .get() method. It takes the HDFS path of the files to
download, and the local path to store the files.

hdfs.get("/data/biketrips/20190[123456]-tripdata.csv", local_path="./first_half/",␣
→˓overwrite=True)

10.5.2.4 List

The .ls() method lists files. It returns the matching file names as a list.

hdfs.ls("/data/biketrips/2019??-tripdata.csv")

['201901-tripdata.csv',
'201902-tripdata.csv',
'201903-tripdata.csv',
'201904-tripdata.csv',
'201905-tripdata.csv',
'201906-tripdata.csv',
'201907-tripdata.csv',

(continues on next page)
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'201908-tripdata.csv',
'201909-tripdata.csv',
'201910-tripdata.csv',
'201911-tripdata.csv',
'201912-tripdata.csv']

10.5.2.5 Upload

Use the .put() method to upload files from local storage to HDFS. The first parameter is the HDFS path where the files
are to be stored. The second parameter is the local path of the files to upload.

hdfs.put(rpath="/data/biketrips/second_quarter/",
lpath="./first_half/20200[456]-tripdata.csv",
overwrite=True, recursive=True)

10.5.3 Pandas

Pandas allows access to BDS’ HDFS system through :ref: FSSpec. This section demonstrates some common operations.

10.5.3.1 Connect

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:

with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
hdfs_config = {

"protocol": "webhdfs",
"host": cred["hdfs_host"],
"port": cred["hdfs_port"],
"kerberos": "True"

}

fs = fsspec.filesystem(**hdfs_config)
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10.5.3.2 File Handle

You can use the fsspec .open() method to open a data file. It returns a file handle. That file handle, f, can be passed
to any Pandas’ methods that support file handles. In this example, a file on a BDS’ HDFS cluster is read into a Pandas
dataframe.

with fs.open("/data/biketrips/201901-tripdata.csv", "r") as f:
df = pd.read_csv(f)

10.5.3.3 URL

Pandas supports fsspec so you can preform file operations by specifying a protocol string. The WebHDFS protocol is
used to access files on BDS’ HDFS system. The protocol string has this format:

webhdfs://host:port/path/to/data

The host and port parameters can be passed in the protocol string as follows:

df = pd.read_csv(f"webhdfs://{hdfs_config['host']}:{hdfs_config['port']}/data/biketrips/
→˓201901-tripdata.csv",

storage_options={'kerberos': 'True'})

You can also pass the host and port parameters in the dictionary used by the storage_options parameter. The
sample code for hdfs_config defines the host and port with the keyes host and port respectively.

hdfs_config = {
"protocol": "webhdfs",
"host": cred["hdfs_host"],
"port": cred["hdfs_port"],
"kerberos": "True"

}

In this case, Pandas uses the following syntax to read a file on BDS’ HDFS cluster:

df = pd.read_csv(f"webhdfs:///data/biketrips/201901-tripdata.csv",
storage_options=hdfs_config)

10.5.4 PyArrow

PyArrow is a Python interface to Apache Arrow. Apache Arrow is an in-memory columnar analytical tool that is
designed to process data at scale. PyArrow supports the fspec.filesystem() through the use of the filesystem
parameter in many of its data operation methods.
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10.5.4.1 Connect

Make a connection to BDS’ HDFS using fsspec:

import ads
import fsspec

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, krbcontext

ads.set_auth("resource_principal")
with BDSSecretKeeper.load_secret("<secret_id>") as cred:

with krbcontext(principal = cred["principal"], keytab_path = cred['keytab_path']):
hdfs_config = {

"protocol": "webhdfs",
"host": cred["hdfs_host"],
"port": cred["hdfs_port"],
"kerberos": "True"

}

fs = fsspec.filesystem(**hdfs_config)

10.5.4.2 Filesystem

The following sample code shows several different PyArrow methods for working with BDS’ HDFS using the
filesystem parameter:

import pyarrow as pa
import pyarrow.parquet as pq
import pyarrow.dataset as ds

ds = ds.dataset("/path/on/BDS/HDFS/data.csv", format="csv", filesystem=fs)
pq.write_table(ds.to_table(), '/path/on/BDS/HDFS/data.parquet', filesystem=fs)

import pandas as pd
import numpy as np

idx = pd.date_range('2022-01-01 12:00:00.000', '2022-03-01 12:00:00.000', freq='T')

df = pd.DataFrame({
'numeric_col': np.random.rand(len(idx)),
'string_col': pd._testing.rands_array(8,len(idx))},
index = idx

)
df["dt"] = df.index
df["dt"] = df["dt"].dt.date

table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, root_path="/path/on/BDS/HDFS", partition_cols=["dt"],

flavor="spark", filesystem=fs)
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10.6 SQL Data Management

This section demonstrates how to perform standard SQL-based data management operations in BDS using various
frameworks, see the individual framework’s documentation for details.

A Kerberos ticket is needed to connect to the BDS cluster. You can obtain this authentication ticket with the
refresh_ticket() method, or with the use of the vault and a BDSSercretKeeper object. This section demon-
strates the use of the BDSSecretKeeper object because this is more secure and is the recommended method.

10.6.1 Ibis

Ibis is an open-source library by Cloudera that provides a Python framework to access data and perform analytical
computations from different sources. The Ibis project is designed to provide an abstraction over different dialects of
SQL. It enables the data scientist to interact with many different data systems. Some of these systems are Dask, MySQL,
Pandas, PostgreSQL, PySpark, and most importantly for use with BDS, Hadoop clusters.

10.6.1.1 Connect

Obtaining a Kerberos ticket, depending on your system configuration, you may need to define the ibis.options.
impala.temp_db and ibis.options.impala.temp_hdfs_path options. The ibis.impala.connect() method
makes a connection to the Impala execution backend. The .sql() allows you to run SQL commands on the data.

import ibis

with BDSSecretKeeper.load_secret("<secret_id>") as cred:
with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):

ibis.options.impala.temp_db = '<temp_db>'
ibis.options.impala.temp_hdfs_path = '<temp_hdfs_path>'
hdfs = ibis.impala.hdfs_connect(host=cred['hdfs_host'], port=cred['hdfs_port'],

use_https=False, verify=False,
auth_mechanism='GSSAPI', protocol='webhdfs')

client = ibis.impala.connect(host=cred['hive_host'], port=cred['hive_port'],
hdfs_client=hdfs, auth_mechanism="GSSAPI",
use_ssl=False, kerberos_service_name="hive")

10.6.1.2 Query

To query the data using ibis use an SQL DML command like SELECT. Pass the string to the .sql() method, and then
call .execute() on the returned object. The output is a Pandas dataframe.

df = client.sql("SELECT * FROM bikes.trips LIMIT 100").execute(limit=None)
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10.6.1.3 Close a Connection

It is important to close sessions when you don’t need them anymore. This frees up resources in the system. Use the
.close() method close sessions.

client.close()

10.6.2 Impala

Impala is a Python client for HiveServer2 implementations (i.e. Impala, Hive). Both Impala and PyHive clients are
HiveServer2 compliant so the connection syntax is very similar. The difference is that the Impala client uses the Impala
query engine and PyHive uses Hive. In practical terms, Hive is best suited for long-running batch queries and Impala
is better suited for real-time interactive querying, see more about the differences between Hive and Impala.

The Impala dbapi module is a Python DB-API interface.

10.6.2.1 Connect

After obtaining a Kerberos ticket, use the connect() method to make the connection. It returns a connection, and the
.cursor() method returns a cursor object. The cursor has the method .execute() that allows you to run Impala
SQL commands on the data.

from impala.dbapi import connect

with BDSSecretKeeper.load_secret("<secret_id>") as cred:
with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):

cursor = connect(host=cred["hive_host"], port=cred["hive_port"],
auth_mechanism="GSSAPI", kerberos_service_name="hive").cursor()

10.6.2.2 Create a Table

To create an Impala table and insert data, use the .execute() method on the cursor object, and pass in Impala SQL
commands to perform these operations.

cursor.execute("CREATE TABLE default.location (city STRING, province STRING)")
cursor.execute("INSERT INTO default.location VALUES ('Halifax', 'Nova Scotia')")

10.6.2.3 Query

To query an Impala table, use an Impala SQL DML command like SELECT. Pass this string to the .execute() method
on the cursor object to create a record set in the cursor. You can obtain a Pandas dataframe with the as_pandas()
function.

from impala.util import as_pandas

cursor.execute("SELECT * FROM default.location")
df = as_pandas(cursor)
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10.6.2.4 Drop a Table

To drop an Impala table, use an Impala SQL DDL command like DROP TABLE. Pass this string to the .execute()
method on the cursor object.

cursor.execute("DROP TABLE IF EXISTS default.location")

10.6.2.5 Close a Connection

It is important to close sessions when you don’t need them anymore. This frees up resources in the system. Use the
.close() method on the cursor object to close a connection.

cursor.close()

10.6.3 PyHive

PyHive is a set of interfaces to Presto and Hive. It is based on the SQLAlchemy and Python DB-API interfaces for
Presto and Hive.

10.6.3.1 Connect

After obtaining a Kerberos ticket, call the hive.connect() method to make the connection. It returns a connection,
and the .cursor() method returns a cursor object. The cursor has the .execute() method that allows you to run
Hive SQL commands on the data.

import ads
import os

from ads.bds.auth import krbcontext
from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

ads.set_auth('resource_principal')
with BDSSecretKeeper.load_secret("<secret_id>") as cred:

with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):
cursor = hive.connect(host=cred["hive_host"],

port=cred["hive_port"],
auth='KERBEROS',
kerberos_service_name="hive").cursor()

10.6.3.2 Create a Table

To create a Hive table and insert data, use the .execute()method on the cursor object and pass in Hive SQL commands
to perform these operations.

cursor.execute("CREATE TABLE default.location (city STRING, province STRING)")
cursor.execute("INSERT INTO default.location VALUES ('Halifax', 'Nova Scotia')")
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10.6.3.3 Query

To query a Hive table, use a Hive SQL DML command like SELECT. Pass this string to the .execute() method on the
cursor object. This creates a record set in the cursor. You can access the actual records with methods like .fetchall(),
.fetchmany(), and .fetchone().

In the following example, the .fetchall() method is used in a pd.DataFrame() call to return all the records in
Pandas dataframe: .

import pandas as pd

cursor.execute("SELECT * FROM default.location")
df = pd.DataFrame(cursor.fetchall(), columns=[col[0] for col in cursor.description])

10.6.3.4 Drop a Table

To drop a Hive table, use a Hive SQL DDL command like DROP TABLE. Pass this string to the .execute() method
on the cursor object.

cursor.execute("DROP TABLE IF EXISTS default.location")

10.6.3.5 Close a Connection

It is important to close sessions when you don’t need them anymore. This frees up resources in the system. Use the
.close() method on the cursor object to close a connection.

cursor.close()
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CHAPTER

ELEVEN

DATA FLOW

Data Flow is an OCI service for creating and running Spark applications. ADS can be used to to create and run PySpark
Data Flow applications directly from a notebook session.

11.1 Prerequisite

To access Data Flow, there are a number of steps that are needed to be completed.

• Data Flow requires a bucket to store the logs, and a data warehouse bucket. Refer to the Data Flow documentation
for setting up storage.

• Data Flow requires policies to be set in IAM to access resources to manage and run applications. Refer to the
Data Flow documentation on how to setup policies.

• The core-site.xml file needs to be configured.

11.2 Create a Data Flow Instance

First, you create a DataFlow object instance.

By default, all Data Flow artifacts are stored using the dataflow_base_folder optional argument. By default, all
Data Flow artifacts are stored in /home/datascience/dataflow. The dataflow_base_folder directory contains
multiple subdirectories, each one corresponds to a different application. The name of the subdirectory corresponds
to the application name that a random string is added as a suffix. In each application directory, artifacts generated by
separate Data Flow runs are stored in different folders. Each folder is identified by the run display name and the run
creation time. All the run specific artifacts including the script, the run configuration, and the run logs are saved in the
corresponding run folder.

Also, you can choose to use a specific compartment using the optional compartment_id argument when creating the
dataflow instance. Otherwise, it uses the same compartment as your notebook session to create the instance.

from ads.dataflow.dataflow import DataFlow
data_flow = DataFlow(
compartment_id="<compartmentA_OCID>",
dataflow_base_folder="<my_dataflow_dir>"

)
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11.3 Generate a Script Using a Template

We provide simple PySpark or sparksql templates for you to get started with Data Flow. You can use data_flow.
template() to generate a pre-written template.

We support these templates:

The standard_pyspark template is used for standard PySpark jobs.

The sparksql template is used for sparksql jobs.

from ads.dataflow.dataflow import DataFlow
data_flow = DataFlow()
data_flow.template(job_type='standard_pyspark')

data_flow.template() returns the local path to the script you have generated.

11.4 Create a Data Flow Application

The application creation process has two stages, preparation and creation.

In the preparation stage, you prepare the configuration object necessary to create a Data Flow application. You must
provide values for these three parameters:

• display_name: The name you give your application.

• pyspark_file_path: The local path to your PySpark script.

• script_bucket: The bucket used to read/write the PySpark script in Object Storage.

ADS checks that the bucket exists, and that you can write to it from your notebook sesssion. Optionally, you can change
values for these parameters:

• compartment_id: The OCID of the compartment to create a Data Flow application. If it’s not provided, the
same compartment as your dataflow object is used.

• driver_shape: The driver shape used to create the application. The default value is "VM.Standard2.4".

• executor_shape: The executor shape to create the application. The default value is "VM.Standard2.4".

• logs_bucket: The bucket used to store run logs in Object Storage. The default value is "dataflow-logs".

• num_executors: The number of executor VMs requested. The default value is 1.

Note: If you want to use a private bucket as the logs_bucket, ensure that you add a corresponding Data Flow service
policy using Data Flow Identity: Policy Set Up.

Then you can use prepare_app() to create the configuration object necessary to create the application.

from ads.dataflow.dataflow import DataFlow

data_flow = DataFlow()
app_config = data_flow.prepare_app(
display_name="<app-display-name>",
script_bucket="<your-script-bucket>" ,
pyspark_file_path="<your-scirpt-path>"

)
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After you have the application configured, you can create a Data Flow application using create_app:

app = data_flow.create_app(app_config)

Your local script is uploaded to the script bucket in this application creation step. Object Storage supports file versioning
that creates an object version when the content changes, or the object is deleted. You can enable Object Versioning
in your bucket in the OCI Console to prevent overwriting of existing files in Object Storage.

You can create an application with a script file that exists in Object Storage by setting overwrite_script=True in
create_app. Similarly, you can set overwrite_archive=True to create an application with an archive file that
exists in Object Storage. By default, the overwrite_script and overwrite_archive options are set to false.

app = data_flow.create_app(app_config, overwrite_script=True, overwrite_archive=True)

You can explore a few attributes of the DataFlowApp object.

First , you can look at the configuration of the application.

app.config

Next, you could get a URL link to the OCI Console Application Details page.

app.oci_link

11.4.1 Load an Existing Data Flow Application

As an alternative to creating applications in ADS, you can load existing applications created elsewhere. These Data
Flow applications must be Python applications. To load an existing applications, you need the application’s OCID.

existing_app = data_flow.load_app(app_id, target_folder)

You can find the app_id in the the OCI Console or by listing existing applications.

Optionally, you could assign a value to the parameter target_folder. This parameter is the directory you want
to store the local artifacts of this application in. If target_folder is not provided, then the local artifacts of this
application are stored in the dataflow_base_folder folder defined by the dataflow object instance.

11.4.2 Listing Data Flow Applications

From ADS you can list applications, that are returned a as a list of dictionaries, with a function to provide the data in a
Pandas dataframe. The default sort order is the most recent run first.

For example, to list the most recent five applications use this code:

from ads.dataflow.dataflow import DataFlow
data_flow = DataFlow()
data_flow.list_apps().to_dataframe().head(5)
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11.4.3 Create a Data Flow Run

After an application is created or loaded in your notebook session, the next logical step is to execute a run of that
application. The process of running (or creating) a run is similar to creating an application.

First, you configure the run using the prepare_run() method of the DataFlowApp object. You only need to provide
a value for the name of your run using run_display_name:

run_config = app.prepare_run(run_display_name="<run-display-name>")

You could use a compartment different from your application to create a run by specifying the compartment_id in
prepare_run. By default, it uses the same compartment as your Data Flow application to create the run.

Optionally, you can specify the logs_bucket to store the logs of your run. By default, the run inherits the
logs_bucket from the parent application, but you can overwrite that option.

Every time the Data Flow application launches a run, a local folder representing this Data Flow run is created. This
folder stores all the information including the script, the run configuration, and any logs that are stored in the logs
bucket.

Then, you can create a Data Flow run using the run_config generated in the preparation stage. During this process,
you can monitor the Data Flow run while the job is running. You can also pull logs into your local directories by setting,
save_log_to_local=True.

run = app.run(run_config, save_log_to_local=True)

The DataFlowRun object has some useful attributes similar to the DataFlowApp object.

You can check the status of the run with:

run.status

You can get the configuration file that created this run. The run configuration and the PySpark script used in this run
are also saved in the corresponding run directory in your notebook environment.

run.config

You can get the run directory where the artifacts are stored in your notebook environment with:

run.local_dir

Similarly, you can get a clickable link to the OCI Console Run Details page with:
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run.oci_link

11.4.4 Fetching Logs

After a Data Flow run has completed, you can examine the logs using ADS. There are two types of logs, stdout and
stderr.

run.log_stdout.head() # show first rows of stdout
run.log_stdout.tail() # show last lines of stdout

# where the logs are stored on OCI Storage
run.log_stdout.oci_path

# the path to the saved logs in the notebook environment if ``save_log_to_local`` was␣
→˓``True`` when you create this run
run.log_stdout.local_path

If save_log_to_local is set to False during app.run(...), you can fetch logs by calling the fetch_log(...).
save() method on the DataFlowRun object with the correct logs type.

run.fetch_log("stdout").save()
run.fetch_log("stderr").save()

Note: Due to a limitation of PySpark (specifically Python applications in Spark), both stdout and stderr are
merged into the stdout stream.

11.4.5 Edit and Synchronize PySpark Script

The Data Flow integration with ADS supports the edit-run-edit cycle, so the local PySpark script can be edited, and is
automatically synchronized to Object Storage each time the application is run.

Data Flow obtains the PySpark script from Object Storage so the local files in the notebook session are not visible to Data
Flow. The app.run(...) method compares the content hash of the local file with the remote copy on Object Storage.
If any change is detected, the new local version is copied over to the remote. For the first run the synchronization creates
the remote file and generates a fully qualified URL with namespace that’s required for Data Flow.

Synchronizing is the default setting in app.run(...). If you don’t want the application to sync with the local modified
files, you need to include sync=False as an argument parameter in app.run(...).

11.4.6 Arguments and Parameters

Passing arguments to PySpark scripts is done with the arguments value in prepare_app. Additional to the arguments
Data Flow supports, is a parameter dictionary that you can use to interpolate arguments. To just pass arguments, the
script_parameter section may be ignored. However, any key-value pair defined in script_parameter can be
referenced in arguments using the ${key} syntax, and the value of that key is passed as the argument value.

from ads.dataflow.dataflow import DataFlow

data_flow = DataFlow()
(continues on next page)
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(continued from previous page)

app_config = data_flow.prepare_app(
display_name,
script_bucket,
pyspark_file_path,
arguments = ['${foo}', 'bar', '-d', '--file', '${filename}'],
script_parameters={
'foo': 'val1 val2',
'filename': 'file1',

}
)
app = data_flow.create_app(app_config)

run_config = app.prepare_run(run_display_name="test-run")
run = app.run(run_config)

Note: The arguments in the format of ${arg} are replaced by the value provided in script parameters when passed
in, while arguments not in this format are passed into the script verbatim.

You can override the values of some or all script parameters in each run by passing different values to prepare_run().

run_config = app.prepare_run(run_display_name="test-run", foo='val3')
run = app.run(run_config)

11.4.7 Add Third-Party Libraries

Your PySpark applications might have custom dependencies in the form of Python wheels or virtual environments, see
Adding Third-Party Libraries to Data Flow Applications.

Pass the archive file to your Data Flow applications with archive_path and archive_bucket values in
prepare_app.

• archive_path: The local path to archive file.

• archive_bucket: The bucket used to read and write the archive file in Object Storage; if not provided,
archive_bucket will use the bucket for PySpark bucket by default.

Use prepare_app() to create the configuration object necessary to create the application.

from ads.dataflow.dataflow import DataFlow

data_flow = DataFlow()
app_config = data_flow.prepare_app(
display_name="<app-display-name>",
script_bucket="<your-script-bucket>",
pyspark_file_path="<your-scirpt-path>",
archive_path="<your-archive-path>",
archive_bucket="<your-archive-bucket>"

)

The behavior of the archive file is very similar to the PySpark script when creating:

• An application, the local archive file is uploaded to the specified bucket Object Storage.
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• A run, the latest local archive file is synchronized to the remote file in Object Storage. The sync parameter
controls this behavior.

• Loading an existing application created with archive_uri, the archive file is obtained from Object Storage, and
saved in the local directory.

11.4.8 Fetching PySpark Output

After the application has run and any stdout captured in the log file, the PySpark script likely produces some form
of output. Usually a PySpark script batch processes something. For example, sampling data, aggregating data, prepro-
cessing data. You can load the resulting output as an ADSDataset.open() using the ocis:// protocol handler.

The only way to get output from PySpark back into the notebook session is to create files in Object Storage that is read
into the notebook, or use the stdout stream.

Following is a simple example of a PySpark script producing output printed in a portable JSON-L format, though CSV
works too. This method, while convenient as an example, is not a recommended for large data.

from pyspark.sql import SparkSession

def main():

# create a spark session
spark = SparkSession \

.builder \

.appName("Python Spark SQL basic example") \

.getOrCreate()

# load an example csv file from dataflow public storage into DataFrame
original_df = spark\

.read\

.format("csv")\

.option("header", "true")\

.option("multiLine", "true")\

.load("oci://oow_2019_dataflow_lab@bigdatadatasciencelarge/usercontent/kaggle_
→˓berlin_airbnb_listings_summary.csv")

# the dataframe as a sql view so we can perform SQL on it
original_df.createOrReplaceTempView("berlin")

query_result_df = spark.sql("""
SELECT
city,
zipcode,
number_of_reviews,
CONCAT(latitude, ',', longitude) AS lat_long

FROM
berlin"""

)

# Convert the filtered Spark DataFrame into JSON format
# Note: we are writing to the spark stdout log so that we can retrieve the log later␣

→˓at the end of the notebook.

(continues on next page)
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print('\n'\
.join(query_result_df\
.toJSON()\
.collect()))

if __name__ == '__main__':
main()

After you run the stdout stream (which contains CSV formatted data), it can be interpreted as a string using Pandas.

import io
import pandas as pd

# the PySpark script wrote to the log as jsonL, and we read the log back as a pandas␣
→˓dataframe
df = pd.read_json((str(run.log_stdout)), lines=True)

df.head()

11.5 Example Notebook: Develop Pyspark jobs locally - from local to
remote workflows

This notebook provides spark operations for customers by bridging the existing local spark workflows with cloud based
capabilities. Data scientists can use their familiar local environments with JupyterLab, and work with remote data and
remote clusters simply by selecting a kernel. The operations demonstrated are, how to:

• Use the interactive spark environment and produce a spark script,

• Prepare and create an application,

• Prepare and create a run,

• List existing dataflow applications,

• Retrieve and display the logs,

The purpose of the dataflow module is to provide an efficient and convenient way for you to launch a Spark application,
and run Spark jobs. The interactive Spark kernel provides a simple and efficient way to edit and build your Spark script,
and easy access to read from an OCI filesystem.

import io
import matplotlib.pyplot as plt
import os
from os import path
import pandas as pd
import tempfile
import uuid

from ads.dataflow.dataflow import DataFlow

from pyspark.sql import SparkSession

Build your PySPark Script Using an Interactive Spark kernel

160 Chapter 11. Data Flow



ADS Documentation, Release 2.6.4

Set up spark session in your PySPark conda environment:

# create a spark session
spark = SparkSession \

.builder \

.appName("Python Spark SQL basic example") \

.config("spark.driver.cores", "4") \

.config("spark.executor.cores", "4") \

.getOrCreate()

Load the Employee Attrition data file from OCI Object Storage into a Spark DataFrame:

emp_attrition = spark\
.read\
.format("csv")\
.option("header", "true")\
.option("inferSchema", "true")\
.option("multiLine", "true")\
.load("oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.

→˓csv") \
.cache() # cache the dataset to increase computing speed

emp_attrition.createOrReplaceTempView("emp_attrition")

Next, explore the dataframe:

spark.sql('select * from emp_attrition limit 5').toPandas()

Visualize how monthly income and age relate to one another in the context of years in industry:

fig, ax = plt.subplots()
plot = spark.sql("""

SELECT
Age,
MonthlyIncome,
YearsInIndustry

FROM
emp_attrition

""").toPandas().plot.scatter(x="Age", y="MonthlyIncome", title='Age vs Monthly␣
→˓Income',

c="YearsInIndustry", cmap="viridis", figsize=(12,
→˓12), ax=ax)
plot.set_xlabel("Age")
plot.set_ylabel("Monthly Income")
plot

<AxesSubplot:title={'center':'Age vs Monthly Income'}, xlabel='Age', ylabel='Monthly␣
→˓Income'>

View all of the columns in the table:

spark.sql("show columns from emp_attrition").show()

+--------------------+
| col_name|

(continues on next page)
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+--------------------+
| Age|
| Attrition|
| TravelForWork|
| SalaryLevel|
| JobFunction|
| CommuteLength|
| EducationalLevel|
| EducationField|
| Directs|
| EmployeeNumber|
| EnvironmentSatisf..|
| Gender|
| HourlyRate|
| JobInvolvement|
| JobLevel|
| JobRole|
| JobSatisfaction|
| MaritalStatus|
| MonthlyIncome|
| MonthlyRate|
+--------------------+
only showing top 20 rows

Select a few columns using Spark, and convert it into a Pandas dataframe:

df = spark.sql("""
SELECT

Age,
MonthlyIncome,
YearsInIndustry

FROM
emp_attrition """).limit(10).toPandas()

df

You can work with different compression formats within Data Flow. For example, snappy Parquet:

# Writing to a snappy parquet file
df.to_parquet('emp_attrition.parquet.snappy', compression='snappy')
pd.read_parquet('emp_attrition.parquet.snappy')

# We are able to read in this snappy parquet file to a spark dataframe
read_snappy_df = SparkSession \

.builder \

.appName("Snappy Compression Loading Example") \

.config("spark.io.compression.codec", "org.apache.spark.io.SnappyCompressionCodec") \

.getOrCreate() \

.read \

.format("parquet") \

.load(f"{os.getcwd()}/emp_attrition.parquet.snappy")

read_snappy_df.first()
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Row(Age=42, MonthlyIncome=5993, YearsInIndustry=8)

Other compression formats that Data Flow supports include snappy Parquet, and Gzip on both CSV and Parquet.

You might have query that you want to run in Data Flow from previous explorations, review the dataflow.ipynb notebook
example that shows you how to submit a job to Data Flow.

dataflow_base_folder = tempfile.mkdtemp()
data_flow = DataFlow(dataflow_base_folder=dataflow_base_folder)
print("Data flow directory: {}".format(dataflow_base_folder))

Data flow directory: /tmp/tmpe18x_qbr

pyspark_file_path = path.join(dataflow_base_folder, "example-{}.py".format(str(uuid.
→˓uuid4())[-6:]))
script = '''
from pyspark.sql import SparkSession

def main():

# Create a Spark session
spark = SparkSession \\

.builder \\

.appName("Python Spark SQL basic example") \\

.getOrCreate()

# Load a csv file from dataflow public storage
df = spark \\

.read \\

.format("csv") \\

.option("header", "true") \\

.option("multiLine", "true") \\

.load("oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.
→˓csv")

# Create a temp view and do some SQL operations
df.createOrReplaceTempView("emp_attrition")
query_result_df = spark.sql("""

SELECT
Age,
MonthlyIncome,
YearsInIndustry

FROM emp_attrition
""")

# Convert the filtered Spark DataFrame into JSON format
# Note: we are writing to the spark stdout log so that we can retrieve the log later␣

→˓at the end of the notebook.
print('\\n'.join(query_result_df.toJSON().collect()))

if __name__ == '__main__':
main()

'''
(continues on next page)
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with open(pyspark_file_path, 'w') as f:
print(script.strip(), file=f)

print("Script path: {}".format(pyspark_file_path))

Script path: /tmp/example.py

script_bucket = "test" # Update the value
logs_bucket = "dataflow-log" # Update the value
display_name = "sample_Data_Flow_app"

app_config = data_flow.prepare_app(display_name=display_name,
script_bucket=script_bucket,
pyspark_file_path=pyspark_file_path,
logs_bucket=logs_bucket)

app = data_flow.create_app(app_config)

run_display_name = "sample_Data_Flow_run"
run_config = app.prepare_run(run_display_name=run_display_name)

run = app.run(run_config, save_log_to_local=True)

run.status

'SUCCEEDED'

run.config

{'compartment_id': 'ocid1.compartment..<unique_ID>',
'script_bucket': 'test',
'pyspark_file_path': '/tmp/tmpe18x_qbr/example-0054ed.py',
'archive_path': None,
'archive_bucket': None,
'run_display_name': 'sample_Data_Flow_run',
'logs_bucket': 'dataflow-log',
'logs_bucket_uri': 'oci://dataflow-log@ociodscdev',
'driver_shape': 'VM.Standard2.4',
'executor_shape': 'VM.Standard2.4',
'num_executors': 1}

run.oci_link

Saving processed data to jdbc:oracle:thin:@database_high?TNS_ADMIN=/tmp/

Read from the Database Using PySpark

PySpark can be used to load data from an Oracle Autonomous Database (ADB) into a Spark application. The next
cell makes a JDBC connection to the database defined using the adb_url variable, and accesses the table defined with
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table_name. The credentials stored in the vault and previously read into memory are used. After this command is
run, you can perform Spark operations on it.

The table is relatively small so the notebook uses PySpark in the notebook session. However, for larger jobs, we
recommended that you use the Oracle Data Flow service.

if "adb_url" in globals():
output_dataframe = sc.read \

.format("jdbc") \

.option("url", adb_url) \

.option("dbtable", table_name) \

.option("user", user) \

.option("password", password) \

.load()
else:

print("Skipping as it appears that you do not have adb_url configured.")

The database table is loaded into Spark so that you can perform operations to transform, model, and more. In the next
cell, the notebook prints the table demonstrating that it was successfully loaded into Spark from the ADB.

if "adb_url" in globals():
output_dataframe.show()

else:
print("Skipping as it appears that you do not have output_dataframe configured.")

+----+----------+--------------+------------+-------------------+-------------+----------
→˓-------+---------------+--------+---------------+------------------------+-------+-----
→˓------+---------------+---------+---------------------+---------------+--------------+-
→˓-------------+------------+-------------------+-------+---------+------------------+---
→˓---------------+-------------------------+------------------+-----------------+--------
→˓--------+----------------------+----------------+-----------+--------------------+-----
→˓-------------------+---------------------+------------------+
| Age| Attrition| TravelForWork| SalaryLevel| JobFunction| CommuteLength|␣
→˓EducationalLevel| EducationField| Directs| EmployeeNumber| EnvironmentSatisfaction|␣
→˓Gender| HourlyRate| JobInvolvement| JobLevel| JobRole| JobSatisfaction|␣
→˓MaritalStatus| MonthlyIncome| MonthlyRate| NumCompaniesWorked| Over18| OverTime|␣
→˓PercentSalaryHike| PerformanceRating| RelationshipSatisfaction| WeeklyWorkedHours|␣
→˓StockOptionLevel| YearsinIndustry| TrainingTimesLastYear| WorkLifeBalance| YearsOnJob|␣
→˓YearsAtCurrentLevel| YearsSinceLastPromotion| YearsWithCurrManager| name|
+----+----------+--------------+------------+-------------------+-------------+----------
→˓-------+---------------+--------+---------------+------------------------+-------+-----
→˓------+---------------+---------+---------------------+---------------+--------------+-
→˓-------------+------------+-------------------+-------+---------+------------------+---
→˓---------------+-------------------------+------------------+-----------------+--------
→˓--------+----------------------+----------------+-----------+--------------------+-----
→˓-------------------+---------------------+------------------+
| 42| Yes| infrequent| 5054| Product Management| 2| ␣
→˓ L2| Life Sciences| 1| 1| 2| Female| ␣
→˓ 94| 3| 2| Sales Executive| 4| Single|␣
→˓ 5993| 19479| 8| Y| Yes| 11| ␣
→˓ 3| 1| 80| 0| ␣
→˓ 8| 0| 1| 6| 4| ␣
→˓ 0| 5| Tracy Moore|
| 50| No| often| 1278| Software Developer| 9| ␣

(continues on next page)
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→˓ L1| Life Sciences| 1| 2| 3| Male| ␣
→˓ 61| 2| 2| Research Scientist| 2| Married|␣
→˓ 5130| 24907| 1| Y| No| 23| ␣
→˓ 4| 4| 80| 1| ␣
→˓ 10| 3| 3| 10| 7| ␣
→˓ 1| 7| Andrew Hoover|
| 38| Yes| infrequent| 6296| Software Developer| 3| ␣
→˓ L2| Other| 1| 4| 4| Male| ␣
→˓ 92| 2| 1| Laboratory Techni...| 3| Single|␣
→˓ 2090| 2396| 6| Y| Yes| 15| ␣
→˓ 3| 2| 80| 0| ␣
→˓ 7| 3| 3| 0| 0| ␣
→˓ 0| 0| Julie Bell|
| 34| No| often| 6384| Software Developer| 4| ␣
→˓ L4| Life Sciences| 1| 5| 4| Female| ␣
→˓ 56| 3| 1| Research Scientist| 3| Married|␣
→˓ 2909| 23159| 1| Y| Yes| 11| ␣
→˓ 3| 3| 80| 0| ␣
→˓ 8| 3| 3| 8| 7| ␣
→˓ 3| 0| Thomas Adams|
| 28| No| infrequent| 2710| Software Developer| 3| ␣
→˓ L1| Medical| 1| 7| 1| Male| ␣
→˓ 40| 3| 1| Laboratory Techni...| 2| Married|␣
→˓ 3468| 16632| 9| Y| No| 12| ␣
→˓ 3| 4| 80| 1| ␣
→˓ 6| 3| 3| 2| 2| ␣
→˓ 2| 2| Johnathan Burnett|
| 33| No| often| 4608| Software Developer| 3| ␣
→˓ L2| Life Sciences| 1| 8| 4| Male| ␣
→˓ 79| 3| 1| Laboratory Techni...| 4| Single|␣
→˓ 3068| 11864| 0| Y| No| 13| ␣
→˓ 3| 3| 80| 0| ␣
→˓ 8| 2| 2| 7| 7| ␣
→˓ 3| 6| Rhonda Grant|
| 60| No| infrequent| 6072| Software Developer| 4| ␣
→˓ L3| Medical| 1| 10| 3| Female| ␣
→˓ 81| 4| 1| Laboratory Techni...| 1| Married|␣
→˓ 2670| 9964| 4| Y| Yes| 20| ␣
→˓ 4| 1| 80| 3| ␣
→˓ 12| 3| 2| 1| 0| ␣
→˓ 0| 0| Brandon Gill|
| 31| No| infrequent| 6228| Software Developer| 25| ␣
→˓ L1| Life Sciences| 1| 11| 4| Male| ␣
→˓ 67| 3| 1| Laboratory Techni...| 3| Divorced|␣
→˓ 2693| 13335| 1| Y| No| 22| ␣
→˓ 4| 2| 80| 1| ␣
→˓ 1| 2| 3| 1| 0| ␣
→˓ 0| 0| Debbie Chan|
| 39| No| often| 990| Software Developer| 24| ␣
→˓ L3| Life Sciences| 1| 12| 4| Male| ␣
→˓ 44| 2| 3| Manufacturing Dir...| 3| Single|␣
→˓ 9526| 8787| 0| Y| No| 21| ␣

(continues on next page)
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→˓ 4| 2| 80| 0| ␣
→˓ 10| 2| 3| 9| 7| ␣
→˓ 1| 8| Kayla Ward|
| 37| No| infrequent| 5958| Software Developer| 28| ␣
→˓ L3| Medical| 1| 13| 3| Male| ␣
→˓ 94| 3| 2| Healthcare Repres...| 3| Married|␣
→˓ 5237| 16577| 6| Y| No| 13| ␣
→˓ 3| 2| 80| 2| ␣
→˓ 17| 3| 2| 7| 7| ␣
→˓ 7| 7| Angel Vaughn|
| 36| No| infrequent| 3710| Software Developer| 17| ␣
→˓ L3| Medical| 1| 14| 1| Male| ␣
→˓ 84| 4| 1| Laboratory Techni...| 2| Married|␣
→˓ 2426| 16479| 0| Y| No| 13| ␣
→˓ 3| 3| 80| 1| ␣
→˓ 6| 5| 3| 5| 4| ␣
→˓ 0| 3| Samantha Parker|
| 30| No| infrequent| 700| Software Developer| 16| ␣
→˓ L2| Life Sciences| 1| 15| 4| Female| ␣
→˓ 49| 2| 2| Laboratory Techni...| 3| Single|␣
→˓ 4193| 12682| 0| Y| Yes| 12| ␣
→˓ 3| 4| 80| 0| ␣
→˓ 10| 3| 3| 9| 5| ␣
→˓ 0| 8| Melanie Mcbride|
| 32| No| infrequent| 3072| Software Developer| 27| ␣
→˓ L1| Life Sciences| 1| 16| 1| Male| ␣
→˓ 31| 3| 1| Research Scientist| 3| Divorced|␣
→˓ 2911| 15170| 1| Y| No| 17| ␣
→˓ 3| 4| 80| 1| ␣
→˓ 5| 1| 2| 5| 2| ␣
→˓ 4| 3| Bradley Hall|
| 35| No| infrequent| 6172| Software Developer| 20| ␣
→˓ L2| Medical| 1| 18| 2| Male| ␣
→˓ 93| 3| 1| Laboratory Techni...| 4| Divorced|␣
→˓ 2661| 8758| 0| Y| No| 11| ␣
→˓ 3| 3| 80| 1| ␣
→˓ 3| 2| 3| 2| 2| ␣
→˓ 1| 2| Patrick Lee|
| 29| Yes| infrequent| 472| Software Developer| 25| ␣
→˓ L3| Life Sciences| 1| 19| 3| Male| ␣
→˓ 50| 2| 1| Laboratory Techni...| 3| Single|␣
→˓ 2028| 12947| 5| Y| Yes| 14| ␣
→˓ 3| 2| 80| 0| ␣
→˓ 6| 4| 3| 4| 2| ␣
→˓ 0| 3| Jessica Willis|
| 30| No| infrequent| 6370| Software Developer| 22| ␣
→˓ L4| Life Sciences| 1| 20| 2| Female| ␣
→˓ 51| 4| 3| Manufacturing Dir...| 1| Divorced|␣
→˓ 9980| 10195| 1| Y| No| 11| ␣
→˓ 3| 3| 80| 1| ␣
→˓ 10| 1| 3| 10| 9| ␣
→˓ 8| 8| Chad Scott|

(continues on next page)
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| 33| No| infrequent| 1530| Software Developer| 6| ␣
→˓ L2| Life Sciences| 1| 21| 1| Male| ␣
→˓ 80| 4| 1| Research Scientist| 2| Divorced|␣
→˓ 3298| 15053| 0| Y| Yes| 12| ␣
→˓ 3| 4| 80| 2| ␣
→˓ 7| 5| 2| 6| 2| ␣
→˓ 0| 5| Gregory Bennett|
| 23| No| none| 5150| Software Developer| 17| ␣
→˓ L2| Medical| 1| 22| 4| Male| ␣
→˓ 96| 4| 1| Laboratory Techni...| 4| Divorced|␣
→˓ 2935| 7324| 1| Y| Yes| 13| ␣
→˓ 3| 2| 80| 2| ␣
→˓ 1| 2| 2| 1| 0| ␣
→˓ 0| 0| Jesse Palmer|
| 54| No| infrequent| 5590| Product Management| 3| ␣
→˓ L4| Life Sciences| 1| 23| 1| Female| ␣
→˓ 78| 2| 4| Manager| 4| Married|␣
→˓ 15427| 22021| 2| Y| No| 16| ␣
→˓ 3| 3| 80| 0| ␣
→˓ 31| 3| 3| 25| 8| ␣
→˓ 3| 7| Dr. Erin Good DDS|
| 39| No| infrequent| 1700| Software Developer| 3| ␣
→˓ L3| Life Sciences| 1| 24| 4| Male| ␣
→˓ 45| 3| 1| Research Scientist| 4| Single|␣
→˓ 3944| 4306| 5| Y| Yes| 11| ␣
→˓ 3| 3| 80| 0| ␣
→˓ 6| 3| 3| 3| 2| ␣
→˓ 1| 2| Kathy Patrick|
+----+----------+--------------+------------+-------------------+-------------+----------
→˓-------+---------------+--------+---------------+------------------------+-------+-----
→˓------+---------------+---------+---------------------+---------------+--------------+-
→˓-------------+------------+-------------------+-------+---------+------------------+---
→˓---------------+-------------------------+------------------+-----------------+--------
→˓--------+----------------------+----------------+-----------+--------------------+-----
→˓-------------------+---------------------+------------------+
only showing top 20 rows

Cleaning Up Artifacts

This example created a number of artifacts, such as unzipping the wallet file, creating a database table, and starting a
Spark cluster. Next, you remove these resources.

if wallet_path != "<wallet_path>":
connection.update_repository(key="pyspark_adb", value=adb_creds)
connection.import_wallet(wallet_path=wallet_path, key="pyspark_adb")
conn = cx_Oracle.connect(user, password, tnsname)
cursor = conn.cursor()
cursor.execute(f"DROP TABLE {table_name}")
cursor.close()
conn.close()

else:
print("Skipping as it appears that you do not have wallet_path specified.")

(continues on next page)
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if "tns_path" in globals():
shutil.rmtree(tns_path)

sc.stop()

11.6 Example Notebook: Using the ADB with PySpark

This notebook demonstrates how to use PySpark to process data in Object Storage, and save the results to an ADB. It
also demonstrates how to query data from an ADB using a local PySpark session.

import base64
import cx_Oracle
import oci
import os
import shutil
import tempfile
import zipfile

from ads.database import connection
from ads.vault.vault import Vault
from pyspark import SparkConf
from pyspark.sql import SparkSession
from urllib.parse import urlparse

Introduction

It has become a common practice to store structured and semi-structured data using services such as Object Storage.
This provides a scalable solution to store vast quantities of data that can be post-processed. However, using a relational
database management system (RDMS) such as the Oracle ADB provides advantages like ACID compliance, rapid
relational joins, support for complex business logic, and more. It is important to be able to access information stored in
Object Storage, process that information, and load it into an RBMS. This notebook demonstrates how to use PySpark,
a Python interface to Apache Spark, to perform these operations.

This notebook uses a publicly accessible Object Storage location to read from. However, an ADB needs to be configured
with permissions to create a table, write to that table, and read from it. It also assumes that the credentials to access
the database are stored in the Vault. This is the best practice as it prevents the credentials from being stored locally
or in the notebook where they may be accessible to others. If you do not have credentials stored in the Vault. Once
credentials to the database, are stored in the Vault, you need the OCIDs for the Vault, encryption key, and the secret.

ADBs have an additional level of security that is needed to access them and are wallet file. You can obtain the wallet
file from your account administrator or download it using the steps that are outlined in the [downloading a wallet(https:
//docs.oracle.com/en-us/iaas/Content/Database/Tasks/adbconnecting.htm#access). The wallet file is a ZIP file. This
notebook unzips the wallet and updates the configuration settings so you don’t have to.

The database connection also needs the TNS name of the database. Your database administrator can give you the TNS
name of the database that you have access to.

Setup the Required Variables

The required variables to set up are:

1. vault_id, key_id, secret_ocid: The OCID of the secret by storing the username and password required to
connect to your ADB in a secret within the OCI Vault service. Note that the secret is the credential needed to
access a database. This notebook is designed so that any secret can be stored as long as it is in the form of a
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dictionary. To store your secret, just modify the dictionary, see the vault.ipynb example notebook for detailed
steps to generate this OCID.

2. tnsname: A TNS name valid for the database.

3. wallet_path: The local path to your wallet ZIP file, see the autonomous_database.ipynb example notebook
for instructions on accessing the wallet file.

secret_ocid = "secret_ocid"
tnsname = "tnsname"
wallet_path = "wallet_path"
vault_id = "vault_id"
key_id = "key_id"

Obtain Credentials from the Vault

If the vault_id, key_id, and secret_id have been updated, then the notebook obtains a handle to the vault with
a variable called vault. This uses the get_secret() method to return a dictionary with the user credentials. The
approach assumes that the Accelerated Data Science (ADS) library was used to store the secret.

if vault_id != "<vault_id>" and key_id != "<key_id>" and secret_ocid != "<secret_ocid>":
print("Getting wallet username and password")
vault = Vault(vault_id=vault_id, key_id=key_id)
adb_creds = vault.get_secret(secret_ocid)
user = adb_creds["username"]
password = adb_creds["password"]

else:
print("Skipping as it appears that you do not have vault, key, and secret ocid␣

→˓specified.")

Getting wallet username and password

Setup the Wallet

An ADB requires a wallet file to access the database. The wallet_path variable defines the location of this file.
The next cell prepares the wallet file to make a connection to the database. It also creates the ADB connection string,
adb_url.

def setup_wallet(wallet_path):
"""
Prepare ADB wallet file for use in PySpark.
"""

temporary_directory = tempfile.mkdtemp()
zip_file_path = os.path.join(temporary_directory, "wallet.zip")

# Extract everything locally.
with zipfile.ZipFile(wallet_path, "r") as zip_ref:

zip_ref.extractall(temporary_directory)

return temporary_directory

if wallet_path != "<wallet_path>":
print("Setting up wallet")
tns_path = setup_wallet(wallet_path)

(continues on next page)
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else:
print("Skipping as it appears that you do not have wallet_path specified.")

Setting up wallet

if "tns_path" in globals() and tnsname != "<tnsname>":
adb_url = f"jdbc:oracle:thin:@{tnsname}?TNS_ADMIN={tns_path}"

else:
print("Skipping, as the tns_path or tnsname are not defined.")

Reading Data from Object Storage

This notebook uses PySpark to access the Object Storage file. The next cell creates a Spark application called “Python
Spark SQL Example” and returns a SparkContext. The SparkContext, normally called sc, is a handle to the Spark
application.

The data file that is used is relatively small so the notebook uses PySpark by running a version of Spark in local mode.
That means, it is running in the notebook session. For larger jobs, we recommended that you use the Oracle Data Flow
service, which is an Oracle managed Spark service.

# create a spark session
sc = SparkSession \

.builder \

.appName("Python Spark SQL Example") \

.getOrCreate()

This notebook reads in a data file that is stored in an Oracle Object Storage file. This is defined with the file_path
variable. The SparkContext with the read.option().csv() methods is used to read in the CSV file from Object
Storage into a data frame.

file_path = "oci://hosted-ds-datasets@bigdatadatasciencelarge/synthetic/orcl_attrition.
→˓csv"
input_dataframe = sc.read.option("header", "true").csv(file_path)

Save the Data to the Database

This notebook creates a table in your database with the name specified with table_name. The name that is defined
should be unique so that it does not interfere with any existing table in your database. If it does, change the value to
something that is unique.

table_name = "ODSC_PYSPARK_ADB_DEMO"

if tnsname != "<tnsname>" and "adb_url" in globals():
print("Saving processed data to " + adb_url)
properties = {

"oracle.net.tns_admin": tnsname,
"password": password,
"user": user,

}
input_dataframe.write.jdbc(

url=adb_url, table=table_name, properties=properties
)

else:
print("Skipping as it appears that you do not have tnsname specified.")
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CHAPTER

TWELVE

DATA LABELING

12.1 Overview

The Oracle Cloud Infrastructure (OCI) Data Labeling service allows you to create and browse datasets, view data
records (text, images) and apply labels for the purposes of building AI/machine learning (ML) models. The service
also provides interactive user interfaces that enable the labeling process. After you label records, you can export the
dataset as line-delimited JSON Lines (JSONL) for use in model development.

Datasets are the core resource available within the Data Labeling service. They contain records and their associated
labels. A record represents a single image or text document. Records are stored by reference to their original source
such as path on Object Storage. You can also upload records from local storage. Labels are annotations that describe
a data record. There are three different dataset formats, each having its respective annotation classes:

• Images: Single label, multiple label, and object detection. Supported image types are .png, .jpeg, and .jpg.

• Text: Single label, multiple label, and entity extraction. Plain text, .txt, files are supported.

• Document: Single label and multiple label. Supported document types are .pdf and .tiff.

12.2 Quick Start

The following examples provide an overview of how to use ADS to work with the Data Labeling service.

List all the datasets in the compartment:

from ads.data_labeling import DataLabeling
dls = DataLabeling()
dls.list_dataset()

With a labeled data set, the details of the labeling is called the export. To generate the export and get the path to the
metadata JSONL file, you can use export() with these parameters:

• dataset_id: The OCID of the Data Labeling dataset to take a snapshot of.

• path: The Object Storage path to store the generated snapshot.

metadata_path = dls.export(
dataset_id="<dataset_id>",
path="oci://<bucket_name>@<namespace>/<prefix>"

)

To load the labeled data into a Pandas dataframe, you can use LabeledDatasetReader object that has these parame-
ters:
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• materialize: Load the contents of the dataset. This can be quite large. The default is False.

• path: The metadata file path that can be local or object storage path.

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_export(
path="<metadata_path>",
materialize=True

)
df = ds_reader.read()

You can also read labeled datasets from the OCI Data Labeling Service into a Pandas dataframe using
LabeledDatasetReader object by specifying dataset_id:

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_DLS(
dataset_id="<dataset_ocid>",
materialize=True

)
df = ds_reader.read()

Alternatively, you can use the .read_labeled_data() method by either specifying path or dataset_id.

This example loads a labeled dataset and returns a Pandas dataframe containing the content and the annotations:

df = pd.DataFrame.ads.read_labeled_data(
path="<metadata_path>",
materialize=True

)

The following example loads a labeled dataset from the OCI Data Labeling, and returns a Pandas dataframe containing
the content and the annotations:

df = pd.DataFrame.ads.read_labeled_data(
dataset_id="<dataset_ocid>",
materialize=True

)

12.3 Export Metadata

To obtain a handle to a DataLabeling object, you call the DataLabeling() constructor. The default compartment is
the same compartment as the notebook session, but the compartment_id parameter can be used to select a different
compartment.

To work with the labeled data, you need a snapshot of the dataset. The export() method copies the labeled data from
the Data Labeling service into a bucket in Object Storage. The .export() method has the following parameters:

• dataset_id: The OCID of the Data Labeling dataset to take a snapshot of.

• path: The Object Storage path to store the generated snapshot.

The export process creates a JSONL file that contains metadata about the labeled dataset in the specified bucket. There
is also a record JSONL file that stores the image, text, or document file path of each record and its label.

The export() method returns the path to the metadata file that was created in the export operation.
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from ads.data_labeling import DataLabeling
dls = DataLabeling()
metadata_path = dls.export(

dataset_id="<dataset_id>",
path="oci://<bucket_name>@<namespace>/<prefix>"

)

12.4 List

The .list_dataset()method generates a list of the available labeled datasets in the compartment. The compartment
is set when you call DataLabeling(). The .list_dataset() method returns a Pandas dataframe where each row
is a dataset.

from ads.data_labeling import DataLabeling
dls = DataLabeling(compartment_id="<compartment_id>")
dls.list_dataset()

12.5 Load

The returned value from the .export()method is used to load a dataset. You can load a dataset into a Pandas dataframe
using LabeledDatasetReader or a Pandas accessor. The LabeledDatasetReader creates an object that allows you
to perform operations, such as getting information about the dataset without having to load the entire dataset. It also
allows you to read the data directly into a Pandas dataframe or to use an iterator to process the records one at a time.
The Pandas accessor approach provides a convenient method to load the data in a single command.

12.5.1 LabeledDatasetReader

Call the .from_export() method on LabeledDatasetReader to construct an object that allows you to read the data.
You need the metadata path that was generated by the .export() method. Optionally, you can set materialize to
True to load the contents of the dataset. It’s set to False by default.

from ads.data_labeling import LabeledDatasetReader
ds_reader = LabeledDatasetReader.from_export(
path=metadata_path,
materialize=True
)

You can explore the metadata information of the dataset by calling info() on the LabeledDatasetReader object.
You can also convert the metadata object to a dictionary using to_dict:

metadata = ds_reader.info()
metadata.labels
metadata.to_dict()

On the LabeledDatasetReader object, you call read() to load the labeled dataset. By default, it’s read into a Pandas
dataframe. You can specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the
Object Detection dataset.
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An Entity Extraction dataset is a dataset type that supports natural language processing named entity recognition (NLP
NER). Here is an example of spacy format. A Object Detection dataset is a dataset type that contains data from detecting
instances of objects of a certain class within an image. Here is an example of yolo format.

df = ds_reader.read()
df = ds_reader.read(format="spacy")
df = ds_reader.read(format="yolo")

When a dataset is too large, you can read it in small portions. The result is presented as a generator.

for df in ds_reader.read(chunksize=10):
df.head()

Alternatively, you can call read(iterator=True) to return a generator of the loaded dataset, and loop all the records
in the ds_generator by running:

ds_generator = ds_reader.read(iterator=True)
for item in ds_generator:

print(item)

The iterator parameter can be combined with the chunksize parameter. When you use the two parameters, the
result is also presented as a generator. Every item in the generator is a list of dataset records.

for items in ds_reader.read(iterator=True, chunksize=10):
print(items)

12.5.2 Pandas Accessor

The Pandas accessor approach allows you to to read a labeled dataset into a Pandas dataframe using a single command.

Use the .read_labeled_data() method to read the metadata file, record file, and all the corpus documents. To
do this, you must know the metadata path that was created from the .export() method. Optionally you can set
materialize to True to load content of the dataset. It’s set to False by default. The read_labeled_data() method
returns a dataframe that is easy to work with.

This example loads a labeled dataset and returns a Pandas dataframe containing the content and the annotations:

import pandas as pd
df = pd.DataFrame.ads.read_labeled_data(

path="<metadata_path>",
materialize=True

)

If you’d like to load a labeled dataset from the OCI Data Labeling, you can specify the dataset_id, which is dataset
OCID that you’d like to read.

The following example loads a labeled dataset from the OCI Data Labeling and returns a Pandas dataframe containing
the content and the annotations:

import pandas as pd
df = pd.DataFrame.ads.read_labeled_data(

dataset_id="<dataset_ocid>",
materialize=True

)
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You can specify the output annotation format to be spacy for the Entity Extraction dataset or yolo for the Object
Detection dataset.

import pandas as pd
df = pd.DataFrame.ads.read_labeled_data(

dataset_id="<dataset_ocid>",
materialize=True,
format="spacy"

)

An example of a dataframe loaded with the labeled dataset is:

12.6 Visualize

After the labeled dataset is loaded in a Pandas dataframe, you can be visualize it using ADS. The visualization func-
tionality only works if there are no transformations made to the Annotations column.

12.6.1 Image

An image dataset, with an Object Detection annotation class, can have selected image records visualized by calling
the .render_bounding_box() method. You can provide customized colors for each label. If the path parameter is
specified, the annotated image file is saved to that path. Otherwise, the image is displayed in the notebook session. The
maximum number of records to display is set to 50 by default. This setting can be changed with the limit parameter:

df.head(1).ads.render_bounding_box() # without user defined colors

df.iloc[1:3,:].ads.render_bounding_box(
options={"default_color": "white",

"colors": {"flower":"orange", "temple":"green"}},
path="test.png"

)

An example of a single labeled image record is similar to:
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Optionally, you can convert the bounding box to YOLO format by calling to_yolo() on bounding box. The labels are
mapped to the index value of each label in the metadata.labels list.

df["Annotations"] = df.Annotations.apply(
lambda items: [item.to_yolo(metadata.labels) for item in items] if items else None

)

12.6.2 Text

For a text dataset, with an entity extraction annotation class, you can also visualize selected text records by calling
.render_ner(), and optionally providing customized colors for each label. By default, a maximum of 50 records are
displayed. However, you can adjust this using the limit parameter:

df.head(1).ads.render_ner() # without user defined colors

df.iloc[1:3,:].ads.render_ner(options={"default_color":"#DDEECC",
"colors": {"company":"#DDEECC",

"person":"#FFAAAA",
"city":"#CCC"}})

This is an example output for a single labeled text record:

Optionally, you can convert the entities by calling to_spacy():

df["Annotations"] = df.Annotations.apply(
lambda items: [item.to_spacy() for item in items] if items else None

)
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12.7 Examples

12.7.1 Binary Text Classification

This example will demonstrate how to do binary text classification. It will demonstrate a typical data science workflow
using a single label dataset from the Data Labeling Service (DLS).

Start by loading in the required libraries:

import ads
import oci
import os
import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.tree import DecisionTreeClassifier

12.7.1.1 Dataset

A subset of the 20 Newsgroups dataset is used in this example. The complete dataset is a collection of approximately
20,000 newsgroup documents partitioned across 20 different newsgroups. The dataset is popular for experiments where
the machine learning application predicts which newsgroup a record belongs to.

Since this example is a binary classification, only the rec.sport.baseball and sci.space newsgroups are used.
The dataset was previously labeled in the Data Labeling service. The metadata was exported and saved in a publicly
accessible Object Storage bucket.

The data was previously labeled in the Data Labeling service. The metadata was exported and was saved in a publicly
accessible Object Storage bucket. The metadata JSONL file is used to import the data and labels.

12.7.1.2 Load

You use the .read_labeled_data() method to read in the metadata file, record file, and the entire corpus of docu-
ments. Only the metadata file has to be specified because it contains references to the record and corpus documents.
The .read_labeled_data() method returns a dataframe that is easy to work with.

The next example loads a labeled dataset, and returns the text from each email and the labeled annotation:

df = pd.DataFrame.ads.read_labeled_data(
"oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_single_label_20news/

→˓metadata.jsonl",
materialize=True

)
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12.7.1.3 Preprocess

The data needs to be standardized. The next example performs the following operations:

• Converts the text to lower case.

• Uses a regular expression (RegEx) command to remove any character that is not alphanumeric, underscore, or
whitespace.

• Replace the sequence of characters \n with a space.

The binary classifier model you train is a decision tree where the features are based on n-grams of the words. You use
n-grams that are one, two, and three words long (unigrams, bigrams, and trigrams). The vectorizer removes English
stop words because they provide little value to the model being built. A weight is assigned to these features using the
term frequency-inverse document frequency (TF*IDF) approach .

df['text_clean'] = df['Content'].str.lower().str.replace(r'[^\w\s]+', '').str.replace('\n
→˓', ' ')
vectorizer = TfidfVectorizer(stop_words='english', analyzer='word', ngram_range=(1,3))

12.7.1.4 Train

In this example, you skip splitting the dataset into the training and test sets since the goal is to build a toy model. You
assign 0 for the rec.sport.baseball label and 1 for the sci.space label:

classifier = DecisionTreeClassifier()
feature = vectorizer.fit_transform(df['text_clean'])
model = classifier.fit(feature, df['Annotations'])

12.7.1.5 Predict

Use the following to predict the category for a given text data using the trained binary classifier:

classifier.predict(vectorizer.transform(["reggie jackson played right field"]))

12.7.2 Image Classification

This example demonstrates how to read image files and labels, normalize the size of the image, train a SVC model, and
make predictions. The SVC model is used to try and determine what class a model belongs to.

To start, import the required libraries:

import ads
import matplotlib.pyplot as plt
import oci
import os
import pandas as pd

from ads.data_labeling import LabeledDatasetReader
from PIL import Image
from sklearn import svm, metrics
from sklearn.model_selection import train_test_split
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12.7.2.1 Data Source

The data for this example was taken from a set of x-rays that were previously labeled in the Data Labeling service
whether they have pneumonia or not. The metadata was exported and saved in a publicly accessible Object Storage
bucket. The following commands define the parameters needed to access the metadata JSONL file:

metadata_path = f"'oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/image_single_
→˓label_xray/metadata.jsonl'"

12.7.2.2 Load

This example loads and materializes the data in the dataframe. That is the dataframe to contain a copy of the image
file. You do this with the .ads.read_labeled_data() method:

df = pd.DataFrame.ads.read_labeled_data(path=metadata_path,
materialize=True)

12.7.2.3 Visualize

The next example extracts images from the dataframe, and plots them along with their labels:

_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
for ax, image, label in zip(axes, df.Content, df.Annotations):

ax.set_axis_off()
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title(f'Training: {label}')

12.7.2.4 Preprocess

The image files are mixture of RGB and grayscale. Convert all the images to single channel grayscale so that the input
to the SVC model is consistent:

df.Content = df.Content.apply(lambda x: x.convert("L"))

The images are different sizes and you can normalize the size with:

basewidth, hsize = min(df.Content.apply(lambda x: x.size))
df.Content = df.Content.apply(lambda x: x.resize((basewidth, hsize), Image.NEAREST))

Convert the image to a numpy array as that is what the SVC is expecting. Each pixel in the image is now a dimension
in hyperspace.

from numpy import asarray
import numpy as np

data = np.stack([np.array(image).reshape(-1) for image in df.Content], axis=0)
labels = df.Annotations

The model needs to be trained on one set of data, and then its performance would be assessed on a set of data that it
has not seen before. Therefore, this splits the data into a training and testing sets:
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X_train, X_test, y_train, y_test = train_test_split(
data, labels, test_size=0.1, shuffle=True)

12.7.2.5 Train

The following obtains an SVC classifier object, and trains it on the training set:

clf = svm.SVC(gamma=0.001)
clf.fit(X_train, y_train)

12.7.2.6 Predict

With the trained SVC model, you can now make predictions using the testing dataset:

predicted = clf.predict(X_test)
predicted

12.7.3 Multinomial Text Classification

Building a multinomial text classifier is a similar to creating a binary text classifier except that you make a classifier for
each class. You use a one-vs-the-rest (OvR) multinomial strategy. That is, you create one classifier for each class where
one class is the class your are trying to predict, and the other class is all the other classes. You treat the other classes as
if they were one class. The classifier predicts whether the observation is in the class or not. If there are m classes, then
there will be m classifiers. Classification is based on which classifier has the more confidence that an observation is in
the class.

Start by loading in the required libraries:

import ads
import nltk
import oci
import os
import pandas as pd

from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import cross_val_score
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.svm import LinearSVC
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12.7.3.1 Dataset

A subset of the Reuters Corpus dataset is used in this example. You use scikit-learn and nltk packages to build a
multinomial classifier. The Reuters data is a benchmark dataset for document classification. More precisely, it is a data
set where where the target variable it multinomial. It has 90 categories, 7,769 training documents, and 3,019 testing
documents.

The data was previously labeled in the Data Labeling service. The metadata was exported and was saved in a publicly
accessible Object Storage bucket. The metadata JSONL file is used to import the data and labels.

12.7.3.2 Load

This example loads a dataset with a target variable that is multinomial. It returns the text and the class annotation in a
dataframe:

df = pd.DataFrame.ads.read_labeled_data(
"oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_multi_label_nltk_reuters/

→˓metadata.jsonl",
materialize=True

)

12.7.3.3 Preprocess

You can use the MultiLabelBinarizer() method to convert the labels into the scikit-learn classification format
during the dataset preprocessing. This transformer converts a list of sets or tuples into the supported multilabel format,
a binary matrix of samples*classes.

The next step is to vectorize the input text to feed it into a supervised machine learning system. In this example, TF*IDF
vectorization is used.

For performance reasons, the TfidfVectorizer is limited to 10,000 words.

nltk.download('stopwords')

stop_words = stopwords.words("english") ## See scikit-learn documentation for what these␣
→˓words are
vectorizer = TfidfVectorizer(stop_words=stop_words, max_features = 10000)
mlb = MultiLabelBinarizer()

X_train = vectorizer.fit_transform(df["Content"]) ## Vectorize the inputs with tf-idf
y_train = mlb.fit_transform(df["Annotations"]) ## Vectorize the labels

12.7.3.4 Train

You train a Linear Support Vector, LinearSVC, classifier using the text data to generate features and annotations to
represent the response variable.

The data from the study class is treated as positive, and the data from all the other classes is treated as negative.

This example uses the scalable Linear Support Vector Machine, LinearSVC, for classification. It’s quick to train and
empirically adequate on NLP problems:

clf = OneVsRestClassifier(LinearSVC(class_weight = "balanced"), n_jobs = -1)
clf.fit(X_train, y_train)
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12.7.3.5 Predict

The next example applies cross-validation to estimate the prediction error. The K fold cross-validation works by parti-
tioning a dataset into K splits. For the k th part, it fits the model to the other K-1 splits of the data and calculates the
prediction error. It uses the k th part to do this prediction. For more details about this process, see here and specifically
this image.

By performing cross-validation, there are five separate models trained on different train and test splits to get an es-
timate of the error that is expected when the model is generalized to an independent dataset. This example uses the
cross_val_score method to estimate the mean and standard deviation of errors:

cross_val_score(clf, X_train, y_train, cv=5)

12.7.4 Named Entity Recognition

This example shows you how to use a labeled dataset to create a named entity recognition model. The dataset is labeled
using the Oracle Cloud Infrastructure (OCI) Data Labeling Service (DLS).

To start, load the required libraries

import ads
import os
import pandas as pd
import spacy

from spacy.tokens import DocBin
from tqdm import tqdm

12.7.4.1 Dataset

The Reuters Corpus is a benchmark dataset that is used in the evaluation of document classification models. It is based
on Reuters’ financial newswire service articles from 1987. It contains the title and text of the article in addition to a
list of people, places and organizations that are referenced in the article. It is this information that is used to label the
dataset. A subset of the news articles were labeled using the DLS.

12.7.4.2 Load

This labeled dataset has been exported from the DLS and the metadata has been stored in a publically accessible Object
Storage bucket. The .read_labeled_data() method is used to load the data. The materialize parameter causes
the original data to be also be returned with the dataframe.

path = 'oci://hosted-ds-datasets@bigdatadatasciencelarge/DLS/text_entity_extraction_nltk_
→˓reuters/metadata.jsonl'
df = pd.DataFrame.ads.read_labeled_data(

path,
materialize=True

)
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12.7.4.3 Preprocess

Covert the annotations data to the SpaCy format This will give you the start and end position of each entity and then
the type of entity, such as person, place, organization.

df.Annotations = df.Annotations.apply(lambda items: [x.to_spacy() for x in items])

The resulting dataframe will look like the following:

In this example, you will not be evaluating the performance of the model. Therefore, the data will not be split into train
and test sets. Instead, you use all the data as training data. The following code snippet will create a list of tuples that
contain the original article text and the annotation data.

train_data = []
for i, row in df.iterrows():

train_data.append((row['Content'], {'entities': row['Annotations']}))

The training data will look similar to the following:

[("(CORRECTED) - MOBIL &lt;MOB> TO UPGRADE REFINERY UNIT
Mobil Corp said it will spend over 30
mln dlrs to upgrade a gasoline-producing unit at its Beaumont,
...
(Correcting unit's output to barrels/day from barrels/year)",
{'entities': [(56, 66, 'company'), (149, 157, 'city'), (161, 166, 'city')]}),

('COFFEE, SUGAR AND COCOA EXCHANGE NAMES CHAIRMAN
The New York Coffee, Sugar and Cocoa
...
of Demico Futures, was elected treasurer.',
{'entities': [(54, 62, 'city'),
(99, 103, 'company'),
(140, 146, 'person'),
(243, 254, 'person'),
...
(718, 732, 'person')]}),

...

]

The DocBin format will be used as it provides faster serialization and efficient storage. The following code snippet
does the conversion and writes the resulting DocBin object to a file.
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nlp = spacy.blank("en") # load a new spacy model
db = DocBin() # create a DocBin object
i=0
for text, annot in tqdm(train_data): # data in previous format

doc = nlp.make_doc(text) # create doc object from text
ents = []
for start, end, label in annot["entities"]: # add character indexes

span = doc.char_span(start, end, label=label, alignment_mode="contract")

if span is not None:
ents.append(span)

doc.ents = ents # label the text with the ents
db.add(doc)

db.to_disk(os.path.join(os.path.expanduser("~"), "train.spacy") # save the docbin object

12.7.4.4 Train

The model will be trained using spaCy. Since this is done through the command line a configuration file is needed. In
spaCy, this is a two-step process. You will create a base_config.cfg file that will contain the non-default settings for
the model. Then the init fill-config argument on the spaCy module will be used to auto-fill a partial config.
cfg file with the default values for the parameters that are not given in the base_config.cfg file. The config.
cfg file contains all the settings and hyperparameters that will be needed to train the model. See the spaCy training
documentation for more details.

The following code snippet will write the base_config.cfg configuration file and contains all the non-default pa-
rameter values.

config = """
[paths]
train = null
dev = null

[system]
gpu_allocator = null

[nlp]
lang = "en"
pipeline = ["tok2vec","ner"]
batch_size = 1000

[components]

[components.tok2vec]
factory = "tok2vec"

[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"

[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = ${components.tok2vec.model.encode.width}

(continues on next page)
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(continued from previous page)

attrs = ["ORTH", "SHAPE"]
rows = [5000, 2500]
include_static_vectors = false

[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 96
depth = 4
window_size = 1
maxout_pieces = 3

[components.ner]
factory = "ner"

[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null

[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}

[corpora]

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0

[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"

[training.optimizer]
@optimizers = "Adam.v1"

[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2

[training.batcher.size]

(continues on next page)
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(continued from previous page)

@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001

[initialize]
vectors = ${paths.vectors}
"""

with open(os.path.join(os.path.expanduser("~"), "base_config.cfg"), 'w') as f:
f.write(config)

The following code snippet calls a new Python interpretrer that runs the spaCy module. It loads the base_config.cfg
file and writes out the configuration file config.cfg that has all of the training parameters that will be used. It contains
the default values plus the ones that were specified in the base_config.cfg file.

!$CONDA_PREFIX/bin/python -m spacy init fill-config ~/base_config.cfg ~/config.cfg

To train the model, you will call a new Python interpreter to run the spaCy module using the train command-line
argument and other arguments that point to the training files that you have created.

!$CONDA_PREFIX/bin/python -m spacy train ~/config.cfg --output ~/output --paths.train ~/
→˓train.spacy --paths.dev ~/train.spacy

12.7.4.5 Predict

The spaCy training procedure creates a number of models. The best model is stored in model-best under the output
directory that was specified. The following code snippet loads that model and creates a sample document. The model
is run and the output has the new document plus and entities that were detected are highlighted.

nlp = spacy.load(os.path.join(os.path.expanduser("~), "output", "model-best")) #load the␣
→˓best model
doc = nlp("The Japanese minister for post and telecommunications was reported as saying␣
→˓that he opposed Cable and Wireless having a managerial role in the new company.") #␣
→˓input sample text

spacy.displacy.render(doc, style="ent", jupyter=True) # display in Jupyter
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THIRTEEN

FEATURE TYPE

13.1 Overview

There is a distinction between the data type of a feature and the nature of data that it represents. The data type represents
the form of the data that the computer understands. ADS uses the term “feature type” to refer to the nature of the data.
For example, a medical record id could be represented as an integer, its data type, but the feature type would be “medical
record id”. The feature type represents the data the way the data scientist understands it. Pandas uses the term ‘column’
or ‘Series’ to refer to a column of data. In ADS the term ‘feature’ is used to refer to a column or series when feature
types have been assigned to it.

ADS provides the feature type module on top of your Pandas dataframes and series to manage and use the typing
information to better understand your data. The feature type framework comes with some common feature types.
However, the power of using feature types is that you can easily create your own and apply them to your specific data.
You don’t need to try to represent your data in a synthetic way that does not match the nature of your data. This
framework allows you to create methods that validate whether the data fits the specifications of your organization. For
example, for a medical record type you could create methods to validate that the data is properly formatted. You can
also have the system generate warnings to sure the data is valid as a whole or create graphs for summary plots.

The framework allows you to create and assign multiple feature types. For example, a medical record id could also
have a feature type id and an integer feature type.

13.1.1 Key Components

The feature type system allows data scientists to separate the concept of how data is represented physically from what
the data actually measures. That is, the data can have feature types that classify the data based on what it represents
and not how the data is stored in memory. Each set of data can have multiple feature types through a system of multiple
inheritances. For example, an organization that sells cars might have a set of data that represents their purchase price of a
car, that is the wholesale price. You could have a feature set of wholesale_price, car_price, USD, and continuous.
This multiple inheritance allows a data scientist to create feature type warnings and feature type validators for each
feature type.

A feature type is a class that inherits from FeatureType. It has several attributes and methods that can be overridden
to customize the properties of the feature type. The following is a brief summary of some of the key methods.
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13.1.1.1 Correlations

There are also various correlation methods, such as .correlation_ratio(), .pearson(), and .cramersv() that
provide information about the correlation between different features in the form of a dataframe. Each row represents a
single correlation metric. This information can also be represented in a plot with the .correlation_ratio_plot(),
.pearson_plot(), and .cramersv_plot() methods.

13.1.1.2 Multiple Inheritance

This is done through a system of inheritance. For example, a hospital may have a medical record number for each
patient. That data might have the patient_id, id, and integer feature types. The patient_id is the child feature
type with id being its parent. The integer is the parent of the id feature type. It’s also the last feature type in the
inheritance chain, and is called the default feature type.

When calling attributes and methods on a feature type, ADS searches the inheritance chain for the first matching
feature type that defines the attribute or method that you are calling. For example, you want to produce statistics for
the previously described patient id feature. Assume that the patient_id class didn’t override the .feature_stat()
method. ADS would then look to the id feature type and see if it was overridden. If it was, it dispatches that method.

This system allows you to over override the methods that are specific to the feature type that you are creating and
improves the reusability of your code. The default feature types are specified by ADS, and they have overridden all the
attributes and methods with smart defaults. Therefore, you don’t need to override any of these properties unless you
want to.

13.1.1.3 Summary Plot

The .feature_plot() method returns a Seaborn plot object that summarizes the feature. You can define what you
want the plot to look like for your feature. Further, you can modify the plot after it’s returned, which allows you to
customize it to fit your specific needs.

13.1.1.4 Summary Statistics

The .feature_stat() method returns a dataframe where each row represents a summary statistic and the numerical
value for that statistic. You can customize this so that it returns summary statistics that are relevant to your specific
feature type. For example, a credit card feature type may return a count of the financial network that issued the cards.

13.1.1.5 Validators

The feature type validators are a set of is_*methods, where * is generally the name of the feature type. For example, the
method .is_wholesale_price()can create a boolean Pandas Series that indicates what values meet the validation
criteria. It allows you to quickly identify which values need to be filtered, or require future examination into problems
in the data pipeline. The feature type validators can be as complex as necessary. For example, they might take a client
ID and call an API to validate each client ID is active.
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13.1.1.6 Warnings

Feature type warnings are used for rapid validation of the data. For example, the wholesale_price might have a
method that ensures that the value is a positive number because you can’t purchase a car with negative money. The
car_price feature type may have a check to ensure that it is within a reasonable price range. USD can check the value
to make sure that it represents a valid US dollar amount. It can’t have values below one cent. The continuous feature
type is the default feature type, and it represents the way the data is stored internally.

13.1.2 Forms of Feature Types

There are several different forms of feature types. These are designed to balance the need to document a feature type and
the ease of customization. With each feature that you define you can specify multiple feature types. The custom feature
type gives you the most flexibility in that all the attributes and methods of the FeatureType class can be overridden.
The tag feature type allows you to create a feature type that essentially is a label. Its attributes and methods cannot be
overridden, but it allows you to create a feature type without creating a class. The default type is provided by ADS. It
is based on the Pandas dtype, and sets the default attributes and methods. Each inheritance chain automatically ends in
a default feature type.

13.1.2.1 Custom

The most common and powerful feature type is the custom feature type. It is a Python class that inherits from
FeatureType. It has attributes and methods that you can be override to define the properties of the feature type
to fit your specific needs.

As with multiple inheritance, a custom feature type uses an inheritance chain to determine which attribute or method is
dispatched when called. The idea is that you would have a feature that has many custom feature types with each feature
type being more specific to the nature of the feature’s data. Therefore, you only create the attributes and methods that
are specific to the child feature type and the rest are reused from other custom or default feature types. This allows for
the abstraction of the concepts that your feature represents and the reusability of your code.

Since a custom feature type is a Python class, you can add user-defined attributes and methods to the feature type to
extend its capabilities.

Custom feature types must be registered with ADS before you can use them.

13.1.2.2 Default

The default feature type is based on the Pandas dtype. Setting the default feature type is optional when specifying the
inheritance chain for a feature. ADS automatically appends the default feature type as an ancestor to all custom feature
types. The default feature type is listed before the tag feature types in the inheritance chain. Each feature only has one
default feature type. You can’t mute or remove it unless the underlying Pandas dtype has changed. For example, you
have a Pandas Series called series that has a dtype of string so its default feature type is string. If you change
the type by calling series = series.astype('category'), then the default feature type is automatically changed
to categorical.

ADS automatically detects the dtype of each Series and sets the default feature type. The default feature type can be
one of the following:

• boolean

• category

• continuous

• date_time
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• integer

• object

• string

This example creates a Pandas Series of credit card numbers, and prints the default feature type:

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740"], name=
→˓'creditcard')
series.ads.default_type

'string'

You can include the default feature type using the .feature_type property. If you do, then the default feature type
isn’t added a second time.

series.ads.feature_type = ['credit_card', 'string']
series.ads.feature_type

['credit_card', 'string']

You can’t directly create or modify default feature types.

13.1.2.3 Tag

It’s often convenient to tag a dataset with additional information without the need to create a custom feature type class.
This is the role of the Tag() function, which allows you to create a feature type without having to explicitly define and
register a class. The trade-off is that you can’t define most attributes and all methods of the feature type. Therefore,
tools like feature type warnings and validators, and summary statistics and plots cannot be customized.

Tags are semantic and provide more context about the actual meaning of a feature. This could directly affect the
interpretation of the information.

The process of creating your tag is the same as setting the feature types because it is a feature type. You use the
.feature_type property to create tags on a feature type.

The next example creates a set of credit card numbers, sets the feature type to credit_card, and tags the dataset to
be inactive cards. Also, the cards are from North American financial institutions. You can put any text you want in the
Tag() because no underlying feature type class has to exist.

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740",
"4485348152450846"], name='Credit Card')

series.ads.feature_type=['credit_card', Tag('Inactive Card'), Tag('North American')]
series.ads.feature_type

['credit_card', 'string', 'Inactive Card', 'North American']

Tags are always listed after the other feature types:

A list of tags can be obtained using the tags attribute:

series.ads.tags

['Inactive Card', 'North American']
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13.2 Assign Feature Types

The .feature_type property is used to assign the feature types that are to be associated with a feature. It accepts an
ordered list of the custom, default, and tag feature types.

The .feature_type property is defined on a Pandas Series and dataframe. There are small differences between the
ways that they are used are defined.

The order that you specify custom feature types defines the inheritance chain so controls which attribute or method is
dispatched a feature. The default feature type doesn’t have to be specified. If you specify it, it is placed after the custom
feature types in the inheritance chain. Tag feature types are always placed after the default feature type.

It is best practice to list the custom feature type first, then default, and then the tag feature types. The order matters so
list any custom features first in the list.

When using the .feature_type property, the provided list accepts class names and custom feature type objects. For
example, assume that CreditCard is a custom feature type and has the class name 'credit_card'. The following
.feature_type statements are equivalent:

CreditCard = feature_type_manager.feature_type_object('credit_card')
String = feature_type_manager.feature_type_object('string')
series.ads.feature_type = ['credit_card', 'string']
series.ads.feature_type = [CreditCard, String]
series.ads.feature_type = [CreditCard, 'string']

13.2.1 Dataframe

Like a Pandas Series, you can use .feature_type on a dataframe to set the feature types for the columns in the
dataframe. This property accepts a dictionary where the key in the dictionary is the column name, and the value is a
list of feature types associated with that column.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['Attrition', 'TravelForWork', 'JobFunction', 'EducationalLevel
→˓'])
df.ads.feature_type = {'Attrition': ['boolean', 'category'],

'TravelForWork': ['category'],
'JobFunction': ['category'],
'EducationalLevel': ['category']}

df.ads.validator_registered()
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13.2.2 Series

When working with a Pandas Series you can access the ADS feature type attributes and properties by accessing the
.ads method on the Pandas Series.

To assign feature types to a Pandas Series, use the .ads.feature_type property. The next example creates a series of
credit card numbers. Then it uses the .feature_type property with a list of strings of the class names of the feature
types.

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740",
→˓"4485348152450846"], name='Credit Card')
series.ads.feature_type = ['credit_card', 'string']
series.ads.feature_type_description

13.3 Correlation

Generally, a data scientist wants to make a model as parsimonious as possible. This often involves determining what
features are highly correlated and removing some of them. While some models, such as decision trees, aren’t sensitive to
correlated variables, others, such as an ordinary least squares regression, are. You might also want to remove correlated
variables because it reduces the cost of collecting and processing the data.

ADS speeds up your analysis by providing methods to compute different types of correlations. There are several dif-
ferent correlation techniques and they have different use cases. Also, there are two sets of methods for each correlation
type. One method returns a dataframe with the correlation information, and the other method generates a plot.

What correlation technique you use depends on the type of data that you are working with. When using these correlation
techniques, you must slice your dataframe so that only the appropriate feature types are used in the calculation. The
ADS feature type selection tools help you do this quickly.

The following is a summary of the different correlation techniques and what data to use.

• correlation_ratio: The correlation ratio measures the extent to which a distribution is spread out within
individual categories relative to the spread of the entire population. This metric is used to compare categorical
variables to continuous values.

• cramersv: The Cramér’s V provides a measure of the degree of association between two categorical and nominal
datasets.

• pearson: The Pearson correlation coefficient is a normalized measure of the covariance between two sets of data.
It measures the linear correlation between the datasets. Use this method when both datasets contain continuous
values.
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13.3.1 Correlation Ratio

Statistical dispersion, or scatter, is a measure of the spread of a distribution with variance being a common metric.
The correlation ratio is a measure of dispersion with categories relative to the dispersion across the entire dataset. The
correlation ratio is a weighted variance of the category means over the variance of all samples. It is given with this
formula:

𝜂 =

√︃
𝜎2
𝑦

𝜎2
𝑦

where:

𝜎2
𝑦 =

∑︀
𝑥 𝑛𝑥(𝑦𝑥 − 𝑦)2∑︀

𝑥 𝑛𝑥

𝜎2
𝑦 =

∑︀
𝑥,𝑖 𝑛𝑥(𝑦𝑥,𝑖 − 𝑦)2

𝑛

Where 𝑛 is the total number of observations and 𝑛𝑥 is the number of observations in a category 𝑥. 𝑦𝑥 is the mean value
in category 𝑥 and 𝑦 is the overall mean.

Values of 𝜂 near zero indicate that there is no dispersion between the means of the different categories. A value of 𝜂
near one suggests that there in no dispersion within the respective categories.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['JobFunction', 'Age', 'YearsinIndustry', 'YearsOnJob',
→˓'YearsWithCurrManager', 'YearsAtCurrentLevel'])
df.ads.feature_type = {'Age': ['continuous'], 'YearsinIndustry': ['continuous'],
→˓'YearsOnJob': ['continuous'],

'YearsWithCurrManager': ['continuous'], 'YearsAtCurrentLevel': [
→˓'continuous'],

'JobFunction': ['category']}
df.ads.correlation_ratio()
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df.ads.correlation_ratio_plot()
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13.3.2 Cramér’s V

Cramér’s V is used to measure the amount of association between two categorical and nominal variables. A value of zero
means that there is no association between the bivariates, and a value of one means that there is complete association.
The 𝑉 is the percentage of the maximum association between the variables and is dependent on the frequency in which
the tuples (𝑥𝑖, 𝑦𝑗) occur.

The value of 𝑉 is related to the chi-squared statistic, 𝑋2 and is given with:

𝑉 =

√︃
𝑋2

𝑚𝑖𝑛(𝑘 − 1, 𝑟 − 1)𝑛

Where: 𝑘 and 𝑟 are the number of categories in the datasets 𝑥 and 𝑦. 𝑛 is the sample size.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['TravelForWork', 'JobFunction', 'EducationField',
→˓'EducationalLevel'])
df.ads.feature_type = {'TravelForWork': ['category'], 'JobFunction': ['category'],
→˓'EducationField': ['category'],

'EducationalLevel': ['category']}
df.ads.cramersv()
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df.ads.cramersv_plot()
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13.3.3 Pearson Correlation Coefficient

The Pearson correlation coefficient is known by several names like Pearson’s r, Pearson product moment correlation
coefficient, bivariate correlation, or the correlation coefficient. It has a range of [-1, 1] where 1 means that the two
datasets are perfectly correlated, and a value of -1 means that the correlation is perfectly out of phase. So, when one
dataset is increasing the other one is decreasing.

The Pearson correlation coefficient is a normalized value of the covariance between the continuous datasets X and Y.
It is normalized by the product of the standard deviation between X and Y and is given with this formula:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌 )

𝜎𝑋𝜎𝑌

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['Age', 'YearsinIndustry', 'YearsOnJob', 'YearsWithCurrManager',
→˓'YearsAtCurrentLevel'])
df.ads.feature_type = {'Age': ['continuous'], 'YearsinIndustry': ['continuous'],
→˓'YearsOnJob': ['continuous'],

'YearsWithCurrManager': ['continuous'], 'YearsAtCurrentLevel': [
→˓'continuous']}
df.ads.pearson()

13.3. Correlation 199



ADS Documentation, Release 2.6.4

This same information can be represented in a plot using the .pearson_plot() method:

df.ads.pearson_plot()
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13.4 Feature Count

Each column in a Pandas dataframe is associated with at least one feature type. That feature type is the default, and
it’s determined by the Pandas dtype. However, the feature type system allows you to associate a feature with multiple
feature types using an inheritance system. A feature could have a feature set of wholesale_price, car_price, USD,
and continuous.

You can call the .feature_count() method on a dataframe to provide a summary of what features are being used.
The output is a dataframe where each row represents a feature type, which is listed in the Feature Type column. The
next column lists the number of times the feature type appears in any of the columns. Since each feature can have
multiple feature types, it counts all occurrences. The Primary column is the count of the number of times that the
feature type is listed as the primary feature type that has no subclasses.

In the next example, the orcl_attrition dataset is loaded. The feature types are assigned and the top of the dataframe
is displayed.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['Attrition', 'TravelForWork', 'JobFunction',
→˓'TrainingTimesLastYear'])
df.ads.feature_type = {'Attrition': ['boolean', 'category'],

'TravelForWork': ['category'],
'JobFunction': ['category'],
'TrainingTimesLastYear': ['integer']}

df.head()
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In the preceding example, the .ads.feature_type method is used to store the feature types associated with each
column. For example, the Attrition column has the Boolean and category feature types. You can also use the .ads.
feature_typemethod to return a dictionary that lists the feature types that are assigned to each feature. Notice that the
Attrition feature has the feature types Boolean, category, and string associated with it. In the preceding example, only
the Boolean and category feature types were specified. That’s because the feature type system automatically appends
the feature type string based on the Pandas dtype, and is the default feature type. With TrainingTimesLastYear, the
feature type that was specified was an integer. Since this is the dtype, no additional feature type was appended.

df.ads.feature_type

{'Attrition': ['boolean', 'category', 'string'],
'TravelForWork': ['category', 'string'],
'JobFunction': ['category', 'string'],
'TrainingTimesLastYear': ['integer']}

The .feature_count() method is called on the dataframe in the next example. It provides a summary of the features
used across all features in the dataframe. The output dataframe has one row for each feature type that is represented in
the dataframe. This is listed in the Feature Type column. The next column lists the number of times the feature type
appears in any of the columns. For example, the category feature type appears in the Attrition, TravelForWork, and
JobFunction columns. So, it has a count of three. The Primary column is the count of the number of times that the
feature type is listed as the primary feature type. For the category feature type, the value is two because TravelForWork
and JobFunction have this set as their primary feature type. While category is a feature type of Attrition, it’s not the
primary feature type, Boolean is. With a string feature type, it occurs in the Attrition, TravelForWork, and JobFunction
features. However, it’s not the primary feature type in these features so its count is 3, but its Primary count is zero.

df.ads.feature_count()
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13.5 Feature Plot

Visualization of a dataset is a quick way to gain insights into the distribution of values. The feature type system in ADS
provides plots for all ADS-supported feature types. However, it’s easy to create feature plots for your custom feature
types. Calling .feature_plot() on a Pandas Series produces a univariate plot. The .feature_plot() method is
also available on a dataframe. When it is called a dataframe is returned where the column Column lists the name of the
feature and the column Plot has a plot object.

The power of the feature plot is that you can customize the feature plot that is created for the custom feature types
that you create. Since a feature can have multiple inheritance, the inheritance chain is used to determine which .
feature_plot() method is dispatched.

13.5.1 Create

The .feature_plot() is defined on a Pandas Series and dataframes. The behavior between the two is similar though
different. On a Pandas Series, a matplotlib.pyplot object is returned. On a Pandas dataframe a dataframe is
returned with a collection of matplotlib.pyplot objects.

13.5.1.1 Series

When using a Pandas Series and the .feature_plot() method, a matplotlib.pyplot object is returned.

The next example loads the orcl_attrition dataset and assigns feature types to each feature. The TravelForWork
feature has a simple feature type inheritance chain with a single feature type, category. category is a default feature
type so ADS provides a .feature_plot() method for it. Calling .feature_plot() produce sa horizontal bar chart
with a count of the number of observations in each category. In this specific case, it is a count of the number of
employees that travel for work:

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['Attrition', 'TravelForWork', 'JobFunction',
→˓'TrainingTimesLastYear'])
df.ads.feature_type = {'Attrition': ['category'], 'TravelForWork': ['category'],

'JobFunction': ['category'], 'TrainingTimesLastYear': ['continuous
→˓']}
df['TravelForWork'].ads.feature_plot()
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13.5.1.2 Dataframe

It’s often expedient to produce the feature plots for all the features in a dataframe. You can this by calling .
feature_plot() on a dataframe. Unlike the Pandas Series version of .feature_plot(), it doesn’t return a
matplotlib.pyplot object. ADS tends to be a dataframe centric system because it often returns dataframes when
there are more than one value. This makes the interface consistent and the output is easy to manipulate. Thus, the Pan-
das dataframe version of the .feature_plot() method returns a row-dominate dataframe with two columns, Column
and Plot. Each row represents a feature in the source dataframe. The Column column has the name of the feature or
column in the source dataframe. The Plot column has a matplotlib.pyplot object representing the resulting plot
from the call to .feature_plot() on that column.

df.ads.feature_plot()
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13.5.2 Modify

The feature type system is designed to allow you to reuse your code when working with a feature. The .
feature_plot() method is a custom feature type you can override to produce custom plots that work well with
the data you have. However, sometimes the plots may need adjustments to properly represent a specific version of a
feature. The feature plot system returns plots that can be modified.

The .feature_plot() method on a Pandas Series returns a single matplotlib.pyplot object. This same method
on a Pandas Series returns a dataframe with the Plot column is a matplotlib.pyplot object. You can modify these
objects.

The next example captures the matplotlib.pyplot object in the variable travel_plot, and then modifies the plot
by adding a title.

travel_plot = df['TravelForWork'].ads.feature_plot()
travel_plot.set_title("Count of the Number of Employees that Travel")

206 Chapter 13. Feature Type



ADS Documentation, Release 2.6.4

You could use this same approach on the dataframe of plots by iterating over each row in the dataframe, and applying
the desired changes.

13.5.3 Custom

ADS comes with feature plots for the default feature types. While these are designed to be generic and provide
reasonable default values, they aren’t designed to meet each use case. Custom features are designed to have the .
feature_plot() method overridden so that you get a plot that best summarizes your data.

You could create a custom feature type called CreditCard. This feature type represents a set of credit card numbers
as a series of strings. The default feature type would be String and wouldn’t produce a satisfactory summary of the
data. A convenient summary might be a count of the number of cards that are issued by each financial institution along
with a count of where the data is missing or that the card number is invalid.

For this example, use the card_identify().identify_issue_network() helper function because it returns a
string of the name of the financial institution that issued the card.

To create a custom feature plot, in the class that you’re using to create the custom feature, override the feature_plot
method. This method must be static. It accepts a Pandas Series, and returns a matplotlib.pyplot. There is nothing
that enforces the fact that this type of object is returned. However, it’s a good idea to be consistent with the plots that
are returned by the default feature types.

from ads.feature_engineering import feature_type_manager, FeatureType
from ads.common.card_identifier import card_identify

class CreditCard(FeatureType):
@staticmethod
def feature_plot(x: pd.Series) -> plt.Axes:

def assign_issuer(cardnumber):
if pd.isnull(cardnumber):
return "missing"

else:
return card_identify().identify_issue_network(cardnumber)

card_types = x.apply(assign_issuer)
df = card_types.value_counts().to_frame()
if len(df.index):

ax = sns.barplot(x=df.index, y=list(df.iloc[:, 0]))
ax.set(xlabel="Issuing Financial Institution")
ax.set(ylabel="Count")
return ax
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13.6 Feature Statistics

Computing summary statistics is one of the most common tasks that data scientists do during an exploratory data
analysis (EDA). The goal of the .feature_stat() method is to produce relevant summary statistics for the feature
set. The feature type framework allows you to customize what statistics are used in a feature type. It also standardizes
the way those statistics are returned. This empowers you to produce visualizations, and other tools that can use the
standardized output.
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13.6.1 Using

The .feature_stat() is used to compute the feature statistics, and it is defined on a Pandas Series and dataframe.
In both cases, the method returns a row-dominate dataframe where each row represents a single observation. In each
case, there are columns that represent the metric that was computed and the value. When it is called on a dataframe,
there is one other column that represents the feature that the metric was computed for.

13.6.1.1 Dataframe

The .feature_stat() method also works at the dataframe level. It produces a similar output to that of the series,
except it has an additional column that lists the column name where the metric was computed.

df.ads.feature_stat()
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13.6.2 Reshape the Output

The .feature_stat() method outputs its data in a row-dominate format to make it easy to work with. However,
there are times when a column dominate format helps to better understand the data. This is often the case when the
data all have similar summary statistics. You can convert from the row-dominate to the column-dominate format with
the .pivot_table() method, which is part of Pandas. When there are missing values, an NaN is inserted.

df.ads.feature_stat().pivot_table(index='Column', columns='Metric', values = 'Value')

13.6.2.1 Series

The .feature_stat() outputs a Pandas dataframe where each row represents a summary statistic. This is called the
row-dominate format. The statistics that are reported depending on the inheritance chain of the feature types. The
feature type framework iterates from the primary feature type to the default feature type looking for a feature type that
has the .feature_stat() method defined and then dispatches on that.

In the next example, the .feature_stat() for the integer feature type is run. This feature set returns the count of
the observations, the mean value, the standard deviation, and Tukey’s Five Numbers (sample minimum, lower quartile,
median, upper quartile, and sample maximum).

df['TrainingTimesLastYear'].ads.feature_stat()

The summary statistics that you create depend on the feature type. For example, assume that there is a dataframe,
df, that has a column named JobFunction and the dtype is categorical. Thus, its default feature type is also
categorical. A call to .feature_type_stat() produces a count of the number of observations, and the number
of unique categories:

df['JobFunction'].ads.feature_stat()
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13.6.3 Custom

You can create custom summary statistics when working with a custom feature type. The previous example with the
JobFunction statistics, they might not be an ideal summary for this feature. Instead, you might want to know the number
of job functions in each category. You can create a new feature type and it is associated .feature_stat() method.
In the next example, a new custom feature type called JobFunction is created. It overrides the .feature_stat()
method to produce a count of the number of each job functions in the data. This feature type is then registered and the
dataframe JobFunction column is updated so that it now inherits from the JobFunction feature type. Then it prints
the feature summary statistics for the JobFunction column.

To create a custom feature statistics, in the class that you are using to create the custom feature, override the
feature_stat method. This method must be static. It accepts a Pandas Series and returns a dataframe. The se-
ries is the values in the feature that you are computing the statistic for so you must know the dtype that will be passed
in.

The resulting dataframe must have the columns Metric and Value. The Metric column is a string that defines the
metric that is being computed. The Value column is a floating-point value of the metric that was computed.

If there are no metrics that are to be returned, then an empty dataframe with these columns must be returned. There is
no limit to the number of metrics that can be returned.

from ads.feature_engineering import feature_type_manager, FeatureType

# Create the JobFunction feature type
class JobFunction(FeatureType):

@staticmethod
def feature_stat(series: pd.Series) -> pd.DataFrame:

result = dict()
job_function = ['Product Management', 'Software Developer', 'Software Manager',

→˓'Admin', 'TPM']
for label in job_function:

result[label] = len(series[series == label])
return pd.DataFrame.from_dict(result, orient='index', columns=[series.name])

# Register the JobFunction feature type and assign it to the dataframe
feature_type_manager.feature_type_register(JobFunction)
df['JobFunction'].ads.feature_type = ['job_function', 'category']
df['JobFunction'].ads.feature_stat()
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13.7 Feature Type Manager

ADS uses custom feature types that define the characteristics of the feature types. It also uses a set of custom validators
and warning handlers to provide reusable code to provide validation information for the feature.

The role of the feature type manager is to provide an interface to manage the custom feature types and various handlers.

import ads
from ads.feature_engineering import feature_type_manager

13.7.1 Custom Feature Types

Custom feature types are created by a data scientist to define a new feature type that is specific to their data. You do
this by creating a class that inherits from the FeatureType class. This custom feature type class must be linked to the
ADS system for it to be available for use in ADS. The feature type manager is used to administer this connection.

13.7.1.1 List

Calling feature_type_manager.feature_type_registered() gives an overview of all the registered feature
types. The output is a dataframe with the following columns:

• Class: Registered feature type class.

• Name: Feature type class name.

• Description: Description of each feature type class.

feature_type_manager.feature_type_registered()
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13.7.1.2 Register

The feature type framework comes with some common feature types. However, the power of using feature types is that
you can easily create your own, and apply them to your specific data.

To create a custom feature type, you need to create a class that is inherited from the FeatureType class. The
class must be registered with ADS before you can use it. You do this using the feature_type_manager.
feature_type_register() method passing in the name of the class.

In the next example, the MyFeatureType custom feature type is created and registered:

class MyFeatureType(FeatureType):
description = "This is an example of custom feature type."

(continues on next page)
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(continued from previous page)

feature_type_manager.feature_type_register(MyFeatureType)
feature_type_manager.feature_type_registered()
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13.7.1.3 Reset

The feature_type_manager.reset() is used to unregister all custom feature types. The next example registers the
MyFeatureType and checks that it’s there. Then it resets the feature types and checks that MyFeatureType is not
registered.

feature_type_manager.feature_type_register(MyFeatureType)

print("MyFeatureType is registered:" + str('my_feature_type' in feature_type_manager.
→˓feature_type_registered()['Name'].unique()))
print("Removing all the custom feature types")
feature_type_manager.feature_type_unregister('my_feature_type')
print("MyFeatureType is registered:" + str('my_feature_type' in feature_type_manager.
→˓feature_type_registered()['Name'].unique()))

MyFeatureType is registered:True
Removing all the custom feature types
MyFeatureType is registered:False

13.7.1.4 Unregister

Custom feature types can be unregistered from ADS using the feature type name and the feature_type_manager.
feature_type_unregister() method. Built-in feature types can’t be unregistered.

The next example unregisters the MyFeatureType class using the my_feature_type feature type name . It also
displays the list of registered classes ,and the fact that MyFeatureType was removed.

feature_type_manager.feature_type_unregister('my_feature_type')
feature_type_manager.feature_type_registered()
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13.7.2 Feature Type Object

Feature type objects are derived from the FeatureType class. Obtaining a feature type object allows access to manip-
ulate the feature type validators and feature type warnings that are associated with a given feature type. A feature type
object is loaded using the feature_type_manager.feature_type_object() method and providing the its feature
type name. For example, a PhoneNumber custom feature type class might have the feature type name phone_number.
This feature type is loaded by following this approach:

PhoneNumber = feature_type_manager.feature_type_object('phone_number')

Feature type validators and warnings register their handlers at the feature type level. Therefore, feature type objects are
used to manage these handlers.
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13.7.2.1 Feature Type Validator

13.7.2.1.1 List

The .validator.registered() method returns a dataframe with the validators, conditions, and feature type valida-
tors that are associated with the given feature type. For example, assume that there is a custom feature type CreditCard
and it has a single validator registered. The next example demonstrates how to list the validators. It returns a dataframe
with the following columns:

• Name: Method name of the validator.

• Conditions: The conditions that call the handler.

• Handler: Name of the function to perform the validation. This is the actual handler.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()

13.7.2.1.2 Register

Use the .validator.register() method on a feature type object to register a handler. A handler can be a default
handler, meaning that there are no conditions on it or a handler with conditions. To register a default handler, use the
following parameters:

• name: The validator name to use to invoke the feature type validator.

• default_handler: The function name of the default feature type validator.

• replace: The flag indicating if the registered handler is replaced with the new one.

To register a handler with conditions use the following parameters:

• name: The validator name that is used to invoke the feature type validator.

• condition: The conditions that call the handler.

• handler: The function name of the feature type validator.

• replace: The flag indicating if the registered handler is replaced with the new one.

The next example obtains the feature type object, CreditCard, and then it registers the default feature type validator. If
one exists with the same name, it is replaced. A call to CreditCard.validator_registered() returns the registered
handlers for the credit card feature type.

def is_visa_card_handler(data: pd.Series, *args, **kwargs) -> pd.Series:
PATTERN = re.compile(_pattern_string, re.VERBOSE)
def _is_credit_card(x: pd.Series):

return (
not pd.isnull(x)
and PATTERN.match(str(x)) is not None

)
return data.apply(lambda x: True if _is_credit_card(x) else False)

(continues on next page)

13.7. Feature Type Manager 217



ADS Documentation, Release 2.6.4

(continued from previous page)

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_visa_card', handler=is_visa_card_handler)
CreditCard.validator.registered()

13.7.2.1.3 Unregister

Use the .validator.unregister() method to remove a feature type validator. With a default feature type validator,
only the name of the validator is required. To remove a conditional validator, the condition parameter must be
specified with a dictionary or tuple that matches the conditions of the handler to be removed.

Assume, that there is a CreditCard``custom feature type class with the feature type name
``is_credit_card and the condition 'card_type'='Visa'. The next example demonstrates how this val-
idator is removed.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.unregister(name="is_credit_card", condition = {"card_type": "Visa"})

13.7.2.2 Feature Type Warning

13.7.2.2.1 List

The .warning.registered() method returns a dataframe with the name of a warning and handler. For example,
assume that there is a custom feature type with the feature type name credit_card. The following example provides
information on the warnings that have been registered with this custom feature type.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()
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13.7.2.2.2 Register

Feature type warnings are registered with the feature type object. You can assign the same handler to multiple feature
types. The .warning.register() method registers the handler for the warning. You give it a name for the handler
and the handler function. The optional replace = True parameter overwrites the handler when the name exists.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.register(name='invalid_credit_card',

handler=invalid_credit_card_handler,
replace=True)

13.7.2.2.3 Unregister

To remove a feature type warning from a custom feature type use the .warning.unregister() method. It accepts
the name of the feature type warning. The next code snippet removes the invalid_credit_card warning from a
feature type class that has the feature type name credit_card.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.unregister('invalid_credit_card')

13.7.3 Feature Type Validator

Feature validators are defined at the feature type object level. The feature type manager allows you to list all validators
across all feature types. To register, unregister, or list the validators on a specific feature type, use the feature type
object.

13.7.3.1 List

To list the current feature handlers and their conditions for all feature types, use the feature_type_manager.
validator_registered() method. It returns a dataframe with the following columns:

• Condition: Condition that the handler is registered in.

• Feature Type: Feature type class name.

• Handler: Registered handler.

• Validator: Validation functions that you can call to validate a Pandas Series.

feature_type_manager.validator_registered()
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13.7.4 Feature Type Warning

Feature warnings are defined at the feature type object level. The feature type manager allows to list all warnings across
all feature types. To register, unregister, or list the warnings on a specific feature type, use the feature type object.

13.7.4.1 List

The feature_type_manager.warning_registered() method returns a dataframe of registered warnings all reg-
istered feature types. The columns of returned dataframe are:

• Feature Type: Feature type class name.

• Handler: Registered warning handler for that feature type.

• Warning: Warning name.

feature_type_manager.warning_registered()
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13.8 Feature Type Selection

Pandas provide methods to select the columns that you want by using their column names or positions. However,
a common task that data scientists perform is to select columns that have specific attributes. This is often done by
manually examining the column names and making a list of them. Or by having attributes encoded to the column name
and then creating a search pattern to return a list.

None of these methods are efficient or robust. The feature type system in ADS allows you to define feature types on
the features. Since you have feature types assigned to a set of features, the feature type selection allows you to create a
new dataframe with only the columns that have, or don’t have, specific feature types associated with them.

You can select a subset of columns based on the feature types using the .feature_select() method. The include
parameter defaults to None. It takes a list of feature types (feature type object or feature type name) to include in
the returned dataframe. The exclude parameter defaults to None. It takes a list of feature types to exclude from the
returned dataframe. You can’t set both include and exclude to None. A feature type can’t be included or excluded
at the same time.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['Attrition', 'TravelForWork', 'JobFunction', 'EducationalLevel
→˓'])
df.ads.feature_type = {'Attrition': ['boolean'],

'TravelForWork': ['category'],
'JobFunction': ['category'],
'EducationalLevel': ['category']}

Next, create a dataframe that only has columns that have a Boolean feature type:

df.ads.feature_select(include=['boolean'])

You can create a dataframe that excludes columns that have a Boolean feature type:
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df.ads.feature_select(exclude=['boolean'])

13.9 Feature Type Validator

13.9.1 Overview

One aspect of an exploratory data analysis (EDA) is to ensure that all the data is valid. For example, you may have
credit card data and want to ensure that all the numbers are valid credit card numbers. The feature type validators are
a way of performing this validation. There are built-in methods for the feature types that are provided by ADS, but the
idea is for you to create these methods for your custom feature types.

Feature type validators are defined at the feature type level. You define functions that are applied to the features.

The feature type validators are a set of .is_*() methods, where * is generally the name of the feature type. For
example, the method .is_credit_card() could be called to ensure that the data are all credit card numbers. The
feature type validators return a Boolean Pandas Series, which is the length of the original data. If the element meets
the criteria specified in the feature type validator, it indicates True. Otherwise, it is False. The .is_*() method is
called the validator.

The feature type validator system is extensible. You can have multiple validators for any feature type. To continue
with the credit card example, your main validator may be .is_credit_card(). However, other validators like .
is_visa() and .is_mastercard() could be added that determine if the credit card numbers are associated with
Visa or Mastercard accounts.

You can extend the feature type validator by using conditions. Conditions allow you to have different sets of feature
type validators based on a set of arguments that you define called conditions. For example, if you wanted to and see
if a credit card is a Visa card you could create a condition like .is_credit_card(card_type='Visa'). Then you
register a feature handler with that condition, and it runs when you pass in that condition.

13.9. Feature Type Validator 223



ADS Documentation, Release 2.6.4

Open and closed are the two types of conditions. A closed condition requires that parameter and value match for the
handler to be dispatched. An open condition only checks the parameter and not the value and will dispatch the handler
based on that.

13.9.2 Create

The power of the feature type system is that you can quickly create new feature type validators to validate your data.
This is a two-step process:

1. Define a function that acts as the feature type validator.

2. Register the feature type validator.

A feature type validator is a function that respects these rules:

• It takes a Pandas Series as the first argument.

• The *args and **kwargs are supported.

• It returns a Boolean series that is the same length as the input series.

To register your own handler, you need to define the handler, and then register it to the feature type. If the handler
already exists, you don’t need to create a new one.

In the next example, a new feature type validator, .is_visa_card_handler(), is created. It checks to see if the
credit card number is issued by Visa by testing each element in the data parameter. It returns a Boolean series the
same length as data.

def is_visa_card_handler(data: pd.Series, *args, **kwargs) -> pd.Series:
"""
Processes data and indicates if the data matches Visa credit card.

Parameters
----------
data: pd.Series

The data to process.

Returns
--------
pd.Series: The logical list indicating if the data matches requirements.
"""
_pattern_string = r"""

^(?:4[0-9]{12}(?:[0-9]{3})? # Visa
| ^4[0-9]{12}(?:[0-9]{6})?$ # Visa 19 digit
)$

"""
PATTERN = re.compile(_pattern_string, re.VERBOSE)
def _is_credit_card(x: pd.Series):

return (
not pd.isnull(x)
and PATTERN.match(str(x)) is not None

)
return data.apply(lambda x: True if _is_credit_card(x) else False)
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13.9.3 Conditions

A condition feature type validator allows you to specify arbitrary parameters that are passed to the feature type system.
The system examines these parameters and determines which handler is dispatched.

Use the .validator.register() method to register a condition handler. The condition parameter is used to
specify the conditions that must be met to invoke the handler. Conditions are user-defined parameters and values that
help identify what condition that the handler is dispatched on.

The three types of condition handlers are open, closed ,and default. A closed condition handler must match both the
condition parameter name and value to dispatch the handler. An open handler only matches the parameter name. For
example, a closed condition handler could be fruit='peach'. Where an open condition handler would be dispatched
without examination of the value of fruit. The default condition handler must always exist. There is one provided
by the base class and you can also define a default condition handler by not providing a condition parameter when
registering a feature type validation handler.

13.9.3.1 Closed Value

Closed value condition feature types allow you to specify any number of key-value pairs to a condition handler, and
control which validator is dispatched. However, when calling the handler all of the key-value pairs must match.

The condition parameter of the .validator.register() method explicitly defines key-value pairs that are used to
determine which handler to dispatch. In a previous example, the is_visa_card validator was created to determine if
the credit cards were issued by Visa. You could create the same effect by using a condition feature type validator on the
is_credit_card feature type handle using explicit key-value pairs. To do this, the condition parameter accepts a
dictionary of key-value pairs where the key is the parameter name and the dictionary value is the parameter value. For
example, CreditCard.validator.register(name='is_credit_card', condition={"card_type": "Visa
"}, handler=is_visa_card_handler) links the parameter card_type to the value Visa. If card_type has any
other value, it won’t dispatch the handler.

In the next example, the credit card feature type has a condition handler registered. It uses the same feature type
validator, is_visa_card_handler, that was used to create the is_visa_card default feature type validator.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_credit_card', condition={"card_type": "Visa"},

handler=is_visa_card_handler)
CreditCard.validator.registered()

The next example creates a series of credit card numbers, and uses the card_type="Visa" parameter when calling the
is_credit_card validator. Notice that only the first two elements are flagged as being issued by Visa. If the default
handler was called, all the returned values would be True because they are all valid credit card numbers.

visa = ["4532640527811543", "4556929308150929"]
mastercard = ["5406644374892259", "5440870983256218"]
amex = ["371025944923273", "374745112042294"]
series = pd.Series(visa + mastercard + amex, name='Credit Card')
series.ads.feature_type = ['credit_card']
series.ads.validator.is_credit_card(card_type="Visa")
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0 True
1 True
2 False
3 False
4 False
5 False
Name: Credit Card, dtype: bool

The same effect handler can be dispatched using a feature type object. The following two validator commands are
equivalent.

CreditCard = feature_type_manager.feature_type_object('credit_card')
series.ads.validator.is_credit_card(card_type="Visa")
CreditCard.validator.is_credit_card(series, card_type="Visa")

With closed value condition feature type validators, the key and values must match what was registered. If they don’t,
the condition feature type validator isn’t called. In the next example, the value is set to Mastercard to cause the default
handler to be called:

series.ads.validator.is_credit_card(card_type="Mastercard")

0 True
1 True
2 True
3 True
4 True
5 True
Name: Credit Card, dtype: bool

To register a closed value feature type validator that has multiple conditions, you use a dictionary with multiple key-
value pairs. For example, to create a condition that checks that the country code is 1 and area code is 902, you could
do the following:

PhoneNumber.validator.register(name='is_phone_number',
condition={"country_code": "1", "area_code": "902"},
handler=is_1_902_handler)

13.9.3.2 Default

Each feature type has a default handler that is called when no other handler can process a request. The process of
creating a default handler is the same as any other type of handler. A feature type validator function is created. This
handler is then registered with ADS using the feature type object that it is to be applied to along with a reference to a
handle. Unlike the open and closed condition handlers, the condition parameter is excluded.

The next example obtains the feature type object, CreditCard, and then registers the default feature type validator. If
one exists with the same name, it’s replaced.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_visa_card', handler=is_visa_card_handler)
CreditCard.validator.registered()
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13.9.3.3 Open Value

Open value condition feature type validators are similar to their closed value counterparts except the value isn’t used
in the matching process.

To register an open value condition feature type validator, the same process is used as for the closed value condi-
tion feature type validator with the exception that a tuple is used to specify the conditions and no values are pro-
vided. For example, CreditCard.validator.register(name='is_credit_card', condition=("card_type
",), handler=is_any_card_handler).

This example defines a feature type condition handler that accepts the card type as a parameter name:

def is_any_card_handler(data: pd.Series, card_type: str) -> pd.Series:
"""
Processes data and indicates if the data matches any credit card

Parameters
----------
data: pd.Series

The data to process.

Returns
--------
pd.Series: The logical list indicating if the data matches requirements.
"""

if card_type == 'Visa':
_pattern_string = r"""

^(?:4[0-9]{12}(?:[0-9]{3})? # Visa
| ^4[0-9]{12}(?:[0-9]{6})?$ # Visa 19 digit
)$

"""
elif card_type == 'Mastercard':

_pattern_string = r"""
^5[1-5][0-9]{14}|^(222[1-9]|22[3-9]\\d|2[3-6]\\d{2}|27[0-1]\\d|2720)[0-9]{12}

→˓$
"""

elif card_type == "Amex":
_pattern_string = r"""

^3[47][0-9]{13}$
"""

else:
raise ValueError()

PATTERN = re.compile(_pattern_string, re.VERBOSE)
def _is_credit_card(x: pd.Series):

(continues on next page)
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return (
not pd.isnull(x)
and PATTERN.match(str(x)) is not None

)
return data.apply(lambda x: _is_credit_card(x))

The next example registers the open value feature type validator using a tuple. Notice that values for the card_type
parameter aren’t specified. However, the is_any_card_handler function has a formal argument for it. The value of
the parameter is passed into the handler. Also, notice the trailing comma to make the parameter in condition a tuple.
This forces Python to make ('card_type',) a tuple. The output of the example is the currently registered feature
type validators.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_credit_card', condition=("card_type",),␣
→˓handler=is_any_card_handler)
CreditCard.validator.registered()

To determine which credit card numbers in the series variable are issued by Mastercard, pass the parameter
card_type="Mastercard" into the .is_credit_card() feature type validator. The feature type system exam-
ines the parameters, and then dispatches is_any_card_handler. is_any_card_handler accepts the card_type
parameter, and has logic to detect which numbers are Mastercard.

visa = ["4532640527811543", "4556929308150929"]
mastercard = ["5406644374892259", "5440870983256218"]
amex = ["371025944923273", "374745112042294"]
series = pd.Series(visa + mastercard + amex, name='Credit Card')
series.ads.feature_type = ['credit_card']
series.ads.validator.is_credit_card(card_type="Mastercard")

0 False
1 False
2 True
3 True
4 False
5 False
Name: Credit Card, dtype: bool

You can use this approach by using the feature type object, CreditCard. In this example, the values in the variable
series are checked to see if they match American Express credit card numbers:

CreditCard.validator.is_credit_card(series, card_type="Amex")
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0 False
1 False
2 False
3 False
4 True
5 True
Name: Credit Card, dtype: bool

To register an open value feature type validator that has multiple conditions, you would use a tuple with multiple values.
For example, if you wanted to create a condition that would check the country and area codes of a phone number, you
could use the following:

PhoneNumber.validator.register(name='is_phone_number',
condition=(("country_code", "area_code")),
handler=is_county_area_handler)

You can’t mix open and closed condition feature type validators.

13.9.3.4 Disambiguation

A closed condition feature type was created for 'card_type'='Visa'. There is also an open condition feature type
that was created to handle all conditions that specify the card_type parameter. There appears to be a conflict in
that both conditions support the case of 'card_type'='Visa'. In fact, there is no conflict. The feature type system
determines the most restrictive case and dispatches it so the is_visa_card_handler handler is called.

CreditCard.validator.registered()

The next example causes the is_visa_card_handler to be dispatched because it has the most restrictive set of
requirements that match the parameters given:

series.ads.validator.is_credit_card(card_type="Visa")

0 True
1 True
2 False
3 False
4 False
5 False
Name: Credit Card, dtype: bool
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13.9.4 List

There are a number of ways to list the available validators,and their associated conditions and handlers. The feature type
object is used to list the validators that are associated with a single feature type. Listing the feature types on a Pandas
Series includes all the validators in the inheritance chain for the feature. When listing the validators on a dataframe
it includes all the validators used on all the features in the dataframe. Finally, the feature type manager lists all the
validators that have been registered with ADS.

13.9.4.1 Dataframe

The .validator_registered() method can be used on a dataframe to obtain information on the feature type valida-
tors that are associated with the features of the dataframe. The returned information has the validators for all features.
A feature can have multiple feature types in its inheritance chain. This method reports on all feature types in this chain.
Only features that have validators associated with it are in the returned dataframe.

The next example loads a sample dataset into a Pandas dataframe, and the feature types are assigned to these columns.
The .ads.validator_registered() is called on the dataframe. The following columns are returned:

• Column: The name of the column that the validator is associated with.

• Condition: Condition that the handler is registered in.

• Feature Type: Feature type class name.

• Handler: Registered handler.

• Validator: Validation functions that are called validate a Pandas Series.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples', 'oracle_data', 'orcl_
→˓attrition.csv')
df = pd.read_csv(attrition_path,

usecols=['Attrition', 'TravelForWork', 'JobFunction', 'EducationalLevel
→˓'])
df.ads.feature_type = {'Attrition': ['boolean', 'category'],

'TravelForWork': ['category'],
'JobFunction': ['category'],
'EducationalLevel': ['category']}

df.ads.validator_registered()
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13.9.4.2 Feature Type Manager

To list all currently registered validator handlers and their conditions in ADS, use the feature_type_manager.
validator_registered() method. It returns the registered validators in a dataframe format. The columns in the
dataframe are:

• Condition: Condition that the handler is registered in.

• Feature Type: Feature type class name.

• Handler: Registered handler.

• Validator: Validation functions that are can call to validate a Pandas Series.

feature_type_manager.validator_registered()

13.9.4.3 Feature Type Object

Each feature type object also has a .validator.registered() method that returns a dataframe with the validators,
conditions, and feature type validators that are associated with the given feature type.

The next example uses the feature type manager to obtain a feature type object for a credit card feature type. It then
obtains a list of validators, conditions, and handlers that are associated with the feature type. The results are returned
in a dataframe.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()
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13.9.4.4 Series

The .validator_registered() method can be used on a Pandas Series by calling .ads.
validator_registered(). A series can have multiple feature types associated with it. Listing the feature
type validators on a series results in all the validators associated with all the feature types in the inheritance chain
being returned.

The next example creates a series that contains credit card numbers. The series has its feature type set to credit_card.
The call to series.ads.validator_registered() reports multiple handlers because the series has multiple feature
types associated with it (credit card and string).

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740"], name=
→˓'creditcard')
series.ads.feature_type = ['credit_card']
series.ads.validator_registered()

13.9.5 Use

The goal of the feature type validator is to validate the data against a set of criteria. You do this using the feature type
object itself or on a Pandas Series.

A feature type validator returns a Pandas Series that has the same length as the input series. This allows you to determine
which specific elements are valid or not. To create a summary of the results, use the .any() and .all() methods, and
the results of the validator.

13.9.5.1 Feature Type Object

You can use a feature type object to invoke the feature type validator on any Pandas Series. This series doesn’t have to
have a feature type associated with it.

The next example creates a Pandas Series. It then uses the feature type manager to obtain a feature type object to the
credit card feature type. This object is used to call the feature type validator by passing in the Pandas Series that is to
be assessed. In this example, the series is not assigned the feature type credit_card.

visa = ["4532640527811543", "4556929308150929", "4539944650919740", "4485348152450846",
→˓"4556593717607190"]
invalid = [np.nan, None, "", "123", "abc"]
series = pd.Series(visa + invalid)
CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.is_credit_card(series)

0 True
1 True
2 True
3 True
4 True

(continues on next page)
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(continued from previous page)

5 False
6 False
7 False
8 False
9 False
Name: creditcard, dtype: bool

13.9.5.2 Series

For a Pandas Series, the feature type validator is invoked by using the name of the validator and any condition arguments
that may be required. To do this, the series object calls .ads.validator followed by a call to the validator name.
For example, series.ads.validator.is_credit_card(starts_with='4'), where .is_credit_card() is the
validator name and starts_with='4' is the condition.

The next example creates a Pandas Series that contains a set of valid credit card numbers along with a set of invalid
numbers. This series has its feature type set to credit_card and invokes the .is_credit_card() feature type
validator.

visa = ["4532640527811543", "4556929308150929", "4539944650919740", "4485348152450846",
→˓"4556593717607190"]
invalid = [np.nan, None, "", "123", "abc"]

series = pd.Series(visa + invalid, name='creditcard')
series.ads.feature_type = ['credit_card']
series.ads.validator.is_credit_card()

0 True
1 True
2 True
3 True
4 True
5 False
6 False
7 False
8 False
9 False
Name: creditcard, dtype: bool

A series can have multiple feature types handlers associated with it. In this example, .is_string() could have also
been called.

13.9.6 Registration

Feature type validators are registered with a feature type using the .validator.register()method on a feature type
object. Registration requires that a non-unique name be given for the validator, along with a reference to the feature
type handler. You can apply optional conditions.

To unregister a feature type validator, use the .validator.unregister() method on a feature type object. The
method requires the name of the validator. The names of the validators don’t have to be unique. The optional
condition parameter is used to identify which validator is to be removed. If the condition parameter is used, it
must match one of the open or closed conditions. If the condition parameter is not specified then the default valida-
tor is removed.
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13.9.6.1 Register

The feature type validator needs to be registered with the feature type. You do that using the .validator.register()
method, which is part of the feature type object. The feature type manager is used to obtain a link to the feature type
object.

The .validator.register() method has the following parameters:

• condition: What conditions are to be applied to when the handler is called. If the parameter is not given, then
a default feature type handler is created. If the parameter dictionary is then a closed feature type is created. If
the parameter is tuple an open feature type is created.

• handler: The function name of the default feature type validator.

• name: The validator name that is used to invoke the feature type validator.

• replace: The flag indicating if the registered handler should be replaced with the new one.

The next example obtains the feature type object, CreditCard, and then it registers the default feature type validator. If
one exists with the same name, it is replaced. A call to CreditCard.validator_registered() returns the registered
handlers for the credit card feature type.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.register(name='is_visa_card', handler=is_visa_card_handler, replace␣
→˓= True)
CreditCard.validator.registered()

13.9.6.2 Unregister

Use the .validator.unregister() method to remove a feature type validator. Condition feature type validators are
removed by using the validator as an accessor. The parameters to .unregister() are a dictionary for closed condition
feature type validators, and they must match the dictionary that was used to register the handler. With open condition
feature type validators, a tuple is passed to .validator.unregister(). Again, the tuple must match the tuple that
was used to register the handler.

To remove a default feature type validator, use the feature type object along with the .validator.unregister()
method. The parameter is the name of the validator. Removing the default feature type validator also removes any
condition feature type validators that are associated with it.

The next example lists the current feature type validators:

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.validator.registered()
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Remove the closed condition for the case where 'card_type'='Visa' on the is_credit_card validator as in the
next example. Note that the handler is removed.

CreditCard.validator.unregister(name="is_credit_card", condition = {"card_type": "Visa"})
CreditCard.validator.registered()

Remove the open condition for card_type on the validator is_credit_card as in the next example. Note that the
handler is removed.

CreditCard.validator.unregister(name="is_credit_card", condition=("card_type",))
CreditCard.validator.registered()

Remove the default feature type validator for is_visa_card as in the next example. Note that the handler is removed.

CreditCard.validator.unregister(name='is_visa_card')
CreditCard.validator.registered()

13.10 Feature Type Warnings

13.10.1 Overview

Part of the exploratory data analysis (EDA) is to check the state or condition of your data. For example, you may want
to ensure that there are no missing values. With categorical data, you often want to confirm that the cardinality is low
enough for the type of modeling that you are doing. Since the feature type system is meant to understand the nature of
your data, it is an ideal mechanism to help automate the evaluation of the data.
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Feature type warnings ensure that the data meets quality standards. Historically, this was a manual process where a data
scientist would interactively code checks on the data, and then this code would be in a form that would not be reusable
for other analyses. The data validation could have to be reproduced and often it wasn’t exactly the same leading to
differences in reliability on integrity.

The feature type warning infrastructure allows you to code checks on the data, and then repeat the process each time a
new dataset is used. Since the code is at the feature type level, you can reuse the feature type warnings across an entire
organization’s data. This allows tests to be complete, thorough, and consistent.

The feature type warning system works across an entire feature. For example, you can check for the number of missing
values, and set a threshold on what is the permitted upper limit. This can be a count, percentage, or some other metric.
You can also create mechanisms where you check to ensure that the data has the distribution that is assumed by the
model class that you want to use. For example, linear regression assumes that the data is normally distributed. So, the
feature type warning might have a Shapiro-Wilk test, and a threshold for what is an expected value.

Each feature can have as many feature type warnings as you want. Also, the multiple inheritance nature of the feature
type system allows you to write only the feature type warnings that are relevant for that specific feature type because
the warnings for all feature types in the inheritance chain are checked. This reduces code duplication, and speeds up
your EDA.

For example, assume that you wish to validate a set of data that represents the wholesale price of a car. You have
the following inheritance chain, wholesale_price, car_price, USD, and the default feature type continuous. The
wholesale_price might have a method that ensures that the value is a positive number because you can’t purchase a
car with negative money. The car_price feature type might have a check to ensure that it is within a reasonable price
range. The USD feature can check the value to make sure that it represents a valid US dollar amount, and that it isn’t
below one cent. This evaluation is done by registering feature type warnings handlers with ADS.

Feature type warnings are defined at the feature type level with the use of feature type warning handlers. These are func-
tions that accept a Pandas Series and returns a Pandas dataframe in a specified format. A feature type warning handler
can return any number of warnings and the dataframes across all the feature type warning handlers are concatenated
together to produce the final dataframe that is returned.

You can create feature type warning handlers and register them dynamically at run time.

13.10.2 Create

There are two steps to creating a feature type warning. The first is to write a function that accepts a Pandas Series and
returns a carefully crafted dataframe. If there are no warnings, then the dataframe can be empty or the handler can
return None. The dataframe must have the following columns:

• Message: A human-readable message about the warning.

• Metric: A string that describes what is being measured.

• Value: A real number value associated with the metric.

• Warning: A string that describes the type of warning.

The next example creates the feature type warning handler, invalid_credit_card_handler. It assumes that there
is a registered feature type class called CreditCard, and it has a feature type validator, .is_credit_card(). A
feature type validator accepts a series and returns a logical list of the same length as the Series. In this case, .
is_credit_card() determines if a credit card number is valid or not. Then invalid_credit_card_handler
computes the number of invalid cards.

If there are any invalid create cards, it return sa dataframe with this information. If all of the credit cards are valid, it
returns None.

If there are any invalid cards, then it creates a row in a dataframe with the relevant information. If not, it returns None.
When None or an empty dataframe is returned, then ADS won’t include the results in the dataframe that summaries
the warnings for an entire Series.
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def invalid_credit_card_handler(x: pd.Series):
value = len(x) - CreditCard.validator.is_credit_card(x).sum()
if value > 0:

df = pd.DataFrame(columns=['Warning', 'Message', 'Metric', 'Value'])
df.Value = [value]
df.Warning = ['invalid credit card count']
df.Message = [f'{df.Value.values[0]} invalid credit cards']
df.Metric = ['count']
return df

else:
return None

It’s important when creating the values for the Message column that they provide sufficient information to data scientist
so they can understand why the warning is being created. It’s generally helpful to provide information on the possible
causes. When possible, provide details on a solution or information about where to look to determine the solution.

Generally, a feature type warning performs only a single test and returns a single row. This is to make managing your
code easier and reduces the complexity of testing. However, there might be times when you want to return several
warnings from the same feature type warning handler. To do this, append more rows to the dataframe that is returned.
There is no limit to the number of warnings that can be returned.

13.10.3 List

There are several methods to list the registered feature type warnings. The feature type object is used to list the warnings
that are associated with a single feature type. Listing the feature types on a Pandas Series includes all the warnings in
the inheritance chain. When listing the warnings on a dataframe it will include all the warnings used on all the features
in the dataframe. Finally, the feature type manager lists all the warnings that have been registered with ADS.

13.10.3.1 Dataframe

You can use the warning_registered() method on a dataframe to obtain a list of warnings, and their handlers that
are associated with the features in the dataframe. Each feature can have multiple feature types in the inheritance chain,
and each feature type can have multiple feature type warnings associated with it.

When calling warning_registered() on a dataframe, a Pandas dataframe with the following columns is returned:

• Column: The name of the column that the warning is associated with.

• Feature Type: Feature type class name.

• Handler: Registered handler.

• Warning: The name of the warning.

In the next example, the orcl_attrition dataset is loaded, and the feature types are assigned to each column. Lastly,
the warning_registered() method is called to produce a list of feature type warnings that are associated with the
features in the dataframe.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples',
'oracle_data', 'orcl_attrition.csv')

df = pd.read_csv(attrition_path,
usecols=['Age', 'Attrition', 'JobFunction', 'EducationalLevel',

'EducationField', 'Gender', 'JobRole','MonthlyIncome'])
df.ads.feature_type = {

'Age': ['integer'],
(continues on next page)
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(continued from previous page)

'Attrition': ['category'],
'JobFunction': ['string'],
'EducationalLevel': ['string'],
'EducationField': ['string'],
'Gender': ['string'],
'JobRole': ['string'],
'MonthlyIncome': ['integer']}

df.ads.warning_registered()
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13.10.3.2 Feature Type Manager

Use the feature type manager to list all the currently registered feature types warning in ADS. The
feature_type_manager.warning_registered() method is used for this purpose. It returns a Pandas dataframe.

The feature_type_manager.warning_registered() method shows a dataframe of registered warnings of each
registered feature type. The three columns of the returned dataframes are:

• Feature Type: Feature Type class name.

• Handler: Registered warning handler for that feature type.

• Warning: The name of the warning.

from ads.feature_engineering import feature_type_manager, Tag
feature_type_manager.warning_registered()
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13.10.3.3 Feature Type Object

To obtain a list of feature type warnings that are associated with a feature type, use the feature type object for a
given feature type. You can obtain a handle to a feature type object using the feature type name along with a call
to feature_type_manager.feature_type_object().

The next example assumes that a custom feature type was created with the feature type name 'credit_card. The
code obtains a handle to the feature type object, and gets a dataframe of warnings associated with this custom feature
type. Notice that there is no inheritance chain associated with a custom feature type object. The inheritance chain is
associated with a feature itself. The returned dataframe only has warnings that have been registered for a given custom
feature type.

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.registered()

The preceding example returns a dataframe with the following columns:

• Handler: Registered warning handler for that feature type.

• Name: The name of the warning.

13.10.3.4 Series

A feature can have multiple feature types associated with it through the multiple inheritance property of a feature.
Therefore, calling the .warning.registered()method on a feature results in a dataframe that lists all of the warnings
associated with each feature type that is in the inheritance chain.

The dataframe has the following columns:

• Feature Type: Feature type class name.

• Handler: Registered warning handler for that feature type.

• Warning: The name of the warning.

The following example creates a Pandas Series of credit card data. It assumes there is a custom feature type with the
feature type name credit_card, and that several warnings have been registered for that feature type. The code then
assigns the custom feature type credit_card, and the default feature type string to the feature. The inheritance
chain is credit_card and string.

series = pd.Series(["4532640527811543", "4556929308150929", "4539944650919740"])
series.ads.feature_type = ['credit_card', 'string']
series.ads.warning_registered()
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13.10.4 Use

The .warning() method runs all the data quality tests on a feature. It creates a dataframe where each row is the result
of a test that generated warnings. The columns in the dataframe vary depending on what type of object (dataframe,
feature type object, or series) is being used. The dataframe always contains the warning type, is a human-readable
message that explains the warning, the metric that generated the warning, and the value of this metric.

13.10.4.1 Dataframe

The .warning() method on the dataframe shows all of the warnings for all of the columns in the dataframe. This is a
quick way to determine if the data has conditions that require further investigation.

When .warning() is called on a dataframe, it returns a dataframe with the following columns.

• Column: The column name of the source dataframe that is associated with the warning.

• Feature Type: The feature type name that generated the warning.

• Message: A human-readable message about the warning.

• Metric: A string that describes what is being measured.

• Value: The value associated with the metric.

• Warning: A string that describes the type of warning.

The next example reads in the orcl_attrition attrition data, and sets the feature types for each column. The call
to df.ads.warning() causes ADS to run all feature type handlers in each feature. The feature type handers that run
depend on the inheritance chain as each feature can have multiple feature types associated with it. Each feature type
can have multiple feature type warning handlers. Lastly, it returns a dataframe that lists the warnings.

attrition_path = os.path.join('/opt', 'notebooks', 'ads-examples',
'oracle_data', 'orcl_attrition.csv')

df = pd.read_csv(attrition_path,
usecols=['Age', 'Attrition', 'JobFunction', 'EducationalLevel',

'EducationField', 'Gender', 'JobRole','MonthlyIncome'])
df.ads.feature_type = {

'Age': ['integer'],
'Attrition': ['category'],
'JobFunction': ['string'],
'EducationalLevel': ['string'],
'EducationField': ['string'],
'Gender': ['string'],
'JobRole': ['string'],
'MonthlyIncome': ['integer']}

df.ads.warning()

The MonthlyIncome output generated a warning. Features that don’t generate any warnings won’t have rows in the
returned dataframe.
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13.10.4.2 Feature Type Object

Each feature type object also has a .warning() method that returns a dataframe with the following columns:

• Message: A human-readable message about the warning.

• Metric: A string that describes what is being measured.

• Value: The value associated with the metric.

• Warning: A string that describes the type of warning.

Since there is no data associated with a feature type object, you must pass in a Pandas Series. This series doesn’t have
to have a feature type associated with it. If it does, they don’t have to include the feature type that is represented by the
feature type object. So the feature type object treats the data as if it had the same feature type as what it represents.

The next example uses the feature type manager to obtain a feature type object where the feature type name is
credit_card. It creates a Pandas Series, and then generates the warnings.

visa = ["4532640527811543", "4556929308150929", "4539944650919740",
"4485348152450846", "4556593717607190"]

amex = ["371025944923273", "374745112042294", "340984902710890",
"375767928645325", "370720852891659"]

invalid = [np.nan, None, "", "123", "abc"]
series = pd.Series(visa + amex + invalid, name='creditcard')
CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning(series)

13.10.4.3 Series

Feature type warnings can be generated by using a Pandas Series and calling .warning(). It returns the four columns
that were previously described (Warning, Message, Metric, and Value) plus the column Feature Type, which is
the name of the feature type that generated the warning. Since each feature can have multiple feature types, it’s possible
to generate different feature types warnings.

In the next example, a set of credit card values are used as the dataset. The feature type is set to credit_card, and the
class that is associated with it has had some warnings registered. The series.ads.warning() command generates
a dataframe with the warnings.

visa = ["4532640527811543", "4556929308150929", "4539944650919740",
"4485348152450846", "4556593717607190"]

amex = ["371025944923273", "374745112042294", "340984902710890",
"375767928645325", "370720852891659"]

invalid = [np.nan, None, "", "123", "abc"]
series = pd.Series(visa + amex + invalid, name='creditcard')
series.ads.feature_type = ['credit_card']
series.ads.warning()
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There are several things to notice about the generated dataframe. While the feature type was set to credit_card, the
dataframe also lists string in the feature type column. This is because the default feature type is string so the feature
type warning system also ran the tests for the string feature type.

The tuple (credit_card, missing) reports two warnings. This is because each warning handler can perform multiple
tests, and report as many warnings as required. You can see this behavior for the (string, missing) tuple.

In the preceding example, a Pandas Series was directly used. The more common approach is to generate warnings by
accessing a column in a Pandas dataframe. For example, df['MyColumn'].ads.warning().

13.10.5 Registration

There are two steps to creating a feature type warning. The first is to write a function that accepts a Pandas Series, and
returns a carefully crafted dataframe. Once you have the feature type warning handler, the handler must be registered
with ADS.

The output from the .warning()method can vary depending on the class of object that it is being called on (dataframe,
feature type object, or series). However, there is only one handler for all these methods so the handler only has to be
registered once to work with all variants of .warning(). The architecture of ADS takes care of the differences in the
output.

To unregister a feature type warning handler, the use the feature type object along with the feature type name. The
.warning.unregister() performs the unregistration process.

13.10.5.1 Register

Once a feature type warning handler has been created, you have to register it with ADS. Register the handler with one
or more feature type objects. This allows you to create a handler, and then reuse that handler with any appropriate
feature type. For example, you could create a handler that warns when data has missing values. Assume that you have
a number of feature types that should never have missing values. This single handler could be applied to each feature
type.

The .warning.register() method on a feature type object is used to assign the handler to it. The name parameter
is the human-readable name that is used to output warnings, and identifies the source of the warning. It’s also used
to identify the warning in operations like unregistering it. The handler parameter is the name of the feature type
warning handler that you want to register. The optional replace parameter replaces a handler that exists and has the
same name.

The next example assumes that a custom feature type that has the feature type name, credit_card, has been cre-
ated. It also assumes that the feature type warning handler, invalid_credit_card_handler, has been defined. It
uses the feature_type_manager.feature_type_object() method to obtain the feature type object. Lastly, the
.warning.register() is called on the feature type object to register the feature type warning with ADS.
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CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.register(name='invalid_credit_card',

handler=invalid_credit_card_handler,
replace=True)

Using the .registered() method in the warning module, you can see that the invalid_credit_card handler has
been registered:

CreditCard.warning.registered()

13.10.5.2 Unregister

You can remove a feature type warning from a feature type by calling the the .warning.unregister() method on
the associated feature type object. The .unregister() method accepts the name of the feature type warning.

The next example assumes that there is a feature type with a feature type name credit_card, and a warning named
high_cardinality. The code removes the high-cardinality warning, and the remaining feature type warnings
are displayed:

CreditCard = feature_type_manager.feature_type_object('credit_card')
CreditCard.warning.unregister('high_cardinality')
CreditCard.warning.registered()
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Oracle Cloud Infrastructure (OCI) Data Science jobs enable you to define and run a repeatable machine learning task
on a fully managed infrastructure, such as data preparation, model training, hyperparameter optimization, batch
inference, and so on.

14.1 Overview

Data Science jobs allow you to run customized tasks outside of a notebook session. You can have Compute on demand
and only pay for the Compute that you need. With jobs, you can run applications that perform tasks such as data
preparation, model training, hyperparameter tuning, and batch inference. When the task is complete the compute
automatically terminates. You can use the Logging service to capture output messages.

Using jobs, you can:

• Run machine learning (ML) or data science tasks outside of your JupyterLab notebook session.

• Operationalize discrete data science and machine learning tasks, such as reusable runnable operations.

• Automate your MLOps or CI/CD pipeline.

• Run batch or workloads triggered by events or actions.

• Batch, mini batch, or distributed batch job inference.

• In a JupyterLab notebook session, you can launch long running tasks or computation intensive tasks in a Data
Science job to keep your notebook free for you to continue your work.

Typically, an ML and data science project is a series of steps including:

• Access

• Explore

• Prepare

• Model

• Train

• Validate

• Deploy

• Test
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After the steps are completed, you can automate the process of data exploration, model training, deploying, and testing
using jobs. A single change in the data preparation or model training to experiment with hyperparameter tunings can
be run as a job and independently tested.

Data Science jobs consist of two types of resources: job and job run.

14.1.1 Job

A job is a template that describes the task. It contains elements like the job artifact, which is immutable. It can’t be
modified after being registered as a Data Science job. A job contains information about the Compute shape, logging
configuration, Block Storage, and other options. You can configure environment variables can be configured that are
used at run-time by the job run. You can also pass in CLI arguments. This allows a job run to be customized while
using the same job as a template. You can override the environment variable and CLI parameters in job runs. Only the
job artifact is immutable though the settings can be changed.
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14.1.2 Job Run

A job run is an instantiation of a job. In each job run, you can override some of the job configuration. The most
common configurations to change are the environment variables and CLI arguments. You can use the same job as a
template and launch multiple simultaneous job runs to parallelize a large task. You can also sequence jobs and keep
the state by writing state information to Object Storage.

For example, you could experiment with how different model classes perform on the same training data by using the
ADSTuner to perform hyperparameter tuning on each model class. You could do this in parallel by having a different
job run for each class of models. For a given job run, you could pass an environment variable that identifies the model
class that you want to use. Each model cab write its results to the Logging service or Object Storage. Then you can
run a final sequential job that uses the best model class, and trains the final model on the entire dataset.

14.1.3 ADS Jobs

ADS jobs API calls separate the job configurations into infrastructure and runtime. Infrastructure specifies the con-
figurations of the OCI resources and service for running the job. Runtime specifies the source code and the software
environments for running the job. These two types of infrastructure are supported: Data Science job and Data Flow.

14.2 Data Science Job

This section shows how you can use the ADS jobs APIs to run OCI Data Science jobs. You can use similar APIs to
Run a OCI DataFlow Application.

Before creating a job, ensure that you have policies configured for Data Science resources, see About Data Science
Policies.

14.2.1 Infrastructure

The Data Science job infrastructure is defined by a DataScienceJob instance. When creating a job, you specify
the compartment ID, project ID, subnet ID, Compute shape, Block Storage size, log group ID, and log ID in the
DataScienceJob instance. For example:

from ads.jobs import DataScienceJob

infrastructure = (
DataScienceJob()
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")

)

If you are using these API calls in a Data Science Notebook Session, and you want to use the same infrastructure
configurations as the notebook session, you can initialize the DataScienceJob with only the logging configurations:

from ads.jobs import DataScienceJob

(continues on next page)

14.2. Data Science Job 249

https://docs.oracle.com/en-us/iaas/data-science/using/jobs-about.htm
https://docs.oracle.com/en-us/iaas/data-flow/using/home.htm
run_data_flow.html
https://docs.oracle.com/en-us/iaas/data-science/using/policies.htm
https://docs.oracle.com/en-us/iaas/data-science/using/policies.htm
https://docs.oracle.com/en-us/iaas/data-science/using/manage-notebook-sessions.htm


ADS Documentation, Release 2.6.4

(continued from previous page)

infrastructure = (
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")

)

In some cases, you may want to override the shape and block storage size. For example, if you are testing your code in
a CPU notebook session, but want to run the job in a GPU VM:

from ads.jobs import DataScienceJob

infrastructure = (
DataScienceJob()
.with_shape_name("VM.GPU2.1")
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")

)

Data Science jobs support the following shapes:

Shape Name Core Count Memory (GB)
VM.Standard2.1 1 15
VM.Standard2.2 2 30
VM.Standard2.4 4 60
VM.Standard2.8 8 120
VM.Standard2.16 16 240
VM.Standard2.24 24 320
VM.GPU2.1 12 72
VM.GPU3.1 6 90
VM.GPU3.2 12 180
VM.GPU3.4 24 360

You can get a list of currently supported shapes by calling DataScienceJob.instance_shapes().

14.2.2 Logs

In the preceding examples, both the log OCID and corresponding log group OCID are specified in the DataScienceJob
instance. If your administrator configured the permission for you to search for logging resources, you can skip speci-
fying the log group OCID because ADS automatically retrieves it.

If you specify only the log group OCID and no log OCID, a new Log resource is automatically created within the log
group to store the logs, see ADS Logging.
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14.2.3 Runtime

A job can have different types of runtime depending on the source code you want to run:

• ScriptRuntime allows you to run Python, Bash, and Java scripts from a single source file (.zip or .tar.gz)
or code directory, see Run a Script and Run a ZIP file or folder.

• PythonRuntime allows you to run Python code with additional options, including setting a working directory,
adding python paths, and copying output files, see Run a ZIP file or folder.

• NotebookRuntime allows you to run a JupyterLab Python notebook, see Run a Notebook.

• GitPythonRuntime allows you to run source code from a Git repository, see Run from Git.

All of these runtime options allow you to configure a Data Science Conda Environment for running your code. For
example, to define a python script as a job runtime with a TensorFlow conda environment you could use:

from ads.jobs import ScriptRuntime

runtime = (
ScriptRuntime()
.with_source("oci://bucket_name@namespace/path/to/script.py")
.with_service_conda("tensorflow26_p37_cpu_v2")

)

You can store your source code in a local file path or location supported by fsspec, including OCI Object Storage.

You can also use a custom conda environment published to OCI Object Storage by passing the uri to the
with_custom_conda() method, for example:

runtime = (
ScriptRuntime()
.with_source("oci://bucket_name@namespace/path/to/script.py")
.with_custom_conda("oci://bucket@namespace/conda_pack/pack_name")

)

For more details on custom conda environment, see Publishing a Conda Environment to an Object Storage Bucket in
Your Tenancy.

You can also configure the environment variables, command line arguments, and free form tags for runtime:

runtime = (
ScriptRuntime()
.with_source("oci://bucket_name@namespace/path/to/script.py")
.with_service_conda("tensorflow26_p37_cpu_v2")
.with_environment_variable(ENV="value")
.with_argument("argument", key="value")
.with_freeform_tag(tag_name="tag_value")

)

With the preceding arguments, the script is started as python script.py argument --key value.
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14.2.4 Define a Job

With runtime and infrastructure, you can define a job and give it a name:

from ads.jobs import Job

job = (
Job(name="<job_display_name>")
.with_infrastructure(infrastructure)
.with_runtime(runtime)

)

If the job name is not specified, a name is generated automatically based on the name of the job artifact and a time
stamp.

Alternatively, a job can also be defined with keyword arguments:

job = Job(
name="<job_display_name>",
infrastructure=infrastructure,
runtime=runtime

)

14.2.5 Create and Run

You can call the create() method of a job instance to create a job. After the job is created, you can call the run()
method to create and start a job run. The run() method returns a DataScienceJobRun. You can monitor the job run
output by calling the watch() method of the DataScienceJobRun instance:

# Create a job
job.create()
# Run a job, a job run will be created and started
job_run = job.run()
# Stream the job run outputs
job_run.watch()

2021-10-28 17:17:58 - Job Run ACCEPTED
2021-10-28 17:18:07 - Job Run ACCEPTED, Infrastructure provisioning.
2021-10-28 17:19:19 - Job Run ACCEPTED, Infrastructure provisioned.
2021-10-28 17:20:48 - Job Run ACCEPTED, Job run bootstrap starting.
2021-10-28 17:23:41 - Job Run ACCEPTED, Job run bootstrap complete. Artifact execution␣
→˓starting.
2021-10-28 17:23:50 - Job Run IN_PROGRESS, Job run artifact execution in progress.
2021-10-28 17:23:50 - <Log Message>
2021-10-28 17:23:50 - <Log Message>
2021-10-28 17:23:50 - ...
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14.2.6 Override Configuration

When you run job.run(), the job is run with the default configuration. You may want to override this default config-
uration with custom variables. You can specify a custom job run display name, override command line argument, add
additional environment variables, or free form tags as in this example:

job_run = job.run(
name="<my_job_run_name>",
args="new_arg --new_key new_val",
env_var={"new_env": "new_val"},
freeform_tags={"new_tag": "new_tag_val"}

)

14.2.7 YAML Serialization

A job instance can be serialized to a YAML file by calling to_yaml(), which returns the YAML as a string. You
can easily share the YAML with others, and reload the configurations by calling from_yaml(). The to_yaml() and
from_yaml() methods also take an optional uri argument for saving and loading the YAML file. This argument can
be any URI to the file location supported by fsspec, including Object Storage. For example:

# Save the job configurations to YAML file
job.to_yaml(uri="oci://bucket_name@namespace/path/to/job.yaml")

# Load the job configurations from YAML file
job = Job.from_yaml(uri="oci://bucket_name@namespace/path/to/job.yaml")

# Save the job configurations to YAML in a string
yaml_string = job.to_yaml()

# Load the job configurations from a YAML string
job = Job.from_yaml("""
kind: job
spec:

infrastructure:
kind: infrastructure

...
"""")

Here is an example of a YAML file representing the job defined in the preceding examples:

kind: job
spec:
name: <job_display_name>
infrastructure:
kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>

(continues on next page)
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(continued from previous page)

shapeName: VM.Standard2.1
blockStorageSize: 50

runtime:
kind: runtime
type: script
spec:
conda:
slug: tensorflow26_p37_cpu_v2
type: service

scriptPathURI: oci://bucket_name@namespace/path/to/script.py

ADS Job YAML schema

kind:
required: true
type: string
allowed:
- job

spec:
required: true
type: dict
schema:
id:
required: false

infrastructure:
required: false

runtime:
required: false

name:
required: false
type: string

Data Science Job Infrastructure YAML Schema

kind:
required: true
type: "string"
allowed:
- "infrastructure"

type:
required: true
type: "string"
allowed:
- "dataScienceJob"

spec:
required: true
type: "dict"
schema:
blockStorageSize:
default: 50
min: 50
required: false

(continues on next page)
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(continued from previous page)

type: "integer"
compartmentId:
required: false
type: "string"

displayName:
required: false
type: "string"

id:
required: false
type: "string"

logGroupId:
required: false
type: "string"

logId:
required: false
type: "string"

projectId:
required: false
type: "string"

shapeName:
required: false
type: "string"

subnetId:
required: false
type: "string"

14.3 Run a Container

The ADS ContainerRuntime class allows you to run a container image using OCI data science jobs.

To use the ContainerRuntime, you need to first push the image to OCI container registry. See Creating a Repository
and Pushing Images Using the Docker CLI for more details.

14.3.1 Python

To configure ContainerRuntime, you must specify the container image. Similar to other runtime, you can add
environment variables. You can optionally specify the entrypoint and cmd for running the container (See Understand
how CMD and ENTRYPOINT interact).

from ads.jobs import Job, DataScienceJob, ContainerRuntime

job = (
Job()
.with_infrastructure(

DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults

(continues on next page)
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(continued from previous page)

.with_compartment_id("<compartment_ocid>")

.with_project_id("<project_ocid>")

.with_subnet_id("<subnet_ocid>")

.with_shape_name("VM.Standard2.1")

.with_block_storage_size(50)
)
.with_runtime(

ContainerRuntime()
.with_image("<region>.ocir.io/<your_tenancy>/<your_image>")
.with_environment_variable(GREETINGS="Welcome to OCI Data Science")
.with_entrypoint(["/bin/sh", "-c"])
.with_cmd("sleep 5 && echo $GREETINGS")

)
)

# Create the job with OCI
job.create()
# Run the job and stream the outputs
job_run = job.run().watch()

14.3.2 YAML

You could use the following YAML to create the same job:

kind: job
spec:
name: container-job
infrastructure:
kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>
shapeName: VM.Standard2.1
blockStorageSize: 50

runtime:
kind: runtime
type: container
spec:
image: iad.ocir.io/<your_tenancy>/<your_image>
cmd:
- sleep 5 && echo $GREETINGS
entrypoint:
- /bin/sh
- -c
env:
- name: GREETINGS
value: Welcome to OCI Data Science

256 Chapter 14. Jobs



ADS Documentation, Release 2.6.4

ContainerRuntime Schema

kind:
required: true
type: string
allowed:
- runtime

type:
required: true
type: string
allowed:
- container

spec:
type: dict
required: true
schema:
image:
required: true
type: string

entrypoint:
required: false
type:
- string
- list

cmd:
required: false
type:
- string
- list

env:
nullable: true
required: false
type: list
schema:
type: dict
schema:
name:
type: string

value:
type:
- number
- string
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14.4 Run a Data Flow Application

Oracle Cloud Infrastructure (OCI) Data Flow is a service for creating and running Spark applications. The following
examples demonstrate how to create and run Data Flow applications using ADS.

14.4.1 Python

To create and run a Data Flow application, you must specify a compartment and a bucket for storing logs under the
same compartment:

compartment_id = "<compartment_id>"
logs_bucket_uri = "<logs_bucket_uri>"

Ensure that you set up the correct policies. For instance, for Data Flow to access logs bucket, use a policy like:

ALLOW SERVICE dataflow TO READ objects IN tenancy WHERE target.bucket.name='dataflow-logs
→˓'

For more information, see the Data Flow documentation.

Update oci_profile if you’re not using the default:

oci_profile = "DEFAULT"
config_location = "~/.oci/config"
ads.set_auth(auth="api_key", oci_config_location=config_location, profile=oci_profile)

To create a Data Flow application you need two components:

• DataFlow, a subclass of Infrastructure.

• DataFlowRuntime, a subclass of Runtime.

DataFlow stores properties specific to Data Flow service, such as compartment_id, logs_bucket_uri, and so on. You
can set them using the with_{property} functions:

• with_compartment_id

• with_configuration

• with_driver_shape

• with_executor_shape

• with_language

• with_logs_bucket_uri

• with_metastore_id (doc)

• with_num_executors

• with_spark_version

• with_warehouse_bucket_uri

For more details, see `DataFlow class documentation <https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/ads.
jobs.html#module-ads.jobs.builders.infrastructure.dataflow>`__.

DataFlowRuntime stores properties related to the script to be run, such as the path to the script and CLI arguments.
Likewise all properties can be set using with_{property}. The DataFlowRuntime properties are:

• with_archive_bucket
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• with_archive_uri (doc)

• with_script_bucket

• with_script_uri

For more details, see the runtime class documentation.

Since service configurations remain mostly unchanged across multiple experiments, a DataFlow object can be reused
and combined with various DataFlowRuntime parameters to create applications.

In the following “hello-world” example, DataFlow is populated with compartment_id, driver_shape,
executor_shape, and spark_version. DataFlowRuntime is populated with script_uri and script_bucket.
The script_uri specifies the path to the script. It can be local or remote (an Object Storage path). If the path
is local, then script_bucket must be specified additionally because Data Flow requires a script to be available in
Object Storage. ADS performs the upload step for you, as long as you give the bucket name or the Object Storage
path prefix to upload the script. Either can be given to script_bucket. For example, either with_script_bucket(
"<bucket_name>") or with_script_bucket("oci://<bucket_name>@<namespace>/<prefix>") is accepted.
In the next example, the prefix is given for script_bucket.

from ads.jobs import DataFlow, DataFlowRun, DataFlowRuntime
from uuid import uuid4

with tempfile.TemporaryDirectory() as td:
with open(os.path.join(td, "script.py"), "w") as f:

f.write('''
import pyspark

def main():
print("Hello World")
print("Spark version is", pyspark.__version__)

if __name__ == "__main__":
main()

''')
name = f"dataflow-app-{str(uuid4())}"
dataflow_configs = DataFlow()\

.with_compartment_id(compartment_id)\

.with_logs_bucket_uri(logs_bucket_uri)\

.with_driver_shape("VM.Standard2.1") \

.with_executor_shape("VM.Standard2.1") \

.with_spark_version("3.2.1")
runtime_config = DataFlowRuntime()\

.with_script_uri(os.path.join(td, "script.py"))\

.with_script_bucket(script_prefix)
df = Job(name=name, infrastructure=dataflow_configs, runtime=runtime_config)
df.create()

To run this application, you could use:

df_run = df.run()

After the run completes, check the stdout log from the application by running:

print(df_run.logs.application.stdout)

You should this in the log:
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Hello World
Spark version is 3.2.1

Data Flow supports adding third-party libraries using a ZIP file, usually called archive.zip, see the Data Flow docu-
mentation about how to create ZIP files. Similar to scripts, you can specify an archive ZIP for a Data Flow application
using with_archive_uri. In the next example, archive_uri is given as an Object Storage location. archive_uri
can also be local so you must specify with_archive_bucket and follow the same rule as with_script_bucket.

from ads.jobs import DataFlow, DataFlowRun, DataFlowRuntime
from uuid import uuid4

with tempfile.TemporaryDirectory() as td:
with open(os.path.join(td, "script.py"), "w") as f:

f.write('''
from pyspark.sql import SparkSession
import click

@click.command()
@click.argument("app_name")
@click.option(

"--limit", "-l", help="max number of row to print", default=10, required=False
)
@click.option("--verbose", "-v", help="print out result in verbose mode", is_flag=True)
def main(app_name, limit, verbose):

# Create a Spark session
spark = SparkSession.builder.appName(app_name).getOrCreate()

# Load a csv file from dataflow public storage
df = (

spark.read.format("csv")
.option("header", "true")
.option("multiLine", "true")
.load(

"oci://oow_2019_dataflow_lab@bigdatadatasciencelarge/usercontent/kaggle_
→˓berlin_airbnb_listings_summary.csv"

)
)

# Create a temp view and do some SQL operations
df.createOrReplaceTempView("berlin")
query_result_df = spark.sql(

"""
SELECT

city,
zipcode,
CONCAT(latitude,',', longitude) AS lat_long

FROM berlin
"""
).limit(limit)

# Convert the filtered Spark DataFrame into JSON format
# Note: we are writing to the spark stdout log so that we can retrieve the log later␣

(continues on next page)
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→˓at the end of the notebook.
if verbose:

rows = query_result_df.toJSON().collect()
for i, row in enumerate(rows):

print(f"record {i}")
print(row)

if __name__ == "__main__":
main()

''')

name = f"dataflow-app-{str(uuid4())}"
dataflow_configs = DataFlow()\

.with_compartment_id(compartment_id)\

.with_logs_bucket_uri(logs_bucket_uri)\

.with_driver_shape("VM.Standard2.1") \

.with_executor_shape("VM.Standard2.1") \

.with_spark_version("3.2.1")
runtime_config = DataFlowRuntime()\

.with_script_uri(os.path.join(td, "script.py"))\

.with_script_bucket("oci://<bucket>@<namespace>/prefix/path") \

.with_archive_uri("oci://<bucket>@<namespace>/prefix/archive.zip")
df = Job(name=name, infrastructure=dataflow_configs, runtime=runtime_config)
df.create()

You can pass arguments to a Data Flow run as a list of strings:

df_run = df.run(args=["run-test", "-v", "-l", "5"])

You can save the application specification into a YAML file for future reuse. You could also use the json format.

print(df.to_yaml("sample-df.yaml"))

You can also load a Data Flow application directly from the YAML file saved in the previous example:

df2 = Job.from_yaml(uri="sample-df.yaml")

Create a new job and a run:

df_run2 = df2.create().run()

Deleting a job cancels associated runs:

df2.delete()
df_run2.status

You can also load a Data Flow application from an OCID:

df3 = Job.from_dataflow_job(df.id)

Creating a run under the same application:
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df_run3 = df3.run()

Now, there are 2 runs under the df application:

assert len(df.run_list()) == 2

When you run a Data Flow application, a DataFlowRun object is created. You can check the status, wait for a run to
finish, check its logs afterwards, or cancel a run in progress. For example:

df_run.status
df_run.wait()

Note that watch is an alias of wait, so you can also call df_run.watch().

There are three types of logs for a run:

• application log

• driver log

• executor log

Each log consists of stdout and stderr. For example, to access stdout from application log, you could use:

df_run.logs.application.stdout

Then you could check it with:

df_run.logs.application.stderr
df_run.logs.executor.stdout
df_run.logs.executor.stderr

You can also examine head or tail of the log, or download it to a local path. For example,

log = df_run.logs.application.stdout
log.head(n=1)
log.tail(n=1)
log.download(<local-path>)

For the sample script, the log prints first five rows of a sample dataframe in JSON and it looks like:

record 0
{"city":"Berlin","zipcode":"10119","lat_long":"52.53453732241747,13.402556926822387"}
record 1
{"city":"Berlin","zipcode":"10437","lat_long":"52.54851279221664,13.404552826587466"}
record 2
{"city":"Berlin","zipcode":"10405","lat_long":"52.534996191586714,13.417578665333295"}
record 3
{"city":"Berlin","zipcode":"10777","lat_long":"52.498854933130026,13.34906453348717"}
record 4
{"city":"Berlin","zipcode":"10437","lat_long":"52.5431572633131,13.415091104515707"}

Calling log.head(n=1) returns this:

'record 0'

Calling log.tail(n=1) returns this:
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{"city":"Berlin","zipcode":"10437","lat_long":"52.5431572633131,13.415091104515707"}

A link to run the page in the OCI Console is given using the run_details_link property:

df_run.run_details_link

To list Data Flow applications, a compartment id must be given with any optional filtering criteria. For example, you
can filter by name of the application:

Job.dataflow_job(compartment_id=compartment_id, display_name=name)

14.4.2 YAML

You can create a Data Flow job directly from a YAML string. You can pass a YAML string into the Job.from_yaml()
function to build a Data Flow job:

kind: job
spec:
id: <dataflow_app_ocid>
infrastructure:
kind: infrastructure
spec:
compartmentId: <compartment_id>
driverShape: VM.Standard2.1
executorShape: VM.Standard2.1
id: <dataflow_app_ocid>
language: PYTHON
logsBucketUri: <logs_bucket_uri>
numExecutors: 1
sparkVersion: 3.2.1

type: dataFlow
name: dataflow_app_name
runtime:
kind: runtime
spec:
scriptBucket: bucket_name
scriptPathURI: oci://<bucket_name>@<namespace>/<prefix>

type: dataFlow

Data Flow Infrastructure YAML Schema

kind:
allowed:

- infrastructure
required: true
type: string

spec:
required: true
type: dict
schema:

compartmentId:
required: false

(continues on next page)
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type: string
displayName:

required: false
type: string

driverShape:
required: false
type: string

executorShape:
required: false
type: string

id:
required: false
type: string

language:
required: false
type: string

logsBucketUri:
required: false
type: string

metastoreId:
required: false
type: string

numExecutors:
required: false
type: integer

sparkVersion:
required: false
type: string

type:
allowed:

- dataFlow
required: true
type: string

Data Flow Runtime YAML Schema

kind:
allowed:

- runtime
required: true
type: string

spec:
required: true
type: dict
schema:

archiveBucket:
required: false
type: string

archiveUri:
required: false
type: string

args:
(continues on next page)
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nullable: true
required: false
schema:

type: string
type: list

conda:
nullable: false
required: false
type: dict
schema:

uri:
required: true
type: string

region:
required: False
type: string

authType:
required: false
allowed:

- "resource_principal"
- "api_keys"
- "instance_principal"

type:
allowed:

- published
required: true
type: string

env:
type: list
required: false
schema:

type: dict
freeformTags:

required: false
type: dict

scriptBucket:
required: false
type: string

scriptPathURI:
required: false
type: string

type:
allowed:

- dataFlow
required: true
type: string
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14.5 Run a Git Repo

The ADS GitPythonRuntime class allows you to run source code from a Git repository as a Data Science job. The
next example shows how to run a PyTorch Neural Network Example to train third order polynomial predicting y=sin(x).

14.5.1 Python

To configure the GitPythonRuntime, you must specify the source code url and entrypoint path. Similar to
PythonRuntime, you can specify a service conda environment, environment variables, and CLI arguments. In this
example, the pytorch19_p37_gpu_v1 service conda environment is used. Assuming you are running this example
in an Data Science notebook session, only log ID and log group ID need to be configured for the DataScienceJob
object, see Data Science Jobs for more details about configuring the infrastructure.

from ads.jobs import Job, DataScienceJob, GitPythonRuntime

job = (
Job()
.with_infrastructure(
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)

)
.with_runtime(
GitPythonRuntime()
.with_environment_variable(GREETINGS="Welcome to OCI Data Science")
.with_service_conda("pytorch19_p37_gpu_v1")
.with_source("https://github.com/pytorch/tutorials.git")
.with_entrypoint("beginner_source/examples_nn/polynomial_nn.py")
.with_output(
output_dir="~/Code/tutorials/beginner_source/examples_nn",
output_uri="oci://BUCKET_NAME@BUCKET_NAMESPACE/PREFIX"

)
)

)

# Create the job with OCI
job.create()
# Run the job and stream the outputs
job_run = job.run().watch()

The default branch from the Git repository is used unless you specify a different branch or commit in the .
with_source() method.

For a public repository, we recommend the “http://” or “https://” URL. Authentication may be required for the SSH
URL even if the repository is public.
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To use a private repository, you must first save an SSH key to an OCI Vault as a secret, and provide the secret_ocid
to the with_source() method, see Managing Secret with Vault. For example, you could use GitHub Deploy Key.

The entry point specifies how the source code is invoked. The .with_entrypiont() has the following arguments:

• func: Optional. The function in the script specified by path to call. If you don’t specify it, then the script
specified by path is run as a Python script in a subprocess.

• path: Required. The relative path for the script, module, or file to start the job.

With the GitPythonRuntime class, you can save the output files from the job run to Object Storage using
with_output(). By default, the source code is cloned to the ~/Code directory. In the example, the files in the
example_nn directory are copied to the Object Storage specified by the output_uri parameter. The output_uri
parameter should have this format:

oci://BUCKET_NAME@BUCKET_NAMESPACE/PREFIX

The GitPythonRuntime also supports these additional configurations:

• The .with_python_path() method allows you to add additional Python paths to the runtime. By default, the
code directory checked out from Git is added to sys.path. Additional Python paths are appended before the
code directory is appended.

• The .with_argument() method allows you to pass arguments to invoke the script or function. For running
a script, the arguments are passed in as CLI arguments. For running a function, the list and dict JSON
serializable objects are supported and are passed into the function.

The GitPythonRuntime method updates metadata in the free form tags of the job run after the job run finishes. The
following tags are added automatically:

• commit: The Git commit ID.

• method: The entry function or method.

• module: The entry script or module.

• outputs: The prefix of the output files in Object Storage.

• repo: The URL of the Git repository.

The new values overwrite any existing tags. If you want to skip the metadata update, set skip_metadata_update to
True when initializing the runtime:

runtime = GitPythonRuntime(skip_metadata_update=True)

14.5.2 YAML

You could create the preceding example job with the following YAML file:

kind: job
spec:
infrastructure:
kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>

(continues on next page)
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shapeName: VM.Standard2.1
blockStorageSize: 50

name: git_example
runtime:
kind: runtime
type: gitPython
spec:
entrypoint: beginner_source/examples_nn/polynomial_nn.py
outputDir: ~/Code/tutorials/beginner_source/examples_nn
outputUri: oci://BUCKET_NAME@BUCKET_NAMESPACE/PREFIX
url: https://github.com/pytorch/tutorials.git
conda:
slug: pytorch19_p37_gpu_v1
type: service

env:
- name: GREETINGS
value: Welcome to OCI Data Science

GitPythonRuntime YAML Schema

kind:
required: true
type: string
allowed:
- runtime

type:
required: true
type: string
allowed:
- gitPython

spec:
required: true
type: dict
schema:
args:
type: list
nullable: true
required: false
schema:
type: string

branch:
nullable: true
required: false
type: string

commit:
nullable: true
required: false
type: string

codeDir:
required: false
type: string

conda:
(continues on next page)
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nullable: false
required: false
type: dict
schema:
slug:
required: true
type: string

type:
required: true
type: string
allowed:
- service

entryFunction:
nullable: true
required: false
type: string

entrypoint:
required: false
type:
- string
- list

env:
nullable: true
required: false
type: list
schema:
type: dict
schema:
name:
type: string

value:
type:
- number
- string

outputDir:
required: false
type: string

outputUri:
required: false
type: string

pythonPath:
nullable: true
required: false
type: list

url:
required: false
type: string
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14.6 Run a Notebook

In some cases, you may want to run an existing JupyterLab notebook as a job. You can do this using the
NotebookRuntime() object.

The next example shows you how to run an the TensorFlow 2 quick start for beginner notebook from the internet and
save the results to OCI Object Storage. The notebook path points to the raw file link from GitHub. To run the following
example, ensure that you have internet access to retrieve the notebook:

14.6.1 Python

from ads.jobs import Job, DataScienceJob, NotebookRuntime

job = (
Job()
.with_infrastructure(

DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)

)
.with_runtime(

NotebookRuntime()
.with_notebook(

path="https://raw.githubusercontent.com/tensorflow/docs/master/site/en/
→˓tutorials/customization/basics.ipynb",

encoding='utf-8'
)
.with_service_conda(tensorflow26_p37_cpu_v2")
.with_environment_variable(GREETINGS="Welcome to OCI Data Science")
.with_output("oci://bucket_name@namespace/path/to/dir")

)
)

job.create()
run = job.run().watch()

After the notebook finishes running, the notebook with results are saved to oci://bucket_name@namespace/path/
to/dir. You can download the output by calling the download() method.

run.download("/path/to/local/dir")

The NotebookRuntime also allows you to use exclusion tags, which lets you exclude cells from a job run. For example,
you could use these tags to do exploratory data analysis, and then train and evaluate your model in a notebook. Then
you could use that same notebook to only build future models that are trained on a different dataset. So the job run only
has to execute the cells that are related to training the model, and not the exploratory data analysis or model evaluation.
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You tag the cells in the notebook, and then specify the tags using the .with_exclude_tag() method. Cells with any
matching tags are excluded from the job run. For example, if you tagged cells with ignore and remove, you can pass
in a list of the two tags to the method and those cells are excluded from the code that is executed as part of the job run.
To tag cells in a notebook, see Adding tags using notebook interfaces.

job.with_runtime(
NotebookRuntime()
.with_notebook("path/to/notebook")
.with_exclude_tag(["ignore", "remove"])

)

14.6.2 YAML

You could use the following YAML to create the job:

kind: job
spec:
infrastructure:
kind: infrastructure

type: dataScienceJob
spec:
jobInfrastructureType: STANDALONE
jobType: DEFAULT
logGroupId: <log_group_id>
logId: <log.id>

runtime:
kind: runtime

type: notebook
spec:

notebookPathURI: /path/to/notebook
conda:

slug: tensorflow26_p37_cpu_v1
type: service

NotebookRuntime Schema

kind:
required: true
type: string
allowed:
- runtime

type:
required: true
type: string
allowed:
- notebook

spec:
required: true
type: dict
schema:
excludeTags:
required: false

(continues on next page)
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type: list
notebookPathURI:
required: false
type: string

notebookEncoding:
required: false
type: string

outputUri:
required: false
type: string

args:
nullable: true
required: false
type: list
schema:
type: string

conda:
nullable: false
required: false
type: dict
schema:
slug:
required: true
type: string

type:
required: true
type: string
allowed:
- service

env:
nullable: true
required: false
type: list
schema:
type: dict
schema:
name:
type: string

value:
type:
- number
- string
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14.7 Run a Script

This example shows you how to create a job running “Hello World” Python scripts. Although Python scripts are used
here, you could also run Bash or Shell scripts. The Logging service log and log group are defined in the infrastructure.
The output of the script appear in the logs.

14.7.1 Python

Suppose you would like to run the following “Hello World” python script named job_script.py.

print("Hello World")

First, initiate a job with a job name:

from ads.jobs import Job
job = Job(name="Job Name")

Next, you specify the desired infrastructure to run the job. If you are in a notebook session, ADS can automatically
fetch the infrastructure configurations and use them for the job. If you aren’t in a notebook session or you want to
customize the infrastructure, you can specify them using the methods from the DataScienceJob class:

from ads.jobs import DataScienceJob

job.with_infrastructure(
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)

)

In this example, it is a Python script so the ScriptRuntime() class is used to define the name of the script using the
.with_source() method:

from ads.jobs import ScriptRuntime
job.with_runtime(
ScriptRuntime().with_source("job_script.py")

)

Finally, you create and run the job, which gives you access to the job_run.id:

job.create()
job_run = job.run()

Additionally, you can acquire the job run using the OCID:
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from ads.jobs import DataScienceJobRun
job_run = DataScienceJobRun.from_ocid(job_run.id)

The .watch() method is useful to monitor the progress of the job run:

job_run.watch()

After the job has been created and runs successfully, you can find the output of the script in the logs if you configured
logging.

14.7.2 YAML

You could also initialize a job directly from a YAML string. For example, to create a job identical to the preceding
example, you could simply run the following:

job = Job.from_string(f"""
kind: job
spec:
infrastructure:
kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>
shapeName: VM.Standard2.1
blockStorageSize: 50

name: <resource_name>
runtime:
kind: runtime
type: python
spec:
scriptPathURI: job_script.py

""")
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14.7.3 Command Line Arguments

If the Python script that you want to run as a job requires CLI arguments, use the .with_argument() method to pass
the arguments to the job.

14.7.3.1 Python

Suppose you want to run the following python script named job_script_argument.py:

import sys
print("Hello " + str(sys.argv[1]) + " and " + str(sys.argv[2]))

This example runs a job with CLI arguments:

job = Job()
job.with_infrastructure(
DataScienceJob()
.with_log_id("<log_id>")
.with_log_group_id("<log_group_id>")

)

# The CLI argument can be passed in using `with_argument` when defining the runtime
job.with_runtime(
ScriptRuntime()
.with_source("job_script_argument.py")
.with_argument("<first_argument>", "<second_argument>")

)

job.create()
job_run = job.run()

After the job run is created and run, you can use the .watch() method to monitor its progress:

job_run.watch()

This job run prints out Hello <first_argument> and <second_argument>.

14.7.3.2 YAML

You could create the preceding example job with the following YAML file:

kind: job
spec:
infrastructure:

kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>

(continues on next page)
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shapeName: VM.Standard2.1
blockStorageSize: 50
runtime:
kind: runtime

type: python
spec:
args:
- <first_argument>
- <second_argument>
scriptPathURI: job_script_argument.py

14.7.4 Environment Variables

Similarly, if the script you want to run requires environment variables, you also pass them in using the .
with_environment_variable() method. The key-value pair of the environment variable are passed in using the
.with_environment_variable() method, and are accessed in the Python script using the os.environ dictionary.

14.7.4.1 Python

Suppose you want to run the following python script named job_script_env.py:

import os
import sys
print("Hello " + os.environ["KEY1"] + " and " + os.environ["KEY2"])""")

This example runs a job with environment variables:

job = Job()
job.with_infrastructure(
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)

)

job.with_runtime(
ScriptRuntime()
.with_source("job_script_env.py")
.with_environment_variable(KEY1="<first_value>", KEY2="<second_value>")

)
job.create()
job_run = job.run()

You can watch the progress of the job run using the .watch() method:
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job_run.watch()

This job run prints out Hello <first_value> and <second_value>.

14.7.4.2 YAML

You could create the preceding example job with the following YAML file:

kind: job
spec:
infrastructure:
kind: infrastructure

type: dataScienceJob
spec:

logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>
shapeName: VM.Standard2.1
blockStorageSize: 50
runtime:
kind: runtime

type: python
spec:
env:
- name: KEY1
value: <first_value>

- name: KEY2
value: <second_value>

scriptPathURI: job_script_env.py

ScriptRuntime YAML Schema

kind:
required: true
type: string
allowed:
- runtime

type:
required: true
type: string
allowed:
- script

spec:
required: true
type: dict
schema:
args:
nullable: true
required: false
type: list

(continues on next page)
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schema:
type: string

conda:
nullable: false
required: false
type: dict
schema:
slug:
required: true
type: string

type:
allowed:
- service

required: true
type: string

env:
nullable: true
required: false
type: list
schema:
type: dict
schema:
name:
type: string

value:
type:
- number
- string

scriptPathURI:
required: true
type: string

entrypoint:
required: false
type: string

14.8 Run Code in ZIP or Folder

14.8.1 ScriptRuntime

The ScriptRuntime class is designed for you to define job artifacts and configurations supported by OCI Data Science
jobs natively. It can be used with any script types that is supported by the OCI Data Science jobs, including a ZIP or
compressed tar file or folder. See Preparing Job Artifacts for more details. In the job run, the working directory is the
user’s home directory. For example /home/datascience.

278 Chapter 14. Jobs

https://docs.oracle.com/en-us/iaas/data-science/using/jobs-artifact.htm


ADS Documentation, Release 2.6.4

14.8.1.1 Python

If you are in a notebook session, ADS can automatically fetch the infrastructure configurations, and use them in the
job. If you aren’t in a notebook session or you want to customize the infrastructure, you can specify them using the
methods in the DataScienceJob class.

With the ScriptRuntime, you can pass in a path to a ZIP file or directory. For a ZIP file, the path can be any URI
supported by fsspec, including OCI Object Storage.

You must specify the entrypoint, which is the relative path from the ZIP file or directory to the script starting your
program. Note that the entrypoint contains the name of the directory, since the directory itself is also zipped as the
job artifact.

from ads.jobs import Job, DataScienceJob, ScriptRuntime

job = (
Job()
.with_infrastructure(
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)

)
.with_runtime(
ScriptRuntime()
.with_source("path/to/zip_or_dir", entrypoint="zip_or_dir/main.py")
.with_service_conda("pytorch19_p37_cpu_v1")

)
)

# Create the job with OCI
job.create()
# Run the job and stream the outputs
job_run = job.run().watch()

14.8.1.2 YAML

You could use the following YAML example to create the same job with ScriptRuntime:

kind: job
spec:
infrastructure:
kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>

(continues on next page)
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logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>
shapeName: VM.Standard2.1
blockStorageSize: 50

runtime:
kind: runtime
type: script
spec:
conda:
slug: pytorch19_p37_cpu_v1
type: service

entrypoint: zip_or_dir/main.py
scriptPathURI: path/to/zip_or_dir

14.8.2 PythonRuntime

The PythonRuntime class allows you to run Python code with ADS enhanced features like configuring the working
directory and Python path. It also allows you to copy the output files to OCI Object Storage. This is especially useful
for Python code involving multiple files and packages in the job artifact.

The PythonRuntime uses an ADS generated driver script as the entry point for the job run. It performs additional
operations before and after invoking your code. You can examine the driver script by downloading the job artifact from
the OCI Console.

14.8.2.1 Python

Relative to ScriptRunTime the PythonRuntime has 3 additional methods:

• .with_working_dir(): Specify the working directory to use when running a job. By default, the working
directory is also added to the Python paths. This should be a relative path from the parent of the job artifact
directory.

• .with_python_path(): Add one or more Python paths to use when running a job. The paths should be relative
paths from the working directory.

• .with_output(): Specify the output directory and a remote URI (for example, an OCI Object Storage URI) in
the job run. Files in the output directory are copied to the remote output URI after the job run finishes successfully.

Following is an example of creating a job with PythonRuntime:

from ads.jobs import Job, DataScienceJOb, PythonRuntime

job = (
Job()
.with_infrastructure(
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")
# The following infrastructure configurations are optional
# if you are in an OCI data science notebook session.
# The configurations of the notebook session will be used as defaults

(continues on next page)
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.with_compartment_id("<compartment_ocid>")

.with_project_id("<project_ocid>")

.with_subnet_id("<subnet_ocid>")

.with_shape_name("VM.Standard2.1")

.with_block_storage_size(50)
)
.with_runtime(
PythonRuntime()
.with_service_conda("pytorch19_p37_cpu_v1")
# The job artifact directory is named "zip_or_dir"
.with_source("local/path/to/zip_or_dir", entrypoint="zip_or_dir/my_package/entry.py")
# Change the working directory to be inside the job artifact directory
# Working directory a relative path from the parent of the job artifact directory
# Working directory is also added to Python paths
.with_working_dir("zip_or_dir")
# Add an additional Python path
# The "my_python_packages" folder is under "zip_or_dir" (working directory)
.with_python_path("my_python_packages")
# Files in "output" directory will be copied to OCI object storage once the job␣

→˓finishes
# Here we assume "output" is a folder under "zip_or_dir" (working directory)
.with_output("output", "oci://bucket_name@namespace/path/to/dir")

)
)

14.8.2.2 YAML

You could use the following YAML to create the same job with PythonRuntime:

kind: job
spec:
infrastructure:
kind: infrastructure
type: dataScienceJob
spec:
logGroupId: <log_group_ocid>
logId: <log_ocid>
compartmentId: <compartment_ocid>
projectId: <project_ocid>
subnetId: <subnet_ocid>
shapeName: VM.Standard2.1
blockStorageSize: 50

runtime:
kind: runtime
type: python
spec:
conda:
slug: pytorch19_p37_cpu_v1
type: service

entrypoint: zip_or_dir/my_package/entry.py
scriptPathURI: path/to/zip_or_dir

(continues on next page)
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workingDir: zip_or_dir
outputDir: zip_or_dir/output
outputUri: oci://bucket_name@namespace/path/to/dir
pythonPath:

- "zip_or_dir/python_path"

PythonRuntime YAML Schema

kind:
required: true
type: string
allowed:
- runtime

type:
required: true
type: string
allowed:
- script

spec:
required: true
type: dict
schema:
args:
nullable: true
required: false
type: list
schema:
type: string

conda:
nullable: false
required: false
type: dict
schema:
slug:
required: true
type: string

type:
allowed:
- service

required: true
type: string

env:
nullable: true
required: false
type: list
schema:
type: dict
schema:
name:
type: string

value:
type:

(continues on next page)

282 Chapter 14. Jobs



ADS Documentation, Release 2.6.4

(continued from previous page)

- number
- string

scriptPathURI:
required: true
type: string

entrypoint:
required: false
type: string

outputDir:
required: false
type: string

outputUri:
required: false
type: string

workingDir:
required: false
type: string

pythonPath:
required: false
type: list
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CHAPTER

FIFTEEN

MODEL CATALOG

The model catalog provides a method to track, and immutably store models. The model catalog allows you to maintain
the provenance of models during all phases of a model’s life cycle.

A model artifact includes the model, metadata about the model, input, and output schema, and a script to load the model
and make predictions. You can share model artifacts among data scientists, tracked for provenance, reproduced, and
deployed.

import ads
import logging
import os
import tempfile
import warnings

from ads.catalog.model import ModelCatalog
from ads.common.model import ADSModel
from ads.common.model_export_util import prepare_generic_model
from ads.common.model_metadata import (MetadataCustomCategory,

UseCaseType,
Framework)

from ads.dataset.factory import DatasetFactory
from ads.feature_engineering.schema import Expression, Schema
from os import path
from sklearn.ensemble import RandomForestClassifier

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)
warnings.filterwarnings('ignore')

15.1 Introduction

The purpose of the model catalog is to provide a managed and centralized storage space for models. It ensures that
model artifacts are immutable and allows data scientists to share models, and reproduce them as needed.

The model catalog is accessed directly in a notebook session with ADS. Alternatively, the Oracle Cloud Infrastructure
(OCI) Console can be used by going to the Data Science projects page, selecting a project, then click Models. The
models page shows the model artifacts that are in the model catalog for a given project.

After a model and its artifacts are stored in the model catalog, they become available for other data scientists if they
have the correct permissions.

Data scientists can:

• List, read, download, and load models from the catalog to their own notebook sessions.
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• Download the model artifact from the catalog, and run the model on their laptop or some other machine.

• Deploy the model artifact as a model deployment.

• Document the model use case and algorithm using taxonomy metadata.

• Add custom metadata that describes the model.

• Document the model provenance including the resources and tags used to create the model (notebook session),
and the code used in training.

• Document the input data schema, and the returned inference schema.

• Run introspection tests on the model artifact to ensure that common model artifact errors are flagged. Thus, they
can be remediated before the model is saved to the catalog.

The ADS SDK automatically captures some of the metadata for you. It captures provenance, taxonomy, and some
custom metadata. It also runs the model introspection tests.

A model can be saved to the model catalog using the generic approach or the ADSModel approach:

• The generic approach creates a generic model artifact using .prepare_generic_model(), and saves it to the
model catalog.

• The ADSModel approach prepares an artifact from the ADSModel object, and saves it to the model catalog using
the .prepare() method. ADSModel objects are typically created from the AutoML engine. Data scientists
can also convert models trained with other machine learning libraries into an ADSModel object (using the .
from_estimator() method).

Notes:

1. ADS and ADSModel can only be used within the OCI family of services. If you want to use the model outside of
those services, then use the generic approach to create a model artifact.

2. The generic model approach is agnostic to the type of model, and deployment method. The ADSModel artifact
only supports the most common model libraries, see the ADS documentation .

3. The ADSModel model artifact allows access to the full suite of ADS features.

4. The model catalog is agnostic as to which approach was used to create the model artifact.

15.2 Prepare

A model artifact is a ZIP archive that contains the score.py, runtime.yaml files, and other files needed to load and
run the model in a different notebook session.

There are two approaches to prepare a model artifact. The approach you take depends on where the model is to be
deployed, and if the model class is supported by ADSModel. The following diagram outlines the decision making
process to use to determine which approach is best for your use case.

If you choose the ADSModel approach, then use the .prepare() method to create the template model artifacts. For
most use cases, the template files don’t need to be modified and are sufficient for model deployment. This allows for
rapid development though there are a few constraints.

The generic model approach allows for the most flexibility in deploying a model and the supported models. You use
the .prepare_generic_model() method to create a model artifact template. This template must be customized for
each model.

No matter which approach you choose, the end result is a model artifact that can be stored in the model catalog.
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15.2.1 ADSModel

The steps to prepare an ADSModel model include training an ADSModel, and then preparing the model artifacts. Op-
tionally, the model artifacts can be customized and reloaded from disk. After you complete these steps, the model
artifacts are ready to be stored in the model catalog.

Train an ADSModel

The oracle_classification_dataset1 dataset is used to build a Random Forest classifier using the
RandomForestClassifier class. This class is supported by the ADSModel class. The specifics of the dataset fea-
tures are not important for this example. The feature engineering is done automatically using the .auto_transform()
method. The value to predict, the target, is class. The data is also split into training and test sets. The test set is used
to make predictions.

The RandomForestClassifier object is converted to into an ADSModel using the .from_estimator() method.

# Load the dataset
ds_path = path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "oracle_
→˓classification_dataset1_150K.csv")

ds = DatasetFactory.open(ds_path, target="class")

# Data preprocessing
transformed_ds = ds.auto_transform(fix_imbalance=False)
train, test = transformed_ds.train_test_split(test_size=0.15)

# Build the model and convert it to an ADSModel object
rf_clf = RandomForestClassifier(n_estimators=10).fit(train.X.values, train.y.values)
rf_model = ADSModel.from_estimator(rf_clf)

Prepare the Model Artifact

To prepare the model artifact, the .prepare() method is used. This method returns a ModelArtifact object, and
also writes a number of model artifact files to disk. The only required argument to the .prepare() method is the local
path to store the model artifact files in.

The output of the next example lists the temporary directory used for the model artifacts, and the files that compose the
artifact.
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Note:

• ADS automatically captures the provenance metadata, most of the taxonomy metadata, and a series of custom
metadata.

• UseCaseType in metadata_taxonomy can’t be automatically populated. One way to populate the use case is
to pass use_case_type to the prepare method.

• Model introspection is automatically triggered.

# Prepare the model artifacts
path_to_ADS_model_artifact = tempfile.mkdtemp()
rf_model_artifact = rf_model.prepare(path_to_ADS_model_artifact, use_case_
→˓type=UseCaseType.BINARY_CLASSIFICATION,

force_overwrite=True, data_sample=test, data_
→˓science_env=True,

fn_artifact_files_included=False)

# List the template files
print("Model Artifact Path: {}\n\nModel Artifact Files:".format(path_to_ADS_model_
→˓artifact))
for file in os.listdir(path_to_ADS_model_artifact):

if path.isdir(path.join(path_to_ADS_model_artifact, file)):
for file2 in os.listdir(path.join(path_to_ADS_model_artifact, file)):

print(path.join(file,file2))
else:

print(file)

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json', 'model.
→˓onnx', '.model-ignore', 'input_schema.json']

Data Schema

The data schema provides a definition of the format and nature of the data that the model expects. It also defines the
output data from the model inference. The .populate_schema() method accepts the parameters, data_sample or
X_sample, and y_sample. When using these parameters, the model artifact gets populates the input and output data
schemas.

The .schema_input and .schema_output properties are Schema objects that define the schema of each input column
and the output. The Schema object contains these fields:

• description: Description of the data in the column.

• domain: A data structure that defines the domain of the data. The restrictions on the data and summary statistics
of its distribution.

– constraints: A data structure that is a list of expression objects that defines the constraints of the data.

∗ expression: A string representation of an expression that can be evaluated by the language corre-
sponding to the value provided in language attribute. The default value for language is python.

· expression: Required. Use the string.Template format for specifying the expression. $x is
used to represent the variable.

· language: The default value is python. Only python is supported.

– stats: A set of summary statistics that defines the distribution of the data. These are determined using the
feature type statistics as defined in ADS.

– values: A description of the values of the data.
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• dtype: Pandas data type

• feature_type: The primary feature type as defined by ADS.

• name: Name of the column.

• required: Boolean value indicating if a value is always required.

- description: Number of matching socks in your dresser drawer.
domain:
constraints:
- expression: ($x <= 10) and ($x > 0)
language: python

- expression: $x in [2, 4, 6, 8, 10]
language: python

stats:
count: 465.0
lower quartile: 3.2
mean: 6.3
median: 7.0
sample maximum: 10.0
sample minimum: 2.0
standard deviation: 2.5
upper quartile: 8.2

values: Natural even numbers that are less than or equal to 10.
dtype: int64
feature_type: EvenNatural10
name: sock_count
required: true

Calling .schema_input or .schema_output shows the schema in a YAML format.

Alternatively, you can check the output_schema.json file for the content of the schema_output:

with open(path.join(path_to_ADS_model_artifact, "output_schema.json"), 'r') as f:
print(f.read())

{"schema": [{"dtype": "int64", "feature_type": "Integer", "name": "class", "domain": {
→˓"values": "Integer", "stats": {"count": 465.0, "mean": 0.5225806451612903, "standard␣
→˓deviation": 0.5000278079030275, "sample minimum": 0.0, "lower quartile": 0.0, "median":
→˓ 1.0, "upper quartile": 1.0, "sample maximum": 1.0}, "constraints": []}, "required":␣
→˓true, "description": "class"}]}

Alternative Ways of Generating the Schema

You can directly populate the schema by calling populate_schema():

rf_model_artifact.populate_schema(X_sample=test.X, y_sample=test.y)

You can also load your schema from a JSON or YAML file:

tempdir = tempfile.mkdtemp()
schema = '''
{"schema": [{
"dtype": "int64",
"feature_type": "Category",

(continues on next page)
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(continued from previous page)

"name": "class",
"domain": {
"values": "Category type.",
"stats": {
"count": 465.0,
"unique": 2},

"constraints": [
{"expression": "($x <= 1) and ($x >= 0)", "language": "python"},
{"expression": "$x in [0, 1]", "language": "python"}]},

"required": true,
"description": "target to predict."}]}

'''

with open(path.join(tempdir, "schema.json"), 'w') as f:
f.write(schema)

rf_model_artifact.schema_output = Schema.from_file(os.path.join(tempdir, 'schema.json'))

Update the Schema

You can update the fields in the schema:

rf_model_artifact.schema_output['class'].description = 'target variable'
rf_model_artifact.schema_output['class'].feature_type = 'Category'

You can specify a constraint for your data using Expression, and call evaluate to check if the data satisfies the
constraint:

rf_model_artifact.schema_input['col01'].domain.constraints.append(Expression('($x < 20)␣
→˓and ($x > -20)'))

0 is between -20 and 20, so evaluate should return True:

rf_model_artifact.schema_input['col01'].domain.constraints[0].evaluate(x=0)

True

Taxonomy Metadata

Taxonomy metadata includes the type of the model, use case type, libraries, framework, and so on. This metadata
provides a way of documenting the schema of the model. The UseCaseType, FrameWork, FrameWorkVersion,
Algorithm, and Hyperparameters are fixed taxonomy metadata. These fields are automatically populated when the
.prepare() method is called. You can also manually update the values of those fields.

• UseCaseType: The machine learning problem associated with the Estimator class. The UseCaseType.
values() method returns the most current list. This is a list of allowed values.:

– UseCaseType.ANOMALY_DETECTION

– UseCaseType.BINARY_CLASSIFICATION

– UseCaseType.CLUSTERING

– UseCaseType.DIMENSIONALITY_REDUCTION

– UseCaseType.IMAGE_CLASSIFICATION
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– UseCaseType.MULTINOMIAL_CLASSIFICATION

– UseCaseType.NER

– UseCaseType.OBJECT_LOCALIZATION

– UseCaseType.OTHER

– UseCaseType.RECOMMENDER

– UseCaseType.REGRESSION

– UseCaseType.SENTIMENT_ANALYSIS

– UseCaseType.TIME_SERIES_FORECASTING

– UseCaseType.TOPIC_MODELING

• FrameWork: The FrameWork of the estimator object. You can get the list of allowed values using Framework.
values():

– FrameWork.BERT

– FrameWork.CUML

– FrameWork.EMCEE

– FrameWork.ENSEMBLE

– FrameWork.FLAIR

– FrameWork.GENSIM

– FrameWork.H2O

– FrameWork.KERAS

– FrameWork.LIGHTgbm

– FrameWork.MXNET

– FrameWork.NLTK

– FrameWork.ORACLE_AUTOML

– FrameWork.OTHER

– FrameWork.PROPHET

– FrameWork.PYOD

– FrameWork.PYMC3

– FrameWork.PYSTAN

– FrameWork.PYTORCH

– FrameWork.SCIKIT_LEARN

– FrameWork.SKTIME

– FrameWork.SPACY

– FrameWork.STATSMODELS

– FrameWork.TENSORFLOW

– FrameWork.TRANSFORMERS

– FrameWork.WORD2VEC
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– FrameWork.XGBOOST

• FrameWorkVersion: The framework version of the estimator object. For example, 2.3.1.

• Algorithm: The model class.

• Hyperparameters: The hyperparameters of the estimator object.

You can’t add or delete any of the fields, or change the key of those fields.

You can populate the use_case_type by passing it in the .prepare() method. Or you can set and update it directly.

rf_model_artifact.metadata_taxonomy['UseCaseType'].value = UseCaseType.BINARY_
→˓CLASSIFICATION

Update metadata_taxonomy

Update any of the taxonomy fields with allowed values:

rf_model_artifact.metadata_taxonomy['FrameworkVersion'].value = '0.24.2'
rf_model_artifact.metadata_taxonomy['UseCaseType'].update(value=UseCaseType.BINARY_
→˓CLASSIFICATION)

You can view the metadata_taxonomy in the dataframe format by calling to_dataframe:

rf_model_artifact.metadata_taxonomy.to_dataframe()

Alternatively, you can view it directly in a YAML format:

rf_model_artifact.metadata_taxonomy

data:
- key: FrameworkVersion
value: 0.24.2

- key: ArtifactTestResults
value:
runtime_env_path:
category: conda_env
description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set
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error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must
have a value.

success: true
value: oci://licence_checker@ociodscdev/conda_environments/cpu/Oracle Database/1.0/

→˓database_p37_cpu_v1.0
runtime_env_python:
category: conda_env
description: Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set
to a value of 3.6 or higher

error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION
must be set to a value of 3.6 or higher.

success: true
value: 3.7.10

runtime_env_slug:
category: conda_env
description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG is set
error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG must
have a value.

success: true
value: database_p37_cpu_v1.0

runtime_env_type:
category: conda_env
description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is set to
a value in (published, data_science)

error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE must
be set to published or data_science.

success: true
value: published

runtime_path_exist:
category: conda_env
description: If MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science and MODEL_

→˓DEPLOYMENT.INFERENCE_ENV_SLUG
is set, check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is
correct.

error_msg: In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does
not exist.

runtime_slug_exist:
category: conda_env
description: If MODEL_DEPLOYMENT.INFERENCE_ENV_TYPE is data_science, check that
the slug listed in MODEL_DEPLOYMENT.INFERENCE_ENV_SLUG exists.

error_msg: In runtime.yaml, the value of the key INFERENCE_ENV_SLUG is slug_value
and it doesn't exist in the bucket bucket_url. Ensure that the value INFERENCE_

→˓ENV_SLUG
and the bucket url are correct.

runtime_version:
category: runtime.yaml
description: Check that field MODEL_ARTIFACT_VERSION is set to 3.0
error_msg: In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.
success: true

runtime_yaml:
category: Mandatory Files Check
description: Check that the file "runtime.yaml" exists and is in the top level
directory of the artifact directory

error_msg: The file 'runtime.yaml' is missing.
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success: true
score_load_model:
category: score.py
description: Check that load_model() is defined
error_msg: Function load_model is not present in score.py.
success: true

score_predict:
category: score.py
description: Check that predict() is defined
error_msg: Function predict is not present in score.py.
success: true

score_predict_arg:
category: score.py
description: Check that all other arguments in predict() are optional and have
default values

error_msg: All formal arguments in the predict function must have default values,
except that 'data' argument.

success: true
score_predict_data:
category: score.py
description: Check that the only required argument for predict() is named "data"
error_msg: The predict function in score.py must have a formal argument named
'data'.

success: true
score_py:
category: Mandatory Files Check
description: Check that the file "score.py" exists and is in the top level␣

→˓directory
of the artifact directory

error_msg: The file 'score.py' is missing.
key: score_py
success: true

score_syntax:
category: score.py
description: Check for Python syntax errors
error_msg: 'There is Syntax error in score.py: '
success: true

- key: Framework
value: scikit-learn

- key: UseCaseType
value: binary_classification

- key: Algorithm
value: RandomForestClassifier

- key: Hyperparameters
value:
bootstrap: true
ccp_alpha: 0.0
class_weight: null
criterion: gini
max_depth: null
max_features: auto
max_leaf_nodes: null
max_samples: null
min_impurity_decrease: 0.0
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min_impurity_split: null
min_samples_leaf: 1
min_samples_split: 2
min_weight_fraction_leaf: 0.0
n_estimators: 10
n_jobs: null
oob_score: false
random_state: null
verbose: 0
warm_start: false

Custom Metadata

Update your custom metadata using the key, value, category, and description fields. The key, and value fields
are required.

You can see the allowed values for custom metadata category using MetadataCustomCategory.values():

• MetadataCustomCategory.PERFORMANCE

• MetadataCustomCategory.TRAINING_PROFILE

• MetadataCustomCategory.TRAINING_AND_VALIDATION_DATASETS

• MetadataCustomCategory.TRAINING_ENVIRONMENT

• MetadataCustomCategory.OTHER

Add New Custom Metadata

To add a new custom metadata, call .add():

rf_model_artifact.metadata_custom.add(key='test', value='test',␣
→˓category=MetadataCustomCategory.OTHER, description='test', replace=True)

Update Custom Metadata

Use the .update() method to update the fields of a specific key ensuring that you pass all the values you need in the
update:

rf_model_artifact.metadata_custom['test'].update(value='test1', description=None,␣
→˓category=MetadataCustomCategory.TRAINING_ENV)

Alternatively, you can set it directly:

rf_model_artifact.metadata_custom['test'].value = 'test1'
rf_model_artifact.metadata_custom['test'].description = None
rf_model_artifact.metadata_custom['test'].category = MetadataCustomCategory.TRAINING_ENV

You can view the custom metadata in the dataframe by calling .to_dataframe():

rf_model_artifact.metadata_custom.to_dataframe()
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Alternatively, you can view the custom metadata in YAML format by calling .metadata_custom:

rf_model_artifact.metadata_custom

data:
- category: Training Environment
description: The conda env where model was trained
key: CondaEnvironment
value: database_p37_cpu_v1.0

- category: Training Environment
description: null
key: test
value: test1

- category: Training Environment
description: The env type, could be published conda or datascience conda
key: EnvironmentType
value: published

- category: Training Environment
description: The list of files located in artifacts folder
key: ModelArtifacts
value: score.py, runtime.yaml, onnx_data_transformer.json, model.onnx, .model-ignore

- category: Training Environment
description: The slug name of the conda env where model was trained
key: SlugName
value: database_p37_cpu_v1.0

- category: Training Environment
description: The oci path of the conda env where model was trained
key: CondaEnvironmentPath
value: oci://licence_checker@ociodscdev/conda_environments/cpu/Oracle Database/1.0/

→˓database_p37_cpu_v1.0
- category: Other
description: ''
key: ClientLibrary
value: ADS

- category: Training Profile
description: The model serialization format
key: ModelSerializationFormat
value: onnx

When the combined total size of metadata_custom and metadata_taxonomy exceeds 32000 bytes, an error occurs
when you save the model to the model catalog. You can save the metadata_custom and metadata_taxonomy to the
artifacts folder:
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rf_model_artifact.metadata_custom.to_json_file(path_to_ADS_model_artifact)

You can also save individual items from the custom and taxonomy metadata:

rf_model_artifact.metadata_taxonomy['Hyperparameters'].to_json_file(path_to_ADS_model_
→˓artifact)

If you already have the training or validation dataset saved in Object Storage and want to document this information in
this model artifact object, you can add that information into metadata_custom:

rf_model_artifact.metadata_custom.set_training_data(path='oci://bucket_name@namespace/
→˓train_data_filename', data_size='(200,100)')
rf_model_artifact.metadata_custom.set_validation_data(path='oci://bucket_name@namespace/
→˓validation_data_filename', data_size='(100,100)')

Modify the Model Artifact Files

With ADSModel approach, the model is saved in ONNX format as model.onnx. There are a number of other files that
typically don’t need to be modified though you could.

Update score.py

The score.py file has two methods, .load_model() and .predict(). The .load_model() method deserializes
the model and returns it. The .predict() method accepts data and a model (optional), and returns a dictionary of
predicted results. The most common use case for changing the score.py file is to add preprocessing and postprocessing
steps to the predict() method. The model artifact files that are on disk are decoupled from the ModelArtifact
object that is returned by the .prepare() method. If changes are made to the model artifact files, you must run the
.reload() method to get the changes.

The next example retrieves the contents of the score.py file.

with open(path.join(path_to_ADS_model_artifact, "score.py"), 'r') as f:
print(f.read())

import json
import numpy as np
import onnxruntime as rt
import os
import pandas as pd
from functools import lru_cache
from sklearn.preprocessing import LabelEncoder

model_name = 'model.onnx'
transformer_name = 'onnx_data_transformer.json'

"""
Inference script. This script is used for prediction by scoring server when schema is␣

→˓known.
"""

@lru_cache(maxsize=10)
def load_model(model_file_name=model_name):

"""
Loads model from the serialized format

Returns
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-------
model: an onnxruntime session instance
"""
model_dir = os.path.dirname(os.path.realpath(__file__))
contents = os.listdir(model_dir)
if model_file_name in contents:

return rt.InferenceSession(os.path.join(model_dir, model_file_name))
else:

raise Exception('{0} is not found in model directory {1}'.format(model_file_name,
→˓ model_dir))

def predict(data, model=load_model()):
"""
Returns prediction given the model and data to predict

Parameters
----------
model: Model session instance returned by load_model API
data: Data format as expected by the onnxruntime API

Returns
-------
predictions: Output from scoring server

Format: {'prediction':output from model.predict method}

"""
from pandas import read_json, DataFrame
from io import StringIO
X = read_json(StringIO(data)) if isinstance(data, str) else DataFrame.from_dict(data)
model_dir = os.path.dirname(os.path.realpath(__file__))
contents = os.listdir(model_dir)
# Note: User may need to edit this
if transformer_name in contents:

onnx_data_transformer = ONNXTransformer.load(os.path.join(model_dir, transformer_
→˓name))

X, _ = onnx_data_transformer.transform(X)
else:

onnx_data_transformer = None

onnx_transformed_rows = []
for name, row in X.iterrows():

onnx_transformed_rows.append(list(row))
input_data = {model.get_inputs()[0].name: onnx_transformed_rows}

pred = model.run(None, input_data)
return {'prediction':pred[0].tolist()}

class ONNXTransformer(object):
"""
This is a transformer to convert X [Dataframe like] and y [array like] data into Onnx
readable dtypes and formats. It is Serializable, so it can be reloaded at another␣

→˓time.

Usage:
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>>> from ads.common.model_export_util import ONNXTransformer
>>> onnx_data_transformer = ONNXTransformer(task="classification")
>>> train_transformed = onnx_data_transformer.fit_transform(train.X, train.y)
>>> test_transformed = onnx_data_transformer.transform(test.X, test.y)

Parameters
----------
task: str

Either "classification" or "regression". This determines if y should be label␣
→˓encoded

"""

def __init__(self, task=None):
self.task = task
self.cat_impute_values = {}
self.cat_unique_values = {}
self.label_encoder = None
self.dtypes = None
self._fitted = False

def _handle_dtypes(self, X):
# Data type cast could be expensive doing it in for loop
# Especially with wide datasets
# So cast the numerical columns first, without loop
# Then impute categorical columns
dict_astype = {}
for k, v in zip(X.columns, X.dtypes):

if v in ['int64', 'int32', 'int16', 'int8'] or 'float' in str(v):
dict_astype[k] = 'float32'

_X = X.astype(dict_astype)
for k in _X.columns[_X.dtypes != 'float32']:

# SimpleImputer is not available for strings in ONNX-ML specifications
# Replace NaNs with the most frequent category
self.cat_impute_values[k] = _X[k].value_counts().idxmax()
_X[k] = _X[k].fillna(self.cat_impute_values[k])
# Sklearn's OrdinalEncoder and LabelEncoder don't support unseen categories␣

→˓in test data
# Label encode them to identify new categories in test data
self.cat_unique_values[k] = _X[k].unique()

return _X

def fit(self, X, y=None):
_X = self._handle_dtypes(X)
self.dtypes = _X.dtypes
if self.task == 'classification' and y is not None:

# Label encoding is required for SVC's onnx converter
self.label_encoder = LabelEncoder()
y = self.label_encoder.fit_transform(y)

self._fitted = True
return self

def transform(self, X, y=None):
assert self._fitted, 'Call fit_transform first!'
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# Data type cast could be expensive doing it in for loop
# Especially with wide datasets
# So cast the numerical columns first, without loop
# Then impute categorical columns
_X = X.astype(self.dtypes)
for k in _X.columns[_X.dtypes != 'float32']:

# Replace unseen categories with NaNs and impute them
_X.loc[~_X[k].isin(self.cat_unique_values[k]), k] = np.nan
# SimpleImputer is not available for strings in ONNX-ML specifications
# Replace NaNs with the most frequent category
_X[k] = _X[k].fillna(self.cat_impute_values[k])

if self.label_encoder is not None and y is not None:
y = self.label_encoder.transform(y)

return _X, y

def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X, y)

def save(self, filename, **kwargs):
export_dict = {

"task": {"value": self.task, "dtype": str(type(self.task))},
"cat_impute_values": {"value": self.cat_impute_values, "dtype":␣

→˓str(type(self.cat_impute_values))},
"cat_unique_values": {"value": self.cat_unique_values, "dtype":␣

→˓str(type(self.cat_unique_values))},
"label_encoder": {"value": {

"params": self.label_encoder.get_params() if
hasattr(self.label_encoder, "get_params") else {},
"classes_": self.label_encoder.classes_.tolist() if
hasattr(self.label_encoder, "classes_") else []},
"dtype": str(type(self.label_encoder))},

"dtypes": {"value": {"index": list(self.dtypes.index), "values": [str(val)␣
→˓for val in self.dtypes.values]}

if self.dtypes is not None else {},
"dtype": str(type(self.dtypes))},

"_fitted": {"value": self._fitted, "dtype": str(type(self._fitted))}
}
with open(filename, 'w') as f:

json.dump(export_dict, f, sort_keys=True, indent=4, separators=(',', ': '))

@staticmethod
def load(filename, **kwargs):

# Make sure you have pandas, numpy, and sklearn imported
with open(filename, 'r') as f:

export_dict = json.load(f)
try:

onnx_transformer = ONNXTransformer(task=export_dict['task']['value'])
except Exception as e:

print(f"No task set in ONNXTransformer at {filename}")
raise e

for key in export_dict.keys():
if key not in ["task", "label_encoder", "dtypes"]:
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try:
setattr(onnx_transformer, key, export_dict[key]["value"])

except Exception as e:
print(f"Warning: Failed to reload from {filename} to OnnxTransformer.

→˓")
raise e

onnx_transformer.dtypes = pd.Series(data=[np.dtype(val) for val in export_dict[
→˓"dtypes"]["value"]["values"]], index=export_dict["dtypes"]["value"]["index"])

le = LabelEncoder()
le.set_params(**export_dict["label_encoder"]["value"]["params"])
le.classes_ = np.asarray(export_dict["label_encoder"]["value"]["classes_"])
onnx_transformer.label_encoder = le
return onnx_transformer

Update the requirements.txt File

The .prepare() method automatically encapsulates the notebook’s Python libraries and their versions in the
requirements.txt file. This ensures that the model’s dependencies can be reproduced. Typically, this file doesn’t
need to be modified.

If you install custom libraries in a notebook, then you must update the requirements.txt file. You can update the
file by calling pip freeze, and storing the output into the file. The command in the next example captures all of the
packages that are installed. It is likely that only a few of them are required by the model. However, using the command
ensures that all of the required packages are present on the system to run the model. We recommend that you update
this list to include only what is required if the model is going into a production environment. Typically, you don’t need
to modify the requirements.txt file.

os.system("pip freeze > '{}'".format(path.join(path_to_ADS_model_artifact, "backup-
→˓requirements.txt")))

Reloading the Model Artifact

The model artifacts on disk are decoupled from the ModelArtifact object. Any changes made on disk must be
incorporated back into the ModelArtifact object using the .reload() method:

rf_model_artifact.reload()

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json',
→˓'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx
→˓', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']

After the changes made to the model artifacts and those artifacts are incorporated back into the ModelArtifact object,
you can use it to make predictions. If there weren’t any changes made to the model artifacts on disk, then you can use
the ModelArtifact object directly.

This example problem is a binary classification problem. Therefore, the predict() function returns a one if the
observation is predicted to be in the class that is defined as true. Otherwise, it returns a zero. The next example uses
the .predict() method on the ModelArtifact object to make predictions on the test data.

rf_model_artifact.predict(data=test.X.iloc[:10, :], model=rf_model_artifact.load_model())

{'prediction': [1, 0, 1, 1, 0, 0, 0, 1, 1, 0]}

Model Introspection

The .intropect() method runs some sanity checks on the runtime.yaml, and score.py files. This is to help you
identify potential errors that might occur during model deployment. It checks fields such as environment path, validates
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the path’s existence on the Object Storage, checks if the .load_model(), and .predict() functions are defined in
score.py, and so on. The result of model introspection is automatically saved to the taxonomy metadata and model
artifacts.

rf_model_artifact.introspect()

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json',
→˓'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx
→˓', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']

Reloading model artifacts automatically invokes model introspection. However, you can invoke introspection manually
by calling rf_model_artifact.introspect():

The ArtifactTestResults field is populated in metadata_taxonomy when instrospect is triggered:

rf_model_artifact.metadata_taxonomy['ArtifactTestResults']

key: ArtifactTestResults
value:
runtime_env_path:
category: conda_env
description: Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set

...

15.2.2 Generic Model

The steps to prepare a generic model are basically the same as those for the ADSModel approach. However, there are a
few more details that you have to specify. The first step is to train a model. It doesn’t have to be based on the ADSModel
class. Next, the model has to be serialized and the model artifacts prepared. Preparing the model artifacts includes
running the .prepare_generic_model() method, then editing the score.py file, and optionally the requirements
file. Then you load it back from disk with the .reload() command. After you complete these steps, the model artifacts
are ready to be stored in the model catalog.

Train a Generic Model

The next example uses a Gamma Regressor Model (Generalized Linear Model with a Gamma distribution and a log
link function) from sklearn. ADSModel doesn’t support this class of model so the generic model approach is used.
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from sklearn import linear_model
gamma_reg_model = linear_model.GammaRegressor()
train_X = [[1, 2], [2, 3], [3, 4], [4, 3]]
train_y = [19, 26, 33, 30]
gamma_reg_model.fit(train_X, train_y)

GammaRegressor()

gamma_reg_model.score(train_X, train_y)

0.7731843906027439

test_X = [[1, 0], [2, 8]]
gamma_reg_model.predict(test_X)

array([19.483558 , 35.79588532])

Serialize the Model and Prepare the Model Artifact

To prepare the model artifact, the model must be serialized. In this example, the joblib serializer is used to write
the file model.onnx. The .prepare_generic_model() method is used to create the model artifacts in the specified
folder. This consists of a set of template files, some of which need to be customized.

The call to .prepare_generic_model() returns a ModelArtifact object. This is the object that is used to bundle
the model, and model artifacts together. It is also used to interact with the model catalog.

The next example serializes the model and prepares the model artifacts. The output is a listing of the temporary directory
used for the model artifacts, and the files that comprise the artifact.

The .prepare_generic_model() and .prepare() methods allow you to set some of the metadata. When you pass
in sample data using data_sample or X_sample and y_sample, the schema_input, schema_output are automat-
ically populated. The metadata_taxonomy is populated when the variable model is passed. You can define the use
case type with the use_case_type parameter.

# prepare the model artifact template
path_to_generic_model_artifact = tempfile.mkdtemp()
generic_model_artifact = prepare_generic_model(path_to_generic_model_artifact,

model=gamma_reg_model,
X_sample=train_X,
y_sample=train_y,
fn_artifact_files_included=False,
force_overwrite=True,
data_science_env=True,
)

# Serialize the model
import cloudpickle
with open(path.join(path_to_generic_model_artifact, "model.pkl"), "wb") as outfile:

cloudpickle.dump(gamma_reg_model, outfile)

# List the template files
print("Model Artifact Path: {}\n\nModel Artifact Files:".format(path_to_generic_model_
→˓artifact))

(continues on next page)
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(continued from previous page)

for file in os.listdir(path_to_generic_model_artifact):
if path.isdir(path.join(path_to_generic_model_artifact, file)):

for file2 in os.listdir(path.join(path_to_generic_model_artifact, file)):
print(path.join(file,file2))

else:
print(file)

Model Artifact Path: /tmp/tmpesx7aa_f

Model Artifact Files:
output_schema.json
score.py
runtime.yaml
model.pkl
input_schema.json

The metadata_taxonomy, metadata_custom, schema_input and schema_output are popuated:

generic_model_artifact.metadata_taxonomy.to_dataframe()

generic_model_artifact.metadata_custom.to_dataframe()

Modify the Model Artifact Files

The generic model approach provides a template that you must customize for your specific use case. Specifically, the
score.py and requirements.txt files must be updated.

Update score.py

Since the generic model approach is agnostic to the model and the serialization method being used, you must provide
information about the model. The score.py file provides the load_model() and predict() functions that you have
to update.

The load_model() function takes no parameters and returns the deserialized model object. The template code gives
an example of how to do this for the most common serialization method. However, the deserialization method that you
use must complement the serialization method used..
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The score.py file also contains a templated function called predict(). This method takes any arbitrary data object
and an optional model and returns a dictionary of predictions. The role of this method is to make predictions based
on new data. The method can be written to perform any pre-prediction and post-prediction operations that are needed.
These would be tasks such as feature engineering the raw input data and logging predictions results.

The next example prints out the contents of the score.py file:

with open(path.join(path_to_generic_model_artifact, "score.py"), 'r') as f:
print(f.read())

import json
import os
from cloudpickle import cloudpickle
from functools import lru_cache

model_name = 'model.pkl'

"""
Inference script. This script is used for prediction by scoring server when schema is␣

→˓known.
"""

@lru_cache(maxsize=10)
def load_model(model_file_name=model_name):

"""
Loads model from the serialized format

Returns
-------
model: a model instance on which predict API can be invoked
"""
model_dir = os.path.dirname(os.path.realpath(__file__))
contents = os.listdir(model_dir)
if model_file_name in contents:

with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), model_file_
→˓name), "rb") as file:

return cloudpickle.load(file)
else:

raise Exception('{0} is not found in model directory {1}'.format(model_file_name,
→˓ model_dir))

def pre_inference(data):
"""
Preprocess data

Parameters
----------
data: Data format as expected by the predict API of the core estimator.

Returns
-------
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data: Data format after any processing.

"""
return data

def post_inference(yhat):
"""
Post-process the model results

Parameters
----------
yhat: Data format after calling model.predict.

Returns
-------
yhat: Data format after any processing.

"""
return yhat

def predict(data, model=load_model()):
"""
Returns prediction given the model and data to predict

Parameters
----------
model: Model instance returned by load_model API
data: Data format as expected by the predict API of the core estimator. For eg. in␣

→˓case of sckit models it could be numpy array/List of list/Pandas DataFrame

Returns
-------
predictions: Output from scoring server

Format: {'prediction': output from model.predict method}

"""
features = pre_inference(data)
yhat = post_inference(

model.predict(features)
)
return {'prediction': yhat}

The next example updates the score.py file to support the gamma regression
model. The .load_model() method was updated to use the joblib.load()
function to read in the model and deserialize it. The .predict() method
was modified so that it makes calls to the _handle_input() and
_handle_output() methods. This allows the .predict() method to do
arbitrary operations before and after the prediction.

score = '''
import json
import os

(continues on next page)
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from cloudpickle import cloudpickle

model_name = 'model.pkl'

def load_model(model_file_name=model_name):
"""
Loads model from the serialized format

Returns
-------
model: a model instance on which predict API can be invoked
"""
model_dir = os.path.dirname(os.path.realpath(__file__))
contents = os.listdir(model_dir)
if model_file_name in contents:

with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), model_file_
→˓name), "rb") as file:

return cloudpickle.load(file)
else:

raise Exception('{0} is not found in model directory {1}'.format(model_file_name,
→˓ model_dir))

def predict(data, model=load_model()):
"""
Returns prediction given the model and data to predict

Parameters
----------
model: Model instance returned by load_model API
data: Data format as expected by the predict API of the core estimator. For eg. in␣

→˓case of sckit models it could be numpy array/List of list/Panda DataFrame

Returns
-------
predictions: Output from scoring server

Format: {'prediction':output from model.predict method}

"""

# from pandas import read_json, DataFrame
# from io import StringIO
# X = read_json(StringIO(data)) if isinstance(data, str) else DataFrame.from_

→˓dict(data)
return {'prediction':model.predict(data).tolist()}

'''

with open(path.join(path_to_generic_model_artifact, "score.py"), 'w') as f:
f.write(score)

Reloading the Model Artifact
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The model artifacts on disk are decoupled from the ModelArtifact object. Any changes you make on disk must be
incorporated back into the ModelArtifact object using the .reload() method.

Note: ModelSerializationFormat in metadata_custom is populated when model_file_name is passed in to
.reload().

generic_model_artifact.reload(model_file_name='model.pkl')

After the changes are made to the model artifacts, and those changes have been incorporated back into the
ModelArtifact object, it can be used to make predictions. When the .predict() method is used, there is no need
for the preprocessing to be done before calling .predict(). This is because the preprocessing steps have been coded
into the score.py file. The advantage of this is that the preprocessing is coupled with the model and not the code that
is calling the .predict() method so the code is more maintainable.

data = [[3, 4], [4, 5]]
generic_model_artifact.model.predict(data).tolist()

[29.462982553823185, 33.88604047807801]

15.3 Save

You use the ModelArtifact object to store the model artifacts in the model catalog. Saving the model artifact requires
the OCID for the compartment and project that you want to store it in. Model artifacts can be stored in any project
that you have access to. However, the most common use case is to store the model artifacts in the same compartment
and project that the notebook session belongs to. There are environmental variables in the notebook session that
contain this information. The NB_SESSION_COMPARTMENT_OCID and PROJECT_OCID environment variables contain
both compartment and project OCIDs that are associated with the notebook session.

Metadata can also be stored with the model artifacts. If the notebook is under Git version control, then the .save()
method automatically captures the relevant information so that there is a link between the code used to create the model
and the model artifacts. The .save() method doesn’t save the notebook or commit any changes. You have to save it
before storing the model in the model catalog. Use the ignore_pending_changes parameter to control changes. The
model catalog also accepts a description, display name, a path to the notebook used to train the model, tags, and more.

The .save() method returns a Model object that is a connection to the model catalog for the model that was just saved.
It contains information about the model catalog entry such as the OCID, the metadata provided to the catalog, the user
that stored the model, and so on.

You can use the auth optional parameter to specify the preferred authentication method.

You can save the notebook session OCID to the provenance metadata by specifying the training_id in the .save()
method. This validates the existence of the notebook session in the project and the compartment. The timeout optional
parameter controls both connection and read timeout for the client and the value is returned in seconds. By default,
the .save() method doesn’t perform a model introspection because this is normally done during the model artifact
debugging stage. However, setting ignore_introspection to False causes model introspection to be performed
during the save operation.

You can also save model tags by specifying optional freeform_tags and defined_tags parameters in the .save()
method. The defined_tags is automatically populated with oracle-tags by default. You can also create and manage
your own tags.

# Saving the model artifact to the model catalog:
mc_model = rf_model_artifact.save(project_id=os.environ['PROJECT_OCID'],

compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID
(continues on next page)
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→˓'],
training_id=os.environ['NB_SESSION_OCID'],
display_name="RF Classifier",
description="A sample Random Forest classifier",
ignore_pending_changes=True,
timeout=100,
ignore_introspection=False,
freeform_tags={"key" : "value"}

)
mc_model

['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json',
→˓'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx
→˓', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']

artifact:/tmp/saved_model_7869b70a-b59c-4ce2-b0e5-86f533cad0f3.zip

Information about the model can also be found in the Console on the Projects page in the Models section. It should
look similar to this:
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15.4 Large Model Artifacts

New in version 2.6.4.

Large models are models with artifacts between 2 and 6 GB. You must first upload large models to an Object Storage
bucket, and then transfer them to a model catalog. Follow a similar process to download a model artifact from the
model catalog. First download large models from the model catalog to an Object Storage bucket, and then transfer
them to local storage. For model artifacts that are less than 2 GB, you can use the same approach, or download them
directly to local storage.

ADS Model Serialization classes save large models using a process almost identical to model artifacts that are less than
2GB. An Object Storage bucket is required with Data Science service access granted to that bucket.

If you don’t have an Object Storage bucket, create one using the OCI SDK or the Console. Create an Object Storage
bucket. Make a note of the namespace, compartment, and bucket name. Configure the following policies to allow the
Data Science service to read and write the model artifact to the Object Storage bucket in your tenancy. An administrator
must configure these policies in IAM in the Console.

Allow service datascience to manage object-family in compartment <compartment> where ALL
→˓{target.bucket.name='<bucket_name>'}

Allow service objectstorage to manage object-family in compartment <compartment> where␣
→˓ALL {target.bucket.name='<bucket_name>'}

15.4.1 Saving

We recommend that you work with model artifacts using the Model Serialization classes in ADS. After you prepare
and verify the model, the model is ready to be stored in the model catalog. The standard method to do this is to use the
.save() method. If the bucket_uri parameter is present, then the large model artifact is supported.

The URI syntax for the bucket_uri is:

oci://<bucket_name>@<namespace>/<path>/

The following saves the Model Serialization object, model, to the model catalog and returns the OCID from the model
catalog:

model_catalog_id = model.save(
display_name='Model With Large Artifact',
bucket_uri=<provide bucket url>,
overwrite_existing_artifact = True,
remove_existing_artifact = True,

)

15.4.2 Loading

We recommend that you transfer a model artifact from the model catalog to your notebook session using the Model
Serialization classes in ADS. The .from_model_catalog() method takes the model catalog OCID and some file
parameters. If the bucket_uri parameter is present, then a large model artifact is used.

The following example downloads a model from the model catalog using the large model artifact approach. The
bucket_uri has the following syntax:

oci://<bucket_name>@<namespace>/<path>/
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large_model = model.from_model_catalog(
model_id=model_catalog_id,
model_file_name="model.pkl",
artifact_dir="./artifact/",
bucket_uri=<provide bucket url> ,
force_overwrite=True,
remove_existing_artifact=True,

)

15.5 List Models

The ModelCatalog object is used to interact with the model catalog. This class allows access to all models in a
compartment. Using this class, entries in the model catalog can be listed, deleted, and downloaded. It also provides
access to specific models so that the metadata can be updated, and the model can be activated and deactivated.

When model artifacts are saved to the model catalog, they are associated with a compartment and a project. The
ModelCatalog provides access across projects and all model catalog entries in a compartment are accessible. When
creating a ModelCatalog object, the compartment OCID must be provided. For most use cases, you can access
the model catalog associated with the compartment that the notebook is in. The NB_SESSION_COMPARTMENT_OCID
environment variable provides the compartment OCID associated with the current notebook. The compartment_id
parameter is optional. When it is not specified, the compartment for the current notebook is used.

The .list_models() method returns a list of entries in the model catalog as a ModelSummaryList object. By
default, it only returns the entries that are active. The parameter include_deleted=True can override this behavior
and return all entries.

from ads.catalog.model import ModelCatalog

from ads.catalog.model import ModelCatalog

# Create a connection to the current compartment's model catalog
mc = ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID'])

# Get a list of the entries in the model catalog
mc_list = mc.list_models(include_deleted=False)
mc_list

The .filter() method accepts a boolean vector and returns a ModelSummaryList object that has only the selected
entries. You can combine it with a lambda function to provide an arbitrary selection of models based on the properties
of the ModelSummaryList. The next example uses this approach to select only entries that are in the current notebook’s
project:

mc_list.filter(lambda x: x.project_id == os.environ['PROJECT_OCID'])
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The ModelSummaryList object can be treated as a list of Model objects. An individual compartment can be accessed
by providing an index value. In addition, the components of the Model object can be accessed as attributes of the
object. The next example iterates over the list of models, and prints the model name if the model is in an active state.
If the model is not active, an error occurs.

for i in range(len(mc_list)):
try:

print(mc_list[i].display_name)
except:

pass

RF Classifier
...

A Pandas dataframe representation of a ModelSummaryList object can be accessed with the df attribute. Using the
dataframe representation standard Pandas operations can be used. The next example sorts entries by the creation time
in ascending order.

df = mc_list.df
df.sort_values('time_created', axis=0)

The .list_model_deployment()method returns a list of oci.resource_search.models.resource_summary.
ResourceSummary objects. The model_id optional parameter is used to return only the details of the specified model.

mc.list_model_deployment(model_id=mc_model.id)

15.6 Download

Use .download_model() of the ModelCatalog to retrieve a model artifact from the model catalog. You can use the
process to change the model artifacts, or make the model accessible for predictions. While some of the model artifact
metadata is mutable, the model and scripts are immutable. When you make changes, you must save the model artifacts
back to the model catalog as a new entry.

The .download_model() method requires a model OCID value and a target directory for the artifact files. This
method returns a ModelArtifact object. You can use it to make predictions by calling the .predict() method. If
you update the model artifact, you have to call the .reload() method to synchronize the changes on disk with the
ModelArtifact object. Then you can save the model artifact can as a new entry into the model catalog with the
.save() method.

In the next example, the model that was stored in the model catalog is downloaded. The resulting ModelArtifact
object is then used to make predictions.

# Download the model that was saved to the model catalog, if it exists
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:

download_path = tempfile.mkdtemp()
dl_model_artifact = mc.download_model(mc_model.id, download_path, force_

→˓overwrite=True)
dl_model_artifact.reload(model_file_name='model.onnx')
print(dl_model_artifact.predict(data=test.X, model=dl_model_artifact.load_model()))
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['output_schema.json', 'score.py', 'runtime.yaml', 'onnx_data_transformer.json',
→˓'Hyperparameters.json', 'test_json_output.json', 'backup-requirements.txt', 'model.onnx
→˓', '.model-ignore', 'input_schema.json', 'ModelCustomMetadata.json']
{'prediction': [1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,␣
→˓1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,␣
→˓0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,␣
→˓1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1,␣
→˓0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,␣
→˓0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1,␣
→˓0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,␣
→˓0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,␣
→˓0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,␣
→˓1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,␣
→˓1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,␣
→˓0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0,␣
→˓1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0,␣
→˓0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0,␣
→˓1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1,␣
→˓0, 0, 1, 1, 1, 0]}

15.7 Retrieve a Model

The .get_model() method of the ModelCatalog class allows for an entry in the model catalog to be retrieved. The
returned object is a Model object. The difference between .get_model() and .download_model() is that the .
download_model() returns a ModelArtifact object, and the .get_model() returns the Model object. The Model
object allows for interaction with the entry in the model catalog where the ModelArtifact allows interaction with the
model and its artifacts.

In the next example, the model that was stored in the model catalog is retrieved. The .get_model() method requires
the OCID of the entry in the model catalog.

if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:
retrieved_model = mc.get_model(mc_model.id)
retrieved_model.show_in_notebook()

Models can also be retrieved from the model catalog by indexing the results from the .list_models() method. In
the next example, the code iterates through all of the entries in the model catalog and looks for the entry that has an
OCID that matches the model that was previously stored in the model catalog the this notebook. If it finds it, the model
catalog information is displayed.

15.7. Retrieve a Model 313



ADS Documentation, Release 2.6.4

is_found = False
for i in range(len(mc_list)):

try:
if mc_list[i].id == mc_model.id:

mc_list[i].show_in_notebook()
is_found = True

except:
pass

if not is_found:
print("The model was not found. Could it be disabled?")

15.8 Metadata

Metadata is stored with the model artifacts and this data can be accessed using the Model object.

These are the metadata attributes:

• compartment_id: Compartment OCID. It’s possible to move a model catalog entry to a new compartment.

• created_by: The OCID of the account that created the model artifact.

• defined_tags: Tags created by the infrastructure.

• description: A detailed description of the model artifact.

• display_name: Name to be displayed on the Models page. Names don’t have to be unique.

• freeform_tags: User applied tags.

• id: Model OCID

• lifecycle_state: The state of the model. It can be ACTIVE or INACTIVE.

• metadata_custom: Customizable metadata.

• metadata_taxonomy: Model taxonomy metadata.

• project_id: Project OCID. Each model catalog entry belongs to a compartment and project.

• provenance_metadata: Information about the:

– git_branch: Git branch.

– git_commit: Git commit hash.

– repository_url: URL of the git repository.

– script_dir: The directory of the training script.

– training_script: The filename of the training script.

• schema_input: Input schema. However, this field can’t be updated.
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• schema_output: Output schema. However, this field can’t be updated.

• time_created: The date and time that the model artifacts were stored in the model catalog.

• user_name: User name of the account that created the entry.

The provenance_metadata attribute returns a ModelProvenance object. This object has the attributes to access the
metadata.

15.8.1 Access Metadata

The .show_in_notebook()method prints a table of the metadata. Individual metadata can be accessed as an attribute
of the Model object. For example, the model description can be accessed with the description attribute.

The next example accesses and prints several attributes and also displays the .show_in_notebook() output:

# Print the defined tags in a nice format
print("defined tags attribute")
def print_dict(dictionary, level=0):

for key in dictionary:
value = dictionary[key]
print('\t'*level, end='')
if isinstance(value, dict):

print("Key: {}".format(key))
print_dict(value, level+1)

else:
print("Key: {}, Value: {}".format(key, value))

print_dict(mc_model.defined_tags)

# Print the user_name
print("\nUser name: {}".format(mc_model.user_name))

# Print the provenance_metadata
print("\nTraining script: {}".format(mc_model.provenance_metadata.training_script))

# Show in notebook
mc_model.show_in_notebook()

defined tags attribute

User name: user@company.tld

Training script: None

The metadata_custom attribute of the Model object is of the same of type as the one in ModelArtifact object. A
call to .to_dataframe() allows you to view it in dataframe format or in YAML :.
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mc_model.metadata_custom.to_dataframe()

It works the same way for metadata_taxonomy:

mc_model.metadata_taxonomy.to_dataframe()

15.8.1.1 Update Metadata

Model artifacts are immutable but the metadata is mutable. Metadata attributes can be updated in the Model object.
However, those changes aren’t made to the model catalog until you call the .commit() method.

In the next example, the model’s display name and description are updated. These changes are committed, and then
the model is retrieved from the model catalog. The metadata is displayed to demonstrate that it was changed.

Only the display_name, description, freeform_tags, defined_tags, metadata_custom, and
metadata_taxonomy can be updated.

# Update some metadata
mc_model.display_name = "Update Display Name"
mc_model.description = "This description has been updated"
mc_model.freeform_tags = {'isUpdated': 'True'}
if 'CondaEnvironmentPath' in mc_model.metadata_custom.keys:

(continues on next page)
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mc_model.metadata_custom.remove('CondaEnvironmentPath')

mc_model.metadata_custom['test'].description = 'test purpose.'
mc_model.metadata_taxonomy['Hyperparameters'].value = {

'ccp_alpha': 0.0,
'class_weight': None,
'criterion': 'gini',
'max_depth': None,
'max_features': 'auto',
'max_leaf_nodes': None,
'max_samples': None,
'min_impurity_decrease': 0.0,
'min_impurity_split': None,
'min_samples_leaf': 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'n_estimators': 10

}
assert 'CondaEnvironmentPath' not in mc_model.metadata_custom.keys
mc_model.commit()

# Retrieve the updated model from the model catalog
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:

retrieved_model = mc.get_model(mc_model.id)
retrieved_model.show_in_notebook()

15.9 Activate and Deactivate

Entries in the model catalog can be set as active or inactive. An inactive model is similar to archiving it. The model
artifacts aren’t deleted, but deactivated entries aren’t returned in default queries. The .deactivate() method of a
Model object sets a flag in the Model object that it’s inactive. However, you have to call the .commit() method to
update the model catalog to deactivate the entry.

The opposite of .deactivate() is the .activate() method. It flags a Model object as active, and you have to call
the .commit() method to update the model catalog.

In the next example, the model that was stored in the model catalog in this notebook is set as inactive. The
lifecycle_state shows it as INACTIVE.

mc_model.deactivate()
mc_model.commit()
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:

(continues on next page)
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retrieved_model = mc.get_model(mc_model.id)
retrieved_model.show_in_notebook()

You can activate the model by calling the .activate() method followed by .commit(). In this example, the
lifecycle_state is now ACTIVE:

mc_model.activate()
mc_model.commit()
if mc.list_models().filter(lambda x: x.id == mc_model.id) is not None:

retrieved_model = mc.get_model(mc_model.id)
retrieved_model.show_in_notebook()

15.10 Delete

The .delete_model() method of the ModelCatalog class is used to delete entries from the model catalog. It takes
the model artifact’s OCID as a parameter. After you delete a model catalog entry, you can’t restore it. You can only
download the model artifact to store it as a backup.

The .delete_model() method returns True if the model was deleted. Repeated calls to .delete_model() also
return True. If the supplied OCID is invalid or the system fails to delete the model catalog entry, it returns False.

The difference between .deactive() and .delete() is that .deactivate() doesn’t remove the model artifacts. It
marks them as inactive, and the models aren’t listed when the .list_models() method is called. The .delete()
method permanently deletes the model artifact.

In the next example, the model that was stored in the model catalog as part of this notebook is deleted.

mc.delete_model(mc_model.id)
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SIXTEEN

MODEL DEPLOYMENT

16.1 Overview

Model deployments are a managed resource within the Oracle Cloud Infrastructure (OCI) Data Science service. They
allow you to deploy machine learning models as web applications (HTTP endpoints). They provide real-time predic-
tions and enables you to quickly productionalize your models.

The ads.model.deployment module allows you to deploy models using the Data Science service. This module is
built on top of the oci Python SDK. It is designed to simplify data science workflows.

A model artifact is a ZIP archive of the files necessary to deploy your model. The model artifact contains the score.py
file. This file has the Python code that is used to load the model and perform predictions. The model artifact also
contains the runtime.yaml file. This file is used to define the conda environment used by the model deployment.

ADS supports deploying a model artifact from the Data Science model catalog, or the URI of a directory that can be
in the local block storage or in Object Storage.

You can integrate model deployments with the OCI Logging service. The system allows you to store access and
prediction logs ADS provides APIs to simplify the interaction with the Logging service, see ADS Logging.

The ads.model.deploymentmodule provides the following classes, which are used to deploy and manage the model.

• ModelDeployer: It creates a new deployment. It is also used to delete, list, and update existing deployments.

• ModelDeployment: Encapsulates the information and actions for an existing deployment.

• ModelDeploymentProperties: Stores the properties used to deploy a model.

16.2 Access a Model Deployment

When a model is deployed the .deploy() method of the ModelDeployer class will return a ModelDeployment
object. This object can be used to interact with the actual model deployment. However, if the model has already been
deployed, it is possible to obtain a ModelDeployment object. Use the .get_model_deployment() method when the
model deployment OCID is known.

The next code snippet creates a new ModelDeployment object that has access to the created model deployment.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
existing_deployment = deployer.get_model_deployment(model_deployment_id="<MODEL_
→˓DEPLOYMENT_OCID>")
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16.3 Attributes

The ModelDeployment class has a number of attributes that are assigned by the system. They provide a mechanism
to determine the state of the model deployment, the URI to make predictions, the model deployment OCID, etc.

In the following code snippets, the variable deployment is a ModelDeployment object. This object can be obtained
from a call to .deploy() or .get_model_deployment().

16.3.1 OCID

The .model_deployment_id of the ModelDeployment class specifies the OCID of the model deployment.

deployment.model_deployment_id

16.3.2 State

You can determine the state of the model deployment using the .current_state enum attribute of a
ModelDeployment object. This returns an enum object and the string value can be determined with .
current_state.name. It will have values like ‘ACTIVE’, ‘INACTIVE’, and ‘FAILED’.

In the following code snippets, the variable deployment is a ModelDeployment object. This object can be obtained
from a call to .deploy() or .get_model_deployment().

deployment.current_state.name

16.3.3 URL

The URL of the model deployment to use to make predictions using an HTTP request. The request is made to the URL
given in the .url attribute of the ModelDeployment class. You can make HTTP requests to this endpoint to have the
model make predictions, see the Predict section and Invoking a Model Deployment documentation for details.

deployment.url

16.4 Delete

A model deployment can be deleted using a ModelDeployer or ModelDeployment objects.

When a model deployment is deleted, it deletes the load balancer instances associated with it. However, it doesn’t
delete other resources like log group, log, or model.
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16.4.1 ModelDeployer

The ModelDeployer instance has a .delete() method for deleting a model deployment when give its OCID.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployer.delete(model_deployment_id=deployment_id)

16.4.2 ModelDeployment

If you have a ModelDeployment object, you can use the .delete() method to delete the model that is associated
with that object. The optional wait_for_completion parameter accepts a Boolean and determines if the process is
blocking or not.

In the following code snippets, the variable deployment is a ModelDeployment object. This object can be obtained
from a call to .deploy() or .get_model_deployment().

deployment = deployment.delete(wait_for_completion=True)

16.5 Deploy

The .deploy() method of the ModelDeployer class is used to create a model deployment. It has the following
parameters:

• max_wait_time: The timeout limit, in seconds, for the deployment process to wait until it is active. Defaults to
1200 seconds.

• poll_interval: The interval between checks of the deployment status in seconds. Defaults to 30 seconds.

• wait_for_completion: Blocked process until the deployment has been completed. Defaults to True.

There are two ways to use the .deploy() method. You can create a ModelDeploymentProperties object and pass
that in, or you can define the model deployment properties using the .deploy() method.

16.5.1 With ModelDeploymentProperties

After a ModelDeploymentProperties object is created, then you use model_deployment_properties to deploy
a model as in this example:

from ads.model.deployment import ModelDeployer, ModelDeploymentProperties

model_deployment_properties = ModelDeploymentProperties(
"<oci://your_bucket@your_namespace/path/to/dir>"

).with_prop(
'display_name', "Model Deployment Demo using ADS"

).with_prop(
"project_id", "<PROJECT_OCID>"

).with_prop(
"compartment_id", "<COMPARTMENT_OCID>"

).with_logging_configuration(
"<ACCESS_LOG_GROUP_OCID>", "<ACCESS_LOG_OCID>", "<PREDICT_LOG_GROUP_OCID>", "

(continues on next page)
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→˓<PREDICT_LOG_OCID>"
).with_instance_configuration(

config={"INSTANCE_SHAPE":"VM.Standard2.1", "INSTANCE_COUNT":"1",'bandwidth_mbps':10}
)
deployer = ModelDeployer()
deployment = deployer.deploy(model_deployment_properties)

16.5.2 Without ModelDeploymentProperties

Depending on your use case, it might be more convenient to skip the creation of a ModelDeploymentProperties
object and create the model deployment directly using the .deploy() method. You can do this by passing the us-
ing keyword arguments instead of ModelDeploymentProperties. You specify the model deployment properties as
parameters in the .deploy() method.

You define the model deployment properties using the following parameters:

• access_log_group_id: Log group OCID for the access logs. Required when access_log_id is specified.

• access_log_id: Custom logger OCID for the access logs. Required when access_log_group_id is speci-
fied.

• bandwidth_mbps: The bandwidth limit on the load balancer in Mbps. Optional.

• compartment_id: Compartment OCID that the model deployment belongs to.

• defined_tags: A dictionary of defined tags to be attached to the model deployment. Optional.

• description: A description of the model deployment. Optional.

• display_name: A name that identifies the model deployment in the Console.

• freeform_tags: A dictionary of freeform tags to be attached to the model deployment. Optional.

• instance_count: The number of instances to deploy.

• instance_shape: The instance compute shape to use. For example, “VM.Standard2.1”

• model_id: Model OCID that is used in the model deployment.

• predict_log_group_id: Log group OCID for the predict logs. Required when predict_log_id is specified.

• predict_log_id: Custom logger OCID for the predict logs. Required when predict_log_group_id is spec-
ified.

• project_id: Project OCID that the model deployment will belong to.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployment = deployer.deploy(

model_id="<MODEL_OCID>",
display_name="Model Deployment Demo using ADS",
instance_shape="VM.Standard2.1",
instance_count=1,
project_id="<PROJECT_OCID>",
compartment_id="<COMPARTMENT_OCID>",
# The following are optional
access_log_group_id="<ACCESS_LOG_GROUP_OCID>",

(continues on next page)
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access_log_id="<ACCESS_LOG_OCID>",
predict_log_group_id="<PREDICT_LOG_GROUP_OCID>",
predict_log_id="<PREDICT_LOG_OCID>"

)

16.6 Inventory

16.6.1 List

The .list_deployments() method of the ModelDeployer class returns a list of ModelDeployment objects. The
optional compartment_id parameter limits the search to a specific compartment. By default, it uses the same compart-
ment that the notebook is in. The optional status parameter limits the returned ModelDeployment objects to those
model deployments that have the specified status. Values for the status parameter would be ‘ACTIVE’, ‘INACTIVE’,
or ‘FAILED’.

The code snippet obtains a list of active deployments in the compartment specified by compartment_id, and prints
the display name.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
for active in deployer.list_deployments(status="ACTIVE", compartment_id=compartment_id):

print(active.properties.display_name)

16.6.2 Show

The .show_deployments() method is a helper function that works the same way as the .list_deployments()
method except it returns a dataframe of the results.

from ads.model.deployment import ModelDeployer

deployer = ModelDeployer()
deployer.show_deployments(compartment_id=compartment_id, status="ACTIVE")

16.7 Logs

The model deployment process creates a set of workflow logs. Optionally, you can also configure the Logging service
to capture access and predict logs.

In the following code snippets, the variable deployment is a ModelDeployment object. This object can be obtained
from a call to .deploy() or .get_model_deployment().
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16.7.1 Access/Predict

The .show_logs() and .logs() methods in the ModelDeployment class exposes the predict and access logs. The
parameter log_type accepts predict and access to specify which logs to return. When it’s not specified, the access
logs are returned. The parameters time_start and time_end restrict the logs to time periods between those entries.
The limit parameter limits the number of log entries that are returned.

Logs are not collected in real-time. Therefore, it is possible that logs have been emitted by the model deployment but
are not currently available with the .logs() and .show_logs() methods.

16.7.1.1 logs

This method returns a list of dictionaries where each element of the list is a log entry. Each element of the dictionary
is a key-value pair from the log.

deployment.logs(log_type="access", limit=10)

16.7.1.2 show_logs

This method returns a dataframe where each row represents a log entry.

deployment.show_logs(log_type="access", limit=10)

16.7.2 Workflow

The .list_workflow_logs() provides a list of dictionaries that define the steps that were used to deploy the model.
These are referred to as the workflow logs.

deployment.list_workflow_logs()

[{
"message": "Creating compute resource configuration.",
"timestamp": "2021-04-21T20:45:27.609000+00:00"

},
{
"message": "Creating compute resources.",
"timestamp": "2021-04-21T20:45:30.237000+00:00"

},
{
"message": "Creating load balancer.",
"timestamp": "2021-04-21T20:45:33.076000+00:00"

},
{
"message": "Compute resources are provisioned.",
"timestamp": "2021-04-21T20:46:46.876000+00:00"

},
{
"message": "Load balancer is provisioned.",
"timestamp": "2021-04-21T20:53:54.764000+00:00"

}]
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16.8 Predict

Predictions can be made by calling the HTTP endpoint associated with the model deployment. The ModelDeployment
object url attribute specifies the endpoint. You could also use the ModelDeployment object with the .predict()
method. The format of the data that is passed to the HTTP endpoint depends on the setup of the model artifact. The
default setup is to pass in a Python dictionary that has been converted to a JSON data structure. The first level defines
the feature names. The second level uses an identifier for the observation (for example, row in the dataframe), and the
value associated with it. Assuming the model has features F1, F2, F3, F4, and F5, then the observations are identified
by the values 0, 1, and 2 and the data would look like this:

Index F1 F2 F3 F4 F5
0 11 12 13 14 15
1 21 22 23 24 25
2 31 32 33 34 35

The Python dictionary representation would be:

test = {
'F1': { 0: 11, 1: 21, 2: 31},
'F2': { 0: 12, 1: 22, 2: 32},
'F3': { 0: 13, 1: 23, 2: 33},
'F4': { 0: 14, 1: 24, 2: 34},
'F5': { 0: 15, 1: 25, 2: 35}

}

You can use the ModelDeployment object to call the HTTP endpoint. The returned result is the predictions for the
three observations.

deployment.predict(test)

{'prediction': [0, 2, 0]}

Model Deploy now supports binary payloads. You no longer need to convert binary images to Base64 encoded strings
when making inferences.

16.8.1 Example

The following example shows how to use predict() with image bytes: The score.py file does not provide default de-
serialization for bytes input. You need to provide your own implementations. The model used in this example has its
raw training data normalized. The next cell reproduces these transformations. The original image is 256x384 pixels
and the training data is 224x224. Therefore, the image is resized and cropped. The color variation in the image is also
adjusted to match the training data. The image is converted to a Tensor object. This object is a four-dimensional tensor
and the first dimension has only a single level. This dimension is removed using the .unsqueeze() method.

Load data

from PIL import Image
im = Image.open('<image_path>')
im.convert("RGB").save("<image_path>")

with open('<image_path>', 'rb') as f:
byte_im = f.read()
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Example model

# load the pre-trained model.
model = resnet18(pretrained=True)
# set the model to inference mode
_ = model.eval()

Model framework serialization

artifact_dir = "<directory>"
pytorch_model = PyTorchModel(estimator=model, artifact_dir=artifact_dir)
conda_env = 'computervision_p37_cpu_v1'

# Create a sample of the y values.
y_sample = [0] * len(prediction_not_normalized)
y_sample[prediction_normalized.index(max_value)] = 1

pytorch_model.prepare(
inference_conda_env=conda_env,
training_conda_env=conda_env,
use_case_type=UseCaseType.IMAGE_CLASSIFICATION,
X_sample=image_tensor,
y_sample=y_sample,
training_id=None,
force_overwrite=True

)
pytorch_model.verify(byte_im)['prediction'][0][:10]
model_id = pytorch_model.save(display_name='Test PyTorchModel model Bytes Input',␣
→˓timeout=600)

deploy = pytorch_model.deploy(display_name='Test PyTorchModel deployment')
pytorch_model.predict(byte_im)['prediction'][0][:10]

pytorch_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

The change needed in score.py:

def deserialize(data):
if isinstance(data, bytes):
return data

...

def pre_inference(data):
data = deserialize(data)

import base64
import io
import torchvision.transforms as transforms

from PIL import Image
(continues on next page)
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img_bytes = io.BytesIO(data)
image = Image.open(img_bytes)

# preprocess the data to make it accepted by the model
preprocess = transforms.Compose([

transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(

mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]

),
])
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)

return input_batch

def post_inference(yhat):
if isinstance(yhat, torch.Tensor):
from torch.nn import Softmax
softmax = Softmax(dim=1)
return softmax(yhat).tolist()

return yhat

16.9 Properties

16.9.1 ModelDeploymentProperties

The ModelDeploymentProperties class is a container to store model deployment properties. String properties are
set using the .with_prop() method. You use it to assemble properties such as the display name, project OCID,
and compartment OCID. The .with_access_log() and .with_predict_log() methods define the logging prop-
erties. Alternatively, you could use the .with_logging_configuration() helper method to define the predict and
access log properties using a single method. The .with_instance_configuration() method defines the instance
shape, count, and bandwidth. Initializing ModelDeploymentProperties requires a model_id or model_uri. The
model_id is the model OCID from the model catalog.

from ads.model.deployment import ModelDeploymentProperties

model_deployment_properties = ModelDeploymentProperties(
"<MODEL_OCID>"

).with_prop(
'display_name', "Model Deployment Demo using ADS"

).with_prop(
"project_id", "<PROJECT_OCID>"

).with_prop(
"compartment_id", "<COMPARTMENT_OCID>"

).with_logging_configuration(
"<ACCESS_LOG_GROUP_OCID>", "<ACCESS_LOG_OCID>", "<PREDICT_LOG_GROUP_OCID>", "

(continues on next page)
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→˓<PREDICT_LOG_OCID>"
).with_instance_configuration(

config={"INSTANCE_SHAPE":"VM.Standard2.1", "INSTANCE_COUNT":"1",'bandwidth_mbps':10}
)

Alternatively, you could specify a model_uri instead of a model_id. The model_uri is the path to the direc-
tory containing the model artifact. This can be a local path or the URI of Object Storage. For example, oci://
your_bucket@your_namespace/path/to/dir.

model_deployment_properties = ModelDeploymentProperties(
"<oci://your_bucket@your_namespace/path/to/dir>"

)

16.9.2 properties

The ModelDeployment class has a number of attributes that provide information about the deployment. The
properties attribute contains information about the model deployment’s properties that are related to the information
that is stored in the model’s ModelDeploymentProperties object. This object has all of the attributes of the Data
Science model deployment model. The most commonly used properties are:

• category_log_details: A model object that contains the OCIDs for the access and predict logs.

• compartment_id: Compartment ID of the model deployment.

• created_by: OCID of the user that created the model deployment.

• defined_tags: System defined tags.

• description: Description of the model deployment.

• display_name: Name of the model that is displayed in the Console.

• freeform_tags: User-defined tags.

• model_id: OCID of the deployed model.

• project_id: OCID of the project the model deployment belongs to.

To access these properties use the .properties accessor on a ModelDeployment object. For example, to determine
the OCID of the project that a model deployment is associated with, use the command:

deployment.properties.project_id

16.10 State

16.10.1 ModelDeployer

The .get_model_deployment_state() method of the ModelDeployer class accepts a model deployment OCID
and returns an enum state. This is a convenience method to obtain the model deployment state when the model deploy-
ment OCID is known.

from ads.model.deployment import ModelDeployer

(continues on next page)
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deployer = ModelDeployer()
deployer.get_model_deployment_state(model_deployment_id="<MODEL_DEPLOYMENT_OCID>").name

'ACTIVE'

16.10.2 ModelDeployment

You can determine the state of the model deployment using the current_state.name attribute of a
ModelDeployment object. This returns a string with values like ‘ACTIVE’, ‘INACTIVE’, and ‘FAILED’.

In the following code snippets, the variable deployment is a ModelDeployment object. This object can be obtained
from a call to .deploy() or .get_model_deployment().

deployment.current_state.name

16.11 Update

The .update() method of the ModelDeployment class is used to make changes to a deployed model. This method
accepts the same parameters as the .deploy() method. Check out the Editing Model Deployments for a list of what
properties can be updated.

A common use case is to change the underlying model that is deployed. In the following code snippets, the vari-
able deployment is a ModelDeployment object. This object can be obtained from a call to .deploy() or .
get_model_deployment().

deployment.update(model_id="<NEW_MODEL_OCID>")

Or, you could update the instance shape with:

deployment.update(
model_deployment_properties.with_instance_configuration(

dict(instance_shape="VM.Standard2.1")
)

)
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CHAPTER

SEVENTEEN

MODEL EVALUATION

17.1 Overview

With the ever-growing suite of models at the disposal of data scientists, the problems with selecting a model have grown
similarly. ADS offers the Evaluation Class, a collection of tools, metrics, and charts concerned with the contradistinc-
tion of several models.

After working hard to architect and train your model, it’s important to understand how it performs across a series of
benchmarks. Evaluation is a set of functions that convert the output of your test data into an interpretable, standardized
series of scores and charts. From the accuracy of the ROC curve and residual QQ plots.

Evaluation can help machine learning developers to:

• Quickly compare models across several industry-standard metrics.

– For example, what’s the accuracy, and F1-Score of my binary classification model?

• Discover where a model is failing to feedback into future model development.

– For example, while accuracy is high, precision is low, which is why the examples I care about are failing.

• Increase understanding of the trade-offs of various model types.

Evaluation helps you understand where the model is likely to perform well or not. For example, model A performs well
when the weather is clear, but is much more uncertain during inclement conditions.

There are three types of ADS Evaluators, binary classifier, multinomial classifier, and regression.

17.2 Binary Classification

Binary classification is a type of modeling wherein the output is binary. For example, Yes or No, Up or Down, 1 or 0.
These models are a special case of multinomial classification so have specifically catered metrics.

The prevailing metrics for evaluating a binary classification model are accuracy, hamming loss, kappa score, precision,
recall, 𝐹1 and AUC. Most information about binary classification uses a few of these metrics to speak to the importance
of the model.

• Accuracy: The proportion of predictions that were correct. It is generally converted to a percentage where 100%
is a perfect classifier. An accuracy of 50% is random (for a balanced dataset) and an accuracy of 0% is a perfectly
wrong classifier.

• AUC: Area Under the Curve (AUC) refers to the area under an ROC curve. This is a numerical way to summarize
the robustness of a model to its discrimination threshold. The AUC is computed by integrating the area under
the ROC curve. It is akin to the probability that your model scores better on results to which it accredits a higher
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score. Thus 1.0 is a perfect score, 0.5 is the average score of a random classifier, and 0.0 is a perfectly backward
scoring classifier.

• F1 Score: There is generally a trade-off between the precision and recall and the 𝐹1 score is a metric that
combines them into a single number. The 𝐹1 Score is the harmonic mean of precision and recall:

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Therefore a perfect 𝐹1 score is 1. That is, the classifier has perfect precision and recall. The worst 𝐹1 score is 0.
The 𝐹1 score of a random classifier is heavily dependent on the nature of the data.

• Hamming Loss: The proportion of predictions that were incorrectly classified and is equivalent to 1−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.
This means a Hamming Loss of 0 is a perfect classifier. A score of 0.5 is a random classifier (for a balanced
dataset), and 1 is a perfectly incorrect classifier.

• Kappa Score: Cohen’s 𝜅 coefficient is a statistic that measures inter-annotator agreement. This function com-
putes Cohen’s 𝜅, a score that expresses the level of agreement between two annotators on a classification problem.
It is defined as:

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio).
𝑝𝑒 is the expected agreement when both annotators assign labels randomly. 𝑝𝑒 is estimated using a per-annotator
empirical prior over the class labels.

• Precision: The proportion of the True class that were predicted to be True and are actually in the True class
𝑇𝑃

𝑇𝑃+𝐹𝑃 . This is also known as Positive Predictive Value (PPV). A precision of 1.0 is perfect precision, 0.0 is
bad precision. However, the precision of a random classifier varies highly based on the nature of the data and to
a lesser extent a bad precision.

• Recall: This is the proportion of the True class predictions that were correctly predicted over the number of
True predictions (correct or incorrect) 𝑇𝑃

𝑇𝑃+𝐹𝑁 . This is also known as True Positive Rate (TPR) or Sensitivity.
A recall of 1.0 is perfect recall, 0.0 is bad recall. however, the recall of a random classifier varies highly based
on the nature of the data and to a lesser extent a bad recall.

The prevailing charts and plots for binary classification are the Precision-Recall Curve, the ROC curve, the Lift Chart,
the Gain Chart, and the Confusion Matrix. These are inter-related with the previously described metrics and are com-
monly used in the binary classification literature.

• Confusion Matrix

• Gain Chart

• Lift Chart

• Precision-Recall Curve

• ROC curve

This code snippet demonstrates how to generate the above metrics and charts. The data has to be split into a testing
and training set with the features in X_train and X_test and the responses in y_train and y_test.

lr_clf = LogisticRegression(random_state=0, solver='lbfgs',
multi_class='multinomial').fit(X_train, y_train)

rf_clf = RandomForestClassifier(n_estimators=10).fit(X_train, y_train)

from ads.common.model import ADSModel
bin_lr_model = ADSModel.from_estimator(lr_clf, classes=[0,1])

(continues on next page)
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(continued from previous page)

bin_rf_model = ADSModel.from_estimator(rf_clf, classes=[0,1])

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

evaluator = ADSEvaluator(test, models=[bin_lr_model, bin_rf_model], training_data=train)

To use the ADSEvaluator the standard sklearn models into ADSModels.

The ADSModel class in the ADS package has a from_estimator function that takes as input a fitted estimator and
converts it into an ADSModel object. With classification, the class labels also need to be provided. The ADSModel
object is used for evaluation by the ADSEvaluator object.

To show all of the metrics in a table, run:

evaluator.metrics

Fig. 1: Evaluator Metrics

To show all of the charts, run:

evaluator.show_in_notebook(perfect=True)

Important parameters:

• If perfect is set to True, ADS plots a perfect classifier for comparison in Lift and Gain charts.
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Fig. 2: Lift & Gain Chart

Fig. 3: Precision Recall and ROC Curves

334 Chapter 17. Model Evaluation



ADS Documentation, Release 2.6.4

Fig. 4: Normalized Confusion Matrix

• If baseline is set to True, ADS won’t include a baseline for the comparison of various plots.

• If use_training_data is set True, ADS plots the evaluations of the training data.

• If plots contain a list of plot types, ADS plots only those plot types.

This code snippet demonstrates how to add a custom metric, a 𝐹2 score, to the evaluator.

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

from sklearn.metrics import fbeta_score
def F2_Score(y_true, y_pred):

return fbeta_score(y_true, y_pred, 2)
evaluator.add_metrics([F2_Score], ["F2 Score"])
evaluator.metrics

17.2.1 Fairness Metrics

New in version 2.6.1..

Fairness metrics will be automatically generated for any feature specified in the protected_features argument to
the ADSEvaluator object. The added metrics are:

• Equal Odds: For each of the protected_features specified, Equal Odds is a ratio between the positive rates for
each class within that feature. The closer this value is to 1, the less biased the model and data are with respect
to the feature, F. In other terms, for a binary feature F with classes A and B, Equal Odds is calculated using the
following formula:

𝑃 (𝑦 = 1|𝑌 = 𝑦, 𝐹 = 𝐴)

𝑃 (𝑦 = 1|𝑌 = 𝑦, 𝐹 = 𝐵)
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• Equal Opportunity: For each of the protected_features specified, Equal Opportunity is a ratio between the
true positive rates for each class within that feature. The closer this value is to 1, the less biased the model is
with respect to the feature F. In other terms, for a binary feature F with classes A and B, Equal Opportunity is
calculated using the following formula:

𝑃 (𝑦 = 1|𝑌 = 1, 𝐹 = 𝐴)

𝑃 (𝑦 = 1|𝑌 = 1, 𝐹 = 𝐵)

• Statistical Parity: For each of the protected_features specified, Statistical Parity is a ratio between the prediction
rates for each class within that feature. The closer this value is to 1, the less biased the model and data are with
respect to the feature F. In other terms, for a binary feature F with classes A and B, Statistical Parity is calculated
using the following formula:

𝑃 (𝑦|𝐹 = 𝐴)

𝑃 (𝑦|𝐹 = 𝐵)

The following plots are added to explain the fairness metrics:

• Equal Odds Bar Chart: False Positive Rate bar chart by protected feature class

• Equal Opportunity Bar Chart: True Positive Rate bar chart by protected feature class

• Statistical Parity Bar Chart: Number of positive predictions by protected feature class

If protected_features contains a list of column names in data.X, ADS will generate fairness metrics for each of
those columns.

17.3 Multinomial Classification

Multinomial classification is a type of modeling wherein the output is discrete. For example, an integer 1-10, an animal
at the zoo, or a primary color. These models have a specialized set of charts and metrics for their evaluation.

The prevailing metrics for evaluating a multinomial classification model are:

• Accuracy: The proportion of predictions that were correct. It is generally converted to a percentage where 100%
is a perfect classifier. For a balanced dataset, an accuracy of 100%

𝑘 where 𝑘 is the number of classes, is a random
classifier. An accuracy of 0% is a perfectly wrong classifier.

• F1 Score (weighted, macro or micro): There is generally a trade-off between the precision and recall and the
𝐹1 score is a metric that combines them into a single number. The per-class 𝐹1 score is the harmonic mean of
precision and recall:

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

As with precision, there are a number of other versions of 𝐹1 that are used in multinomial classification. The
micro and weighted 𝐹1 is computed the same as with precision, but with the per-class 𝐹1 replacing the per-class
precision. However, the macro 𝐹1 is computed a little differently. The precision and recall are computed by
summing the TP, FN, and FP across all classes, and then using them in the standard formulas.

• Hamming Loss: The proportion of predictions that were incorrectly classified and is equivalent to 1−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.
This means a Hamming loss score of 0 is a perfect classifier. A score of 𝑘−1

𝑘 is a random classifier for a balanced
dataset, and 1.0 is a perfectly incorrect classifier.

• Kappa Score: Cohen’s 𝜅 coefficient is a statistic that measures inter-annotator agreement. This function com-
putes Cohen’s 𝜅, a score that expresses the level of agreement between two annotators on a classification problem.
It is defined as:

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒
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𝑝𝑜 is the empirical probability of agreement on the class assigned to any sample (the observed agreement ratio).
𝑝𝑒 is the expected agreement when both annotators assign classes randomly. 𝑝𝑒 is estimated using a per-annotator
empirical prior over the class.

• Precision (weighted, macro or micro): This is the proportion of a class that was predicted to be in a given class
and are actually in that class. In multinomial classification, it is common to report the precision for each class
and this is called the per-class precision. It is computed using the same approach use in binary classification. For
example, 𝑇𝑃

𝑇𝑃+𝐹𝑃 , but only the class under consideration is used. A value of 1 means that the classifier was able
to perfectly predict, for that class. A value of 0 means that the classifier was never correct, for that class. There
are three other versions of precision that are used in multinomial classification and they are weighted, macro and
micro-precision. Weighted precision, 𝑃𝑤, combines the per-class precision by the number of true classes:

𝑃𝑤 = 𝑊1𝑃1 + · · · + 𝑊𝑛𝑃𝑛

𝑊𝑖 is the proportion of the true classes in class i 𝑃𝑖 is the per-class precision for the 𝑖𝑡ℎ class. The macro-
precision, 𝑃𝑚, is the mean of all the per-class, 𝑃𝑖, precisions.

𝑃𝑚 =
1

𝑛

∑︁
𝑖

𝑃𝑖

The micro-precision, 𝑃𝜇, is the same as the accuracy, micro-recall, and micro 𝐹1.

• Recall (weighted, macro or micro): This is the proportion of the True class predictions that were correctly
predicted over the number of True predictions (correct or incorrect) 𝑇𝑃

𝑇𝑃+𝐹𝑁 . This is also known as the True
Positive Rate (TPR) or Sensitivity. In multinomial classification, it is common to report the recall for each class
and this is called the micro-recall. It is computed using the same approach as in the case of binary classification,
but is reported for each class. A recall of 1 is perfect recall, 0 is “bad” recall.

As with precision, there are three other versions of recall that are used in multinomial classification. They are
weighted, macro and micro-recall. The definitions are the same except the per-class recall replaces the per-class
precision in the preceding equations.

Generally, several of these metrics are used in combination to describe the performance of a multinomial classification
model.

The prevailing charts and plots for multinomial classification are the Precision-Recall Curve, the ROC curve, the Lift
Chart, the Gain Chart, and the Confusion Matrix. These are inter-related with preceding metrics, and are common
across most multinomial classification literature.

For multinomial classification you can view the following using show_in_notebook():

• confusion_matrix: A matrix of the number of actual versus predicted values for each class, see [Read More].

• f1_by_label: Harmonic mean of the precision and recall by class metrics. Compute 𝐹1 for each class, see
[Read More]

• jaccard_by_label: Computes the similarity for each class distribution, see [Read More].

• pr_curve: A plot of a precision versus recall (the proportion of positive class predictions that were correct
versus the proportion of positive class objects that were correctly identified), see [Read More].

• precision_by_label: It considers one class as a positive class and rest as negative. Compute precision for
each, precision numbers in this example, see [Read More].

• recall_by_label: It considers one class as a positive class and rest as negative. Compute recall for each, recall
numbers in this example, [Read More].

• roc_curve: A plot of a true positive rate versus a false positive rate (recall vs the proportion of negative class
objects that were identified incorrectly), see [Read More].

To generate all of these metrics and charts for a list of multinomial classification models on the test dataset, you can
run the following:
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lr_clf = LogisticRegression(random_state=0, solver='lbfgs',
multi_class='multinomial').fit(X_train, y_train)

rf_clf = RandomForestClassifier(n_estimators=10).fit(X_train, y_train)

from ads.common.model import ADSModel
lr_model = ADSModel.from_estimator(lr_clf, classes=[0,1,2])
rf_model = ADSModel.from_estimator(rf_clf, classes=[0,1,2])

from ads.evaluations.evaluator import ADSEvaluator
from ads.common.data import MLData

multi_evaluator = ADSEvaluator(test, models=[lr_model, rf_model])

To use ADSEvaluator, models have to be converted into ADSModel types.

The ADSModel class in the ADS package has a from_estimator function that takes as input a fitted estimator and
converts it into an ADSModel object. With classification, you have to pass the class labels in the class argument too.
The ADSModel object is used for evaluation using the ADSEvaluator object.

To show all of the metrics in a table, run:

evaluator.metrics

Fig. 5: Evaluator Metrics

evaluator.show_in_notebook()

Multinomial classification includes the following metrics:

• accuracy: The number of correctly classified examples divided by total examples.

• hamming_loss: 1 - accuracy

• precision_weighted: The weighted average of precision_by_label. Weights are proportional to the num-
ber of true instances for each class.

• precision_micro: Global precision. Calculated by using global true positives and false positives.

• recall_weighted: The weighted average of recall_by_label. Weights are proportional to the number of
true instances for each class.
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Fig. 6: Multinomial Confusion Matrix

Fig. 7: Multinomial ROC Curve
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Fig. 8: Multinomial Precision Recall Curve

Fig. 9: Multinomial Precision By Class
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Fig. 10: Multinomial F1 By Class

Fig. 11: Multinomial Jaccard By Class
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• recall_micro: Global recall. Calculated by using global true positives and false negatives.

• f1_weighted: The weighted average of f1_by_label. Weights are proportional to the number of true instances
for each class.

• f1_micro: Global 𝐹1. It is calculated using the harmonic mean of micro precision and recall metrics.

All of these metrics can be computed directly from the confusion matrix.

If the preceding metrics don’t include the specific metric you want to use, maybe an F2 score, simply add it to your
evaluator object as in this example:

from ads.evaluations.evaluator import ADSEvaluator
evaluator = ADSEvaluator(test, models=[modelA, modelB, modelC modelD])

from sklearn.metrics import fbeta_score
def F2_Score(y_true, y_pred):

return fbeta_score(y_true, y_pred, 2)
evaluator.add_metrics([F2_Score], ["F2 Score"])
evaluator.metrics
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EIGHTEEN

MODEL EXPLAINABILITY

18.1 Overview

Machine learning and deep learning are becoming ubiquitous due to:

• The ability to solve complex problems in a variety of different domains.

• The growth in the performance and efficiency of modern computing resources.

• The widespread availability of large amounts of data.

However, as the size and complexity of problems continue to increase, so does the complexity of the machine learning
algorithms applied to these problems. The inherent and growing complexity of machine learning algorithms limits the
ability to understand what the model has learned or why a given prediction was made, acting as a barrier to the adoption
of machine learning. Additionally, there may be legal or regulatory requirements to be able to explain the outcome of
a prediction from a machine learning model, resulting in the use of biased models at the cost of accuracy.

Machine learning explainability (MLX) is the process of explaining and interpreting machine learning and deep learn-
ing models.

MLX can help machine learning developers to:

• Better understand and interpret the model’s behavior.

– Which features does the model consider important?

– What is the relationship between the feature values and the target predictions?

• Debug and improve the quality of the model.

– Did the model learn something unexpected?

– Does the model generalize or did it learn something specific to the training dataset?

• Increase trust in the model and confidence in deploying the model.

MLX can help users of machine learning algorithms to:

• Understand why the model made a certain prediction.

– Why was my bank loan denied?

Some useful terms for MLX:

• Explainability: The ability to explain the reasons behind a machine learning model’s prediction.

• Global Explanations: Understand the general behavior of a machine learning model as a whole.

• Interpretability: The level at which a human can understand the explanation.

• Local Explanations: Understand why the machine learning model made a specific prediction.
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• Model-Agnostic Explanations: Explanations treat the machine learning model and feature pre-processing as a
black box, instead of using properties from the model to guide the explanation.

• WhatIf Explanations: Understand how changes in the value of features affects the model’s prediction.

The ADS explanation module provides interpretable, model-agnostic, local and global explanations.

18.2 Accumulated Local Effects

18.2.1 Overview

Similar to Partial Dependence Plots (PDP), Accumulated Local Effects (ALE) is a model-agnostic global explanation
method that evaluates the relationship between feature values and target variables. However, in the event that features
are highly correlated, PDP may include unlikely combinations of feature values in the average prediction calculation
due to the independent manipulation of feature values across the marginal distribution. This lowers the trust in the PDP
explanation when features have strong correlation. Unlike PDP, ALE handles feature correlations by averaging and
accumulating the difference in predictions across the conditional distribution, which isolates the effects of the specific
feature. This comes at the cost of requiring a larger number of observations and a near uniform distribution of those
observations so that the conditional distribution can be reliably determined.

18.2.2 Description

ALE highlights the effects that specific features have on the predictions of a machine learning model by partially
isolating the effects of other features. Therefore, it tends to be robust against correlated features. The resulting ALE
explanation is centered around the mean effect of the feature, such that the main feature effect is compared relative to
the average prediction of the data.

Correlated features can negatively affect the quality of many explanation techniques. Specifically, many challenges
arise when the black-box model is used to make predictions on unlikely artificial data. That is data that that fall outside
of the expected data distribution but are used in an explanation because they are not independent and the technique
is not sensitive to this possibility. This can occur, for example, when the augmented data samples are not generated
according the feature correlations or the effects of other correlated features are included in the evaluation of the feature
of interest. Consequently, the resulting explanations may be misleading. In the context of PDP, the effect of a given
feature may be heavily biased by the interactions with other features.

To address the issues associated with correlated features, ALE:

• Uses the conditional distribution of the feature of interest to generate augmented data. This tends to create more
realistic data that using marginal distribution. This helps to ensure that evaluated feature values, e.g., xi, are
only compared with instances from the dataset that have similar values to xi.

• Calculates the average of the differences in model predictions over the augmented data, instead of the average of
the predictions themselves. This helps to isolate the effect of the feature of interest. For example, assuming we are
evaluating the effect of a feature at value xi, ALE computes the average of the difference in model predictions of
the values in the neighborhood of xi. That is, that observation within xi± that meet the conditional requirement.
This helps to reduce the effects of correlated features.

The following example demonstrates the challenges with accurately evaluating the effect of a feature on a model’s
predictions when features are highly correlated. Let us assume that features x1 and x2 are highly correlated. We can
artificially construct x2 by starting with x1 and adding a small amount of random noise. Further assume that the target
value is the product of these two features (e.g., y = x1 * x2). Since x1 and x2 are almost identical, the target value has
a quadratic relationship with them. A decision tree is trained on this dataset. Then different explanation techniques,
PDP (first column), ICE (second column), and ALE (third column), are used to evaluate the effect of the features on
the model predictions. Features x1 and x2 are evaluated in the first and second row, respectively. The following image
demonstrates that PDP is unable to accurately identify the expected relationship due to the assumption that the features
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are not correlated. An examination of the ICE plots revels the quadratic relationship between the features and the
target. However, the when taking as an aggregate, this effect disappears. In contrast, ALE is able to properly capture
the isolated effect of each feature, highlighting the quadratic relationship.

The following summarizes the steps in computing ALE explanation (note: MLX supports one-feature ALE):

• Start with a trained model.

• Select a feature to explain (for example, one of the important features identified in the global feature importance
explanations).

• Compute the intervals of the selected feature to define the upper and lower bounds used to compute the difference
in model predictions when the feature is increased or decreased.

– Numerical features: using the selected feature’s value distribution extracted from the train dataset, MLX
selects multiple different intervals from the feature’s distribution to evaluate (e.g., based on percentiles).
The number of intervals to use and the range of the feature’s distribution to consider are configurable.

– Categorical features: since ALE computes the difference in model predictions between an increase and
decrease in a feature’s value, features must have some notion of order. This can be challenging for cate-
gorical features, as there may not be a notion of order (e.g., eye color). To address this, MLX estimates
the order of categorical feature values based on a categorical feature encoding technique. MLX provides
multiple different encoding techniques based on the input data (e.g., distance_similarity: computes
a similarity matrix between all categorical feature values and the other feature values, and orders based on
similarity. Target-based approaches estimate the similarity/order based on the relationship of categorical
feature values with the target variable. The supported techniques include, target encoding, target, James-
Stein encoding, jamesstein, Generalized Linear Mixed Model encoding, glmm, M-estimate encoding,
mestimate, and Weight of Evidence encoding, woe. The categorical feature value order is then used to
compute the upper (larger categorical value) and lower (smaller categorical value) bounds for the selected
categorical feature.

• For each interval, MLX approximates the conditional distribution by identifying the samples that are in the
neighborhood of the sample of interest. It then calculates the difference in the model prediction when the selected
feature’s value of the samples is replaced by the upper and lower limits of the interval. If N different intervals are
selected from the feature’s distribution, this process results in 2N different augmented datasets It is 2N as each
selected feature of the sample are replaced with the upper and lower limits of the interval. The model inference
then generates 2N different model predictions, which are used to calculate the N differences.

• The prediction differences within each interval are averaged and accumulated in order, such that the ALE of a
feature value that lies in the k-th interval is the sum of the effects of the first through the k-th interval.
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• Finally, the accumulated feature effects at each interval is centered, such that the mean effect is zero.

18.2.3 Interpretation

• Continuous or discrete numerical features: Visualized as line graphs. Each line represents the change in the
model prediction when the selected feature has the given value compared to the average prediction. For example,
an ALE value of ±b at xj = k indicates that when the value of feature j is equal to k, the model prediction is
higher/lower by b compared to the average prediction. The x-axis shows the selected feature values and the
y-axis shows the delta in the target prediction variable relative to the average prediction (e.g., the prediction
probability for classification tasks and the raw predicted values for regression tasks).

• Categorical features: Visualized as vertical bar charts. Each bar represents the change in the model prediction
when the selected feature has the given value compared to the average prediction. The interpretation of the value
of the bar is similar to continuous features. The x-axis shows the different categorical values for the selected
feature and the y-axis shows the change in the predicted value relative to the average prediction. This would be
the prediction probability for classification tasks and the raw predicted values for regression tasks.

18.2.4 Limitations

There is an increased computational cost for performing an ALE analysis because of the large number of models that
need to be computed relative to PDP. On a small dataset, this is generally not an issue. However, on larger datasets it
can be. It is possible to parallelize the process and to also compute it in a distributed manner.

The main disadvantage comes from the problem of sparsity of data. There needs to be sufficient number of observa-
tions in each neighborhood that is used in order to make a reasonable estimation. Even with large dataset this can be
problematic if the data is not uniformly sampled, which is rarely the case. Also, with higher dimensionality the problem
is made increasingly more difficult because of this curse of dimensionality.

Depending on the class of model that is being use, it is common practice to remove highly correlated features. In
this cases there is some rational to using a PDP for interpretation. However, if there is correlation in the data and the
sampling of the data is suitable for an ALE analysis, it may be the preferred approach.

18.2.5 Examples

The following is a purposefully extreme, but realistic, example that demonstrates the effects of highly correlated features
on PDP and ALE explanations. The data set has three columns, x1, x2 and y.

• x1 is generated from a uniform distribution with a range of [-5, 5].

• x2 is x1 with some noise. x1 and x2 are highly correlated for illustration purposes.

• y is our target which is generated from an interaction term of x1 * x2 and x2.

This model is trained using a Sklearn RegressorMixin model and wrapped in an ADSModel object. Please note that the
ADS model explainers work with any model that is wrapped in an ADSModel object.

import numpy as np
import pandas as pd
from ads.dataset.factory import DatasetFactory
from ads.common.model import ADSModel
from sklearn.base import RegressorMixin

x1 = (np.random.rand(500) - 0.5) * 10
x2 = x1 + np.random.normal(loc=0, scale=0.5, size=500)

(continues on next page)
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(continued from previous page)

y = x1 * x2

correlated_df = pd.DataFrame(np.stack((x1, x2, y), axis=1), columns=['x1', 'x2', 'y'])
correlated_ds = DatasetFactory.open(correlated_df, target='y')

correlated_train, _ = correlated_ds.train_test_split(test_size=0)

class CorrelatedRegressor(RegressorMixin):
'''
implement the true model
'''
def fit(self, X=None, y=None):

self.y_bar_ = X.iloc[:, 0].to_numpy() * X.iloc[:, 1].to_numpy() + X.iloc[:, 1].
→˓to_numpy()

def predict(self, X=None):
return X.iloc[:, 0].to_numpy() * X.iloc[:, 1].to_numpy() + X.iloc[:, 1].to_

→˓numpy()

# train a RegressorMixin model
# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel
correlated_regressor = CorrelatedRegressor()
correlated_regressor.fit(correlated_train.X, correlated_train.y)

# Build ads models from ExtraTrees regressor
correlated_model = ADSModel.from_estimator(correlated_regressor, name="TrueModel")

# Create the ADS explainer object, which is used to construct
# global and local explanation objects. The ADSExplainer takes
# as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
correlated_explainer = ADSExplainer(correlated_train, correlated_model, training_
→˓data=correlated_train)

# With ADSExplainer, create a global explanation object using
# the MLXGlobalExplainer provider
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
correlated_global_explainer = correlated_explainer.global_
→˓explanation(provider=MLXGlobalExplainer())

# A summary of the global accumulated local effects explanation
# algorithm and how to interpret the output
correlated_global_explainer.accumulated_local_effects_summary()

# compute a PDP between x1 and the target, y
pdp_x1 = correlated_global_explainer.compute_partial_dependence("x1")
pdp_x1.show_in_notebook()
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The PDP plot shows a rug plot of the actual x1 values along the x-axis and the relationship between x1 and y appears
as a line. However, it is known that the true relationship is not linear. y is the product of x1 and x2. Since x2 nearly
identical to x1, effectively the relationship between x1 and y is quadratic. The high level of correlation between x1
and x2 violates one of the assumptions of the PDP. As demonstrated, the bias created by this correlation results in a
poor representation of the global relationship between x1 and y.

# Compute the ALE on x1
ale_x1 = correlated_global_explainer.compute_accumulated_local_effects("x1")
ale_x1.show_in_notebook()
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In comparison, the ALE plot does not have as strong a requirement that the features are uncorrelated. As such, there is
very little bias introduced when they are. The following ALE plot demonstrates that it is able to accurately represent
the relationship between x1 and y as being quadratic. This is due to the fact that ALE uses the conditional distribution
of these two features. This can be thought of as only using those instances where the values of x1 and x2 are close.

In general, ALE plots are unbiased with correlated features as they use conditional probabilities. The PDP method uses
the marginal probability and that can introduce a bias when there are highly correlated features. The advantage is that
when the data is not rich enough to adequately determine all of the conditional probabilities or when the features are
not highly correlated, it can be an effective method to assess the global impact of a feature in a model.

18.2.6 References

• Accumulated Local Effects (ALE) Plot

• Visualizing the effects of predictor variables in black box supervised learning models

18.3 Feature Dependence Explanations

18.3.1 Overview

Feature Dependence Explanations (PDP and ICE) are model-agnostic global explanation methods that evaluate the
relationship between feature values and model target predictions.
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18.3.2 Description

PDP and ICE highlight the marginal effect that specific features have on the predictions of a machine learning model.
These explanation methods visualize the effects that different feature values have on the model’s predictions.

These are the main steps in computing PDP or ICE explanations:

• Start with a trained machine learning model.

• Select a feature to explain (for example, one of the important features identified in the global feature permutation
importance explanations.)

• Using the selected feature’s value distribution extracted from the training dataset, ADS selects multiple different
values from the feature’s distribution to evaluate. The number of values to use and the range of the feature’s
distribution to consider are configurable.

• ADS replaces every sample in the provided dataset with the same feature value from the feature distribution
and computes the model inference on the augmented dataset. This process is repeated for all of the selected
values from the feature’s distribution. If N different values are selected from the feature’s distribution, this
process results in N different datasets. Each with the selected feature having the same value for all samples in the
corresponding dataset. The model inference then generates N different model predictions, each with M values
(one for each sample in the augmented dataset.)

• For ICE, the model predictions for each augmented sample in the provided dataset are considered separately
when the selected feature’s value is replaced with a value from the feature distribution. This results in N x M
different values.

• For PDP, the average model prediction is computed across all augmented dataset samples. This results in N
different values (each an average of M predictions).

The preceding is an example of one-feature PDP and ICE explanations. PDP also supports two-feature explanations
while ICE only supports one feature. The main steps of the algorithm are the same though the explanation is computed
on two features instead of one.

• Select two features to explain.

• ADS computes the cross-product of values selected from the feature distributions to generate a list of different
value combinations for the two selected features. For example, assuming we have selected N values from the
feature distribution for each feature:

[(𝑋1
1 , 𝑋1

2 ), (𝑋1
1 , 𝑋2

2 ), . . ., (𝑋1
1 , 𝑋𝑁−1

2 ), (𝑋1
1 , 𝑋𝑁

2 ), (𝑋2
1 , 𝑋1

2 ), (𝑋2
1 , 𝑋2

2 ), . . ., (𝑋𝑁
1 , 𝑋𝑁−1

2 ), (𝑋𝑁
1 , 𝑋𝑁

2 )]

• For each feature value combination, ADS replaces every sample in the provided set with these two feature values
and computes the model inference on the augmented dataset. There are M different samples in the provided
dataset and N different values for each selected feature. This results in 𝑁2 predictions from the model, each an
average of M predictions.

18.3.3 Interpretation

18.3.3.1 PDP

• One-feature

– Continuous or discrete numerical features: Visualized as line graphs, each line represents the average pre-
diction from the model (across all samples in the provided dataset) when the selected feature is replaced
with the given value. The x-axis shows the selected feature values and the y-axis shows the predicted target
(e.g., the prediction probability for classification tasks and the raw predicted values for regression tasks).

– Categorical features: Visualized as vertical bar charts. Each bar represents the average prediction from
the model (across all samples in the provided dataset) when the selected feature is replaced with the given
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value. The x-axis shows the different values for the selected feature and the y-axis shows the predicted
target (e.g., the prediction probability for classification tasks and the raw predicted values for regression
tasks).

• Two-feature

– Visualized as a heat map. The x and y-axis both show the selected feature values. The heat map color
represents the average prediction from the model (across all samples in the provided dataset) when the
selected features are replaced with the corresponding values.

18.3.3.2 ICE

• Continuous or discrete numerical features: Visualized as line graphs. While PDP shows the average prediction
across all samples in the provided dataset, ICE plots every sample from the provided dataset (when the selected
feature is replaced with the given value) separately. The x-axis shows the selected feature values and the y-axis
shows the predicted target (for example, the prediction probability for classification tasks and the raw predicted
values for regression tasks). The median value can be plotted to highlight the trend. The ICE plots can also
be centered around the first prediction from the feature distribution (for example, each prediction subtracts the
predicted value from the first sample).

• Categorical features: Visualized as violin plots. The x-axis shows the different values for the selected feature
and the y-axis shows the predicted target (for example, the prediction probability for classification tasks and the
raw predicted values for regression tasks).

Both PDP and ICE visualizations display the feature value distribution from the training dataset on the corresponding
axis. For example, the one-feature line graphs, bar charts, and violin plots show the feature value distribution on the
x-axis. The heat map shows the feature value distributions on the respective x-axis or y-axis.

18.3.4 Examples

The following example generates and visualizes global partial dependence plot (PDP) and Individual Conditional Ex-
pectation (ICE) explanations on the Titanic dataset. The model is constructed using the ADS OracleAutoMLProvider
(selected model: XGBClassifier), however, the ADS model explainers work with any model (classifier or regressor)
that is wrapped in an ADSModel object.

from ads.dataset.factory import DatasetFactory
from os import path
import requests

# Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):

# fetch sand save some data
print('fetching data from web...', end=" ")
# Data source: https://www.openml.org/d/40945
r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
with open(titanic_data_file, 'wb') as fd:

fd.write(r.content)
print("Done")

ds = DatasetFactory.open(
titanic_data_file, target="survived").set_positive_class(True)

ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
'body', 'home.dest'])

ds = ds[ds['age'] != '?'].astype({'age': 'float64'})
(continues on next page)
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(continued from previous page)

ds = ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

# Build the model using AutoML. 'model' is a subclass of type ADSModel.
# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel
import logging
from ads.automl.provider import OracleAutoMLProvider
from ads.automl.driver import AutoML
ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

# Create the ADS explainer object, which is used to construct
# global and local explanation objects. The ADSExplainer takes
# as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
explainer = ADSExplainer(test, model, training_data=train)

# With ADSExplainer, create a global explanation object using
# the MLXGlobalExplainer provider
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
global_explainer = explainer.global_explanation(

provider=MLXGlobalExplainer())

# A summary of the global partial feature dependence explanation
# algorithm and how to interpret the output can be displayed with
global_explainer.partial_dependence_summary()

# Compute the 1-feature PDP on the categorical feature, "sex",
# and numerical feature, "age"
pdp_sex = global_explainer.compute_partial_dependence("sex")
pdp_age = global_explainer.compute_partial_dependence(

"age", partial_range=(0, 1))

# ADS supports PDP visualizations for both 1-feature and 2-feature
# Feature Dependence explanations, and ICE visualizations for 1-feature
# Feature Dependence explanations (see "Interpretation" above)

# Visualize the categorical feature PDP for the True (Survived) label
pdp_sex.show_in_notebook(labels=True)
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# Visualize the numerical feature PDP for the True (Survived) label
pdp_age.show_in_notebook(labels=True)
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# Compute the 2-feature PDP on the categorical feature, "pclass", and
# numerical feature, "age"
pdp_pclass_age = global_explainer.compute_partial_dependence(

['pclass', 'age'], partial_range=(0, 1))
pdp_pclass_age.show_in_notebook(labels=True)

# Visualize the ICE plot for the categorical feature, "sex"
pdp_sex.show_in_notebook(mode='ice', labels=True)
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# Visualize the ICE plot for the numerical feature, "age", and center
# around the first prediction (smallest age)
pdp_age.show_in_notebook(mode='ice', labels=True, centered=True)
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# The raw explanation data used to generate the visualizations, as well
# as the runtime performance information can be extracted with
pdp_age.get_diagnostics()
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# The explanation can also be returned as Pandas.DataFrame with
pdp_age.as_dataframe()
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18.3.5 References

• Partial Dependence Plot

• Vanderbilt Biostatistics - titanic data

18.4 Feature Importance Explanations

18.4.1 Overview

Feature permutation importance is a model-agnostic global explanation method that provides insights into a machine
learning model’s behavior. It estimates and ranks feature importance based on the impact each feature has on the trained
machine learning model’s predictions.

18.4.2 Description

Feature permutation importance measures the predictive value of a feature for any black box estimator, classifier, or
regressor. It does this by evaluating how the prediction error increases when a feature is not available. Any scoring
metric can be used to measure the prediction error. For example, 𝐹1 for classification or R2 for regression. To avoid
actually removing features and retraining the estimator for each feature, the algorithm randomly shuffles the feature
values effectively adding noise to the feature. Then, the prediction error of the new dataset is compared with the
prediction error of the original dataset. If the model heavily relies on the column being shuffled to accurately predict
the target variable, this random re-ordering causes less accurate predictions. If the model does not rely on the feature
for its predictions, the prediction error remains unchanged.

The following summarizes the main steps in computing feature permutation importance explanations:

• Start with a trained machine learning model.

• Calculate the baseline prediction error on the given dataset. For example, train dataset or test dataset.

• For each feature:

1. Randomly shuffle the feature column in the given dataset.

2. Calculate the prediction error on the shuffled dataset.

3. Store the difference between the baseline score and the shuffled dataset score as the feature importance. For
example, baseline score - shuffled score.

• Repeat the preceding three steps multiple times then report the average. Averaging mitigates the effects of random
shuffling.

• Rank the features based on the average impact each feature has on the model’s score. Features that have a larger
impact on the score when shuffled are assigned higher importance than features with minimal impact on the
model’s score.

• In some cases, randomly permuting an unimportant feature can actually have a positive effect on the model’s
prediction so the feature’s contribution to the model’s predictions is effectively noise. In the feature permutation
importance visualizations, ADS caps any negative feature importance values at zero.

360 Chapter 18. Model Explainability

https://christophm.github.io/interpretable-ml-book/pdp.html
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html


ADS Documentation, Release 2.6.4

18.4.3 Interpretation

Feature permutation importance explanations generate an ordered list of features along with their importance values.
Interpreting the output of this algorithm is straightforward. Features located at higher ranks have more impact on the
model predictions. Features at lower ranks have less impact on the model predictions. Additionally, the importance
values represent the relative importance of features.

The output supports three types of visualizations. They are all based on the same data but present the data differently
for various use cases:

• Bar chart ('bar'): The bar chart shows the model’s view of the relative feature importance. The x-axis high-
lights feature importance. A longer bar indicates higher importance than a shorter bar. Each bar also shows the
average feature importance value along with the standard deviation of importance values across all iterations of
the algorithm (mean importance +/- standard deviation*). Negative importance values are capped at zero. The
y-axis shows the different features in the relative importance order. The top being the most important, and the
bottom being the least important.

• Box plot ('box_plot'): The detailed box plot shows the feature importance values across the iterations of
the algorithm. These values are used to compute the average feature importance and the corresponding standard
deviations shown in the bar chart. The x-axis shows the impact that permuting a given feature had on the model’s
prediction score. The y-axis shows the different features in the relative importance order. The top being the most
important, and the bottom being the least important. The minimum, first quartile, median, third quartile, and a
maximum of the feature importance values across different iterations of the algorithm are shown by each box.

• Detailed scatter plot ('detailed'): The detailed bar chart shows the feature importance values for each iter-
ation of the algorithm. These values are used to compute the average feature importance values and the corre-
sponding standard deviations shown in the bar chart. The x-axis shows the impact that permuting a given feature
had on the model’s prediction score. The y-axis shows the different features in the relative importance order.
The top being the most important, and the bottom being the least important. The color of each dot in the graph
indicates the quality of the permutation for this iteration, which is computed by measuring the correlation of
the permuted feature column relative to the original feature colum. For example, how different is the permuted
feature column versus the original feature column.

18.4.4 Examples

This example generates and visualizes a global feature permutation importance explanation on the Titanic dataset. The
model is constructed using the ADS OracleAutoMLProvider. However, the ADS model explainers work with any
model (classifier or regressor) that is wrapped in an ADSModel object.

import logging
import requests

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.dataset.factory import DatasetFactory
from os import path

# Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):

# fetch sand save some data
print('fetching data from web...', end=" ")
# Data source: https://www.openml.org/d/40945
r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')

(continues on next page)
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with open(titanic_data_file, 'wb') as fd:
fd.write(r.content)

print("Done")
ds = DatasetFactory.open(

titanic_data_file, target="survived").set_positive_class(True)
ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',

'body', 'home.dest'])
ds = ds[ds['age'] != '?'].astype({'age': 'float64'})
ds = ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

# Build the model using AutoML. 'model' is a subclass of type ADSModel.
# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel
ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

# Create the ADS explainer object, which is used to construct global
# and local explanation objects. The ADSExplainer takes as input the
# model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
explainer = ADSExplainer(test, model, training_data=train)

# With ADSExplainer, create a global explanation object using
# the MLXGlobalExplainer provider
from ads.explanations.mlx_global_explainer import MLXGlobalExplainer
global_explainer = explainer.global_explanation(

provider=MLXGlobalExplainer())

# A summary of the global feature permutation importance algorithm and
# how to interpret the output can be displayed with
global_explainer.feature_importance_summary()

# Compute the global Feature Permutation Importance explanation
importances = global_explainer.compute_feature_importance()

# ADS supports multiple visualizations for the global Feature
# Permutation Importance explanations (see "Interpretation" above)

# Simple bar chart highlighting the average impact on model score
# across multiple iterations of the algorithm
importances.show_in_notebook()
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# Box plot highlighting the mean, median, quartiles, and min/max
# impact on model score across multiple iterations of the algorithm
importances.show_in_notebook('box_plot')

# Detailed scatter plot highlighting the individual impacts on
# model score across multiple iterations of the algorithm
importances.show_in_notebook('detailed')
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# The raw explanaiton data used to generate the visualizations, as well
# as the runtime performance information can be extracted with
importances.get_diagnostics()
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18.4.5 References

• Feature importance

• Perutation importance

• Vanderbilt Biostatistics - titanic data
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18.5 Enhanced LIME

18.5.1 Overview

Local explanations target specific predictions from the machine learning model. The goal is to understand why the
model made a particular prediction.

There are multiple different forms of local explanations, such as feature attribution explanations and exemplar-based
explanations. ADS supports local feature attribution explanations. They help to identify the most important features
leading towards a given prediction.

While a given feature might be important for the model in general, the values in a particular sample may cause certain
features to have a larger impact on the model’s predictions than others. Furthermore, given the feature values in a
specific sample, local explanations can also estimate the contribution that each feature had towards or against a target
prediction. For example, does the current value of the feature have a positive or negative effect on the prediction
probability of the target class? Does the feature increase or decrease the predicted regression target value?

The Enhanced Local Interpretable Model-Agnostic Explanation (LIME) is a model-agnostic local explanation method.
It provides insights into why a machine learning model made a specific prediction.

18.5.2 Description

ADS provides an enhanced version of Local Interpretable Model-Agnostic Explanations (LIME), which improves on
the explanation quality, performance, and interpretability. The key idea behind LIME is that while the global behavior
of a machine learning model might be very complex, the local behavior may be much simpler. In ADS, local refers to
the behavior of the model on similar samples. LIME tries to approximate the local behavior of the complex machine
learning model through the use of a simple, inherently interpretable surrogate model. For example, a linear model. If
the surrogate model is able to accurately approximate the complex model’s local behavior, ADS can generate a local
explanation of the complex model from the interpretable surrogate model. For example, when data is centered and
scaled the magnitude and sign of the coefficients in a linear model indicate the contribution each feature has towards
the target variable.

The predictions from complex machine learning models are challenging to explain and are generally considered as a
black box. As such, ADS refers to the model to be explained as the black box model. ADS supports classification and
regression models on tabular or text-based datasets (containing a single text-based feature).

The main steps in computing a local explanation for tabular datasets are:

• Start with a trained machine learning model (the black box model).

• Select a specific sample to explain (xexp).

• Randomly generate a large sample space in a nearby neighborhood around xexp. The sample space is generated
based on the feature distributions from the training dataset. Each sample is then weighted based on its distance
from xexp to give higher weight to samples that are closer to xexp. ADS provides several enhancements, over the
standard algorithm, to improve the quality and locality of the sample generation and weighting methods.

• Using the black box model, generate a prediction for each of the randomly generated local samples. For classifi-
cation tasks, compute the prediction probabilities using predict_proba(). For regression tasks, compute the
predicted regression value using predict().

• Fit a linear surrogate model on the predicted values from the black box model on the local generated sample space.
If the surrogate model is able to accurately match the output of the black box model (referred to as surrogate model
fidelity), the surrogate model can act as a proxy for explaining the local behavior of the black box model. For
classification tasks, the surrogate model is a linear regression model fit on the prediction probabilities of the
black box model. Consequently, for multinomial classification tasks, a separate surrogate model is required to
explain each class. In that case, the explanation indicates if a feature contributes towards the specified class or

366 Chapter 18. Model Explainability



ADS Documentation, Release 2.6.4

against the specified class (for example, towards one of the other N classes). For regression tasks, the surrogate
model is a linear regression model fit on the predicted regression values from the black box model.

• There are two available techniques for fitting the surrogate model:

– Use the features directly:

The raw (normalized) feature values are used to fit the linear surrogate model directly. This results in
a normal linear model. A positive coefficient indicates that when the feature value increases, the target
variable increases. A negative coefficient indicates that when a feature value increases, the target variable
decreases. Categorical features are converted to binary values. A value of 1 indicates that the feature in
the generated sample has the same value as xexp and a value of 0 indicates that the feature in the generated
sample has a different value than xexp.

– Translate the features to an interpretable feature space:

Continuous features are converted to categorical features by discretizing the feature values (for example,
quartiles, deciles, and entropy-based). Then, all features are converted to binary values. A value of 1 indi-
cates that the feature in the generated sample has the same value as xexp (for example, the same categorical
value or the continuous feature falls in the same bin) and a value of 0 indicates that the feature in the gen-
erated sample has a different value than xexp (for example, a different categorical value or the continuous
feature falls in a different bin). The interpretation of the linear model here is a bit different from the regres-
sion model. A positive coefficient indicates that when a feature has the same value as xexp (for example, the
same category), the feature increased the prediction output from the black box model. Similarly, negative
coefficients indicate that when a feature has the same value as xexp, the feature decreased the prediction
output from the black box model. This does not say what happens when the feature is in a different cate-
gory than xexp. It only provides information when the specific feature has the same value as xexp and if it
positively or negatively impacts the black box model’s prediction.

• The explanation is an ordered list of feature importances extracted from the coefficients of the linear surrogate
model. The magnitude of the coefficients indicates the relative feature importance and the sign indicates whether
the feature has a positive or negative impact on the black box model’s prediction.

• The algorithm is similar to text-based datasets. The main difference is in the random local sample space genera-
tion. Instead of randomly generating samples based on the feature distributions, a large number of local samples
are generated by randomly removing subsets of words from the text sample. Each of the randomly generated
samples is converted to a binary vector-based on the existence of a word. For example, the original sample to
explain, xexp, contains 1s for every word. If the randomly generated sample has the same word as xexp, it is a
value of 1. If the word has been removed in the randomly generated sample, it is a value of 0. In this case, the
linear surrogate model evaluates the behavior of the model when the word is there or not.

Additionally, an upper bound can be set on the number of features to include in the explanation (for example, explain
the top-N most important features). If the specified number of features is less than the total number of features, a simple
feature selection method is applied prior to fitting the linear surrogate model. The black box model is still evaluated on
all features, but the surrogate model is only fits on the subset of features.

18.5.3 Interpretation

ADS provides multiple enhancements to the local visualizations from LIME. The explanation is presented as a grid con-
taining information about the black box model, information about the local explainer, and the actual local explanation.
Each row in the grid is described as:

• Model (first row)

– The left column presents information about the black box model and the model’s prediction. For example,
the type of the black box model, the true label/value for the selected sample to explain, the predicted value
from the black box model, and the prediction probabilities (classification) or prediction values (regression).
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– The right column displays the sample to explain. For tabular datasets, this is a table showing the feature
names and corresponding values for this sample. For text datasets, this shows the text sample to explain.

• Explainer (second row)

– The left column presents the explainer configuration parameters, such as the underlying local explanation
algorithm used (for example, LIME), the type of surrogate model (for example, linear), the number of
randomly generated local samples (for example, 5000) to train the local surrogate model (𝑁𝑡), whether
continuous features were discretized or not.

– The right column provides a legend describing how to interpret the model explanations.

• Explanations (remaining rows)

– For classification tasks, a local explanation can be generated for each of the target labels (since the surrogate
model is fit to the prediction probabilities from the black box model). For binary classification, the expla-
nation for one class will mirror the other. For multinomial classification, the explanations describe how
each feature contributes towards or against the specified target class. If the feature contributes against the
specified target class (for example, decreases the prediction probability), it increases the prediction proba-
bility of one or more other target classes. The explanation for each target class is shown as a separate row
in the Explanation section.

– The Feature Importances section presents the actual local explanation. The explanation is visualized as a
horizontal bar chart of feature importance values, ordered by relative feature importance. Features with
larger bars (top) are more important than features with shorter bars (bottom). Positive feature importance
values (to the right) indicate that the feature increases the prediction target value. Negative feature im-
portance values (to the left) indicate that the feature decreases the prediction target value. Depending on
whether continuous features are discretized or not changes the interpretation of this value (for example,
whether the specific feature value indicates a positive/negative attribution, or whether an increase/decrease
in the feature value indicates a positive/negative attribution). If the features are discretized, the correspond-
ing range is included. The feature importance value is shown beside each bar. This can either be the raw
coefficient taken from the linear surrogate model or can be normalized such that all importance values sum
to one. For text datasets, the explanation is visualized as a word cloud. Important words that have a large
positive contribution towards a given prediction (for example, increase the prediction value) are shown
larger than unimportant words that have a less positive impact on the target prediction.

• The Explanation Quality section presents information about the quality of the explanation. It is further broken
down into two sections:

– Sample Distance Distributions

This section presents the sample distributions used to train (𝑁𝑡) and evaluate (𝑁𝑣# ) the local surrogate
model based on the distances (Euclidean) of the generated samples from the sample to explain. This high-
lights the locality of generated sample spaces where the surrogate model (explainer) is trained and evaluated.
The distance distribution from the sample to explain for the actual dataset used to train the black box model,
Train, is also shown. This highlights the locality of 𝑁𝑡 relative to the entire train dataset. For the generated
evaluation sample spaces (𝑁𝑣# ), the sample space is generated based on a percentile value of the distances
in Train relative to the sample to explain. For example, 𝑁𝑣4 is generated with the maximum distance being
limited to the 4th percentile of the distances in train from the sample to explain.

– Evaluation Metrics

This section presents the fidelity of the surrogate model relative to the black box model on the randomly
generated sample spaces used to fit and evaluate the surrogate model. In other words, this section evaluates
how accurately the surrogate model approximates the local behavior of the complex black box model. Mul-
tiple different regression and classification metrics are supported. For classification tasks, ADS supports
both regression and classification metrics. Regression metrics are computed on the raw prediction prob-
abilities between the surrogate model and the black box model. For classification metrics, the prediction
probabilities are converted to the corresponding target labels and are compared between the surrogate model
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and the black box model. Explanations for regression tasks only support regression metrics. Supported re-
gression metrics: MSE, RMSE (default), R2, MAPE, SMAPE, Two-Sample Kolmogorov-Smirnov Test,
Pearson Correlation (default), and Spearman Correlation. Supported classification metrics: 𝐹1, Accuracy,
Recall, and ROC_AUC.

– Performance

Explanation time in seconds.

18.5.4 Example

This example generates and visualizes local explanations on the Titanic dataset. The model is constructed using the
ADS OracleAutoMLProvider. However, the ADS model explainers work with any model (classifier or regressor)
that is wrapped in an ADSModel object.

import logging
import requests

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.dataset.factory import DatasetFactory
from os import path

# Prepare and load the dataset
titanic_data_file = '/tmp/titanic.csv'
if not path.exists(titanic_data_file):

# fetch sand save some data
print('fetching data from web...', end=" ")
# Data source: https://www.openml.org/d/40945
r = requests.get('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
with open(titanic_data_file, 'wb') as fd:

fd.write(r.content)
print("Done")

ds = DatasetFactory.open(
titanic_data_file, target="survived").set_positive_class(True)

ds = ds.drop_columns(['name', 'ticket', 'cabin', 'boat',
'body', 'home.dest'])

ds = ds[ds['age'] != '?'].astype({'age': 'float64'})
ds = ds[ds['fare'] != '?'].astype({'fare': 'float64'})
train, test = ds.train_test_split(test_size=0.2)

# Build the model using AutoML. 'model' is a subclass of type ADSModel.
# Note that the ADSExplainer below works with any model (classifier or
# regressor) that is wrapped in an ADSModel
ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train()

# Create the ADS explainer object, which is used to construct
# global and local explanation objects. The ADSExplainer takes
# as input the model to explain and the train/test dataset
from ads.explanations.explainer import ADSExplainer
explainer = ADSExplainer(test, model, training_data=train)

(continues on next page)
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(continued from previous page)

# With ADSExplainer, create a local explanation object using
# the MLXLocalExplainer provider
from ads.explanations.mlx_local_explainer import MLXLocalExplainer
local_explainer = explainer.local_explanation(

provider=MLXLocalExplainer())

# A summary of the local explanation algorithm and how to interpret
# the output can be displayed with
local_explainer.summary()

# Select a specific sample (instance/row) to generate a local
# explanation for
sample = 13

# Compute the local explanation on our sample from the test set
explanation = local_explainer.explain(test.X.iloc[sample:sample+1],

test.y.iloc[sample:sample+1])

# Visualize the explanation for the label True (Survived). See
# the "Interpretation" section above for more information
explanation.show_in_notebook(labels=True)
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# The raw explanaiton data used to generate the visualizations, as well
# as the runtime performance information can be extracted with
explanation.get_diagnostics()

372 Chapter 18. Model Explainability



ADS Documentation, Release 2.6.4

18.5. Enhanced LIME 373



ADS Documentation, Release 2.6.4

18.5.5 References

• LIME

• Vanderbilt Biostatistics - titanic data

• Why Should I Trust You? Explaining the Predictions of Any Classifier

18.6 WhatIf Explainer

18.6.1 Description

The WhatIf explainer tool helps to understand how changes in an observation affect a model’s prediction. Use it to
explore a model’s behavior on a single observation or the entire dataset by asking “what if” questions.

The WhatIf explainer has the following methods:

• explore_predictions: Explore the relationship between feature values and the model predictions.

• explore_sample: Modify the values in an observation and see how the prediction changes.

18.6.2 Example

In this example, a WhatIf explainer is created, and then the explore_predictions(), and explore_sample()
methods are demonstrated. A tree-based model is used to make predictions on the Boston housing dataset.

from ads.common.model import ADSModel
from ads.dataset.dataset_browser import DatasetBrowser
from ads.dataset.label_encoder import DataFrameLabelEncoder
from ads.explanations.explainer import ADSExplainer
from ads.explanations.mlx_whatif_explainer import MLXWhatIfExplainer
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import LabelEncoder
import logging
import warnings

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)
warnings.filterwarnings('ignore')

ds = DatasetBrowser.sklearn().open("boston").set_target("target")
train, test = ds.train_test_split(test_size=0.2)

X_boston = train.X.copy()
y_boston = train.y.copy()

le = DataFrameLabelEncoder()
X_boston = le.fit_transform(X_boston)

# Model Training
ensemble_regressor = ExtraTreesRegressor(n_estimators=245, random_state=42)
ensemble_regressor.fit(X_boston, y_boston)
model = ADSModel.from_estimator(make_pipeline(le, ensemble_regressor), name=

(continues on next page)
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→˓"ExtraTreesRegressor")

# Build a WhatIf Explainer
explainer = ADSExplainer(test, model, training_data=train)
whatif_explainer = explainer.whatif_explanation(provider=MLXWhatIfExplainer())

The Sample Explorer method, explore_sample(), opens a GUI that has a single observation. The values of that
sample can then be changed. By clicking Run Inference, the model computes the prediction with the updated feature
values. The interface shows the original values and the values that have been changed.

example_sample() accepts the row_idx parameter that specifies the index of the observation that is to be evaluated.
The default is zero (0). The features parameter lists the feature names that are shown in the interface. By default,
it displays all features. For datasets with a large number of features, this can be cumbersome so the max_features
parameter can be used to display only the first n features.

The following command opens the Sample Explorer. Change the values then click Run Inference to see how the
prediction changes.

whatif_explainer.explore_sample()
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The Predictions Explorer method, explore_predictions(), allows the exploration of model predictions across either
the marginal distribution (1-feature) or the joint distribution (2-features).

The method explore_predictions() has several optional parameters including:

• discretization: (str, optional) Discretization method applies the x-axis if the feature x is continuous. The
valid options are ‘quartile’, ‘decile’, or ‘percentile’. The default is None.

• label: (str or int, optional) Target label or target class name to explore only for classification problems. The
default is None.

• plot_type: (str, optional) Type of plot. For classification problems the valid options are ‘scatter’, ‘box’, or ‘bar’.
For a regression problem, the valid options are ‘scatter’ or ‘box’. The default is ‘scatter’.

• x: (str, optional) Feature column on x-axis. The default is None.

• y: (str, optional) Feature column or model prediction column on the y-axis, by default it is the target.

When only x is set, the chart shows the relationship between the features x and the target y.

whatif_explainer.explore_predictions(x='AGE')
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If features are specified for both x and y, the plot uses color to indicate the value of the target.

whatif_explainer.explore_predictions(x='AGE', y='CRIM')

whatif_explainer.explore_predictions(x='RAD', plot_type='box', discretization='decile')
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NINETEEN

MODEL SERIALIZATION

New in version 2.5.9.

19.1 Overview

Training a great model can take a lot of work. Getting that model into production should be quick and easy. ADS has
a set of classes that take your model and push it to production with a few quick steps.

The first step is to create a model serialization object. This object wraps your model and has a number of methods to
assist in deploying it. There are different model classes for different model classes. For example, if you have a PyTorch
model you would use the PyTorchModel class. If you have a TensorFlow model you would use the TensorFlowModel
class. ADS has model serialization for many different model classes. However, it is not feasible to have a model
serialization class for all model types. Therefore, the GenericModel can be used for any class that has a .predict()
method.

After creating the model serialization object, the next step is to use the .prepare() method to create the model
artifacts. The score.py file is created and it is customized to your model class. You may still need to modify it for
your specific use case but this is generally not required. The .prepare() method also can be used to store metadata
about the model, code used to create the model, input and output schema, and much more.

If you make changes to the score.py file, call the .verify() method to confirm that the load_model() and
predict() functions in this file are working. This speeds up your debugging as you do not need to deploy a model to
test it.

The .save() method is then used to store the model in the model catalog. A call to the .deploy() method creates a
load balancer and the instances needed to have an HTTPS access point to perform inference on the model. Using the
.predict() method, you can send data to the model deployment endpoint and it will return the predictions.
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19.2 Quick Start

19.2.1 Deployment Examples

The following sections provide sample code to create and deploy a model.

19.2.1.1 AutoMLModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import logging
import tempfile
import warnings
from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.dataset.dataset_browser import DatasetBrowser
from ads.model.framework.automl_model import AutoMLModel

ds = DatasetBrowser.sklearn().open("wine").set_target("target")
train, test = ds.train_test_split(test_size=0.1, random_state = 42)

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train(

model_list=['LogisticRegression', 'DecisionTreeClassifier'],
random_state = 42,
time_budget = 500

)

artifact_dir = tempfile.mkdtemp()
automl_model = AutoMLModel(estimator=model, artifact_dir=artifact_dir)
automl_model.prepare(inference_conda_env="generalml_p37_cpu_v1",

training_conda_env="generalml_p37_cpu_v1",
use_case_type=UseCaseType.BINARY_CLASSIFICATION,
X_sample=test.X,
force_overwrite=True)

automl_model.verify(test.X.iloc[:10])
model_id = automl_model.save(display_name='Demo AutoMLModel model')
deploy = automl_model.deploy(display_name='Demo AutoMLModel deployment')
automl_model.predict(test.X.iloc[:10])
automl_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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19.2.1.2 GenericModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.generic_model import GenericModel

class Toy:
def predict(self, x):

return x ** 2
estimator = Toy()

model = GenericModel(estimator=estimator, artifact_dir=tempfile.mkdtemp())
model.summary_status()
model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
model.verify(2)
model_id = model.save()
model.deploy()
model.predict(2)
model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

19.2.1.3 LightGBMModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import lightgbm as lgb
import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.framework.lightgbm_model import LightGBMModel
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
train = lgb.Dataset(X_train, label=y_train)
param = {
'objective': 'multiclass', 'num_class': 3,

}
lightgbm_estimator = lgb.train(param, train)
lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_dir=tempfile.
→˓mkdtemp())
lightgbm_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
lightgbm_model.verify(X_test)
model_id = lightgbm_model.save()
model_deployment = lightgbm_model.deploy()

(continues on next page)
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lightgbm_model.predict(X_test)
lightgbm_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

19.2.1.4 PyTorchModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile
import torch
import torchvision
from ads.catalog.model import ModelCatalog
from ads.model.framework.pytorch_model import PyTorchModel

torch_estimator = torchvision.models.resnet18(pretrained=True)
torch_estimator.eval()

# create fake test data
test_data = torch.randn(1, 3, 224, 224)

artifact_dir = tempfile.mkdtemp()
torch_model = PyTorchModel(torch_estimator, artifact_dir=artifact_dir)
torch_model.prepare(inference_conda_env="generalml_p37_cpu_v1")

# Update ``score.py`` by constructing the model class instance first.
added_line = """
import torchvision
the_model = torchvision.models.resnet18()
"""
with open(artifact_dir + "/score.py", 'r+') as f:

content = f.read()
f.seek(0, 0)
f.write(added_line.rstrip('\r\n') + '\n' + content)

# continue to save and deploy the model.
torch_model.verify(test_data)
model_id = torch_model.save()
model_deployment = torch_model.deploy()
torch_model.predict(test_data)
torch_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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19.2.1.5 SklearnModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.framework.sklearn_model import SklearnModel
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
sklearn_estimator = LogisticRegression()
sklearn_estimator.fit(X_train, y_train)

sklearn_model = SklearnModel(estimator=sklearn_estimator, artifact_dir=tempfile.
→˓mkdtemp())
sklearn_model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
sklearn_model.verify(X_test)
model_id = sklearn_model.save()
model_deployment = sklearn_model.deploy()
sklearn_model.predict(X_test)
sklearn_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

19.2.1.6 TensorFlowModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

from ads.catalog.model import ModelCatalog
from ads.model.framework.tensorflow_model import TensorFlowModel
import tempfile
import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

tf_estimator = tf.keras.models.Sequential(
[

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),

]
)

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
(continues on next page)
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tf_estimator.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
tf_estimator.fit(x_train, y_train, epochs=1)

tf_model = TensorFlowModel(tf_estimator, artifact_dir=tempfile.mkdtemp())
tf_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
tf_model.verify(x_test[:1])
model_id = tf_model.save()
model_deployment = tf_model.deploy()
tf_model.predict(x_test[:1])
tf_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

19.2.1.7 XGBoostModel

Create a model, prepare it, verify that it works, save it to the model catalog, deploy it, make a prediction, and then
delete the deployment.

import tempfile
import xgboost as xgb
from ads.catalog.model import ModelCatalog
from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
xgboost_estimator = xgb.XGBClassifier()
xgboost_estimator.fit(X_train, y_train)
xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tempfile.
→˓mkdtemp())
xgboost_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
xgboost_model.verify(X_test)
model_id = xgboost_model.save()
model_deployment = xgboost_model.deploy()
xgboost_model.predict(X_test)
xgboost_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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19.2.2 Shortcut

New in version 2.6.3.

Create a model and call the prepare_save_deploymethod to prepare, save, and deploy in one step, make a prediction,
and then delete the deployment.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.generic_model import GenericModel

class Toy:
def predict(self, x):

return x ** 2
estimator = Toy()

model = GenericModel(estimator=estimator)
model.summary_status()
# If you are running the code inside a notebook session and using a service pack,␣
→˓`inference_conda_env` can be omitted.
model.prepare_save_deploy(inference_conda_env="dataexpl_p37_cpu_v3")
model.verify(2)
model.predict(2)
model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model.model_id)

19.2.3 Logging

Model deployments have the option to log access and prediction traffic. The access log, logs requests to the model
deployment endpoint. The prediction logs record the predictions that the model endpoint makes. Logs must belong to
a log group.

The following example uses the OCILogGroup class to create a log group and two logs (access and predict). When a
model is deployed, the OCIDs of these resources are passed to the .deploy() method.

You can access logs through APIs, the oci CLI, or the Console. The following example uses the ADS .show_logs()
method, to access the predict and access log objects in the model_deployment module.

import tempfile
from ads.common.oci_logging import OCILogGroup
from ads.model.generic_model import GenericModel

# Create a log group and logs
log_group = OCILogGroup(display_name="Model Deployment Log Group").create()
access_log = log_group.create_log("Model Deployment Access Log")
predict_log = log_group.create_log("Model Deployment Predict Log")

# Create a generic model that will be deployed
class Toy:

def predict(self, x):
return x ** 2

model = Toy()
(continues on next page)
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# Deploy the model
model = GenericModel(estimator=model, artifact_dir=tempfile.mkdtemp())
model.summary_status()
model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
model.verify(2)
model.save()
model.deploy(

deployment_log_group_id=log_group.id,
deployment_access_log_id=access_log.id,
deployment_predict_log_id=predict_log.id,

)

# Make a prediction and view the logs
model.predict(2)
model.model_deployment.show_logs(log_type="predict")
model.model_deployment.show_logs(log_type="access")
model.model_deployment.access_log.tail()
model.model_deployment.predict_log.tail()

19.3 AutoMLModel

19.3.1 Overview

The AutoMLModel class in ADS is designed to rapidly get your AutoML model into production. The .prepare()
method creates the model artifacts needed to deploy the model without you having to configure it or write code. The
.prepare() method serializes the model and generates a runtime.yaml and a score.py file that you can later
customize.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

The following steps take your trained AutoML model and deploy it into production with a few lines of code.

Creating an Oracle Labs AutoML Model

Create an OracleAutoMLProvider object and use it to define how an Oracle Labs AutoML model is trained.

import logging
from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.dataset.dataset_browser import DatasetBrowser

ds = DatasetBrowser.sklearn().open("wine").set_target("target")
train, test = ds.train_test_split(test_size=0.1, random_state = 42)

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train(

(continues on next page)
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model_list=['LogisticRegression', 'DecisionTreeClassifier'],
random_state = 42, time_budget = 500)

19.3.2 Initialize

Instantiate an AutoMLModel() object with an AutoML model. Each instance accepts the following parameters:

• artifact_dir: str: Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.

• estimator: (Callable): Trained AutoML model.

• properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required
to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):

• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):

• training_resource_id (str):

• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
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properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.

19.3.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),
deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.

19.3.4 Model Deployment

19.3.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files that are used to run the
model once it is deployed. These include:

• input_schema.json: A JSON file that defines the nature of the feature data. It includes information about the
features. This includes metadata such as the data type, name, constraints, summary statistics, and feature type.

• model.pkl: The default file name of the serialized model. You can change the file name with the
model_file_name attribute. By default, the model is stored in a pickle file. To save your file in an ONNX
format, use the as_onnx parameter.

• output_schema.json: A JSON file that defines the dependent variable. This file includes metadata for the
dependent variable, such as the data type, name, constraints, summary statistics, and feature type.

• runtime.yaml: This file contains information needed to set up the runtime environment on the deployment
server. It includes information about the conda environment used to train the model, the environment for deploy-
ing the model, and the Python version to use.

• score.py: This script contains the load_model() and predict() functions. The load_model() function
understands the format of the saved model and loads it into memory. The predict() function makes inferences
for the deployed model. You can add hooks to perform operations before and after the inference. You can also
modify this script with your specifics.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing
model provenance information.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using
the following parameters:

• as_onnx (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes (bool): Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env (str, optional): Defaults to None. Can be either slug or the Object Storage path of the
conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.
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• inference_python_version (str, optional): Defaults to None. The version of Python to use in the model
deployment.

• max_col_num (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate
the input schema if the input data has more than this number of features.

• model_file_name (str): Name of the serialized model.

• namespace (str, optional): Namespace of the OCI region. This is used for identifying which region the ser-
vice environment is from when you provide a slug to the inference_conda_env or training_conda_env
parameters.

• training_conda_env (str, optional): Defaults to None. Can be either slug or object storage path of the conda
environment that was used to train the model. You can only pass in a slug if the conda environment is a Data
Science service environment.

• training_id (str, optional): Defaults to value from environment variables. The training OCID for the model.
Can be a notebook session or job OCID.

• training_python_version (str, optional): Defaults to None. The version of Python used to train the model.

• training_script_path (str): Defaults to None. The training script path.

• use_case_type (str): The use case type of the model. Use it with the UserCaseType class or the string
provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of the input
data. It is used to generate the input schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of output data.
It is used to generate the output schema.

• **kwarg:

– impute_values (dict, optional): The dictionary where the key is the column index (or names is
accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

New in version 2.6.3.

If you run the code using a service conda pack in a notebook session, you do not need to pass inference_conda_env.
The .prepare() method automatically tries to detect the conda environment.

19.3.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data (Union[dict, str]): The data is used to test if deployment works in the local environment.
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19.3.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().

19.3.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.
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• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.

– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.

19.3.4.5 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Any: JSON serializable data to used for making inferences.

The .predict() and .verify() methods take the same data formats. You must ensure that the data passed into and
returned by the predict() function in the score.py file is JSON serializable.

19.3.5 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.3.5.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.
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• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_file_name (str): The serialized model file name.

• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.framework.automl_model import AutoMLModel

model = AutoMLModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.pkl",
artifact_dir="/folder_store_artifact"

)

19.3.5.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.automl_model import AutoMLModel

model = AutoMLModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.pkl",
artifact_dir="/folder_store_artifact")
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19.3.5.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import AutoMLModel

model = AutoMLModel.from_model_deployment(
model_deployment_id="<model_deployment_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.3.6 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.
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19.3.7 Example

import logging
import tempfile

from ads.automl.driver import AutoML
from ads.automl.provider import OracleAutoMLProvider
from ads.common.model_metadata import UseCaseType
from ads.dataset.dataset_browser import DatasetBrowser
from ads.model.framework.automl_model import AutoMLModel
from ads.catalog.model import ModelCatalog

ds = DatasetBrowser.sklearn().open("wine").set_target("target")
train, test = ds.train_test_split(test_size=0.1, random_state = 42)

ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
oracle_automl = AutoML(train, provider=ml_engine)
model, baseline = oracle_automl.train(

model_list=['LogisticRegression', 'DecisionTreeClassifier'],
random_state = 42,
time_budget = 500

)

artifact_dir = tempfile.mkdtemp()
automl_model = AutoMLModel(estimator=model, artifact_dir=artifact_dir)
automl_model.prepare(

inference_conda_env="generalml_p37_cpu_v1",
training_conda_env="generalml_p37_cpu_v1",
use_case_type=UseCaseType.BINARY_CLASSIFICATION,
X_sample=test.X,
force_overwrite=True,
training_id=None

)
automl_model.verify(test.X.iloc[:10])
model_id = automl_model.save(display_name='Demo AutoMLModel model')
deploy = automl_model.deploy(display_name='Demo AutoMLModel deployment')
automl_model.predict(test.X.iloc[:10])
automl_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

19.4 GenericModel

19.4.1 Overview

The GenericModel class in ADS provides an efficient way to serialize almost any model class. This section demon-
strates how to use the GenericModel class to prepare model artifacts, verify models, save models to the model catalog,
deploy models, and perform predictions on model deployment endpoints.

The GenericModel class works with any unsupported model framework that has a .predict() method. For the
most common model classes such as scikit-learn, XGBoost, LightGBM, TensorFlow, and PyTorch, and AutoML, we
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recommend that you use the ADS provided, framework-specific serializations models. For example, for a scikit-learn
model, use SKLearnmodel. For other models, use the GenericModel class.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

These simple steps take your trained model and will deploy it into production with just a few lines of code.

19.4.2 Initialize

Instantiate a GenericModel() object by giving it any model object. It accepts the following parameters:

• artifact_dir: str: Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.

• estimator: (Callable): Trained model.

• properties: (ModelProperties, optional): Defaults to None. ModelProperties object required to save
and deploy the model.

• serialize: (bool, optional): Defaults to True. If True the model will be serialized into a pickle file. If
False, you must set the model_file_name in the .prepare() method, serialize the model manually, and save
it in the artifact_dir. You will also need to update the score.py file to work with this model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):

• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):

• training_resource_id (str):
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• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.

19.4.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),
deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.
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19.4.4 Model Deployment

19.4.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model
after it is deployed. These files include:

• input_schema.json: A JSON file that defines the nature of the feature data. It includes information about the
features. This includes metadata such as the data type, name, constraints, summary statistics, feature type, and
more.

• model.pkl: This is the default filename of the serialized model. It can be changed with the model_file_name
attribute. By default, the model is stored in a pickle file. The parameter as_onnx can be used to save it in the
ONNX format.

• output_schema.json: A JSON file that defines the nature of the dependent variable. This includes metadata
such as the data type, name, constraints, summary statistics, feature type, and more.

• runtime.yaml: This file contains information that is needed to set up the runtime environment on the de-
ployment server. It has information about which conda environment was used to train the model, and what
environment should be used to deploy the model. The file also specifies what version of Python should be used.

• score.py: This script contains the load_model() and predict() functions. The load_model() function
understands the format the model file was saved in and loads it into memory. The predict() function is used
to make inferences in a deployed model. There are also hooks that allow you to perform operations before and
after inference. You are able to modify this script to fit your specific needs.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing
model provenance information.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using
the following parameters:

• as_onnx (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes (bool): Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env (str, optional): Defaults to None. Can be either slug or the Object Storage path of the
conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

• inference_python_version (str, optional): Defaults to None. The version of Python to use in the model
deployment.

• max_col_num (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate
the input schema if the input data has more than this number of features.

• model_file_name (str): Name of the serialized model.

• namespace (str, optional): Namespace of the OCI region. This is used for identifying which region the ser-
vice environment is from when you provide a slug to the inference_conda_env or training_conda_env
parameters.

• training_conda_env (str, optional): Defaults to None. Can be either slug or object storage path of the conda
environment that was used to train the model. You can only pass in a slug if the conda environment is a Data
Science service environment.

• training_id (str, optional): Defaults to value from environment variables. The training OCID for the model.
Can be a notebook session or job OCID.

• training_python_version (str, optional): Defaults to None. The version of Python used to train the model.
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• training_script_path (str): Defaults to None. The training script path.

• use_case_type (str): The use case type of the model. Use it with the UserCaseType class or the string
provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of the input
data. It is used to generate the input schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of output data.
It is used to generate the output schema.

• **kwarg:

– impute_values (dict, optional): The dictionary where the key is the column index (or names is
accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

New in version 2.6.3.

If you run the code using a service conda pack in a notebook session, you do not need to pass inference_conda_env.
The .prepare() method automatically tries to detect the conda environment.

19.4.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data (Union[dict, str, tuple, list, bytes]). The data is used to test if the deployment works in the
local environment.

In GenericModel, data serialization is not supported. You can implement data serialization and deserialization in the
score.py file.

19.4.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.
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• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().

19.4.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.

• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.
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– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.

19.4.4.5 Prepare, Save and Deploy Shortcut

New in version 2.6.3.

The .prepare_save_deploy() method is a shortcut for the functions .prepare(), .save(), and .deploy(). This
method returns a ModelDeployment object and is available for all frameworks. The method takes the following pa-
rameters:

• inference_conda_env: (str, optional). Defaults to None.
Can either be a slug or an object storage path for the conda pack. You can only pass in slugs if the conda
pack is a service pack.

• inference_python_version: (str, optional). Defaults to None.
The Python version to use in the deployment.

• training_conda_env: (str, optional). Defaults to None.
Can either be a slug or an object storage path for the conda pack. You can only pass in slugs if the conda
pack is a service pack.

• training_python_version: (str, optional). Defaults to None.
Python version to use for training.

• model_file_name: (str).
Name of the serialized model.

• as_onnx: (bool, optional). Defaults to False.
Whether to serialize as ONNX model.

• initial_types: (list[Tuple], optional).
Defaults to None. Only used for SklearnModel, LightGBMModel and XGBoostModel. Each element is a
tuple of a variable name and a type. Check this link http://onnx.ai/sklearn-onnx/api_summary.html#id2>
for explanations and examples for initial_types.

• force_overwrite: (bool, optional). Defaults to False.
Whether to overwrite existing files.

• namespace: (str, optional).
Namespace of region. Use this parameter to identify the service pack region when you pass a slug to
inference_conda_env and training_conda_env.

• use_case_type: str
The use case type of the model. Assign a value using the``UseCaseType`` class or provide a
string in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type=”binary_classification”. Check the UseCaseType class to see supported types.

• X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.
A sample of input data used to generate input schema.

• y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]. Defaults to None.
A sample of output data used to generate output schema.

• training_script_path: str. Defaults to None.
Training script path.

• training_id: (str, optional). Defaults to value from environment variables.
The training OCID for model. Can be notebook session or job OCID.
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• ignore_pending_changes: bool. Defaults to False.
Whether to ignore pending changes in git.

• max_col_num: (int, optional). Defaults to utils.DATA_SCHEMA_MAX_COL_NUM.
Do not generate the input schema if the input has more than this number of features(columns).

• model_display_name: (str, optional). Defaults to None.
The name of the model.

• model_description: (str, optional). Defaults to None.
The description of the model.

• model_freeform_tags
[Dict(str, str), Defaults to None.] Freeform tags for the model.

• model_defined_tags
[(Dict(str, dict(str, object)), optional). Defaults to None.] Defined tags for the model.

• ignore_introspection: (bool, optional). Defaults to None.
Determine whether to ignore the result of model introspection or not. If set to True, the save will ignore all
model introspection errors.

• wait_for_completion
[(bool, optional). Defaults to True.] Determine whether to wait for deployment to complete before pro-
ceeding.

• display_name: (str, optional). Defaults to None.
The name of the model.

• description: (str, optional). Defaults to None.
The description of the model.

• deployment_instance_shape: (str, optional). Default to VM.Standard2.1.
The shape of the instance used for deployment.

• deployment_instance_count: (int, optional). Defaults to 1.
The number of instances used for deployment.

• deployment_bandwidth_mbps: (int, optional). Defaults to 10.
The bandwidth limit on the load balancer in Mbps.

• deployment_log_group_id: (str, optional). Defaults to None.
The oci logging group id. The access log and predict log share the same log group.

• deployment_access_log_id: (str, optional). Defaults to None.
The access log OCID for the access logs. https://docs.oracle.com/iaas/data-
science/using/model_dep_using_logging.htm>

• deployment_predict_log_id: (str, optional). Defaults to None.
The predict log OCID for the predict logs. https://docs.oracle.com/iaas/data-
science/using/model_dep_using_logging.htm>

• kwargs:

– impute_values: (dict, optional).
The dictionary where the key is the column index (or names is accepted for pandas dataframe) and
the value is the impute value for the corresponding column.

– project_id: (str, optional).
Project OCID. If not specified, gets the value either from the environment variables or model
properties.
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– compartment_id
[(str, optional).] Compartment OCID. If not specified, gets the value either from the environment
variables or model properties.

– timeout: (int, optional). Defaults to 10 seconds.
The connection timeout in seconds for the client.

– max_wait_time
[(int, optional). Defaults to 1200 seconds.] Maximum amount of time to wait in seconds. Negative
values imply infinite wait time.

– poll_interval
[(int, optional). Defaults to 60 seconds.] Poll interval in seconds.

19.4.4.6 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Union[dict, str, tuple, list]: JSON serializable data used for making inferences.

The .predict() and .verify() methods take the same data formats.

19.4.5 score.py

In the prepare step, the service automatically generates a score.py file in the artifact directory.

The score.py consists of a bunch of functions among which the load_model and predict are most important.

19.4.5.1 load_model

During deployment, the load_model method loads the serialized model. The load_model method is always fully
populated, except when you set serialize=False for GenericModel.

• For the GenericModel class, if you choose serialize=True in the init function, the model is pickled and the
score.py is fully auto-populated to support loading the pickled model.

Otherwise, the user is responsible to fill the load_model.

• For other frameworks, this part is fully populated.

19.4.5.2 predict

The predict method is triggered every time a payload is sent to the model deployment endpoint. The method takes
the payload and the loaded model as inputs. Based on the payload, the method returns the predicted results output by
the model.
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19.4.5.3 pre_inference

If the payload passed to the endpoint needs preprocessing, this function does the preprocessing step. The user is fully
responsible for the preprocessing step.

19.4.5.4 post_inference

If the predicted result from the model needs some postprocessing, the user can put the logic in this function.

19.4.5.5 deserialize

When you use the .verify() or .predict()methods from model classes such as GenericModel or SklearnModel,
if the data passed in is not in bytes or JsonSerializable, the models try to serialize the data. For example, if a pandas
dataframe is passed and not accepted by the deployment endpoint, the pandas dataframe is converted to JSON inter-
nally. When the X_sample variable is passed into the .prepare() function, the data type of pandas dataframe is
passed to the endpoint, and the schema of the dataframe is recorded in the input_schema.json file. Then, the JSON
payload is sent to the endpoint. Because the model expects to take a pandas dataframe, the .deserialize() method
converts the JSON back to the pandas dataframe using the schema and the data type. For all frameworks except for the
GenericModel class, the .deserialize() method is auto-populated. Note that for each framework, only specific
data types are supported.

Starting from .. versionadded:: 2.6.3, you can send the bytes to the endpoint directly. If the bytes payload is sent to
the endpoint, bytes are passed directly to the model. If the model expects a specific data format, you need to write the
conversion logic yourself.

19.4.5.6 fetch_data_type_from_schema

This function is used to load the schema from the input_schema.json when needed.

19.4.6 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.4.6.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_file_name (str): The serialized model file name.
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• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.generic_model import GenericModel

model = GenericModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.pkl",
artifact_dir="/folder_store_artifact"

)

19.4.6.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import GenericModel

model = GenericModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())
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19.4.6.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import GenericModel

model = GenericModel.from_model_deployment(
model_deployment_id="<model_deployment_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.4.7 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.
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19.4.8 Example

By default, the GenericModel serializes to a pickle file. The following example, the user creates a model. In the
prepare step, the user saves the model as a pickle file with the name toy_model.pkl. Then the user verifies the model,
saves it to the model catalog, deploys the model and makes a prediction. Finally, the user deletes the model deployment
and then deletes the model.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.generic_model import GenericModel

class Toy:
def predict(self, x):

return x ** 2
model = Toy()

generic_model = GenericModel(estimator=model, artifact_dir=tempfile.mkdtemp())
generic_model.summary_status()
generic_model.prepare(

inference_conda_env="dataexpl_p37_cpu_v3",
model_file_name="toy_model.pkl",
force_overwrite=True

)
generic_model.verify(2)
model_id = generic_model.save()
generic_model.deploy()
generic_model.predict(2)
generic_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

You can also use the shortcut .prepare_save_deploy() instead of calling .prepare(), .save() and .deploy()
seperately.

import tempfile
from ads.catalog.model import ModelCatalog
from ads.model.generic_model import GenericModel

class Toy:
def predict(self, x):

return x ** 2
estimator = Toy()

model = GenericModel(estimator=estimator)
model.summary_status()
# If you are running the code inside a notebook session and using a service pack,␣
→˓`inference_conda_env` can be omitted.
model.prepare_save_deploy(inference_conda_env="dataexpl_p37_cpu_v3")
model.verify(2)
model.predict(2)
model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model.model_id)
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19.5 LightGBMModel

19.5.1 Overview

The LightGBMModel class in ADS is designed to allow you to rapidly get a LightGBM model into production. The
.prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to
configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

The following steps take your trained LightGBM model and deploy it into production with a few lines of code.

The LightGBMModel module in ADS supports serialization for models generated from both the Training API using
lightgbm.train() and the Scikit-Learn API using lightgbm.LGBMClassifier(). Both of these interfaces are
defined by LightGBM.

The Training API in LightGBM contains training and cross-validation routines. The Dataset class is an internal data
structure that is used by LightGBM when using the lightgbm.train() method. You can also create LightGBM
models using the Scikit-Learn Wrapper interface. The LightGBMModel class handles the differences between the
LightGBM Training and SciKit-Learn APIs seamlessly.

Create Training API and Scikit-Learn Wrapper LightGBM Models

In the following several code snippets you will prepare the data and train LightGBM models. In the first snippet, the
data will be prepared. This will involved loading a dataset, splitting it into dependent and independent variables and into
test and training sets. The data will be encoded and a preprocessing pipeline will be defined. In the second snippet, the
LightGBM Training API will be used to train the model. In the third and final code snippet, the Scikit-Learn Wrapper
interface is used to create another LightGBM model.

import lightgbm as lgb
import pandas as pd
import os

from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_
→˓attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

# Extract numerical columns and categorical columns
(continues on next page)
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categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():

if col.dtypes == "object":
categorical_cols.append(col.name)

else:
numerical_cols.append(col.name)

categorical_transformer = Pipeline(
steps=[('encoder', OrdinalEncoder())]

)

# Build a pipeline
preprocessor = ColumnTransformer(

transformers=[('cat', categorical_transformer, categorical_cols)]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)

X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

Create a LightGBM model using the Training API.

dtrain = lgb.Dataset(X_train_transformed, label=y_train_transformed)
dtest = lgb.Dataset(X_test_transformed, label=y_test_transformed)

model_train = lgb.train(
params={'num_leaves': 31, 'objective': 'binary', 'metric': 'auc'},
train_set=dtrain, num_boost_round=10)

Create a LightGBM model using the Scikit-Learn Wrapper interface.

model = lgb.LGBMClassifier(
n_estimators=100, learning_rate=0.01, random_state=42

)
model.fit(

X_train_transformed,
y_train_transformed,

)

19.5.2 Initialize

Instantiate a LightGBMModel() object with a LightGBM model. Each instance accepts the following parameters:

• artifact_dir: str: Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.
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• estimator: (Callable): Trained LightGBM model using the Training API or the Scikit-Learn Wrapper
interface.

• properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required
to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):

• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):

• training_resource_id (str):

• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.

19.5.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),

19.5. LightGBMModel 409



ADS Documentation, Release 2.6.4

deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.

19.5.4 Model Deployment

19.5.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model
after it is deployed. These files include:

• input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes
metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• model.joblib: This is the default filename of the serialized model for Training API. For sklearn API, the
default file name is model.joblib. You can change it with the model_file_name attribute. By default, the
model is stored in a joblib.txt file. You can use the as_onnx parameter to save in the file in ONNX format, and
the model name defaults to model.onnx.

• output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It
includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• runtime.yaml: This file contains information that is needed to set up the runtime environment on the deploy-
ment server. It has information about what conda environment was used to train the model and what environment
to use to deploy the model. The file also specifies what version of Python should be used.

• score.py: This script contains the load_model() and predict() functions. The load_model() function
understands the format the model file was saved in and loads it into memory. The .predict() method is used
to make inferences in a deployed model. There are also hooks that allow you to perform operations before and
after inference. You can modify this script to fit your specific needs.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing
model provenance information.

To serialize the model to ONNX format, set the as_onnx parameter to True. You can provide the initial_types
parameter, which is a Python list describing the variable names and types. Alternatively, the system tries to infer
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this information from the data in the X_sample parameter. X_sample only supports List, Numpy array, or Pandas
dataframe. Dataset class isn’t supported because this format can’t convert into JSON serializable format, see the
ONNX documentation.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using
the following parameters:

• as_onnx (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes (bool): Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env (str, optional): Defaults to None. Can be either slug or the Object Storage path of the
conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

• inference_python_version (str, optional): Defaults to None. The version of Python to use in the model
deployment.

• max_col_num (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate
the input schema if the input data has more than this number of features.

• model_file_name (str): Name of the serialized model.

• namespace (str, optional): Namespace of the OCI region. This is used for identifying which region the ser-
vice environment is from when you provide a slug to the inference_conda_env or training_conda_env
parameters.

• training_conda_env (str, optional): Defaults to None. Can be either slug or object storage path of the conda
environment that was used to train the model. You can only pass in a slug if the conda environment is a Data
Science service environment.

• training_id (str, optional): Defaults to value from environment variables. The training OCID for the model.
Can be a notebook session or job OCID.

• training_python_version (str, optional): Defaults to None. The version of Python used to train the model.

• training_script_path (str): Defaults to None. The training script path.

• use_case_type (str): The use case type of the model. Use it with the UserCaseType class or the string
provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of the input
data. It is used to generate the input schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of output data.
It is used to generate the output schema.

• **kwarg:

– impute_values (dict, optional): The dictionary where the key is the column index (or names is
accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

New in version 2.6.3.

If you run the code using a service conda pack in a notebook session, you do not need to pass inference_conda_env.
The .prepare() method automatically tries to detect the conda environment.

When using the Scikit-Learn Wrapper interface, the .prepare() method accepts any parameters that skl2onnx.
convert_sklearn accepts. When using the Training API, the .prepare() method accepts any parameters that
onnxmltools.convert_lightgbm accepts.
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19.5.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data: Any: Data used to test if deployment works in local environment.

19.5.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().
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19.5.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.

• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.

– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.

19.5.4.5 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Any: Data used for making inferences.

The .predict() and .verify() methods take the same data format.
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19.5.5 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.5.5.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_file_name (str): The serialized model file name.

• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.framework.lightgbm_model import LightGBMModel

model = LightGBMModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.joblib",
artifact_dir="/folder_store_artifact"

)

19.5.5.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.
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• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.lightgbm_model import LightGBMModel

model = LightGBMModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.joblib",
artifact_dir=tempfile.mkdtemp())

19.5.5.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import LightGBMModel

model = LightGBMModel.from_model_deployment(
model_deployment_id="<model_deployment_id>",

(continues on next page)
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model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.5.6 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.

19.5.7 Example

import lightgbm as lgb
import pandas as pd
import os
import tempfile

from ads.catalog.model import ModelCatalog
from ads.model.framework.lightgbm_model import LightGBMModel
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

# Load data
df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_
→˓attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

# Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():

if col.dtypes == "object":
categorical_cols.append(col.name)

else:
(continues on next page)
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numerical_cols.append(col.name)

categorical_transformer = Pipeline(
steps=[

('encoder', OrdinalEncoder())
]

)

# Build a pipeline
preprocessor = ColumnTransformer(

transformers=[
('cat', categorical_transformer, categorical_cols)

]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)
X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

# LightGBM Scikit-Learn API
model = lgb.LGBMClassifier(

n_estimators=100, learning_rate=0.01, random_state=42
)
model.fit(

X_train_transformed,
y_train_transformed,

)

# Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
lightgbm_model = LightGBMModel(estimator=model, artifact_dir=artifact_dir)
lightgbm_model.prepare(

inference_conda_env="generalml_p37_cpu_v1",
training_conda_env="generalml_p37_cpu_v1",
X_sample=X_train_transformed[:10],
as_onnx=False,
force_overwrite=True,

)
lightgbm_model.verify(X_test_transformed[:10])['prediction']
model_id = lightgbm_model.save()
lightgbm_model.deploy()
lightgbm_model.predict(X_test_transformed[:10])['prediction']
lightgbm_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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19.6 PyTorchModel

19.6.1 Overview

The PyTorchModel class in ADS is designed to allow you to rapidly get a PyTorch model into production. The .
prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to
configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

The following steps take your trained PyTorch model and deploy it into production with a few lines of code.

Create a PyTorch Model

Load a ResNet18 model and put it into evaluation mode.

import torch
import torchvision

model = torchvision.models.resnet18(pretrained=True)
model.eval()

19.6.2 Initialize

Instantiate a PyTorchModel() object with a PyTorch model. Each instance accepts the following parameters:

• artifact_dir: str. Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.

• estimator: Callable. Any model object generated by the PyTorch framework.

• properties: (ModelProperties, optional). Defaults to None. The ModelProperties object required
to save and deploy model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):
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• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):

• training_resource_id (str):

• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.

19.6.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),
deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.

19.6.4 Model Deployment

19.6.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model
after it is deployed. These files include:

• input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes
metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• model.pt: This is the default filename of the serialized model. It can be changed with the model_file_name
attribute. By default, the model is stored in a PyTorch file. The parameter as_onnx can be used to save it in the
ONNX format.

• output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It
includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.
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• runtime.yaml: This file contains information that is needed to set up the runtime environment on the de-
ployment server. It has information about which conda environment was used to train the model, and what
environment should be used to deploy the model. The file also specifies what version of Python should be used.

• score.py: This script contains the load_model() and predict() functions. The load_model function un-
derstands the format the model file was saved in, and loads it into memory. The .predict() method is used to
make inferences in a deployed model. There are also hooks that allow you to perform operations before and after
inference. You are able to modify this script to fit your specific needs.

To create the model artifacts, use the .prepare() method. The .prepare() method includes parameters for storing
model provenance information. The PyTorch framework serialization only saves the model parameters. Thus, you must
update the score.py file to construct the model class instance first before loading model parameters in the predict()
function of score.py.

The .prepare() method prepares and saves the score.py file, serializes the model and runtime.yaml file using
the following parameters:

• as_onnx: (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite: (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes: bool: Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env: (str, optional): Defaults to None. Can be either slug or the Object Storage
path of the conda environment. You can only pass in slugs if the conda environment is a Data Science service
environment.

• inference_python_version: (str, optional): Defaults to None. The version of Python to use in the
model deployment.

• max_col_num: (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically
generate the input schema if the input data has more than this number of features.

• model_file_name: (str): Name of the serialized model.

• namespace: (str, optional): Namespace of the OCI region. This is used for identifying which region the
service environment is from when you provide a slug to the inference_conda_env or training_conda_env
paramaters.
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• training_conda_env: (str, optional): Defaults to None. Can be either slug or object storage path of the
conda environment that was used to train the model. You can only pass in a slug if the conda environment is a
Data Science service environment.

• training_id: (str, optional): Defaults to value from environment variables. The training OCID for the
model. Can be a notebook session or job OCID.

• training_python_version: (str, optional): Defaults to None. The version of Python used to train the
model.

• training_script_path: str: Defaults to None. The training script path.

• use_case_type: str: The use case type of the model. Use it with the UserCaseType class or the
string provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION
or use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A
sample of the input data. It is used to generate the input schema.

• y_sample: Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]: Defaults to None. A
sample of output data. It is used to generate the output schema.

• **kwargs:

– dynamic_axes: (dict, optional): Defaults to None. Optional in ONNX serialization. Specify
axes of tensors as dynamic (i.e. known only at run-time).

– input_names: (List[str], optional): Defaults to ["input"]. Optional in an ONNX serial-
ization. It is an ordered list of names to assign to the input nodes of the graph.

– onnx_args: (tuple or torch.Tensor, optional): Required when as_onnx=True in an
ONNX serialization. Contains model inputs such that onnx_model(onnx_args) is a valid invocation
of the model.

– output_names: (List[str], optional): Defaults to ["output"]. Optional in an ONNX seri-
alization. It is an ordered list of names to assign to the output nodes of the graph.

19.6.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data: Any: Data expected by the predict API in the score.py file. For the PyTorch serialization method, data
can be in type dict, str, list, np.ndarray, or torch.tensor. For the ONNX serialization method, data has to be
JSON serializable or np.ndarray.
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19.6.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().

19.6.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.
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• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.

– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.

19.6.4.5 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Any: Data expected by the predict API in the score.py file. For the PyTorch serialization method, data
can be in type dict, str, list, np.ndarray, or torch.tensor. For the ONNX serialization method, data has to be
JSON serializable or np.ndarray.

19.6.5 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.6.5.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.
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• model_file_name (str): The serialized model file name.

• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.framework.pytorch_model import PyTorchModel

model = PyTorchModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.pt",
artifact_dir="/folder_store_artifact"

)

19.6.5.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.pytorch_model import PyTorchModel

model = PyTorchModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.pt",
artifact_dir=tempfile.mkdtemp())
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19.6.5.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import PyTorchModel

model = PyTorchModel.from_model_deployment(
model_deployment_id="<model_deployment_id>"",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.6.6 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.
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19.6.7 Example

import tempfile
import torchvision
from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.pytorch_model import PyTorchModel

# Load the PyTorch Model
model = torchvision.models.resnet18(pretrained=True)
model.eval()

# Prepare the model
artifact_dir = tempfile.mkdtemp()
pytorch_model = PyTorchModel(model, artifact_dir=artifact_dir)
pytorch_model.prepare(

inference_conda_env="generalml_p37_cpu_v1",
training_conda_env="generalml_p37_cpu_v1",
use_case_type=UseCaseType.IMAGE_CLASSIFICATION,
as_onnx=False,
force_overwrite=True,

)

# Update ``score.py`` by constructing the model class instance first.
added_line = """
import torchvision
the_model = torchvision.models.resnet18()
"""
with open(artifact_dir + "/score.py", 'r+') as f:

content = f.read()
f.seek(0, 0)
f.write(added_line.rstrip('\r\n') + '\n' + content)

# test_data will need to be defined based on the image requirements of ResNet18

# Deploy the model, test it and clean up.
pytorch_model.verify(test_data)
model_id = pytorch_model.save()
pytorch_model.deploy()
pytorch_model.predict(test_data)
pytorch_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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19.7 SklearnModel

19.7.1 Overview

The SklearnModel class in ADS is designed to allow you to rapidly get a Scikit-learn model into production. The
.prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to
configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

The following steps take your trained scikit-learn model and deploy it into production with a few lines of code.

Create a Scikit-learn Model

import pandas as pd
import os

from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import OrdinalEncoder, LabelEncoder
from sklearn.model_selection import train_test_split

ds_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_
→˓attrition.csv")
df = pd.read_csv(ds_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

# Data Preprocessing
for i, col in X.iteritems():

col.replace("unknown", "", inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# Label encode the y values
le = LabelEncoder()
y_train = le.fit_transform(y_train)
y_test = le.transform(y_test)

# Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():

if col.dtypes == "object":
categorical_cols.append(col.name)

else:
numerical_cols.append(col.name)

categorical_transformer = Pipeline(steps=[
('encoder', OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-999))

])
(continues on next page)
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(continued from previous page)

preprocessor = ColumnTransformer(
transformers=[('cat', categorical_transformer, categorical_cols)]

)

ml_model = RandomForestClassifier(n_estimators=100, random_state=0)
model = Pipeline(

steps=[('preprocessor', preprocessor),
('model', ml_model)

])

model.fit(X_train, y_train)

19.7.2 Initialize

Instantiate a SklearnModel() object with an Scikit-learn model. Each instance accepts the following parameters:

• artifact_dir: str: Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.

• estimator: (Callable): Trained Scikit-learn model or Scikit-learn pipeline.

• properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required
to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):

• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):
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• training_resource_id (str):

• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.

19.7.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),
deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.
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19.7.4 Model Deployment

19.7.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model
after it is deployed. These files include:

• input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes
metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• model.joblib: This is the default filename of the serialized model. It can be changed with the
model_file_name attribute. By default, the model is stored in a joblib file. The parameter as_onnx can be
used to save it in the ONNX format.

• output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It
includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• runtime.yaml: This file contains information that is needed to set up the runtime environment on the de-
ployment server. It has information about which conda environment was used to train the model, and what
environment should be used to deploy the model. The file also specifies what version of Python should be used.

• score.py: This script contains the load_model() and predict() functions. The load_model() function
understands the format the model file was saved in and loads it into memory. The .predict() method is used
to make inferences in a deployed model. There are also hooks that allow you to perform operations before and
after inference. You can modify this script to fit your specific needs.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using
the following parameters:

• as_onnx (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes (bool): Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env (str, optional): Defaults to None. Can be either slug or the Object Storage path of the
conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

• inference_python_version (str, optional): Defaults to None. The version of Python to use in the model
deployment.

• max_col_num (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate
the input schema if the input data has more than this number of features.

• model_file_name (str): Name of the serialized model.

• namespace (str, optional): Namespace of the OCI region. This is used for identifying which region the ser-
vice environment is from when you provide a slug to the inference_conda_env or training_conda_env
parameters.

• training_conda_env (str, optional): Defaults to None. Can be either slug or object storage path of the conda
environment that was used to train the model. You can only pass in a slug if the conda environment is a Data
Science service environment.

• training_id (str, optional): Defaults to value from environment variables. The training OCID for the model.
Can be a notebook session or job OCID.

• training_python_version (str, optional): Defaults to None. The version of Python used to train the model.

• training_script_path (str): Defaults to None. The training script path.
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• use_case_type (str): The use case type of the model. Use it with the UserCaseType class or the string
provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of the input
data. It is used to generate the input schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of output data.
It is used to generate the output schema.

• **kwarg:

– impute_values (dict, optional): The dictionary where the key is the column index (or names is
accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

New in version 2.6.3.

If you run the code using a service conda pack in a notebook session, you do not need to pass inference_conda_env.
The .prepare() method automatically tries to detect the conda environment.

19.7.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data: Any: Data used to test if deployment works in local environment.

In SklearnModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dictionary,
string, list, np.ndarray, pd.core.series.Series, and pd.core.frame.DataFrame. Not all these objects are
JSON serializable, however, support to automatically serializes and deserialized is provided.

19.7.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.
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• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().

19.7.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.

• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.

432 Chapter 19. Model Serialization

https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm
https://docs.oracle.com/en-us/iaas/data-science/using/model_dep_using_logging.htm


ADS Documentation, Release 2.6.4

– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.

19.7.4.5 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Any: JSON serializable data used for making inferences.

In SklearnModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dictionary,
string, list, np.ndarray, pd.core.series.Series, and pd.core.frame.DataFrame. Not all these objects are
JSON serializable, however, support to automatically serializes and deserialized is provided.

19.7.5 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.7.5.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_file_name (str): The serialized model file name.

• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.framework.sklearn_model import SklearnModel

model = SklearnModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.joblib",
artifact_dir="/folder_store_artifact"

)
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19.7.5.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.sklearn_model import SklearnModel

model = SklearnModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.7.5.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.
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• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import SklearnModel

model = SklearnModel.from_model_deployment(
model_deployment_id="<model_deployment_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.7.6 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.

19.7.7 Examples

import pandas as pd
import os
import tempfile

from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.sklearn_model import SklearnModel
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import OrdinalEncoder, LabelEncoder
from sklearn.model_selection import train_test_split

ds_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_
→˓attrition.csv")
df = pd.read_csv(ds_path)

(continues on next page)
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(continued from previous page)

y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

# Data Preprocessing
for i, col in X.iteritems():

col.replace("unknown", "", inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

# Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():

if col.dtypes == "object":
categorical_cols.append(col.name)

else:
numerical_cols.append(col.name)

categorical_transformer = Pipeline(steps=[
('encoder', OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-999))

])
preprocessor = ColumnTransformer(

transformers=[
('cat', categorical_transformer, categorical_cols)

])

ml_model = RandomForestClassifier(n_estimators=100, random_state=0)
model = Pipeline(

steps=[('preprocessor', preprocessor),
('model', ml_model)

])

model.fit(X_train, y_train_transformed)

# Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
sklearn_model = SklearnModel(estimator=model, artifact_dir= artifact_dir)
sklearn_model.prepare(

inference_conda_env="generalml_p37_cpu_v1",
training_conda_env="generalml_p37_cpu_v1",
use_case_type=UseCaseType.BINARY_CLASSIFICATION,
as_onnx=False,
X_sample=X_test,
y_sample=y_test_transformed,
force_overwrite=True,

)
sklearn_model.verify(X_test.head(2))
model_id = sklearn_model.save()

(continues on next page)
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sklearn_model.deploy()
sklearn_model.predict(X_test.head(2))
sklearn_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)

19.8 TensorFlowModel

19.8.1 Overview

The TensorFlowModel class in ADS is designed to allow you to rapidly get a TensorFlow model into production. The
.prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to
configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

The following steps take your trained TensorFlow model and deploy it into production with a few lines of code.

Create a TensorFlow Model

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential(
[

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),

])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=1)

19.8.2 Initialize

Instantiate a TensorFlowModel() object with a TensorFlow model. Each instance accepts the following parameters:

• artifact_dir: str: Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.

• estimator: Callable: Any model object generated by the TensorFlow framework.
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• properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required
to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):

• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):

• training_resource_id (str):

• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.

19.8.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),
deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.
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19.8.4 Model Deployment

19.8.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model
after it is deployed. These files include:

• input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes
metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• model.h5: This is the default filename of the serialized model. You can change it with the model_file_name
attribute. By default, the model is stored in an h5 file. You can use the as_onnx parameter to save it in the
ONNX format.

• output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It
includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• runtime.yaml: This file contains information that is needed to set up the runtime environment on the de-
ployment server. It has information about which conda environment was used to train the model, and what
environment should be used to deploy the model. The file also specifies what version of Python should be used.

• score.py: This script contains the load_model() and predict() functions. The load_model() function
understands the format the model file was saved in, and loads it into memory. The .predict() method is used
to make inferences in a deployed model. There are also hooks that allow you to perform operations before and
after inference. You are able to modify this script to fit your specific needs.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using
the following parameters:

• as_onnx (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes (bool): Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env (str, optional): Defaults to None. Can be either slug or the Object Storage path of the
conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.
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• inference_python_version (str, optional): Defaults to None. The version of Python to use in the model
deployment.

• max_col_num (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate
the input schema if the input data has more than this number of features.

• model_file_name (str): Name of the serialized model.

• namespace (str, optional): Namespace of the OCI region. This is used for identifying which region the ser-
vice environment is from when you provide a slug to the inference_conda_env or training_conda_env
parameters.

• training_conda_env (str, optional): Defaults to None. Can be either slug or object storage path of the conda
environment that was used to train the model. You can only pass in a slug if the conda environment is a Data
Science service environment.

• training_id (str, optional): Defaults to value from environment variables. The training OCID for the model.
Can be a notebook session or job OCID.

• training_python_version (str, optional): Defaults to None. The version of Python used to train the model.

• training_script_path (str): Defaults to None. The training script path.

• use_case_type (str): The use case type of the model. Use it with the UserCaseType class or the string
provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of the input
data. It is used to generate the input schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of output data.
It is used to generate the output schema.

• **kwarg:

– impute_values (dict, optional): The dictionary where the key is the column index (or names is
accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.

New in version 2.6.3.

If you run the code using a service conda pack in a notebook session, you do not need to pass inference_conda_env.
The .prepare() method automatically tries to detect the conda environment.

19.8.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data: Any: Data used to test if deployment works in local environment.

In TensorFlowModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dic-
tionary, string, list, np.ndarray, and tf.python.framework.ops.EagerTensor. Not all these objects are JSON
serializable, however, support to automatically serializes and deserialized is provided.
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19.8.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().

19.8.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.
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• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.

– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.

19.8.4.5 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Any: JSON serializable data used for making inferences.

In TensorFlowModel, data serialization is supported for JSON serializable objects. Plus, there is support for a dic-
tionary, string, list, np.ndarray, and tf.python.framework.ops.EagerTensor. Not all these objects are JSON
serializable, however, support to automatically serializes and deserialized is provided.

19.8.5 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.8.5.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.
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• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_file_name (str): The serialized model file name.

• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.framework.tensorflow_model import TensorFlowModel

model = TensorFlowModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.joblib",
artifact_dir="/folder_store_artifact"

)

19.8.5.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.tensorflow_model import TensorFlowModel

model = TensorFlowModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.tf",
artifact_dir=tempfile.mkdtemp())

19.8. TensorFlowModel 443



ADS Documentation, Release 2.6.4

19.8.5.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import TensorFlowModel

model = TensorFlowModel.from_model_deployment(
model_deployment_id="<model_deployment_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.8.6 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.
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19.8.7 Example

import tempfile
import tensorflow as tf

from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.tensorflow_model import TensorFlowModel

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential(
[

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),

])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=1)

# Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
tensorflow_model = TensorFlowModel(estimator=model, artifact_dir= artifact_dir)
tensorflow_model.prepare(

inference_conda_env="generalml_p37_cpu_v1",
training_conda_env="generalml_p37_cpu_v1",
use_case_type=UseCaseType.MULTINOMIAL_CLASSIFICATION,
X_sample=x_test,
y_sample=y_test,

)

tensorflow_model.verify(x_test[:1])
model_id = tensorflow_model.save()
tensorflow_model_deployment = model.deploy()
tensorflow_model.predict(x_test[:1])
tensorflow_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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19.9 XGBoostModel

19.9.1 Overview

The XGBoostModel class in ADS is designed to allow you to rapidly get a XGBoost model into production. The .
prepare() method creates the model artifacts that are needed to deploy a functioning model without you having to
configure it or write code. However, you can customize the required score.py file.

The .verify() method simulates a model deployment by calling the load_model() and predict() methods in the
score.py file. With the .verify() method, you can debug your score.py file without deploying any models. The
.save() method deploys a model artifact to the model catalog. The .deploy() method deploys a model to a REST
endpoint.

The following steps take your trained XGBoost model and deploy it into production with a few lines of code.

The XGBoostModel module in ADS supports serialization for models generated from both the Learning API using
xgboost.train() and the Scikit-Learn API using xgboost.XGBClassifier(). Both of these interfaces are defined
by XGBoost.

Create Learning API and Scikit-Learn Wrapper XGBoost Models

In the following several code snippets you will prepare the data and train XGBoost models. In the first snippet, the data
will be prepared. This will involved loading a dataset, splitting it into dependent and independent variables and into
test and training sets. The data will be encoded and a preprocessing pipeline will be defined. In the second snippet, the
XGBoost Learning API will be used to train the model. In the third and final code snippet, the Scikit-Learn Wrapper
interface is used to create another XGBoost model.

import pandas as pd
import os
import tempfile
import xgboost as xgb

from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_
→˓attrition.csv")
df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

# Extract numerical columns and categorical columns
categorical_cols = []

(continues on next page)
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(continued from previous page)

numerical_cols = []
for i, col in X.iteritems():

if col.dtypes == "object":
categorical_cols.append(col.name)

else:
numerical_cols.append(col.name)

categorical_transformer = Pipeline(
steps=[('encoder', OrdinalEncoder())]

)

# Build a pipeline
preprocessor = ColumnTransformer(

transformers=[('cat', categorical_transformer, categorical_cols)]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)

X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

Create an XGBoost model using the Learning API.

dtrain = xgb.DMatrix(X_train_transformed, y_train_transformed)
dtest = xgb.DMatrix(X_test_transformed, y_test_transformed)

model_learn = xgb.train(
params = {"learning_rate": 0.01, "max_depth": 3},
dtrain = dtrain,

)

Create an XGBoost model using the Scikit-Learn Wrapper interface.

model = xgb.XGBClassifier(
n_estimators=100, max_depth=3, learning_rate=0.01, random_state=42,
use_label_encoder=False

)
model.fit(

X_train_transformed,
y_train_transformed,

)
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19.9.2 Initialize

Instantiate a XGBoostModel() object with an XGBoost model. Each instance accepts the following parameters:

• artifact_dir: str: Artifact directory to store the files needed for deployment.

• auth: (Dict, optional): Defaults to None. The default authentication is set using the ads.
set_auth API. To override the default, use ads.common.auth.api_keys() or ads.common.auth.
resource_principal() and create the appropriate authentication signer and the **kwargs required to in-
stantiate the IdentityClient object.

• estimator: (Callable): Trained XGBoost model either using the Learning API or the Scikit-Learn Wrapper
interface.

• properties: (ModelProperties, optional): Defaults to None. The ModelProperties object required
to save and deploy a model.

The properties is an instance of the ModelProperties class and has the following predefined fields:

• bucket_uri (str):

• compartment_id (str):

• deployment_access_log_id (str):

• deployment_bandwidth_mbps (int):

• deployment_instance_count (int):

• deployment_instance_shape (str):

• deployment_log_group_id (str):

• deployment_predict_log_id (str):

• inference_conda_env (str):

• inference_python_version (str):

• overwrite_existing_artifact (bool):

• project_id (str):

• remove_existing_artifact (bool):

• training_conda_env (str):

• training_id (str):

• training_python_version (str):

• training_resource_id (str):

• training_script_path (str):

By default, properties is populated from the environment variables when not specified. For example, in note-
book sessions the environment variables are preset and stored in project id (PROJECT_OCID) and compartment id
(NB_SESSION_COMPARTMENT_OCID). So ``properties populates these environment variables, and uses the val-
ues in methods such as .save() and .deploy(). Pass in values to overwrite the defaults. When you use a method
that includes an instance of properties, then properties records the values that you pass in. For example, when
you pass inference_conda_env into the .prepare() method, then properties records the value. To reuse the
properties file in different places, you can export the properties file using the .to_yaml() method then reload it into
a different machine using the .from_yaml() method.
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19.9.3 Summary Status

You can call the .summary_status() method after a model serialization instance such as AutoMLModel,
GenericModel, SklearnModel, TensorFlowModel, or PyTorchModel is created. The .summary_status()
method returns a Pandas dataframe that guides you through the entire workflow. It shows which methods are available
to call and which ones aren’t. Plus it outlines what each method does. If extra actions are required, it also shows those
actions.

The following image displays an example summary status table created after a user initiates a model instance. The
table’s Step column displays a Status of Done for the initiate step. And the Details column explains what the initiate
step did such as generating a score.py file. The Step column also displays the prepare(), verify(), save(),
deploy(), and predict() methods for the model. The Status column displays which method is available next. After
the initiate step, the prepare() method is available. The next step is to call the prepare() method.

19.9.4 Model Deployment

19.9.4.1 Prepare

The prepare step is performed by the .prepare() method. It creates several customized files used to run the model
after it is deployed. These files include:

• input_schema.json: A JSON file that defines the nature of the features of the X_sample data. It includes
metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• model.json: This is the default filename of the serialized model. It can be changed with the model_file_name
attribute. By default, the model is stored in a JSON file. You can use the as_onnx parameter to save in ONNX
format, and the model name defaults to model.onnx.

• output_schema.json: A JSON file that defines the nature of the dependent variable in the y_sample data. It
includes metadata such as the data type, name, constraints, summary statistics, feature type, and more.

• runtime.yaml: This file contains information needed to set up the runtime environment on the deployment
server. It has information about what conda environment was used to train the model and what environment to
use to deploy the model. The file also specifies what version of Python should be used.
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• score.py: This script contains the load_model() and predict() functions. The load_model() function
understands the format the model file was saved in and loads it into memory. The .predict() method is used
to make inferences in a deployed model. There are also hooks that allow you to perform operations before and
after inference. You can modify this script to fit your specific needs.

To create the model artifacts you use the .prepare() method. There are a number of parameters that allow you to
store model provenance information.

To serialize the model to ONNX format, set the as_onnx parameter to True. You can provide the initial_types
parameter, which is a Python list describing the variable names and types. Alternatively, the service tries to infer this
information from the data in the X_sample parameter. X_sample supports List, Numpy array or Pandas dataframe.
DMatrix class is not supported because this format can’t convert into a JSON serializable format, see the ONNX docs.

The .prepare() method serializes the model and prepares and saves the score.py and runtime.yaml files using
the following parameters:

• as_onnx (bool, optional): Defaults to False. If True, it will serialize as an ONNX model.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• ignore_pending_changes (bool): Defaults to False. If False, it will ignore the pending changes in Git.

• inference_conda_env (str, optional): Defaults to None. Can be either slug or the Object Storage path of the
conda environment. You can only pass in slugs if the conda environment is a Data Science service environment.

• inference_python_version (str, optional): Defaults to None. The version of Python to use in the model
deployment.

• max_col_num (int, optional): Defaults to utils.DATA_SCHEMA_MAX_COL_NUM. Do not automatically generate
the input schema if the input data has more than this number of features.

• model_file_name (str): Name of the serialized model.

• namespace (str, optional): Namespace of the OCI region. This is used for identifying which region the ser-
vice environment is from when you provide a slug to the inference_conda_env or training_conda_env
parameters.

• training_conda_env (str, optional): Defaults to None. Can be either slug or object storage path of the conda
environment that was used to train the model. You can only pass in a slug if the conda environment is a Data
Science service environment.

• training_id (str, optional): Defaults to value from environment variables. The training OCID for the model.
Can be a notebook session or job OCID.

• training_python_version (str, optional): Defaults to None. The version of Python used to train the model.

• training_script_path (str): Defaults to None. The training script path.

• use_case_type (str): The use case type of the model. Use it with the UserCaseType class or the string
provided in UseCaseType. For example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type="binary_classification", see the UseCaseType class to see all supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of the input
data. It is used to generate the input schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]): Defaults to None. A sample of output data.
It is used to generate the output schema.

• **kwarg:

– impute_values (dict, optional): The dictionary where the key is the column index (or names is
accepted for Pandas dataframe), and the value is the imputed value for the corresponding column.
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New in version 2.6.3.

If you run the code using a service conda pack in a notebook session, you do not need to pass inference_conda_env.
The .prepare() method automatically tries to detect the conda environment.

When using the Scikit-Learn Wrapper interface, the .prepare() method accepts any parameter that skl2onnx.
convert_sklearn accepts. When using the Learning API, the .prepare() method accepts any parameter that
onnxmltools.convert_xgboost accepts.

19.9.4.2 Verify

If you update the score.py file included in a model artifact, you can verify your changes, without deploying the
model. With the .verify() method, you can debug your code without having to save the model to the model catalog
and then deploying it. The .verify() method takes a set of test parameters and performs the prediction by calling the
predict() function in score.py. It also runs the load_model() function to load the model.

The verify() method tests whether the .predict() API works in the local environment and it takes the following
parameter:

• data: Any: Data used to test if deployment works in a local environment.

19.9.4.3 Save

After you are satisfied with the performance of your model and have verified that the score.py file is working, use the
.save() method to save the model to the model catalog. The .save() method bundles up the model artifacts, stores
them in the model catalog, and returns the model OCID.

The .save() method stores the model artifacts in the model catalog. It takes the following parameters:

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts aree copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.

• defined_tags (Dict(str, dict(str, object)), optional): Defaults to None. Defined tags for the model.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• freeform_tags Dict(str, str): Defaults to None. Free form tags for the model.

• ignore_introspection (bool, optional): Defaults to None. Determines whether to ignore the result of model
introspection or not. If set to True, then .save() ignores all model introspection errors.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• remove_existing_artifact (bool, optional). Defaults to True. Whether artifacts uploaded to the Object
Storage bucket is removed or not.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken either from
the environment variables or model properties.

– project_id (str, optional): Project OCID. If not specified, the value is taken either from the environ-
ment variables or model properties.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.
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The .save() method reloads score.py and runtime.yaml files from disk to find any changes that have been made
to the files. If ignore_introspection=False, then it conducts an introspection test to determine if the model
deployment may have issues. If potential problems are detected, it suggests possible remedies. Lastly, it uploads the
artifacts to the model catalog and returns the model OCID. You can also call .instrospect() to conduct the test any
time after you call .prepare().

19.9.4.4 Deploy

You can use the .deploy() method to deploy a model. You must first save the model to the model catalog, and then
deploy it.

The .deploy() method returns a ModelDeployment object. Specify deployment attributes such as display name,
instance type, number of instances, maximum router bandwidth, and logging groups. The API takes the following
parameters:

• deployment_access_log_id (str, optional): Defaults to None. The access log OCID for the access logs, see
logging.

• deployment_bandwidth_mbps (int, optional): Defaults to 10. The bandwidth limit on the load balancer in
Mbps.

• deployment_instance_count (int, optional): Defaults to 1. The number of instances used for deployment.

• deployment_instance_shape (str, optional): Default to VM.Standard2.1. The shape of the instance used for
deployment.

• deployment_log_group_id (str, optional): Defaults to None. The OCI logging group OCID. The access log
and predict log share the same log group.

• deployment_predict_log_id (str, optional): Defaults to None. The predict log OCID for the predict logs,
see logging.

• description (str, optional): Defaults to None. The description of the model.

• display_name (str, optional): Defaults to None. The name of the model.

• wait_for_completion (bool, optional): Defaults to True. Set to wait for the deployment to complete before
proceeding.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value is taken from the
environment variables.

– max_wait_time (int, optional): Defaults to 1200 seconds. The maximum amount of time to wait in
seconds. A negative value implies an infinite wait time.

– poll_interval (int, optional): Defaults to 60 seconds. Poll interval in seconds.

– project_id (str, optional): Project OCID. If not specified, the value is taken from the environment
variables.
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19.9.4.5 Predict

To get a prediction for your model, after your model deployment is active, call the .predict() method. The .
predict() method sends a request to the deployed endpoint, and computes the inference values based on the data
that you input in the .predict() method.

The .predict() method returns a prediction of input data that is run against the model deployment endpoint and takes
the following parameters:

• data: Any: JSON serializable data used for making inferences.

The .predict() and .verify() methods take the same data formats. You must ensure that the data passed into and
returned by the predict() function in the score.py file is JSON serializable.

19.9.5 Load

You can restore serialization models from model artifacts, from model deployments or from models in the model
catalog. This section provides details on how to restore serialization models.

19.9.5.1 Model Artifact

A model artifact is a collection of files used to create a model deployment. Some example files included in a model
artifact are the serialized model, score.py, and runtime.yaml. You can store your model artifact in a local directory,
in a ZIP or TAR format. Then use the .from_model_artifact() method to import the model artifact into the
serialization model class. The .from_model_artifact() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_file_name (str): The serialized model file name.

• properties (ModelProperties, optional): Defaults to None. ModelProperties object required to save and
deploy the model.

• uri (str): The path to the folder, ZIP, or TAR file that contains the model artifact. The model artifact must contain
the serialized model, the score.py, runtime.yaml and other files needed for deployment. The content of the
URI is copied to the artifact_dir folder.

from ads.model.framework.xgboost_model import XGBoostModel

model = XGBoostModel.from_model_artifact(
uri="/folder_to_your/artifact.zip",
model_file_name="model.joblib",
artifact_dir="/folder_store_artifact"

)
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19.9.5.2 Model Catalog

To populate a serialization model object from a model stored in the model catalog, call the .from_model_catalog()
method. This method uses the model OCID to download the model artifacts, write them to the artifact_dir, and
update the serialization model object. The .from_model_catalog() method takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal()
and create the appropriate authentication signer and the **kwargs required to instantiate the IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts will be
copied to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files.

• model_id (str): The model OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.framework.xgboost_model import XGBoostModel

model = XGBoostModel.from_model_catalog(model_id="<model_id>",
model_file_name="model.json",
artifact_dir=tempfile.mkdtemp())

19.9.5.3 Model Deployment

New in version 2.6.2.

To populate a serialization model object from a model deployment, call the .from_model_deployment() method.
This method accepts a model deployment OCID. It downloads the model artifacts, writes them to the model artifact
directory (artifact_dir), and updates the serialization model object. The .from_model_deployment() method
takes the following parameters:

• artifact_dir (str): Artifact directory to store the files needed for deployment.

• auth (Dict, optional): Defaults to None. The default authentication is set using the ads.set_auth API. To
override the default, use ads.common.auth.api_keys() or ads.common.auth.resource_principal().
Supply the appropriate authentication signer and the **kwargs required to instantiate an IdentityClient
object.

• bucket_uri (str, optional). Defaults to None. The OCI Object Storage URI where model artifacts are copied
to. The bucket_uri is only necessary for uploading large artifacts with size greater than 2 GB. For example,
oci://<bucket_name>@<namespace>/prefix/.
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• force_overwrite (bool, optional): Defaults to False. If True, it will overwrite existing files in the artifact
directory.

• model_deployment_id (str): The model deployment OCID.

• model_file_name (str): The serialized model file name.

• overwrite_existing_artifact (bool, optional). Defaults to True. Overwrite target bucket artifact if exists.

• properties (ModelProperties, optional): Defaults to None. Define the properties to save and deploy the model.

• **kwargs:

– compartment_id (str, optional): Compartment OCID. If not specified, the value will be taken from
the environment variables.

– timeout (int, optional): Defaults to 10 seconds. The connection timeout in seconds for the client.

from ads.model.generic_model import XGBoostModel

model = XGBoostModel.from_model_deployment(
model_deployment_id="<model_deployment_id>",
model_file_name="model.pkl",
artifact_dir=tempfile.mkdtemp())

19.9.6 Delete a Deployment

Use the .delete_deployment() method on the serialization model object to delete a model deployment. You must
delete a model deployment before deleting its associated model from the model catalog.

Each time you call the .deploy() method, it creates a new deployment. Only the most recent deployment is attached
to the object.

The .delete_deployment() method deletes the most recent deployment and takes the following optional parameter:

• wait_for_completion: (bool, optional). Defaults to False and the process runs in the background. If
set to True, the method returns when the model deployment is deleted.

19.9.7 Example

import pandas as pd
import os
import tempfile
import xgboost as xgb

from ads.catalog.model import ModelCatalog
from ads.common.model_metadata import UseCaseType
from ads.model.framework.xgboost_model import XGBoostModel
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

df_path = os.path.join("/", "opt", "notebooks", "ads-examples", "oracle_data", "orcl_
→˓attrition.csv")

(continues on next page)
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df = pd.read_csv(df_path)
y = df["Attrition"]
X = df.drop(columns=["Attrition", "name"])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# Label encode the y values
le = LabelEncoder()
y_train_transformed = le.fit_transform(y_train)
y_test_transformed = le.transform(y_test)

# Extract numerical columns and categorical columns
categorical_cols = []
numerical_cols = []
for i, col in X.iteritems():

if col.dtypes == "object":
categorical_cols.append(col.name)

else:
numerical_cols.append(col.name)

categorical_transformer = Pipeline(
steps=[('encoder', OrdinalEncoder())]

)

# Build a pipeline
preprocessor = ColumnTransformer(

transformers=[('cat', categorical_transformer, categorical_cols)]
)

preprocessor_pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
preprocessor_pipeline.fit(X_train)

X_train_transformed = preprocessor_pipeline.transform(X_train)
X_test_transformed = preprocessor_pipeline.transform(X_test)

# XGBoost Scikit-Learn API
model = xgb.XGBClassifier(

n_estimators=100, learning_rate=0.01, random_state=42,
use_label_encoder=False

)
model.fit(X_train_transformed, y_train_transformed)

# Deploy the model, test it and clean up.
artifact_dir = tempfile.mkdtemp()
xgboost_model = XGBoostModel(estimator=model, artifact_dir=artifact_dir)
xgboost_model.prepare(

inference_conda_env="generalml_p37_cpu_v1",
training_conda_evn="generalml_p37_cpu_v1",
use_case_type=UseCaseType.BINARY_CLASSIFICATION,
X_sample=X_test_transformed,
y_sample=y_test_transformed,

)

(continues on next page)
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xgboost_model.verify(X_test_transformed[:10])['prediction']
model_id = xgboost_model.save()
xgboost_model.deploy()
xgboost_model.predict(X_test_transformed[:10])['prediction']
xgboost_model.delete_deployment(wait_for_completion=True)
ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_
→˓model(model_id)
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CHAPTER

TWENTY

SECRETS

20.1 Overview

Services such as OCI Database and Streaming require users to provide credentials. These credentials must be safely
accessed at runtime. OCI Vault provides a mechanism for safe storage and access of secrets. SecretKeeper uses Vault
as a backend to store and retrieve the credentials. The data structure of the credentials varies from service to service.
There is a SecretKeeper specific to each data structure.

These classes are provided:

• ADBSecretKeeper: Stores credentials for the Oracle Autonomous Database, with or without the wallet file.

• AuthTokenSecretKeeper: Stores an Auth Token or Access Token string. This could be an Auth Token to use
to connect to Streaming, Github, or other systems that used Auth Tokens or Access Token strings.

• BDSSecretKeeper: Stores credentials for Oracle Big Data Service with or without Keytab and kerb5 configu-
ration files.

• MySQLDBSecretKeeper: Stores credentials for the MySQL database. This class will work with many databases
that authenticate with a username and password only.

• OracleDBSecretKeeper: Stores credentials for the Oracle Database.

20.2 Quick Start

20.2.1 Auth Tokens

20.2.1.1 Save Credentials

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

ocid_vault = "ocid1.vault..<unique_ID>"
ocid_master_key = "ocid1.key..<unique_ID>"
ocid_mycompartment = "ocid1.compartment..<unique_ID>"

authtoken2 = AuthTokenSecretKeeper(
vault_id=ocid_vault,
key_id=ocid_master_key,

(continues on next page)
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compartment_id=ocid_mycompartment,
auth_token="<your_auth_token>"
).save(

"my_xyz_auth_token2",
"This is my key for git repo xyz",
freeform_tags={"gitrepo":"xyz"}

)
print(authtoken2.secret_id)

'ocid1.vaultsecret..<unique_ID>'

20.2.1.2 Load Credentials

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(source="ocid1.vaultsecret..<unique_ID>",
) as authtoken:

import os
print(f"Credentials inside `authtoken` object: {authtoken}")

Credentials inside `authtoken` object: {'auth_token': '<your_auth_token>'}

20.2.2 Autonomous Database

20.2.2.1 Save Credentials

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

connection_parameters={
"user_name":"admin",
"password":"<your_password>",
"service_name":"service_high",
"wallet_location":"/home/datascience/Wallet_--------.zip"

}

ocid_vault = "ocid1.vault..<unique_ID>"
ocid_master_key = "ocid1.key..<unique_ID>"
ocid_mycompartment = "ocid1.compartment..<unique_ID>"

adw_keeper = ADBSecretKeeper(vault_id=ocid_vault,
key_id=ocid_master_key,
compartment_id=ocid_mycompartment,
**connection_parameters)

# Store the credentials without storing the wallet file
(continues on next page)
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adw_keeper.save("adw_employee_att2",
"My DB credentials",
freeform_tags={"schema":"emp"},
save_wallet=True

)
print(adw_keeper.secret_id)

'ocid1.vaultsecret..<unique_ID>'

20.2.2.2 Load Credentials

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret("ocid1.vaultsecret..<unique_ID>") as adw_creds2:
import pandas as pd
df2 = pd.DataFrame.ads.read_sql("select JOBFUNCTION, ATTRITION from ATTRITION_DATA",␣

→˓connection_parameters=adw_creds2)
print(df2.head(2))

JOBFUNCTION ATTRITION
0 Product Management No
1 Software Developer No

20.2.3 Big Data Service

20.2.3.1 Save Credentials

import ads
import fsspec
import os

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, refresh_ticket, krbcontext

ads.set_auth('resource_principal')

principal = "<your_principal>"
hdfs_host = "<your_hdfs_host>"
hive_host = "<your_hive_host>"
hdfs_port = <your_hdfs_port>
hive_port = <your_hive_port>
vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

secret = BDSSecretKeeper(
vault_id=vault_id,

(continues on next page)
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key_id=key_id,
principal=principal,
hdfs_host=hdfs_host,
hive_host=hive_host,
hdfs_port=hdfs_port,
hive_port=hive_port,
keytab_path=keytab_path,
kerb5_path=kerb5_path
)

saved_secret = secret.save(name="your_bds_config_secret_name",
description="your bds credentials",
freeform_tags={"schema":"emp"},
defined_tags={},
save_files=True)

20.2.3.2 Load Credentials

from ads.secrets.big_data_service import BDSSecretKeeper
from pyhive import hive

with BDSSecretKeeper.load_secret(saved_secret.secret_id, keytab_dir="~/path/to/save/
→˓keytab_file/") as cred:
with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):

hive_cursor = hive.connect(host=cred["hive_host"],
port=cred["hive_port"],
auth='KERBEROS',
kerberos_service_name="hive").cursor()

20.2.4 MySQL

20.2.4.1 Save Credentials

import ads
from ads.secrets.mysqldb import MySQLDBSecretKeeper

vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={

"user_name":"<your user name>",
"password":"<your password>",
"host":"<db host>",
"port":"<db port>",
"database":"<database>",

}

mysqldb_keeper = MySQLDBSecretKeeper(vault_id=vault_id,
(continues on next page)
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key_id=key_id,
**connection_parameters)

mysqldb_keeper.save("mysqldb_employee", "My DB credentials", freeform_tags={"schema":"emp
→˓"})
print(mysqldb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret..<unique_ID>'

20.2.4.2 Load Credentials

import ads
from ads.secrets.mysqldb import MySQLDBSecretKeeper
ads.set_auth('resource_principal') # If using resource principal authentication

with MySQLDBSecretKeeper.load_secret(source=secret_id) as mysqldb_creds:
import pandas as pd
df2 = pd.DataFrame.ads.read_sql("select JOBFUNCTION, ATTRITION from ATTRITION_DATA",␣

→˓connection_parameters=mysqldb_creds)
print(df2.head(2))

JOBFUNCTION ATTRITION
0 Product Management No
1 Software Developer No

20.2.5 Oracle Database

20.2.5.1 Save Credentials

import ads
from ads.secrets.oracledb import OracleDBSecretKeeper

vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={

"user_name":"<your user name>",
"password":"<your password>",
"service_name":"service_name",
"host":"<db host>",
"port":"<db port>",

}

oracledb_keeper = OracleDBSecretKeeper(vault_id=vault_id,
key_id=key_id,
**connection_parameters)

(continues on next page)
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oracledb_keeper.save("oracledb_employee", "My DB credentials", freeform_tags={"schema":
→˓"emp"})
print(oracledb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret..<unique_ID>'

20.2.5.2 Load Credentials

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(source=secret_id) as oracledb_creds:
import pandas as pd
df2 = pd.DataFrame.ads.read_sql("select JOBFUNCTION, ATTRITION from ATTRITION_DATA",␣

→˓connection_parameters=oracledb_creds)
print(df2.head(2))

JOBFUNCTION ATTRITION
0 Product Management No
1 Software Developer No

20.3 Auth Token

The AuthTokenSecretKeeper helps you to save the Auth Token or Access Token string to the OCI Vault service.

20.3.1 Save Credentials

20.3.1.1 AuthTokenSecretKeeper

The AuthTokenSecretKeeper constructor takes the following parameters:

• auth_token (str): Provide the Auth Token or Access Token string to be stored

• vault_id (str): ocid of the vault

• key_id (str): ocid of the master key used for encrypting the secret

• compartment_id (str, optional): Default is None. ocid of the compartment where the vault is located. This will
be defaulted to the compartment of the Notebook session, if used within a OCI Data Science notebook session.
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20.3.1.1.1 Save

The AuthTokenSecretKeeper.save API serializes and stores the credentials to Vault. It takes following parameters
-

• name (str): Name of the secret when saved in the vault.

• description (str): Description of the secret when saved in the vault.

• freeform_tags (dict, optional): Freeform tags to use when saving the secret in the OCI Console.

• defined_tags (dict, optional.): Save the tags under predefined tags in the OCI Console.

The secret has following information:

• auth_token

20.3.1.2 Examples

20.3.1.2.1 Save Auth Token

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

ocid_vault = "ocid1.vault...<unique_ID>"
ocid_master_key = "ocid1.key..<unique_ID>"
ocid_mycompartment = "ocid1.compartment..<unique_ID>"

authtoken2 = AuthTokenSecretKeeper(
vault_id=ocid_vault,
key_id=ocid_master_key,
compartment_id=ocid_mycompartment,
auth_token="<your_auth_token>"
).save(

"my_xyz_auth_token2",
"This is my key for git repo xyz",
freeform_tags={"gitrepo":"xyz"}

)
print(authtoken2.secret_id)

You can save the vault details in a file for later reference or using it within your code using export_vault_details
API. The API currently let us export the information as a yaml file or a json file.

authtoken2.export_vault_details("my_db_vault_info.json", format="json")
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20.3.1.2.2 Save as a yaml File

authtoken2.export_vault_details("my_db_vault_info.yaml", format="yaml")

20.3.2 Load Credentials

20.3.2.1 Load

The AuthTokenSecretKeeper.load_secret API deserializes and loads the credentials from Vault. You could use
this API in one of the following ways:

20.3.2.1.1 Using a with Statement

with AuthTokenSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>') as authtoken:
print(authtoken['user_name']

This approach is preferred as the secrets are only available within the code block and it reduces the risk that the variable
will be leaked.

20.3.2.1.2 Without using a with Statement

authtoken = AuthTokenSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>')
authtokendict = authtoken.to_dict()
print(authtokendict['user_name'])

The .load_secret() takes the following parameters:

• auth: Provide overriding authorization information if the authorization information is different from the ads.
set_auth setting.

• export_env: Default is False. If set to True, the credentials are exported as environment variable when used
with

• export_prefix: The default name for environment variable is user_name, password, service_name, and wal-
let_location. You can add a prefix to avoid name collision

• format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

• source: Either the file that was exported from export_vault_details or the OCID of the secret

• the with operator.
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20.3.2.2 Examples

20.3.2.2.1 Using a with Statement

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(source="ocid1.vaultsecret..<unique_ID",
) as authtoken:

import os
print(f"Credentials inside `authtoken` object: {authtoken}")

Credentials inside `authtoken` object: {'auth_token': '<your_auth_token>'}

20.3.2.2.2 Export to Environment Variables Using a with Statement

To expose credentials through environment variable, set export_env=True. The following keys are exported -

Secret attribute Environment Variable Name
auth_token auth_token

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper
import os

ads.set_auth('resource_principal') # If using resource principal authentication

with AuthTokenSecretKeeper.load_secret(
source="ocid1.vaultsecret..<unique_ID>",
export_env=True

):
print(os.environ.get("auth_token")) # Prints the auth token

print(os.environ.get("auth_token")) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

You can avoid name collisions by setting the prefix string using export_prefix along with export_env=True. For
example, if you set the prefix to kafka, the exported keys are:

Secret attribute Environment Variable Name
auth_token kafka.auth_token

import ads
from ads.secrets.auth_token import AuthTokenSecretKeeper
import os

ads.set_auth('resource_principal') # If using resource principal authentication

(continues on next page)
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with AuthTokenSecretKeeper.load_secret(
source="ocid1.vaultsecret..<unique_ID>",
export_env=True,
export_prefix="kafka"

):
print(os.environ.get("kafka.auth_token")) # Prints the auth token

print(os.environ.get("kafka.auth_token")) # Prints nothing. The credentials are cleared␣
→˓from the dictionary outside the ``with`` block

20.4 Autonomous Database

To connect to Autonomous Database you need the following:

• user name

• password

• service name

• wallet file

The ADBSecretKeeper class saves the ADB credentials to the OCI Vault service.

20.4.1 Save Credentials

20.4.1.1 ADBSecretKeeper

The ADBSecretKeeper constructor has the following parameters:

• compartment_id (str): OCID of the compartment where the vault is located. This defaults to the compartment
of the notebook session when used in a Data Science notebook session.

• key_id (str): OCID of the master key used for encrypting the secret.

• password (str): The password of the database.

• service_name (str): Set the service name of the database.

• user_name (str): The user name to be stored.

• vault_id (str): OCID of the vault.

• wallet_location (str): Path to the wallet ZIP file.
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20.4.1.1.1 Save

The ADBSecretKeeper.save API serializes and stores the credentials to Vault using the following parameters:

• defined_tags (dict, optional): Default None. Save the tags under predefined tags in the OCI Console.

• description (str): Description of the secret when saved in Vault.

• freeform_tags (dict, optional): Default None. Free form tags to use for saving the secret in the OCI Console.

• name (str): Name of the secret when saved in Vault.

• save_wallet (bool, optional): Default False. If set to True, then the wallet file is serialized.

When stored without the wallet information, the secret content has following information:

• password

• service_name

• user_name

To store wallet file content, set save_wallet to True. The wallet content is stored by extracting all the files from the
wallet ZIP file, and then each file is stored in the vault as a secret. The list of OCIDs corresponding to each file along
with username, password, and service name is stored in a separate secret. The secret corresponding to each file content
has following information:

• filename

• content of the file

A meta secret is created to save the username, password, service name, and the secret ids of the files within the wallet
file. It has following attributes:

• user_name

• password

• wallet_file_name

• wallet_secret_ids

The wallet file is reconstructed when ADBSecretKeeper.load_secret is called using the OCID of the meta secret.

20.4.1.2 Examples

20.4.1.2.1 Without the Wallet File

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

connection_parameters={
"user_name":"admin",
"password":"<your_password>",
"service_name":"service_high",
"wallet_location":"/home/datascience/Wallet_--------.zip"

}

ocid_vault = "ocid1.vault..<unique_ID>"
(continues on next page)
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ocid_master_key = "ocid1.key..<unique_ID>"
ocid_mycompartment = "ocid1.compartment..<unique_ID>"

adw_keeper = ADBSecretKeeper(vault_id=ocid_vault,
key_id=ocid_master_key,
compartment_id=ocid_mycompartment,
**connection_parameters)

# Store the credentials without storing the wallet file
adw_keeper.save("adw_employee_att2", "My DB credentials", freeform_tags={"schema":"emp"})
print(adw_keeper.secret_id)

'ocid1.vaultsecret..<unique_ID>'

20.4.1.2.2 With the Wallet File

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

connection_parameters={
"user_name":"admin",
"password":"<your_password>",
"service_name":"service_high",
"wallet_location":"/home/datascience/Wallet_--------.zip"

}

ocid_vault = "ocid1.vault..<unique_ID>"
ocid_master_key = "ocid1.key..<unique_ID>"
ocid_mycompartment = "ocid1.compartment..<unique_ID>"

adw_keeper = ADBSecretKeeper(vault_id=ocid_vault,
key_id=ocid_master_key,
compartment_id=ocid_mycompartment,
**connection_parameters)

# Set `save_wallet`=True to save wallet file

adw_keeper.save("adw_employee_att2",
"My DB credentials",
freeform_tags={"schema":"emp"},
save_wallet=True

)

print(adw_keeper.secret_id)

'ocid1.vaultsecret..<unique_ID>'

You can save the vault details in a file for later reference or using it within your code using export_vault_details
API calls. The API currently enables you to export the information as a YAML file or a JSON file.
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adw_keeper.export_vault_details("my_db_vault_info.json", format="json")

To save as a YAML file:

adw_keeper.export_vault_details("my_db_vault_info.yaml", format="yaml")

20.4.2 Load Credentials

20.4.2.1 Load

The ADBSecretKeeper.load_secret API deserializes and loads the credentials from Vault. You could use this API
in one of the following ways:

20.4.2.1.1 Using a with Statement

with ADBSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>') as adwsecret:
print(adwsecret['user_name'])

This approach is preferred as the secrets are only available within the code block and it reduces the risk that the variable
will be leaked.

20.4.2.1.2 Without using a with Statement

adwsecretobj = ADBSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>')
adwsecret = adwsecretobj.to_dict()
print(adwsecret['user_name'])

The .load_secret() method has the following parameters:

• auth: Provide overriding authorization information if the authorization information is different from the ads.
set_auth setting.

• export_env: Default is False. If set to True, the credentials are exported as environment variable when used
with the with operator.

• export_prefix: The default name for environment variable is user_name, password, service_name, and wal-
let_location. You can add a prefix to avoid name collision

• format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

• source: Either the file that was exported from export_vault_details or the OCID of the secret

• wallet_dir: Optional. Directory path where the wallet zip file will be saved after the contents are retrieved
from Vault. If wallet content is not available in the provided secret OCID, this attribute is ignored.

• wallet_location: Optional. Path to the local wallet zip file. If vault secret does not have wallet file content,
set this variable so that it will be available in the exported credential. If provided, this path takes precedence over
the wallet file information in the secret.

If the wallet file was saved in the vault, then the ZIP file of the same name is created by the .load_secret() method.
By default the ZIP file is created in the working directory. To update the location, you can set the directory path with
wallet_dir.
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20.4.2.2 Examples

20.4.2.2.1 Using a with Statement

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>"

) as adw_creds2:
print (adw_creds2["user_name"]) # Prints the user name

print (adw_creds2["user_name"]) # Prints nothing. The credentials are cleared from the␣
→˓dictionary outside the ``with`` block

20.4.2.2.2 Export to Environment Variables Using a with Statement

To expose credentials as an environment variable, set export_env=True. The following keys are exported:

Secret attribute Environment Variable Name
user_name user_name
password password
service_name service_name
wallet_location wallet_location

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
export_env=True

):
print(os.environ.get("user_name")) # Prints the user name

print(os.environ.get("user_name")) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

You can avoid name collisions by setting a prefix string using export_prefix along with export_env=True. For
example, if you set the prefix to myprocess, then the exported keys are:

Secret attribute Environment Variable Name
user_name myprocess.user_name
password myprocess.password
service_name myprocess.service_name
wallet_location myprocess.wallet_location
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import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
export_env=True,
export_prefix="myprocess"

):
print(os.environ.get("myprocess.user_name")) # Prints the user name

print(os.environ.get("myprocess.user_name")) # Prints nothing. The credentials are␣
→˓cleared from the dictionary outside the ``with`` block

20.4.2.2.3 Wallet File Location

You can set wallet file location when wallet file is not part of the stored vault secret. To specify a local wallet ZIP file,
set the path to the ZIP file with wallet_location:

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.adb import ADBSecretKeeper

with ADBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
wallet_location="path/to/my/local/wallet.zip"

) as adw_creds2:
print (adw_creds2["wallet_location"]) # Prints `path/to/my/local/wallet.zip`

print (adw_creds2["wallet_location"]) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

20.5 Big Data Service

New in version 2.5.10..

To connect to Oracle Big Data Service (BDS) you need the following:

• hdfs host: HDFS hostname which will be used to connect to the HDFS file system.

• hdfs port: HDFS port which will be used to connect to the HDFS file system.

• hive host: Hive hostname which will be used to connect to the Hive Server.

• hive port: Hive port which will be used to connect to the Hive Server.

• kerb5 config file: krb5.conf file which can be copied from /etc/krb5.conf from the master node of the BDS
cluster. It will be used to generate the kerberos ticket.

• keytab file: The principal’s keytab file which can be downloaded from the master node of the BDS cluster.
It will be used to generate the kerberos ticket.
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• principal: The unique identity to which Kerberos can assign tickets. It will be used to generate the kerberos
ticket.

The BDSSecretKeeper class saves the BDS credentials to the OCI Vault service.

20.5.1 Save Credentials

20.5.1.1 BDSSecretKeeper

You can also save the connection parameters as well as the files needed to configure the kerberos authentication into
vault. This will allow you to use repetitively in different notebook sessions, machines, and Jobs.

The BDSSecretKeeper constructor requires the following parameters:

• compartment_id (str): OCID of the compartment where the vault is located. This defaults to the compartment
of the notebook session when used in a Data Science notebook session.

• hdfs_host (str): The HDFS hostname from the bds cluster.

• hdfs_port (str): The HDFS port from the bds cluster.

• hive_host (str): The Hive hostname from the bds cluster.

• hive_port (str): The Hive port from the bds cluster.

• kerb5_path (str): The krb5.conf file path.

• key_id: str (OCID of the master key used for encrypting the secret.

• keytab_path (str): The path to the keytab file.

• principal (str): The unique identity to which Kerberos can assign tickets.

• vault_id: (str): The OCID of the vault.

20.5.1.1.1 Save

The BDSSecretKeeper.save API serializes and stores the credentials to Vault using the following parameters:

• defined_tags (dict, optional): Default None. Save the tags under predefined tags in the OCI Console.

• description (str) – Description of the secret when saved in Vault.

• freeform_tags (dict, optional): Default None. Free form tags to use for saving the secret in the OCI Console.

• name (str): Name of the secret when saved in Vault.

• save_files (bool, optional): Default True. If set to True, then the keytab and kerb5 config files are serialized
and saved.

20.5.1.2 Examples

20.5.1.2.1 With the Keytab and kerb5 Config Files

import ads
import fsspec
import os

(continues on next page)
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from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, refresh_ticket, krbcontext

ads.set_auth('resource_principal')

principal = "<your_principal>"
hdfs_host = "<your_hdfs_host>"
hive_host = "<your_hive_host>"
hdfs_port = <your_hdfs_port>
hive_port = <your_hive_port>
vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

secret = BDSSecretKeeper(
vault_id=vault_id,
key_id=key_id,
principal=principal,
hdfs_host=hdfs_host,
hive_host=hive_host,
hdfs_port=hdfs_port,
hive_port=hive_port,
keytab_path=keytab_path,
kerb5_path=kerb5_path
)

saved_secret = secret.save(name="your_bds_config_secret_name",
description="your bds credentials",
freeform_tags={"schema":"emp"},
defined_tags={},
save_files=True)

20.5.1.2.2 Without the Keytab and kerb5 Config Files

import ads
import fsspec
import os

from ads.secrets.big_data_service import BDSSecretKeeper
from ads.bds.auth import has_kerberos_ticket, refresh_ticket, krbcontext

ads.set_auth('resource_principal')

principal = "<your_principal>"
hdfs_host = "<your_hdfs_host>"
hive_host = "<your_hive_host>"
hdfs_port = <your_hdfs_port>
hive_port = <your_hive_port>
vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

(continues on next page)
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bds_keeper = BDSSecretKeeper(
vault_id=vault_id,
key_id=key_id,
principal=principal,
hdfs_host=hdfs_host,
hive_host=hive_host,
hdfs_port=hdfs_port,
hive_port=hive_port,
keytab_path=keytab_path,
kerb5_path=kerb5_path
)

saved_secret = bds_keeper.save(name="your_bds_config_secret_name",
description="your bds credentials",
freeform_tags={"schema":"emp"},
defined_tags={},
save_files=False)

print(saved_secret.secret_id)

'ocid1.vaultsecret..<unique_ID>'

20.5.2 Load Credentials

20.5.2.1 Load

The BDSSecretKeeper.load_secret API deserializes and loads the credentials from Vault. You could use this API
in one of the following ways:

20.5.2.1.1 Using a with Statement

with BDSSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>') as bdssecret:
print(bdssecret['hdfs_host'])

This approach is preferred as the secrets are only available within the code block and it reduces the risk that the variable
will be leaked.

20.5.2.1.2 Without Using a with Statement

bdssecretobj = BDSSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>')
bdssecret = bdssecretobj.to_dict()
print(bdssecret['hdfs_host'])

The .load_secret() method takes following parameters:

• auth: Provide overriding authorization information if the authorization information is different from the ads.
set_auth setting.

• export_env: Default is False. If set to True, the credentials are exported as environment variable when used
with the with operator.
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• export_prefix: The default name for environment variable is user_name, password, service_name, and wal-
let_location. You can add a prefix to avoid name collision

• format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

• keytab_dir: Optional. Directory path where the keytab ZIP file is saved after the contents are retrieved from
the vault. If the keytab content is not available in the specified secret OCID, then this attribute is ignored.

• source: Either the file that was exported from export_vault_details or the OCID of the secret

If the keytab and kerb5 configuration files were saved in the vault, then a keytab and kerb5 configuration file of the
same name is created by .load_secret(). By default, the keytab file is created in the keytab_path specified in
the secret. To update the location, set the directory path with key_dir. However, the kerb5 configuration file is always
saved in the ~/.bds_config/krb5.conf path.

Note that keytab and kerb5 configuration files are saved only when the content is saved into the vault.

After you load and save the configuration parameters files, you can call the krbcontext context manager to create a
Kerberos ticket.

20.5.2.2 Examples

20.5.2.2.1 Using a With Statement

To specify a local keytab file, set the path to the ZIP file with wallet_location:

from pyhive import hive

with BDSSecretKeeper.load_secret(saved_secret.secret_id, keytab_dir="~/path/to/save/
→˓keytab_file/") as cred:
with krbcontext(principal=cred["principal"], keytab_path=cred['keytab_path']):

hive_cursor = hive.connect(host=cred["hive_host"],
port=cred["hive_port"],
auth='KERBEROS',
kerberos_service_name="hive").cursor()

Now you can query the data from Hive:

hive_cursor.execute("""
select *
from your_db.your_table
limit 10

""")

import pandas as pd
pd.DataFrame(hive_cursor.fetchall(), columns=[col[0] for col in hive_cursor.description])
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20.5.2.2.2 Without Using a With Statement

Load From Secret OCID

bdssecretobj = BDSSecretKeeper.load_secret(saved_secret.secret_id)
bdssecret = bdssecretobj.to_dict()
print(bdssecret)

Load From a JSON File

bdssecretobj = BDSSecretKeeper.load_secret(source="./my_bds_vault_info.json", format=
→˓"json")
bdssecretobj.to_dict()

Load From a YAML File

bdssecretobj = BDSSecretKeeper.load_secret(source="./my_bds_vault_info.yaml", format=
→˓"yaml")
bdssecretobj.to_dict()

20.6 MySQL

To connect to a MySQL Database, you need the following:

• hostname

• password

• port, the default is 3306

• user name

The MySQLDBSecretKeeper class saves the MySQL database credentials to the OCI Vault service.

20.6.1 Save Credentials

20.6.1.1 MySQLDBSecretKeeper

The MySQLDBSecretKeeper constructor has the following parameters:

• compartment_id (str): OCID of the compartment where the vault is located. Defaults to the compartment of
the notebook session when used in a Data Science notebook session.

• database (str, optional)): The database name if available.

• host (str): The hostname of the database.

• key_id (str): OCID of the master key used for encrypting the secret.

• password (str): The password of the database.

• port (str, optional). Default 3306): Port number of the database service.
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• user_name (str): The user name to be stored.

• vault_id (str): OCID of the vault.

20.6.1.1.1 Save

The MySQLDBSecretKeeper.save API serializes and stores the credentials to the vault using the following parame-
ters:

• defined_tags (dict, optional): Save the tags under predefined tags in the OCI Console.

• description (str): Description of the secret when saved in the vault.

• freeform_tags (dict, optional): Freeform tags to be used for saving the secret in the OCI Console.

• name (str): Name of the secret when saved in the vault.

The secret has the following informatio:

• database

• host

• password

• port

• user_name

20.6.1.2 Examples

20.6.1.2.1 Save Credentials

import ads
from ads.secrets.mysqldb import MySQLDBSecretKeeper

vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={

"user_name":"<your user name>",
"password":"<your password>",
"service_name":"service_name",
"host":"<db host>",
"port":"<db port>",

}

mysqldb_keeper = MySQLDBSecretKeeper(vault_id=vault_id,
key_id=key_id,
**connection_parameters)

mysqldb_keeper.save("mysqldb_employee", "My DB credentials", freeform_tags={"schema":"emp
→˓"})
print(mysqldb_keeper.secret_id) # Prints the secret_id of the stored credentials
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'ocid1.vaultsecret..<unique_ID>'

You can save the vault details in a file for later reference, or use it in your code using export_vault_details API
calls. The API currently enables you to export the information as a YAML file or a JSON file.

mysqldb_keeper.export_vault_details("my_db_vault_info.json", format="json")

20.6.1.2.2 Save as a YAML File

mysqldb_keeper.export_vault_details("my_db_vault_info.yaml", format="yaml")

20.6.2 Load Credentials

20.6.2.1 Load

The MySQLDBSecretKeeper.load_secret() API deserializes and loads the credentials from the vault. You could
use this API in one of the following ways:

20.6.2.1.1 Using a with Statement

with MySQLDBSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>') as mysqldb_secret:
print(mysqldb_secret['user_name']

20.6.2.1.2 Without Using a with Statement

mysqldb_secretobj = MySQLDBSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>')
mysqldb_secret = mysqldb_secretobj.to_dict()
print(mysqldb_secret['user_name'])

The .load_secret() method has the following parameters:

• auth: Provide overriding auth information if the auth information is different from the ads.set_auth setting.

• export_env: The default is False. If set to True, the credentials are exported as environment variabled when
used with the with operator.

• export_prefix: The default name for environment variable is user_name, password, service_name. and wal-
let_location. You can add a prefix to avoid name collision.

• format: (Optional) If source is a file, then this value must be json or yaml depending on the file format.

• source: Either the file that was exported from export_vault_details, or the OCID of the secret.
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20.6.2.2 Examples

20.6.2.2.1 Using a with Statement

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.mysqldb import MySQLDBSecretKeeper

with MySQLDBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>"

) as mysqldb_creds2:
print (mysqldb_creds2["user_name"]) # Prints the user name

print (mysqldb_creds2["user_name"]) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

20.6.2.2.2 Export the Environment Variables Using a with Statement

To expose credentials as an environment variable, set export_env=True. The following keys are exported:

Secret attribute Environment Variable Name
user_name user_name
password password
host host
port port
database database

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.mysqldb import MySQLDBSecretKeeper

with MySQLDBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
export_env=True

):
print(os.environ.get("user_name")) # Prints the user name

print(os.environ.get("user_name")) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

You can avoid name collisions by setting a prefix string using export_prefix along with export_env=True. For
example, if you set prefix as myprocess, then the exported keys are:

Secret attribute Environment Variable Name
user_name myprocess.user_name
password myprocess.password
host myprocess.host
port myprocess.port
database myprocess.database
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import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.mysqldb import MySQLDBSecretKeeper

with MySQLDBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
export_env=True,
export_prefix="myprocess"

):
print(os.environ.get("myprocess.user_name")) # Prints the user name

print(os.environ.get("myprocess.user_name")) # Prints nothing. The credentials are␣
→˓cleared from the dictionary outside the ``with`` block

20.7 Oracle Database

To connect to an Oracle Database you need the following:

• hostname

• password

• port. Default is 1521

• service name or sid

• user name

The OracleDBSecretKeeper class saves the Oracle Database credentials to the OCI Vault service.

20.7.1 Save Credentials

20.7.1.1 OracleDBSecretKeeper

The OracleDBSecretKeeper constructor has the following parameters:

• compartment_id (str): OCID of the compartment where the vault is located. This defaults to the compartment
of the notebook session when used in a Data Science notebook session.

• dsn (str, optional): The DSN string if available.

• host (str): The hostname of the database.

• key_id (str): OCID of the master key used for encrypting the secret.

• password (str): The password of the database.

• port (str, optional). Default 1521. Port number of the database service.

• service_name (str, optional): The service name of the database.

• sid (str, optional): The SID of the database if the service name is not available.

• user_name (str): The user name to be stored.

• vault_id (str): OCID of the vault.
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20.7.1.2 Save

The OracleDBSecretKeeper.save() API serializes and stores the credentials to Vault using the following parame-
ters:

• defined_tags (dict, optional): Save the tags under predefined tags in the OCI Console.

• description (str): Description of the secret when saved in the vault.

• freeform_tags (dict, optional): Freeform tags to use when saving the secret in the OCI Console.

• name (str): Name of the secret when saved in the vault.

The secret has the following information:

• dsn

• host

• password

• port

• service_name

• sid

• user_name

20.7.1.3 Examples

20.7.1.3.1 Save Credentials

import ads
from ads.secrets.oracledb import OracleDBSecretKeeper

vault_id = "ocid1.vault..<unique_ID>"
key_id = "ocid1.key..<unique_ID>"

ads.set_auth("resource_principal") # If using resource principal for authentication
connection_parameters={

"user_name":"<your user name>",
"password":"<your password>",
"service_name":"service_name",
"host":"<db host>",
"port":"<db port>",

}

oracledb_keeper = OracleDBSecretKeeper(vault_id=vault_id,
key_id=key_id,
**connection_parameters)

oracledb_keeper.save("oracledb_employee", "My DB credentials", freeform_tags={"schema":
→˓"emp"})
print(oracledb_keeper.secret_id) # Prints the secret_id of the stored credentials

'ocid1.vaultsecret..<unique_ID>'
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You can save the vault details in a file for later reference or using it within your code using export_vault_details
API calls. The API currently enables you to export the information as a YAML file or a JSON file.

oracledb_keeper.export_vault_details("my_db_vault_info.json", format="json")

20.7.1.3.2 Save as a YAML File

oracledb_keeper.export_vault_details("my_db_vault_info.yaml", format="yaml")

20.7.2 Load Credentials

20.7.2.1 Load

The OracleDBSecretKeeper.load_secret() API deserializes and loads the credentials from the vault. You could
use this API in one of the following ways:

20.7.2.1.1 Using a with Statement

with OracleDBSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>') as oracledb_
→˓secret:

print(oracledb_secret['user_name']

20.7.2.1.2 Without using a with Statement

oracledb_secretobj = OracleDBSecretKeeper.load_secret('ocid1.vaultsecret..<unique_ID>')
oracledb_secret = oracledb_secretobj.to_dict()
print(oracledb_secret['user_name'])

The .load_secret() method has the following parameters:

• auth: Provide overriding authorization information if the authorization information is different from the ads.
set_auth setting.

• export_env: Default is False. If set to True, the credentials are exported as environment variable when used
with the with operator.

• export_prefix: The default name for environment variable is user_name, password, service_name, and wal-
let_location. You can add a prefix to avoid name collision.

• format: Optional. If source is a file, then this value must be json or yaml depending on the file format.

• source: Either the file that was exported from export_vault_details or the OCID of the secret
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20.7.2.2 Examples

20.7.2.2.1 Using a with Statement

import ads
ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>"

) as oracledb_creds2:
print (oracledb_creds2["user_name"]) # Prints the user name

print (oracledb_creds2["user_name"]) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

20.7.2.2.2 Export the Environment Variable Using a with Statement

To expose credentials as an environment variable, set export_env=True. The following keys are exported:

Secret attribute Environment Variable Name
user_name user_name
password password
host host
port port
service user_name service_name
sid sid
dsn dsn

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
export_env=True

):
print(os.environ.get("user_name")) # Prints the user name

print(os.environ.get("user_name")) # Prints nothing. The credentials are cleared from␣
→˓the dictionary outside the ``with`` block

You can avoid name collisions by setting a prefix string using export_prefix along with export_env=True. For
example, if you set prefix as myprocess, then the exported keys are:
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Secret attribute Environment Variable Name
user_name myprocess.user_name
password myprocess.password
host myprocess.host
port myprocess.port
service user_name myprocess.service_name
sid myprocess.sid
dsn myprocess.dsn

import os
import ads

ads.set_auth('resource_principal') # If using resource principal authentication
from ads.secrets.oracledb import OracleDBSecretKeeper

with OracleDBSecretKeeper.load_secret(
"ocid1.vaultsecret..<unique_ID>",
export_env=True,
export_prefix="myprocess"

):
print(os.environ.get("myprocess.user_name")) # Prints the user name

print(os.environ.get("myprocess.user_name")) # Prints nothing. The credentials are␣
→˓cleared from the dictionary outside the ``with`` block
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TWENTYONE

NLP

21.1 Overview

Text analytics uses a set of powerful tools to understand the content of unstructured data, such as text. It’s becoming an
increasingly more important tool in feature engineering as product reviews, media content, research papers, and more
are being mined for their content. In many data science areas, such as marketing analytics, the use of unstructured
text is becoming as popular as structured data. This is largely due to the relatively low cost of collection of the data.
However, the downside is the complexity of working with the data. To work with unstructured that you need to clean,
summarize, and create features from it before you create a model. The ADSString class provides tools that allow you
to quickly do this work. More importantly, you can expand the tool to meet your specific needs.

Data scientists need to be able to quickly and easily manipulate strings. ADS SDK provides an enhanced string class,
called ADSString. It adds functionality like regular expression (RegEx) matching and natural language processing
(NLP) parsing. The class can be expanded by registering custom plugins so that you can process a string in a way that
it fits your specific needs. For example, you can register the OCI Language service plugin to bind functionalities from
the OCI Language service to ADSString.

21.2 Quick Start

21.2.1 NLP Parse

The following example parses a text corpus using the NTLK and spaCy engines.

from ads.feature_engineering.adsstring.string import ADSString

s = ADSString("""
Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.
""".strip())

# NLTK
ADSString.nlp_backend("nltk")

(continues on next page)
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(continued from previous page)

noun = s.noun
adj = s.adjective
pos = s.pos # Parts of Speech

# spaCy
ADSString.nlp_backend("spacy")
noun = s.noun
adj = adjective
pos = s.pos # Parts of Speech

21.2.2 Plugin

21.2.2.1 Custom Plugin

This example demonstrates how to create a custom plugin that will take a string, detect the credit card numbers, and
return a list of the last four digits of the credit card number.

from ads.feature_engineering.adsstring.string import ADSString

class CreditCardLast4:
@property
def credit_card_last_4(self):

return [x[len(x)-4:len(x)] for x in ADSString(self.string).credit_card]

ADSString.plugin_register(CreditCardLast4)

creditcard_numbers = "I purchased the gift on this card 4532640527811543 and the dinner␣
→˓on 340984902710890"
s = ADSString(creditcard_numbers)
s.credit_card_last_4

21.2.2.2 OCI Language Services Plugin

This example uses the OCI Language service to perform an aspect-based sentiment analysis, language detection, key
phrase extraction, and a named entity recognition.

from ads.feature_engineering.adsstring.oci_language import OCILanguage
from ads.feature_engineering.adsstring.string import ADSString

ADSString.plugin_register(OCILanguage)

s = ADSString("""
Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.

(continues on next page)
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(continued from previous page)

""".strip())

# Aspect-Based Sentiment Analysis
df_sentiment = s.absa

# Key Phrase Extraction
key_phrase = s.key_phrase

# Language Detection
language = s.language_dominant

# Named Entity Recognition
named_entity = s.ner

# Text Classification
classification = s.text_classification

21.2.3 RegEx Match

In this example, the dates and prices are extracted from the text using regular expression matching.

from ads.feature_engineering.adsstring.string import ADSString

s = ADSString("""
Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.

""".strip())

dates = s.date
prices = s.price

21.3 NLP Parse

ADSString also supports NLP parsing and is backed by Natural Language Toolkit (NLTK) or spaCy. Unless otherwise
specified, NLTK is used by default. You can extract properties, such as nouns, adjectives, word counts, parts of speech
tags, and so on from text with NLP.

The ADSString class can have one backend enabled at a time. What properties are available depends on the backend,
as do the results of calling the property. The following examples provide an overview of the available parsers, and how
to use them. Generally, the parser supports the adjective, adverb, bigram, noun, pos, sentence, trigram, verb,
word, and word_count base properties. Parsers can support additional parsers.
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21.3.1 NLTK

The Natural Language Toolkit (NLTK) is a powerful platform for processing human language data. It supports all
the base properties and in addition stem and token. The stem property returns a list of all the stemmed tokens. It
reduces a token to its word stem that affixes to suffixes and prefixes, or to the roots of words that is the lemma. The
token property is similar to the word property, except it returns non-alphanumeric tokens and doesn’t force tokens to
be lowercase.

The following example use a sample of text about Larry Ellison to demonstrate the use of the NLTK properties.

test_text = """
Lawrence Joseph Ellison (born August 17, 1944) is an American business␣

→˓magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he␣

→˓was
listed by Forbes magazine as the fourth-wealthiest person in the United␣

→˓States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.

""".strip()
ADSString.nlp_backend("nltk")
s = ADSString(test_text)

s.noun[1:5]

['Joseph', 'Ellison', 'August', 'business']

s.adjective

['American', 'chief', 'fourth-wealthiest', 'largest', 'Hawaiian']

s.word[1:5]

['joseph', 'ellison', 'born', 'august']

By taking the difference between token and word, the token set contains non-alphanumeric tokes, and also the upper-
case version of words.

list(set(s.token) - set(s.word))[1:5]

['Oracle', '1944', '41st', 'fourth-wealthiest']

The stem property takes the list of words and stems them. It produces morphological variations of a word’s root form.
The following example stems some words, and shows some of the stemmed words that were changed.

list(set(s.stem) - set(s.word))[1:5]

['fortun', 'technolog', 'increas', 'popul']
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21.3.1.1 Part of Speech Tags

Part of speech (POS) is a category in which a word is assigned based on its syntactic function. POS depends on
the language. For English, the most common POS are adjective, adverb, conjunction, determiner, interjection, noun,
preposition, pronoun, and verb. However, each POS system has its own set of POS tags that vary based on their
respective training set. The NLTK parsers produce the following POS tags:

Table 1: Parts of Speech Tags
CC: coordinating conjunction CD: cardinal digit
DT: determiner EX: existential there; like “there is”; “there exists”
FW: foreign word IN: preposition/subordinating conjunction
JJ: adjective; “big” JJR: adjective, comparative; “bigger”
JJS: adjective, superlative; “biggest” LS: list marker 1)
MD: modal could, will NN: noun, singular; “desk”
NNS: noun plural; “desks” NNP: proper noun, singular; “Harrison”
NNPS: proper noun, plural; “Americans” PDT: predeterminer; “all the kids”
POS: possessive ending; “parent’s” PRP: personal pronoun; I, he, she
PRP$: possessive pronoun; my, his, hers RB: adverb; very, silently
RBR: adverb; comparative better RBS: adverb; superlative best
RP: particle; give up TO: to go; “to” the store.
UH: interjection; errrrrrrrm VB: verb, base form; take
VBD: verb, past tense; took VBG: verb, gerund/present participle; taking
VBN: verb, past participle; taken VBP: verb, singular present; non-3d take
VBZ: verb, 3rd person singular present; takes WDT: wh-determiner; which
WP: wh-pronoun; who, what WP$: possessive wh-pronoun; whose
WRB: wh-adverb; where, when

s.pos[1:5]

21.3.2 spaCy

spaCy is in an advanced NLP toolkit. It helps you understand what the words mean in context, and who is doing what
to whom. It helps you determine what companies and products are mentioned in a document. The spaCy backend is
used to parses the adjective, adverb, bigram, noun, pos, sentence, trigram, verb, word, and word_count base
properties. It also supports the following additional properties:

• entity: All entities in the text.

• entity_artwork: The titles of books, songs, and so on.

• entity_location: Locations, facilities, and geopolitical entities, such as countries, cities, and states.
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• entity_organization: Companies, agencies, and institutions.

• entity_person: Fictional and real people.

• entity_product: Product names and so on.

• lemmas: A rule-based estimation of the roots of a word.

• tokens: The base tokens of the tokenization process. This is similar to word, but it includes non-alphanumeric
values and the word case is preserved.

If the spacy module is installed ,you can change the NLP backend using the ADSString.nlp_backend('spacy')
command.

ADSString.nlp_backend("spacy")
s = ADSString(test_text)

s.noun[1:5]

['magnate', 'investor', 'philanthropist', 'co']

s.adjective

['American', 'executive', 'chief', 'fourth', 'wealthiest', 'largest']

s.word[1:5]

['Joseph', 'Ellison', 'born', 'August']

You can identify all the locations that are mentioned in the text.

s.entity_location

['the United States', 'the Hawaiian Islands']

Also, the organizations that were mentioned.

s.entity_organization

['CTO', 'Oracle Corporation', 'Forbes', 'Lanai']

21.3.2.1 Part of Speech Tags

The POS tagger in spaCy uses a smaller number of categories. For example, spaCy has the ADJ POS for all adjectives,
while NLTK has JJ to mean an adjective. JJR refers to a comparative adjective, and JJS refers to a superlative adjective.
For fine grain analysis of different parts of speech, NLTK is the preferred backend. However, spaCy’s reduced category
set tends to produce fewer errors,at the cost of not being as specific.

The spaCy parsers produce the following POS tags:

• ADJ: adjective; big, old, green, incomprehensible, first

• ADP: adposition; in, to, during

• ADV: adverb; very, tomorrow, down, where, there
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• AUX: auxiliary; is, has (done), will (do), should (do)

• CONJ: conjunction; and, or, but

• CCONJ: coordinating conjunction; and, or, but

• DET: determiner; a, an, the

• INTJ: interjection; psst, ouch, bravo, hello

• NOUN: noun; girl, cat, tree, air, beauty

• NUM: numeral; 1, 2017, one, seventy-seven, IV, MMXIV

• PART: particle; ’s, not,

• PRON: pronoun; I, you, he, she, myself, themselves, somebody

• PROPN: proper noun; Mary, John, London, NATO, HBO

• PUNCT: punctuation; ., (, ), ?

• SCONJ: subordinating conjunction; if, while, that

• SYM: symbol; $, %, §, ©, +, , ×, ÷, =, :),

• VERB: verb; run, runs, running, eat, ate, eating

• X: other; sfpksdpsxmsa

• SPACE: space

s.pos[1:5]

21.4 Plugin

One of the most powerful features of ADSString is that you can expand and customize it. The .plugin_register()
method allows you to add properties to the ADSString class. These plugins can be provided by third-party providers
or developed by you. This section demonstrates how to connect the to the OCI Language service, and how to create a
custom plugin.
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21.4.1 Custom Plugin

You can bind additional properties to ADSString using custom plugins. This allows you to create custom text pro-
cessing extensions. A plugin has access to the self.string property in ADSString class. You can define functions
that perform a transformation on the text in the object. All functions defined in a plugin are bound to ADSString and
accessible across all objects of that class.

Assume that your text is "I purchased the gift on this card 4532640527811543 and the dinner on
340984902710890" and you want to know what credit cards were used. The .credit_card property returns the
entire credit card number. However, for privacy reasons you don’t what the entire credit card number, but the last four
digits.

To solve this problem, you can create the class CreditCardLast4 and use the self.string property in ADSString
to access the text associated with the object. It then calls the .credit_card method to get the credit card numbers.
Then it parses this to return the last four characters in each credit card.

The first step is to define the class that you want to bind to ADSString. Use the @property decorator and define a
property function. This function only takes self. The self.string is accessible with the text that is defined for a
given object. The property returns a list.

class CreditCardLast4:
@property
def credit_card_last_4(self):

return [x[len(x)-4:len(x)] for x in ADSString(self.string).credit_card]

After the class is defined, it must be registered with ADSString using the .register_plugin() method.

ADSString.plugin_register(CreditCardLast4)

Take the text and make it an ADSString object, and call the .credit_card_last_4 property to obtain the last four
digits of the credit cards that were used.

creditcard_numbers = "I purchased the gift on this card 4532640527811543 and the dinner␣
→˓on 340984902710890"
s = ADSString(creditcard_numbers)
s.credit_card_last_4

['1543', '0890']

21.4.2 OCI Language Services

The OCI Language service provides pretrained models that provide sophisticated text analysis at scale.

The Language service contains these pretrained language processing capabilities:

• Aspect-Based Sentiment Analysis: Identifies aspects from the given text and classifies each into positive,
negative, or neutral polarity.

• Key Phrase Extraction: Extracts an important set of phrases from a block of text.

• Language Detection: Detects languages based on the given text, and includes a confidence score.

• Named Entity Recognition: Identifies common entities, people, places, locations, email, and so on.

• Text Classification: Identifies the document category and subcategory that the text belongs to.

Those are accessible in ADS using the OCILanguage plugin.
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ADSString.plugin_register(OCILanguage)

21.4.2.1 Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis can be used to gauge the mood or the tone of the text.

The aspect-based sentiment analysis (ABSA) supports fine-grained sentiment analysis by extracting the individual
aspects in the input document. For example, a restaurant review “The driver was really friendly, but the taxi was falling
apart.” contains positive sentiment toward the taxi driver aspect. Also, it has a strong negative sentiment toward the
service mechanical aspect of the taxi. Classifying the overall sentiment as negative would neglect the fact that the taxi
driver was nice.

ABSA classifies each of the aspects into one of the three polarity classes, positive, negative, mixed, and neutral. With the
predicted sentiment for each aspect. It also provides a confidence score for each of the classes and their corresponding
offsets in the input. The range of the confidence score for each class is between 0 and 1, and the cumulative scores of
all the three classes sum to 1.

In the next example, the sample sentence is analyzed. The two aspects, taxi cab and driver, have their sentiments
determined. It defines the location of the aspect by giving its offset position in the text, and the length of the aspect
in characters. It also gives the text that defines the aspect along with the sentiment scores and which sentiment is
dominant.

t = ADSString("The driver was really friendly, but the taxi was falling apart.")
t.absa

21.4.2.2 Key Phrase Extraction

Key phrase (KP) extraction is the process of extracting the words with the most relevance, and expressions from the
input text. It helps summarize the content and recognizes the main topics. The KP extraction finds insights related to
the main points of the text. It understands the unstructured input text, and returns keywords and KPs. The KPs consist
of subjects and objects that are being talked about in the document. Any modifiers, like adjectives associated with these
subjects and objects, are also included in the output. Confidence scores for each key phrase that signify how confident
the algorithm is that the identified phrase is a KP. Confidence scores are a value from 0 to 1.

The following example determines the key phrases and the importance of these phrases in the text (which is the value
of test_text):

Lawrence Joseph Ellison (born August 17, 1944) is an American business magnate,
investor, and philanthropist who is a co-founder, the executive chairman and
chief technology officer (CTO) of Oracle Corporation. As of October 2019, he was
listed by Forbes magazine as the fourth-wealthiest person in the United States
and as the sixth-wealthiest in the world, with a fortune of $69.1 billion,
increased from $54.5 billion in 2018.[4] He is also the owner of the 41st
largest island in the United States, Lanai in the Hawaiian Islands with a
population of just over 3000.
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s = ADSString(test_text)
s.key_phrase
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21.4.2.3 Language Detection

The language detection tool identifies which natural language the input text is in. If the document contains more
than one language, the results may not be what you expect. Language detection can help make customer support
interactions more personable and quicker. Customer service chatbots can interact with customers based on the language
of their input text and respond accordingly. If a customer needs help with a product, the chatbot server can field the
corresponding language product manual, or transfer it to a call center for the specific language.

The following is a list of some of the supported languages:

Table 2: Supported Languages
Afrikaans Albanian Arabic Armenian Azerbaijani Basque
Belaru-
sian

Bengali Bosnian Bulgarian Burmese Cantonese

Catalan Cebuano Chinese Croatian Czech Danish
Dutch Eastern Pun-

jabi
Egyptian
Arabic

English Esperanto Estonian

Finnish French Georgian German Greek Hebrew
Hindi Hungarian Icelandic Indonesian Irish Italian
Japanese Javanese Kannada Kazakh Korean Kurdish (So-

rani)
Latin Latvian Lithuanian Macedonian Malay Malayalam
Marathi Minangkabau Nepali Norwegian (Bok-

mal)
Norwegian
(Nynorsk)

Persian

Polish Portuguese Romanian Russian Serbian Serbo-Croatian
Slovak Slovene Spanish Swahili Swedish Tagalog
Tamil Telugu Thai Turkish Ukrainian Urdu
Uzbek Vietnamese Welsh

The next example determines the language of the text, the ISO 639-1 language code, and a probability score.

s.language_dominant

21.4.2.4 Named Entity Recognition

Named entity recognition (NER) detects named entities in text. The NER model uses NLP, which uses machine learning
to find predefined named entities. This model also provides a confidence score for each entity and is a value from 0 to
1. The returned data is the text of the entity, its position in the document, and its length. It also identifies the type of
entity, a probability score that it is an entity of the stated type.

The following are the supported entity types:

• DATE: Absolute or relative dates, periods, and date range.

• EMAIL: Email address.

• EVENT: Named hurricanes, sports events, and so on.

• FAC: Facilities; Buildings, airports, highways, bridges, and so on.
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• GPE: Geopolitical entity; Countries, cities, and states.

• IPADDRESS: IP address according to IPv4 and IPv6 standards.

• LANGUAGE: Any named language.

• LOCATION: Non-GPE locations, mountain ranges, and bodies of water.

• MONEY: Monetary values, including the unit.

• NORP: Nationalities, religious, and political groups.

• ORG: Organization; Companies, agencies, institutions, and so on.

• PERCENT: Percentage.

• PERSON: People, including fictional characters.

• PHONE_NUMBER: Supported phone numbers.

– (“GB”) - United Kingdom

– (“AU”) - Australia

– (“NZ”) - New Zealand

– (“SG”) - Singapore

– (“IN”) - India

– (“US”) - United States

• PRODUCT: Vehicles, tools, foods, and so on (not services).

• QUANTITY: Measurements, as weight or distance.

• TIME: Anything less than 24 hours (time, duration, and so on).

• URL: URL

The following example lists the named entities:

s.ner

The output gives the named entity, its location, and offset position in the text. It also gives a probability and score that
this text is actually a named entity along with the type.
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21.4.2.5 Text Classification

Text classification analyses the text and identifies categories for the content with a confidence score. Text classification
uses NLP techniques to find insights from textual data. It returns a category from a set of predefined categories. This
text classification uses NLP and relies on the main objective lies on zero-shot learning. It classifies text with no or
minimal data to train. The content of a collection of documents is analyzed to determine common themes.

The next example classifies the text and gives a probability score that the text is in that category.

s.text_classification
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21.5 RegEx Match

Text documents are often parsed looking for specific patterns to extract information like emails, dates, times, web links,
and so on. This pattern matching is often done using RegEx, which is hard to write, modify, and understand. Custom
written RegEx often misses the edge cases. ADSString provides a number of common RegEx patterns so that your
work is simplified. You can use the following patterns:

• credit_card: Credit card number.

• dates: Dates in a variety of standard formats.

• email: Email address.

• ip: IP addresses, versions IPV4 and IPV6.

• link: Text that appears to be a link to a website.

• phone_number_US: USA phone numbers including those with extensions.

• price: Text that appears to be a price.

• ssn: USA social security number.

• street_address: Street address.

• time: Text that appears to be a time and less than 24 hours.

• zip_code: USA zip code.

The preceding ADSString properties return an array with each pattern that in matches. The following examples demon-
strate how to extract email addresses, dates ,and links from the text. Note that the text is extracted as is. For example,
the dates aren’t converted to a standard format. The returned value is the text as it is represented in the input text. Use
the datetime.strptime() method to convert the date to a date time stamp.

s = ADSString("Get in touch with my associates john.smith@example.com and jane.
→˓johnson@example.com to schedule")
s.email

['john.smith@example.com', 'jane.johnson@example.com']

s = ADSString("She is born on Jan. 19th, 2014 and died 2021-09-10")
s.date

['Jan. 19th, 2014', '2021-09-10']

s = ADSString("Follow the link www.oracle.com to Oracle's homepage.")
s.link

['www.oracle.com']
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21.6 Still a String

While ADSString expands your feature engineering capabilities, it can still be treated as a str object. Any standard
operation on str is preserved in ADSString. For instance, you can convert it to lowercase:

hello_world = "HELLO WORLD"
s = ADSString(hello_world)
s.lower()

'hello world'

You could split a text string.

s.split()

['HELLO', 'WORLD']

You can use all the str methods, such as the .replace() method, to replace text.

s.replace("L", "N")

'HENNO WORND'

You can perform a number of str manipulation operations, such as .lower() and .upper() to get an ADSString
object back.

isinstance(s.lower().upper(), ADSString)

True

While a new ADSString object is created with str manipulation operations, the equality operation holds.

s.lower().upper() == s

True

The equality operation even holds between ADSString objects (s) and str objects (hello_world).

s == hello_world

True
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CHAPTER

TWENTYTWO

TEXT EXTRACTION

The Accelerated Data Science (ADS) SDK provides a text extraction module. This module allows you to convert
files such as PDF, and Microsoft Word files into plain text. The data is stored in Pandas dataframes and therefore it
can easily be manipulated and saved. The text extraction module allows you to read files of various file formats, and
convert them into different formats that can be used for text manipulation. The most common DataLoader commands
are demonstrated, and some advanced features, such as defining custom backend and file processor.

import ads
import fsspec
import oci
import os
import pandas as pd
import shutil
import time
import tempfile

from ads.text_dataset.backends import Base
from ads.text_dataset.dataset import TextDatasetFactory as textfactory
from ads.text_dataset.extractor import FileProcessor, FileProcessorFactory
from ads.text_dataset.options import Options
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split

ads.set_debug_mode()
ads.set_auth("resource_principal")

22.1 Introduction

Text extraction is the process of extracting text from one document and converting it into another form, typically plain
text. For example, you can extract the body of text from a PDF document that has figures, tables, images, and text.
The process can also be used to extract metadata about the document. Generally, text extraction takes a corpus of
documents and returns the extracted text in a structured format. In the ADS text extraction module, that format is a
Pandas dataframe.

The Pandas dataframe has a record in each row. That record can be an entire document, a sentence, a line of text, or
some other unit of text. In the examples, you explore using a row to indicate a line of text and an entire document.

The ADS text extraction module supports:

• Input formats: text, pdf and docx or doc.
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• Output formats: Use pandas for Pandas dataframe, or cudf for a cuDF dataframe.

• Backends: Apache Tika (default) and pdfplumber (for PDF).

• Source location: local block volume, and in cloud storage such as the Oracle Cloud Infrastructure (OCI) Object
Storage.

• Options to extract metadata.

You can manipulate files through the DataLoader object. Some of the most common commands are:

• .convert_to_text(): Convert document to text and then save them as plain text files.

• .metadata_all() and .metadata_schema(): Extract metadata from each file.

• .read_line(): Read files line-by-line. Each line corresponds to a record in the corpus.

• .read_text(): Read files where each file corresponds to a record in the corpus.

22.1.1 Configure the Data Source

The OCI Data Science service has a corpus of text documents that are used in the examples. This corpus is stored in a
publicly accessible OCI Object Storage bucket. The following variables define the Object Storage namespace and the
bucket name. You can update these variables to point at your Object Storage bucket, but you might also have to change
some of the code in the examples so that the keys are correct.

namespace = 'bigdatadatasciencelarge'
bucket = 'hosted-ds-datasets'

22.2 Load

The TextDatasetFactory, which is aliased to textfactory in this notebook, provides access to the DataLoader,
and FileProcessor objects. The DataLoader is a file format-specific object for reading in documents such as PDF
and Word documents. Internally, a data loader binds together a file system interface (in this case fsspec) for opening
files. The FileProcessor object is used to convert these files into plain text. It also has an engine object to control
the output format. For a given DataLoader object, you can customize both the FileProcessor and engine.

Generally, the first step in reading a corpus of documents is to obtain a DataLoader object. For example,
TextDatasetFactory.format('pdf') returns a DataLoader for PDFs. Likewise, you can get a Word document
loaders by passing in docx or doc. You can choose an engine that controls how the data is returned. The default
engine is a Python generator. If you want to use the data as a dataframe, then use the .engine() method. A call to
.engine('pandas') returns the data as a Pandas dataframe. On a GPU machine, you can use cuDF dataframes with
a call to .engine('cudf').

The .format() method controls the backend with Apache Tika and pdfplumber being builtin. In addition, you can
write your own backend and plug it into the system. This allows you complete control over the backend. The file
processor is used to actually process a specific file format.

To obtain a DataLoader object, call the use the .format() method on textfactory. This returns a DataLoader
object that can then be configured with the .backend(), .engine(), and .options() methods. The .backend()
method is used to define which backend is to manage the process of parsing the corpus. If this is not specified then a
sensible default backend is chosen based on the file format that is being processed. The .engine() method is used
to control the output format of the data. If it is not specified, then an iterator is returned. The .options() method is
used to add extra fields to each record. These would be things such as the filename, or metadata about the file. There
are more details about this and the other configuration methods in the examples.
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22.2.1 Read a Dataset

In this example you create a DataLoader object by calling textfactory.format('pdf'). This DataLoader
object is configured to read PDF documents. You then change the backend to use pdfplumber with the method
.backend('pdfplumber'). It’s easier to work with the results if they are in a dataframe. So, the method .
engine('pandas') returns a Pandas dataframe.

After you have the DataLoader object configured, you process the corpus. In this example, the corpus is a single PDF
file. It is read from a publicly accessible OCI Object Storage bucket. The .read_line() method is used to read in
the corpus where each line of the document is treated as a record. Thus, each row in the returned dataframe is a line of
text from the corpus.

dl = textfactory.format('pdf').backend('pdfplumber').engine('pandas')
df = dl.read_line(

f'oci://{bucket}@{namespace}/pdf_sample/paper-0.pdf',
storage_options={"config": {}},

)
df.head()

22.2.2 Read Options

Typically, you want to treat each line of a document or each document as a record. The method .read_line()
processes a corpus, and return each line in the documents as a text string. The method .read_text() treats each
document in the corpus as a record.

Both the .read_line() and .read_text() methods parse the corpus, convert it to text ,and reads it into memory.
The .convert_to_text() method does the same processing as .read_text(), but it outputs the plain text to files.
This allows you to post-process the data without having to again convert the raw documents into plain text documents,
which can be an expensive process.

Each document can have a custom set of metadata that describes the document. The .metadata_all() and .
metadata_schema() methods allow you to access this metadata. Metadata is represented as a key-value pair. The
.metadata_all() returns a set of key-value pairs for each document. The .metadata_schema() returns what keys
are used in defining the metadata. This can vary from document to document and this method creates a list of all
observed keys. You use this to understand what metadata is available in the corpus.
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22.2.2.1 .read_line()

The .read_line() method allows you to read a corpus line-by-line. In other words, each line in a file corresponds to
one record. The only required argument to this method is path. It sets the path to the corpus, and it can contain a glob
pattern. For example, oci://{bucket}@{namespace}/pdf_sample/**.pdf, 'oci://{bucket}@{namespace}/
20news-small/**/[1-9]*', or /home/datascience/<path-to-folder>/[A-Za-z]*.docx are all valid paths
that contain a glob pattern for selecting multiple files. The path parameter can also be a list of paths. This allows for
reading files from different file paths.

The optional parameter udf stands for a user-defined function. This parameter can be a callable Python object, or a
regular expression (RegEx). If it is a callable Python object, then the function must accept a string as an argument and
returns a tuple. If the parameter is a RegEx, then the returned values are the captured RegEx patterns. If there is no
match, then the record is ignored. This is a convenient method to selectively capture text from a corpus. In either case,
the udf is applied on the record level, and is a powerful tool for data transformation and filtering.

The .read_line() method has the following arguments:

• df_args: Arguments to pass to the engine. It only applies to Pandas and cuDF dataframes.

• n_lines_per_file: Maximal number of lines to read from a single file.

• path: The path to the corpus.

• storage_options: Options that are necessary for connecting to OCI Object Storage.

• total_lines: Maximal number of lines to read from all files.

• udf: User-defined function for data transformation and filtering.

22.2.2.1.1 Examples

Python Callable udf

In the next example, a lambda function is used to create a Python callable object that is passed to the udf parameter.
The lambda function takes a line and splits it based on white space to tokens. It then counts the number of tokens ,and
returns a tuple where the first element is the token count and the second element is the line itself.

The df_args parameter is used to change the column names into user-friendly values.

dl = textfactory.format('docx').engine('pandas')
df = dl.read_line(

path=f'oci://{bucket}@{namespace}/docx_sample/*.docx',
udf=lambda x: (len(x.strip().split()), x),
storage_options={"config": {}},
df_args={'columns': ['token count', 'text']},

)
df.head()

506 Chapter 22. Text Extraction



ADS Documentation, Release 2.6.4

Regular Expression udf

In this example, the corpus is a collection of log files. A RegEx is used to parse the standard Apache log format. If a
line does not match the pattern, it is discarded. If it does match the pattern, then a tuple is returned where each element
is a value in the RegEx capture group.

This example uses the default engine, which returns an iterator. The next() method is used to iterate through the
values.

APACHE_LOG_PATTERN = r'^\[(\S+)\s(\S+)\s(\d+)\s(\d+\:\d+\:\d+)\s(\d+)]\s(\S+)\s(\S+)\s(\
→˓S+)\s(\S+)'
dl = textfactory.format('txt')
df = dl.read_line(

f'oci://{bucket}@{namespace}/log_sample/*.log',
udf=APACHE_LOG_PATTERN,
storage_options={"config": {}},

)
next(df)

['Sun',
'Dec',
'04',
'04:47:44',
'2005',
'[notice]',
'workerEnv.init()',
'ok',
'/etc/httpd/conf/workers2.properties']

22.2.2.2 .read_text()

It you want to treat each document in a corpus as a record, use the .read_text() method. The path parameter is the
only required parameter as it defines the location of the corpus.

The optional udf parameter stands for a user-defined function. This parameter can be a callable Python object or a
RegEx.

The .read_text() method has the following arguments:

• df_args: Arguments to pass to the engine. It only applies to Pandas and cuDF dataframes.
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• path: The path to the corpus.

• storage_options: Options that are necessary for connecting to OCI Object Storage.

• total_files: The maximum number of files that should be processed.

• udf: User-defined function for data transformation and filtering.

22.2.2.2.1 Examples

total_files

In this example, the are six files in the corpus. However, the total_files parameter is set to 4 so only the first four
files are processed. There is no guarantee which four will actually be processed. However, this parameter is commonly
used to limit the size of the data when you are developing the code for the model. Later on, it is often removed so the
entire corpus is processed.

This example also demonstrates the use of a list, plus globbing, to define the corpus. Notice that the path parameter is
a list with two file paths. The output shows the dataframe has four rows and so only four files were processed.

dl = textfactory.format('docx').engine('pandas')
df = dl.read_text(

path=[f'oci://{bucket}@{namespace}/docx_sample/*.docx', f'oci://{bucket}@{namespace}/
→˓docx_sample/*.doc'],

total_files=4,
storage_options={"config": {}},

)
df.shape

(4, 1)

.convert_to_text()

Converting a set of raw documents can be an expensive process. The .convert_to_text() method allows you to
convert a corpus of source document,s and write them out as plain text files. Each document input document is written
to a separate file that has the same name as the source file. However, the file extension is changed to .txt. Converting
the raw documents allows you to post-process the raw text multiple times while only have to convert it once.

The src_path parameter defines the location of the corpus. The dst_path parameter gives the location where the
plain text files are to be written. It can be an Object Storage bucket or the local block storage. If the directory does not
exist, it is created. It overwrites any files in the directory.

The .convert_to_text() method has the following arguments:

• dst_path: Object Storage or local block storage path where plain text files are written.

• encoding: Encoding for files. The default is utf-8.

• src_path: The path to the corpus.

• storage_options: Options that are necessary for connecting to Object Storage.

The following example converts a corpus ,and writes it to a temporary directory. It then lists all the plain text files that
were created in the conversion process.
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dst_path = tempfile.mkdtemp()
dl = textfactory.format('pdf')
dl.convert_to_text(

src_path=f'oci://{bucket}@{namespace}/pdf_sample/*.pdf',
dst_path=dst_path,
storage_options={"config": {}},

)
print(os.listdir(dst_path))
shutil.rmtree(dst_path)

['paper-2.txt', 'paper-0.txt', 'Emerging Infectious Diseases copyright info.txt',
→˓'Preventing Chronic Disease Copyright License.txt', 'Budapest Open Access Initiative _␣
→˓Budapest Open Access Initiative.txt', 'paper-1.txt']

Each document can contain metadata. The purpose of the .metadata_all() method is to capture this information
for each document in the corpus. There is no standard set of metadata across all documents so each document could
return different set of values.

The path parameter is the only required parameter as it defines the location of the corpus.

The .metadata_all() method has the following arguments:

• encoding: Encoding for files. The default is utf-8.

• path: The path to the corpus.

• storage_options: Options that are necessary for connecting to Object Storage.

The next example processes a corpus of PDF documents using pdfplumber, and prints the metadata for the first
document.

dl = textfactory.format('pdf').backend('pdfplumber').option(Options.FILE_NAME)
metadata = dl.metadata_all(

path=f'oci://{bucket}@{namespace}/pdf_sample/Emerging Infectious Diseases copyright␣
→˓info.pdf',

storage_options={"config": {}}
)
next(metadata)

{'Creator': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML,␣
→˓like Gecko) Chrome/91.0.4472.114 Safari/537.36',
'Producer': 'Skia/PDF m91',
'CreationDate': "D:20210802234012+00'00'",
'ModDate': "D:20210802234012+00'00'"}

The backend that is used can affect what metadata is returned. For example, the Tika backend returns more metadata
than pdfplumber, and also the names of the metadata elements are also different. The following example processes
the same PDF document as previously used, but you can see that there is a difference in the metadata.

dl = textfactory.format('pdf').backend('default')
metadata = dl.metadata_all(

path=f'oci://{bucket}@{namespace}/pdf_sample/Emerging Infectious Diseases copyright␣
→˓info.pdf',

storage_options={"config": {}}
)
next(metadata)
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{'Content-Type': 'application/pdf',
'Creation-Date': '2021-08-02T23:40:12Z',
'Last-Modified': '2021-08-02T23:40:12Z',
'Last-Save-Date': '2021-08-02T23:40:12Z',
'X-Parsed-By': ['org.apache.tika.parser.DefaultParser',
'org.apache.tika.parser.pdf.PDFParser'],
'access_permission:assemble_document': 'true',
'access_permission:can_modify': 'true',
'access_permission:can_print': 'true',
'access_permission:can_print_degraded': 'true',
'access_permission:extract_content': 'true',
'access_permission:extract_for_accessibility': 'true',
'access_permission:fill_in_form': 'true',
'access_permission:modify_annotations': 'true',
'created': '2021-08-02T23:40:12Z',
'date': '2021-08-02T23:40:12Z',
'dc:format': 'application/pdf; version=1.4',
'dcterms:created': '2021-08-02T23:40:12Z',
'dcterms:modified': '2021-08-02T23:40:12Z',
'meta:creation-date': '2021-08-02T23:40:12Z',
'meta:save-date': '2021-08-02T23:40:12Z',
'modified': '2021-08-02T23:40:12Z',
'pdf:PDFVersion': '1.4',
'pdf:charsPerPage': '2660',
'pdf:docinfo:created': '2021-08-02T23:40:12Z',
'pdf:docinfo:creator_tool': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)␣
→˓AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
'pdf:docinfo:modified': '2021-08-02T23:40:12Z',
'pdf:docinfo:producer': 'Skia/PDF m91',
'pdf:encrypted': 'false',
'pdf:hasMarkedContent': 'true',
'pdf:hasXFA': 'false',
'pdf:hasXMP': 'false',
'pdf:unmappedUnicodeCharsPerPage': '0',
'producer': 'Skia/PDF m91',
'xmp:CreatorTool': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36␣
→˓(KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
'xmpTPg:NPages': '1'}

22.2.2.3 .metadata_schema()

As briefly discussed in the .metadata_all() method section, there is no standard set of metadata across all doc-
uments. The .metadata_schema() method is a convenience method that returns what metadata is available in the
corpus. It returns a list of all observed metadata fields in the corpus. Since each document can have a different set of
metadata, all the values returned may not exist in all documents. It should also be noted that the engine used can return
different metadata for the same document.

The path parameter is the only required parameter as it defines the location of the corpus.

Often, you don’t want to process an entire corpus of documents to get a sense of what metadata is available. Generally,
the engine returns a fairly consistent set of metadata. The n_files option is handy because it limits the number of
files that are processed.

The .metadata_schema() method has the following arguments:

510 Chapter 22. Text Extraction



ADS Documentation, Release 2.6.4

• encoding: Encoding for files. The default is utf-8.

• n_files: Maximum number of files to process. The default is 1.

• path: The path to the corpus.

• storage_options: Options that are necessary for connecting to Object Storage.

The following example uses the .metadata_schema() method to collect the metadata fields on the first two files in
the corpus. The n_files=2 parameter is used to control the number of files that are processed.

dl = textfactory.format('pdf').backend('pdfplumber')
schema =dl.metadata_schema(

f'oci://{bucket}@{namespace}/pdf_sample/*.pdf',
storage_options={"config": {}},
n_files=2

)
print(schema)

['ModDate', 'Producer', 'CreationDate', 'Creator']

22.3 Augment Records

The text_dataset module has the ability to augment the returned records with additional information using the .
option() method. This method takes an enum from the Options class. The .option() method can be used multiple
times on the same DataLoader to select a set of additional information that is returned. The Options.FILE_NAME
enum returns the filename that is associated with the record. The Options.FILE_METADATA enum allows you to
extract individual values from the document’s metadata. Notice that the engine used can return different metadata for
the same document.

22.3.1 Examples

22.3.1.1 Options.FILE_NAME

The following example uses .option(Options.FILE_NAME) to augment to add the filename of each record that is
returned. The example uses the txt for the FileProcessor, and Tika for the backend. The engine is Pandas so a
dataframe is returned. The df_args option is used to rename the columns of the dataframe. Notice that the returned
dataframe has a column named path. This is the information that was added to the record from the .option(Options.
FILE_NAME) method.

dl = textfactory.format('txt').backend('tika').engine('pandas').option(Options.FILE_NAME)
df = dl.read_text(

path=f'oci://{bucket}@{namespace}/20news-small/**/[1-9]*',
storage_options={"config": {}},
df_args={'columns': ['path', 'text']}

)
df.head()
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22.3.1.2 Options.FILE_METADATA

You can add metadata about a document to a record using .option(Options.FILE_METADATA, {'extract':
['<key1>, '<key2>']}). When using Options.FILE_METADATA, there is a required second parameter. It takes a
dictionary where the key is the action to be taken. In the next example, the extract key provides a list of metadata
that can be extracted. When a list is used, the returned value is also a list of the metadata values. The example uses
repeated calls to .option() where different metadata values are extracted. In this case, a list is not returned, but each
value is in a separate Pandas column.

dl = textfactory.format('docx').engine('pandas') \
.option(Options.FILE_METADATA, {'extract': ['Character Count']}) \
.option(Options.FILE_METADATA, {'extract': ['Paragraph-Count']}) \
.option(Options.FILE_METADATA, {'extract': ['Author']})

df = dl.read_text(
path=f'oci://{bucket}@{namespace}/docx_sample/*.docx',
storage_options={"config": {}},
df_args={'columns': ['character count', 'paragraph count', 'author', 'content']},

)
df.head()

22.4 Custom File Processor and Backend

The text_dataset module supports a number of file processors and backends. However, it isn’t practical to provide
these for all possible documents. So, the text_dataset allows you to create your own.

When creating a custom file processor, you must register it with ADS using the FileProcessorFactory.
register() method. The first parameter is the name that you want to associate with the file processor. The second
parameter is the class that is to be registered. There is no need to register the backend class.
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22.4.1 Custom Backend

To create a backend, you need to develop a class that inherits from the ads.text_dataset.backends.Base class.
In your class, you need to overload any of the following methods that you want to use with: .read_line(), .
read_text(), .convert_to_text(), and .get_metadata(). The .get_metadata() method must be overload if
you want to use the .metadata_all() and .metadata_schema() methods in your backend.

The .convert_to_text() method takes a file handler, destination path, filename, and storage options as parameters.
This method must write the plain text file to the destination path, and return the path of the file.

The .get_metadata() method takes a file handler as an input parameter, and returns a dictionary of the meta-
data. The .metadata_all() and .metadata_schema() methods don’t need to be overload because they use the
.get_metadata() method to return their results.

The .read_line() method must take a file handle, and have a yield statement that returns a plain text line from the
document.

The .read_text() method has the same requirements as the .read_line() method, except it must yield the entire
document as plain text.

The following are the method signatures:

convert_to_text(self, fhandler, dst_path, fname, storage_options)
get_metadata(self, fhandler)
read_line(self, fhandler)
read_text(self, fhandler)

22.4.2 Custom File Processor

To create a custom file processor you must develop a class that inherits from ads.text_dataset.extractor.
FileProcessor. Generally, there are no methods that need to be overloaded. However, the backend_map class
variable has to be defined. This is a dictionary where the key is the name of the format that it support,s and the value
is the file processor class. There must be a key called default that is used when no file processor is defined for the
DataLoader. An example of the backend_map is:

backend_map = {'default': MyCustomBackend, 'tika': Tika, 'custom': MyCustomBackend}

22.4.3 Example

In the next example, you create a custom backend class called ReverseBackend. It overloads the .read_line() and
.read_text() methods. This toy backend returns the records in reverse order.

The TextReverseFileProcessor class is used to create a new file processor for use with the backend. This class
has the backend_map class variable that maps the backend label to the backend object. In this case, the only format
that is provided is the default class.

Having defined the backend (TextReverseBackend) and file processor (TextReverseFileProcessor) classes,
the format must be registered. You register it with the FileProcessorFactory.register('text_reverse',
TextReverseFileProcessor) command where the first parameter is the format and the second parameter is the
file processor class.

class TextReverseBackend(Base):
def read_line(self, fhandler):

with fhandler as f:
(continues on next page)
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(continued from previous page)

for line in f:
yield line.decode()[::-1]

def read_text(self, fhandler):
with fhandler as f:

yield f.read().decode()[::-1]

class TextReverseFileProcessor(FileProcessor):
backend_map = {'default': TextReverseBackend}

FileProcessorFactory.register('text_reverse', TextReverseFileProcessor)

Having created the custom backend and file processor, you use the .read_line() method to read in one record and
print it.

dl = textfactory.format('text_reverse')
reverse_text = dl.read_line(

f'oci://{bucket}@{namespace}/20news-small/rec.sport.baseball/100521',
total_lines=1,
storage_options={"config": {}},

)
text = next(reverse_text)[0]
print(text)

)uiL C evetS( ude.uhj.fch.xinuhj@larimda :morF

The .read_line() method in the TextReverseBackend class reversed the characters in each line of text that is
processed. You can confirm this by reversing it back.

text[::-1]

'From: admiral@jhunix.hcf.jhu.edu (Steve C Liu)n'
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23.1 ads package

23.1.1 Subpackages

23.1.1.1 ads.automl package

23.1.1.1.1 Submodules

23.1.1.1.2 ads.automl.driver module

class ads.automl.driver.AutoML(training_data, validation_data=None, provider=None, baseline='dummy',
client=None)

Bases: object

Creates an Automatic machine learning object.

Parameters

• training_data (ADSData instance) –

• validation_data (ADSData instance) –

• provider (None or object of ads.automl.provider.AutoMLProvider) – If None,
the default OracleAutoMLProvider will be used to generate the model

• baseline (None, "dummy", or object of ads.common.model.ADSModel
(Default is "dummy")) –

– If None, than no baseline is created,

– If “dummy”, than the DummyClassifier or DummyRegressor are used

– If Object, than whatever estimator is provided will be used.

This estimator must include a part of its pipeline which does preprocessing to handle cate-
gorical data

• client – Dask Client to use (optional)
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Examples

>>> train, test = ds.train_test_split()
>>> olabs_automl = OracleAutoMLProvider()
>>> model, baseline = AutoML(train, provider=olabs_automl).train()

train(**kwargs)
Returns a fitted automl model and a fitted baseline model.

Parameters
kwargs (dict, optional) – kwargs passed to provider’s train method

Returns

• model (object of ads.common.model.ADSModel) – the trained automl model

• baseline (object of ads.common.model.ADSModel) – the baseline model to compare

Examples

>>> train, test = ds.train_test_split()
>>> olabs_automl = OracleAutoMLProvider()
>>> model, baseline = AutoML(train, provider=olabs_automl).train()

ads.automl.driver.get_ml_task_type(X, y, classes)
Gets the ML task type and returns it.

Parameters

• X (Dataframe) – The training dataframe

• Y (Dataframe) – The testing dataframe

• Classes (List) – a list of classes

Returns
A particular task type like REGRESSION, MULTI_CLASS_CLASSIFICATION . . .

Return type
ml_task_type

23.1.1.1.3 ads.automl.provider module

class ads.automl.provider.AutoMLFeatureSelection(msg)
Bases: object

fit(X)
Fits the baseline estimator

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted
on

Returns
Self – The fitted estimator

Return type
Estimator
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transform(X)
Runs the Baselines transform function and returns the result

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be trans-
formed

Returns
X – The transformed Dataframe.

Return type
Dataframe or list-like

class ads.automl.provider.AutoMLPreprocessingTransformer(msg)
Bases: object

fit(X)
Fits the preprocessing Transformer

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted
on

Returns
Self – The fitted estimator

Return type
Estimator

transform(X)
Runs the preprocessing transform function and returns the result

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be trans-
formed

Returns
X – The transformed Dataframe.

Return type
Dataframe or list-like

class ads.automl.provider.AutoMLProvider

Bases: ABC

Abstract Base Class defining the structure of an AutoML solution. The solution needs to implement train() and
get_transformer_pipeline().

property est

Returns the estimator.

The estimator can be a standard sklearn estimator or any object that implement methods from (BaseEsti-
mator, RegressorMixin) for regression or (BaseEstimator, ClassifierMixin) for classification.

Returns
est

Return type
An instance of estimator
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abstract get_transformer_pipeline()

Returns a list of transformers representing the transformations done on data before model prediction.

This method is optional to implement, and is used only for visualizing transformations on data using
ADSModel#visualize_transforms().

Returns
transformers_list

Return type
list of transformers implementing fit and transform

setup(X_train, y_train, ml_task_type, X_valid=None, y_valid=None, class_names=None, client=None)
Setup arguments to the AutoML instance.

Parameters

• X_train (DataFrame) – Training features

• y_train (DataFrame) – Training labels

• ml_task_type (One of ml_task_type.{REGRESSION,BINARY_CLASSIFICATION,)
– MULTI_CLASS_CLASSIFICATION,BINARY_TEXT_CLASSIFICATION,MULTI_CLASS_TEXT_CLASSIFICATION}

• X_valid (DataFrame) – Validation features

• y_valid (DataFrame) – Validation labels

• class_names (list) – Unique values in y_train

• client (object) – Dask client instance for distributed execution

abstract train(**kwargs)
Calls fit on estimator.

This method is expected to set the ‘est’ property.

Parameters

• kwargs (dict, optional) –

• method (kwargs to decide the estimator and arguments for the fit) –

class ads.automl.provider.BaselineAutoMLProvider(est)
Bases: AutoMLProvider

Generates a baseline model using the Zero Rule algorithm by default. For a classification predictive modeling
problem where a categorical value is predicted, the Zero Rule algorithm predicts the class value that has the most
observations in the training dataset.

Parameters
est (BaselineModel) – An estimator that supports the fit/predict/predict_proba interface. By
default, DummyClassifier/DummyRegressor are used as estimators

decide_estimator(**kwargs)
Decides which type of BaselineModel to generate.

Returns
Modell – A baseline model generated for the particular ML task being performed

Return type
BaselineModel
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get_transformer_pipeline()

Returns a list of transformers representing the transformations done on data before model prediction.

This method is used only for visualizing transformations on data using ADSModel#visualize_transforms().

Returns
transformers_list

Return type
list of transformers implementing fit and transform

train(**kwargs)
Calls fit on estimator.

This method is expected to set the ‘est’ property.

Parameters

• kwargs (dict, optional) –

• method (kwargs to decide the estimator and arguments for the fit) –

class ads.automl.provider.BaselineModel(est)
Bases: object

A BaselineModel object that supports fit/predict/predict_proba/transform interface. Labels (y) are encoded using
DataFrameLabelEncoder.

fit(X, y)
Fits the baseline estimator.

Parameters

• X (Dataframe or list-like) – A Dataframe or list-like object holding data to be pre-
dicted on

• Y (Dataframe, Series, or list-like) – A Dataframe, series, or list-like object hold-
ing the labels

Returns
estimator

Return type
The fitted estimator

predict(X)
Runs the Baselines predict function and returns the result.

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted
on

Returns
List

Return type
A list of predictions performed on the input data.

predict_proba(X)
Runs the Baselines predict_proba function and returns the result.

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be predicted
on
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Returns
List

Return type
A list of probabilities of being part of a class

transform(X)
Runs the Baselines transform function and returns the result.

Parameters
X (Dataframe or list-like) – A Dataframe or list-like object holding data to be trans-
formed

Returns
Dataframe or list-like

Return type
The transformed Dataframe. Currently, no transformation is performed by the default Base-
line Estimator.

class ads.automl.provider.OracleAutoMLProvider(n_jobs=-1, loglevel=None, logger_override=None,
model_n_jobs: int = 1)

Bases: AutoMLProvider, ABC

The Oracle AutoML Provider automatically provides a tuned ML pipeline that best models the given a training
dataset and a prediction task at hand.

Parameters

• n_jobs (int) – Specifies the degree of parallelism for Oracle AutoML. -1 (default) means
that AutoML will use all available cores.

• loglevel (int) – The verbosity of output for Oracle AutoML. Can be specified using the
Python logging module (https://docs.python.org/3/library/logging.html#logging-levels).

• model_n_jobs ((optional, int). Defaults to 1.) – Specifies the model paral-
lelism used by AutoML. This will be passed to the underlying model it is training.

get_transformer_pipeline()

Returns a list of transformers representing the transformations done on data before model prediction.

This method is used only for visualizing transformations on data using ADSModel#visualize_transforms().

Returns
transformers_list

Return type
list of transformers implementing fit and transform

print_summary(max_rows=None, sort_column='Mean Validation Score', ranking_table_only=False)
Prints a summary of the Oracle AutoML Pipeline in the last train() call.

Parameters

• max_rows (int) – Number of trials to print. Pass in None to print all trials

• sort_column (string) – Column to sort results by. Must be one of [‘Algorithm’, ‘#Sam-
ples’, ‘#Features’, ‘Mean Validation Score’, ‘Hyperparameters’, ‘All Validation Scores’,
‘CPU Time’]

• ranking_table_only (bool) – Table to be displayed. Pass in False to display the com-
plete table. Pass in True to display the ranking table only.
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print_trials(max_rows=None, sort_column='Mean Validation Score')
Prints all trials executed by the Oracle AutoML Pipeline in the last train() call.

Parameters

• max_rows (int) – Number of trials to print. Pass in None to print all trials

• sort_column (string) – Column to sort results by. Must be one of [‘Algorithm’, ‘#Sam-
ples’, ‘#Features’, ‘Mean Validation Score’, ‘Hyperparameters’, ‘All Validation Scores’,
‘CPU Time’]

selected_model_name()

Return the name of the selected model by AutoML.

selected_score_label()

Return the name of score_metric used in train.

train(**kwargs)
Train the Oracle AutoML Pipeline. This looks at the training data, and identifies the best set of features,
the best algorithm and the best set of hyperparameters for this data. A model is then generated, trained on
this data and returned.

Parameters

• score_metric (str, callable) – Score function (or loss function) with signature
score_func(y, y_pred, **kwargs) or string specified as https://scikit-learn.org/
stable/modules/model_evaluation.html#common-cases-predefined-values

• random_state (int) – Random seed used by AutoML

• model_list (list of str) – Models that will be evaluated by the Pipeline. Supported
models: - Classification: AdaBoostClassifier, DecisionTreeClassifier, ExtraTreesClassi-
fier, KNeighborsClassifier, LGBMClassifier, LinearSVC, LogisticRegression, Random-
ForestClassifier, SVC, XGBClassifier - Regression: AdaBoostRegressor, DecisionTreeRe-
gressor, ExtraTreesRegressor, KNeighborsRegressor, LGBMRegressor, LinearSVR, Lin-
earRegression, RandomForestRegressor, SVR, XGBRegressor

• time_budget (float, optional) – Time budget in seconds where 0 means no time
budget constraint (best effort)

• min_features (int, float, list, optional (default: 1)) – Minimum num-
ber of features to keep. Acceptable values: - If int, 0 < min_features <= n_features - If
float, 0 < min_features <= 1.0 - If list, names of features to keep, for example [‘a’, ‘b’]
means keep features ‘a’ and ‘b’

Returns
self

Return type
object

visualize_adaptive_sampling_trials()

Visualize the trials for Adaptive Sampling.

visualize_algorithm_selection_trials(ylabel=None)
Plot the scores predicted by Algorithm Selection for each algorithm. The horizontal line shows the average
score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score
higher than the mean are colored teal. The orange bar shows the algorithm with the highest predicted score.
The error bar is +/- one standard error.
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Parameters
ylabel (str,) – Label for the y-axis. Defaults to the scoring metric.

visualize_feature_selection_trials(ylabel=None)
Visualize the feature selection trials taken to arrive at optimal set of features. The orange line shows the
optimal number of features chosen by Feature Selection.

Parameters
ylabel (str,) – Label for the y-axis. Defaults to the scoring metric.

visualize_tuning_trials(ylabel=None)
Visualize (plot) the hyperparamter tuning trials taken to arrive at the optimal hyper parameters. Each trial
in the plot represents a particular hyperparamter combination.

Parameters
ylabel (str,) – Label for the y-axis. Defaults to the scoring metric.

23.1.1.1.4 Module contents

23.1.1.2 ads.catalog package

23.1.1.2.1 Submodules

23.1.1.2.2 ads.catalog.model module

class ads.catalog.model.Model(model: Model, model_etag: str, provenance_metadata: ModelProvenance,
provenance_etag: str, ds_client: DataScienceClient, identity_client:
IdentityClient)

Bases: object

Class that represents the ADS implementation of model catalog item. Converts the metadata and schema from
OCI implememtation to ADS implementation.

to_dataframe()

Converts model to dataframe format.

show_in_notebook()

Shows model in the notebook in dataframe or YAML representation.

activate()

Activates model.

deactivate()

Deactivates model.

commit()

Commits the changes made to the model.

rollback()

Rollbacks the changes made to the model.

load_model()

Loads the model from the model catalog based on model ID.

Initializes the Model.

Parameters
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• model (OCIModel) – The OCI model object.

• model_etag (str) – The model ETag.

• provenance_metadata (ModelProvenance) – The model provenance metadata.

• provenance_etag (str) – The model provenance metadata ETag.

• ds_client (DataScienceClient) – The Oracle DataScience client.

• identity_client (IdentityClient) – The Orcale Identity Service Client.

activate()→ None
Activates model.

Returns
Nothing.

Return type
None

commit(force: bool = True)→ None
Commits model changes.

Parameters
force (bool) – If True, any remote changes on this model would be lost.

Returns
Nothing.

Return type
None

deactivate()→ None
Deactivates model.

Returns
Nothing.

Return type
None

classmethod load_model(ds_client: DataScienceClient, identity_client: IdentityClient, model_id: str)→
Model

Loads the model from the model catalog based on model ID.

Parameters

• ds_client (DataScienceClient) – The Oracle DataScience client.

• identity_client (IdentityClient) – The Orcale Identity Service Client.

• model_id (str) – The model ID.

Returns
The ADS model catalog item.

Return type
Model

Raises

• ServiceError – If error occures while getting model from server.:

• KeyError – If model not found.:
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• ValueError – If error occures while getting model provenance mettadata from server.:

rollback()→ None
Rollbacks the changes made to the model.

Returns
Nothing.

Return type
None

show_in_notebook(display_format: str = 'dataframe')→ None
Shows model in dataframe or yaml format. Supported formats: dataframe and yaml. Defaults to dataframe
format.

Returns
Nothing.

Return type
None

to_dataframe()→ DataFrame
Converts the model to dataframe format.

Returns
Pandas dataframe.

Return type
panadas.DataFrame

exception ads.catalog.model.ModelArtifactSizeError(max_artifact_size: str)
Bases: Exception

class ads.catalog.model.ModelCatalog(compartment_id: Optional[str] = None, ds_client_auth:
Optional[dict] = None, identity_client_auth: Optional[dict] = None,
timeout: Optional[int] = None, ds_client:
Optional[DataScienceClient] = None, identity_client:
Optional[IdentityClient] = None)

Bases: object

Allows to list, load, update, download, upload and delete models from model catalog.

get_model(self, model_id)
Loads the model from the model catalog based on model_id.

list_models(self, project_id=None, include_deleted=False, datetime_format=utils.date_format,
\*\*kwargs)

Lists all models in a given compartment, or in the current project if project_id is specified.

list_model_deployment(self, model_id, config=None, tenant_id=None, limit=500, page=None,
\*\*kwargs)

Gets the list of model deployments by model Id across the compartments.

update_model(self, model_id, update_model_details=None, \*\*kwargs)
Updates a model with given model_id, using the provided update data.

delete_model(self, model, \*\*kwargs)
Deletes the model based on model_id.
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download_model(self, model_id, target_dir, force_overwrite=False, install_libs=False,
conflict_strategy=ConflictStrategy.IGNORE)

Downloads the model from model_dir to target_dir based on model_id.

upload_model(self, model_artifact, provenance_metadata=None, project_id=None, display_name=None,
description=None)

Uploads the model artifact to cloud storage.

Initializes model catalog instance.

Parameters

• compartment_id ((str, optional). Defaults to None.) – Model compartment
OCID. If None, the config.NB_SESSION_COMPARTMENT_OCID would be used.

• ds_client_auth ((dict, optional). Defaults to None.) – The default authet-
ication is set using ads.set_auth API. If you need to override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate DataScienceClient object.

• identity_client_auth ((dict, optional). Defaults to None.) – The default
authetication is set using ads.set_auth API. If you need to override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create appropriate
authentication signer and kwargs required to instantiate IdentityClient object.

• timeout ((int, optional). Defaults to 10 seconds.) – The connection timeout
in seconds for the client.

• ds_client (DataScienceClient) – The Oracle DataScience client.

• identity_client (IdentityClient) – The Orcale Identity Service Client.

Raises

• ValueError – If compartment ID not specified.

• TypeError – If timeout not an integer.

delete_model(model: Union[str, ads.catalog.Model], **kwargs)→ bool
Deletes the model from Model Catalog.

Parameters

• model (Union[str, "ads.catalog.Model"]) – The OCID of the model to delete as a
string, or a ads.catalog.Model instance.

• kwargs –

delete_associated_model_deployment: (bool, optional). Defaults to False.
Whether associated model deployments need to be deletet or not.

Returns
True if the model was successfully deleted.

Return type
bool

Raises
ModelWithActiveDeploymentError – If model has active model deployments ant inout
attribute delete_associated_model_deployment set to False.
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download_model(model_id: str, target_dir: str, force_overwrite: bool = False, install_libs: bool = False,
conflict_strategy='IGNORE', bucket_uri: Optional[str] = None, remove_existing_artifact:
Optional[bool] = True)

Downloads the model from model_dir to target_dir based on model_id.

Parameters

• model_id (str) – The OCID of the model to download.

• target_dir (str) – The target location of model after download.

• force_overwrite (bool) – Overwrite target_dir if exists.

• install_libs (bool, default: False) – Install the libraries specified in ds-
requirements.txt which are missing in the current environment.

• conflict_strategy (ConflictStrategy, default: IGNORE) – Determines how to
handle version conflicts between the current environment and requirements of model ar-
tifact. Valid values: “IGNORE”, “UPDATE” or ConflictStrategy. IGNORE: Use the in-
stalled version in case of conflict UPDATE: Force update dependency to the version re-
quired by model artifact in case of conflict

• bucket_uri ((str, optional). Defaults to None.) – The OCI Object Stor-
age URI where model artifacts will be copied to. The bucket_uri is only nec-
essary for downloading large artifacts with size is greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• remove_existing_artifact ((bool, optional). Defaults to True.) – Whether artifacts
uploaded to object storage bucket need to be removed or not.

Returns
A ModelArtifact instance.

Return type
ModelArtifact

get_model(model_id)
Loads the model from the model catalog based on model_id.

Parameters
model_id (str, required) – The model ID.

Returns
The ads.catalog.Model with the matching ID.

Return type
ads.catalog.Model

list_model_deployment(model_id: str, config: Optional[dict] = None, tenant_id: Optional[str] = None,
limit: int = 500, page: Optional[str] = None, **kwargs)

Gets the list of model deployments by model Id across the compartments.

Parameters

• model_id (str) – The model ID.

• config (dict (optional)) – Configuration keys and values as per SDK and Tool Con-
figuration. The from_file() method can be used to load configuration from a file. Alter-
natively, a dict can be passed. You can validate_config the dict using validate_config().
Defaults to None.
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• tenant_id (str (optional)) – The tenancy ID, which can be used to specify a differ-
ent tenancy (for cross-tenancy authorization) when searching for resources in a different
tenancy. Defaults to None.

• limit (int (optional)) – The maximum number of items to return. The value must be
between 1 and 1000. Defaults to 500.

• page (str (optional)) – The page at which to start retrieving results.

Return type
The list of model deployments.

list_models(project_id: Optional[str] = None, include_deleted: bool = False, datetime_format: str =
'%Y-%m-%d %H:%M:%S', **kwargs)

Lists all models in a given compartment, or in the current project if project_id is specified.

Parameters

• project_id (str) – The project_id of model.

• include_deleted (bool, optional, default=False) – Whether to include deleted
models in the returned list.

• datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change
format for date time fields.

Returns
A list of models.

Return type
ModelSummaryList

update_model(model_id, update_model_details=None, **kwargs)→ Model
Updates a model with given model_id, using the provided update data.

Parameters

• model_id (str) – The model ID.

• update_model_details (UpdateModelDetails) – Contains the update model details
data to apply. Mandatory unless kwargs are supplied.

• kwargs (dict, optional) – Update model details can be supplied instead as kwargs.

Returns
The ads.catalog.Model with the matching ID.

Return type
Model

upload_model(model_artifact: ModelArtifact, provenance_metadata: Optional[ModelProvenance] = None,
project_id: Optional[str] = None, display_name: Optional[str] = None, description:
Optional[str] = None, freeform_tags: Optional[Dict[str, Dict[str, object]]] = None,
defined_tags: Optional[Dict[str, Dict[str, object]]] = None, bucket_uri: Optional[str] =
None, remove_existing_artifact: Optional[bool] = True, overwrite_existing_artifact:
Optional[bool] = True)

Uploads the model artifact to cloud storage.

Parameters

• model_artifact (Union[ModelArtifact, GenericModel]) – The model artifacts or
generic model instance.
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• provenance_metadata ((ModelProvenance, optional). Defaults to None.) –
Model provenance gives data scientists information about the origin of their model. This
information allows data scientists to reproduce the development environment in which the
model was trained.

• project_id ((str, optional). Defaults to None.) – The project_id of model.

• display_name ((str, optional). Defaults to None.) – The name of model. If a
display_name is not provided, a randomly generated easy to remember name with times-
tamp will be generated, like ‘strange-spider-2022-08-17-23:55.02’.

• description ((str, optional). Defaults to None.) – The description of model.

• freeform_tags ((Dict[str, str], optional). Defaults to None.) –
Freeform tags for the model, by default None

• defined_tags ((Dict[str, dict[str, object]], optional). Defaults to
None.) – Defined tags for the model, by default None.

• bucket_uri ((str, optional). Defaults to None.) – The OCI Object Stor-
age URI where model artifacts will be copied to. The bucket_uri is only
necessary for uploading large artifacts which size greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• remove_existing_artifact ((bool, optional). Defaults to True.) – Whether artifacts
uploaded to object storage bucket need to be removed or not.

• overwrite_existing_artifact ((bool, optional). Defaults to True.) – Overwrite target
bucket artifact if exists.

Returns
The ads.catalog.Model with the matching ID.

Return type
ads.catalog.Model

class ads.catalog.model.ModelSummaryList(model_catalog, model_list, response=None,
datetime_format='%Y-%m-%d %H:%M:%S')

Bases: SummaryList

Model Summary List which represents a list of Model Object.

sort_by(self, columns, reverse=False)
Performs a multi-key sort on a particular set of columns and returns the sorted ModelSummaryList. Results
are listed in a descending order by default.

filter(self, selection, instance=None)
Filters the model list according to a lambda filter function, or list comprehension.

filter(selection, instance=None)
Filters the model list according to a lambda filter function, or list comprehension.

Parameters

• selection (lambda function filtering model instances, or a
list-comprehension) – function of list filtering projects

• instance (list, optional) – list to filter, optional, defaults to self

Returns
ModelSummaryList
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Return type
A filtered ModelSummaryList

sort_by(columns, reverse=False)
Performs a multi-key sort on a particular set of columns and returns the sorted ModelSummaryList. Results
are listed in a descending order by default.

Parameters

• columns (List of string) – A list of columns which are provided to sort on

• reverse (Boolean (defaults to false)) – If you’d like to reverse the results (for
example, to get ascending instead of descending results)

Returns
ModelSummaryList

Return type
A sorted ModelSummaryList

exception ads.catalog.model.ModelWithActiveDeploymentError

Bases: Exception

23.1.1.2.3 ads.catalog.notebook module

class ads.catalog.notebook.NotebookCatalog(compartment_id=None)
Bases: object

create_notebook_session(display_name=None, project_id=None, shape=None,
block_storage_size_in_gbs=None, subnet_id=None, **kwargs)

Create a new notebook session with the supplied details.

Parameters

• display_name (str, required) – The value to assign to the display_name property of
this CreateNotebookSessionDetails.

• project_id (str, required) – The value to assign to the project_id property of this
CreateNotebookSessionDetails.

• shape (str, required) – The value to assign to the shape property of this Notebook-
SessionConfigurationDetails. Allowed values for this property are: “VM.Standard.E2.2”,
“VM.Standard.E2.4”, “VM.Standard.E2.8”, “VM.Standard2.1”, “VM.Standard2.2”,
“VM.Standard2.4”, “VM.Standard2.8”, “VM.Standard2.16”,”VM.Standard2.24”.

• block_storage_size_in_gbs (int, required) – Size of the block storage drive.
Limited to values between 50 (GB) and 1024 (1024GB = 1TB)

• subnet_id (str, required) – The OCID of the subnet resource where the notebook is
to be created.

• kwargs (dict, optional) – Additional kwargs passed to DataScience-
Client.create_notebook_session()

Returns
oci.data_science.models.NotebookSession

Return type
A new notebook record.
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Raises
KeyError – If the resource was not found or do not have authorization to access that resource.:

delete_notebook_session(notebook, **kwargs)
Deletes the notebook based on notebook_id.

Parameters
notebook (str ID or oci.data_science.models.NotebookSession,required) –
The OCID of the notebook to delete as a string, or a Notebook Session instance

Returns
Bool

Return type
True if delete was successful, false otherwise

get_notebook_session(notebook_id)
Get the notebook based on notebook_id

Parameters
notebook_id (str, required) – The OCID of the notebook to get.

Returns
oci.data_science.models.NotebookSession

Return type
The oci.data_science.models.NotebookSession with the matching ID.

Raises
KeyError – If the resource was not found or do not have authorization to access that resource.:

list_notebook_session(include_deleted=False, datetime_format='%Y-%m-%d %H:%M:%S', **kwargs)
List all notebooks in a given compartment

Parameters

• include_deleted (bool, optional, default=False) – Whether to include deleted
notebooks in the returned list

• datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change
format for date time fields

Returns
NotebookSummaryList

Return type
A List of notebooks.

Raises
KeyError – If the resource was not found or do not have authorization to access that resource.:

update_notebook_session(notebook_id, update_notebook_details=None, **kwargs)
Updates a notebook with given notebook_id, using the provided update data

Parameters

• notebook_id (str) – notebook_id OCID to update

• update_notebook_details (oci.data_science.models.
UpdateNotebookSessionDetails) – contains the new notebook details data to
apply

• kwargs (dict, optional) – Update notebook session details can be supplied instead as
kwargs
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Returns
oci.data_science.models.NotebookSession

Return type
The updated Notebook record

Raises
KeyError – If the resource was not found or do not have authorization to access that resource.:

class ads.catalog.notebook.NotebookSummaryList(notebook_list, response=None,
datetime_format='%Y-%m-%d %H:%M:%S')

Bases: SummaryList

filter(selection, instance=None)
Filter the notebook list according to a lambda filter function, or list comprehension.

Parameters

• selection (lambda function filtering notebook instances, or a
list-comprehension) – function of list filtering notebooks

• instance (list, optional) – list to filter, optional, defaults to self

Raises
ValueError – If selection passed is not correct. For example: selec-
tion=oci.data_science.models.NotebookSession.:

sort_by(columns, reverse=False)
Performs a multi-key sort on a particular set of columns and returns the sorted NotebookSummaryList
Results are listed in a descending order by default.

Parameters

• columns (List of string) – A list of columns which are provided to sort on

• reverse (Boolean (defaults to false)) – If you’d like to reverse the results (for
example, to get ascending instead of descending results)

Returns
NotebookSummaryList

Return type
A sorted NotebookSummaryList

23.1.1.2.4 ads.catalog.project module

class ads.catalog.project.ProjectCatalog(compartment_id=None, ds_client_auth=None,
identity_client_auth=None)

Bases: Mapping

create_project(create_project_details=None, **kwargs)
Create a new project with the supplied details. create_project_details contains parameters needed to create
a new project, according to oci.data_science.models.CreateProjectDetails.

Parameters

• display_name (str) – The value to assign to the display_name property of this CreatePro-
jectDetails.

• description (str) – The value to assign to the description property of this CreatePro-
jectDetails.
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• compartment_id (str) – The value to assign to the compartment_id property of this
CreateProjectDetails.

• freeform_tags (dict(str, str)) – The value to assign to the freeform_tags property
of this CreateProjectDetails.

• defined_tags (dict(str, dict(str, object))) – The value to assign to the de-
fined_tags property of this CreateProjectDetails.

• kwargs – New project details can be supplied instead as kwargs

Returns
oci.data_science.models.Project

Return type
A new Project record.

delete_project(project, **kwargs)
Deletes the project based on project_id.

Parameters
project (str ID or oci.data_science.models.Project,required) – The OCID
of the project to delete as a string, or a Project instance

Returns
Bool

Return type
True if delete was succesful

get_project(project_id)
Get the Project based on project_id

Parameters
project_id (str, required) – The OCID of the project to get.

Return type
The oci.data_science.models.Project with the matching ID.

Raises
KeyError – If the resource was not found or do not have authorization to access that resource.:

list_projects(include_deleted=False, datetime_format='%Y-%m-%d %H:%M:%S', **kwargs)
List all projects in a given compartment, or in the current notebook session’s compartment

Parameters

• include_deleted (bool, optional, default=False) – Whether to include deleted
projects in the returned list

• datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change
format for date time fields

Returns
ProjectSummaryList

Return type
List of Projects.

Raises
KeyError – If the resource was not found or do not have authorization to access that resource.:
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update_project(project_id, update_project_details=None, **kwargs)
Updates a project with given project_id, using the provided update data update_project_details contains the
update project details data to apply, according to oci.data_science.models.UpdateProjectDetails

Parameters

• project_id (str) – project_id OCID to update

• display_name (str) – The value to assign to the display_name property of this Up-
dateProjectDetails.

• description (str) – The value to assign to the description property of this UpdatePro-
jectDetails.

• freeform_tags (dict(str, str)) – The value to assign to the freeform_tags property
of this UpdateProjectDetails.

• defined_tags (dict(str, dict(str, object))) – The value to assign to the de-
fined_tags property of this UpdateProjectDetails.

• kwargs (dict, optional) – Update project details can be supplied instead as kwargs

Returns
oci.data_science.models.Project

Return type
The updated Project record

class ads.catalog.project.ProjectSummaryList(project_list, response=None,
datetime_format='%Y-%m-%d %H:%M:%S')

Bases: SummaryList

A class used to represent Project Summary List.

. . .

df

Summary information for a project.

Type
data frame

datetime_format

Format used to describe time.

Type
str

response

A response object with data of type list of ProjectSummaryList.

Type
oci.response.Response

short_id_index

Mapping of short id and its value.

Type
(dict of str: str)

sort_by(self, columns, reverse=False):

Sort ProjectSummaryList by columns.
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filter(self, selection, instance=None):

Filter the project list according to a lambda filter function, or list comprehension.

filter(selection, instance=None)
Filter the project list according to a lambda filter function, or list comprehension.

Parameters

• selection (lambda function filtering Project instances, or a
list-comprehension) – function of list filtering projects

• instance (list, optional) – list to filter, optional, defaults to self

Returns
ProjectSummaryList

Return type
A filtered ProjectSummaryList

Raises
ValueError – If selection passed is not correct.:

sort_by(columns, reverse=False)
Sort ProjectSummaryList by columns.

Performs a multi-key sort on a particular set of columns and returns the sorted ProjectSummaryList Results
are listed in a descending order by default.

Parameters

• columns (List of string) – A list of columns which are provided to sort on

• reverse (Boolean (defaults to false)) – If you’d like to reverse the results (for
example, to get ascending instead of descending results)

Returns
ProjectSummaryList

Return type
A sorted ProjectSummaryList

23.1.1.2.5 ads.catalog.summary module

class ads.catalog.summary.SummaryList(entity_list, datetime_format='%Y-%m-%d %H:%M:%S')
Bases: list

abstract filter(selection, instance=None)
Abstract method for filtering, implemented by the derived class

show_in_notebook(datetime_format=None)
Displays the model catalog summary in a Jupyter Notebook cell

Parameters
date_format (like utils.date_format. Defaults to none.) –

Return type
None

abstract sort_by(columns, reverse=False)
Abstract method for sorting, implemented by the derived class
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to_dataframe(datetime_format=None)
Returns the model catalog summary as a pandas dataframe

Parameters
datatime_format (date_format) – A datetime format, like utils.date_format. Defaults to
none.

Returns
Dataframe

Return type
The pandas DataFrame repersentation of the model catalog summary

23.1.1.2.6 Module contents

23.1.1.3 ads.common package

23.1.1.3.1 Submodules

23.1.1.3.2 ads.common.card_identifier module

credit card patterns refer to https://en.wikipedia.org/wiki/Payment_card_number#Issuer_identification_number_(IIN)
Active and frequent card information American Express: 34, 37 Diners Club (US & Canada): 54,55 Discover Card:
6011, 622126 - 622925, 624000 - 626999, 628200 - 628899, 64, 65 Master Card: 2221-2720, 51–55 Visa: 4

class ads.common.card_identifier.card_identify

Bases: object

identify_issue_network(card_number)
Returns the type of credit card based on its digits

Parameters
card_number (String) –

Returns
String

Return type
A string corresponding to the kind of credit card.

23.1.1.3.3 ads.common.auth module

ads.common.auth.api_keys(oci_config: str = '/home/docs/.oci/config', profile: str = 'DEFAULT', client_kwargs:
Optional[dict] = None)→ dict

Prepares authentication and extra arguments necessary for creating clients for different OCI services using API
Keys.

Parameters

• oci_config (str) – OCI authentication config file location. Default is $HOME/.oci/config.

• profile (str) – Profile name to select from the config file. The defautl is DEFAULT

• client_kwargs (dict) – kwargs that are required to instantiate the Client if we need to
override the defaults.
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Returns

Contains keys - config, signer and client_kwargs.

• The config contains the config loaded from the configuration loaded from oci_config.

• The signer contains the signer object created from the api keys.

• client_kwargs contains the client_kwargs that was passed in as input parameter.

Return type
dict

Examples

>>> from ads.common import auth as authutil
>>> from ads.common import oci_client as oc
>>> auth = authutil.api_keys(oci_config="/home/datascience/.oci/config", profile=
→˓"TEST", client_kwargs={"timeout": 6000})
>>> oc.OCIClientFactory(**auth).object_storage # Creates Object storage client with␣
→˓timeout set to 6000 using API Key authentication

ads.common.auth.default_signer(client_kwargs=None)
Prepares authentication and extra arguments necessary for creating clients for different OCI services based on
the default authentication setting for the session. Refer ads.set_auth API for further reference.

Parameters
client_kwargs (dict) – kwargs that are required to instantiate the Client if we need to override
the defaults.

Returns

Contains keys - config, signer and client_kwargs.

• The config contains the config loaded from the configuration loaded from the default location
if the default auth mode is API keys, otherwise it is empty dictionary.

• The signer contains the signer object created from default auth mode.

• client_kwargs contains the client_kwargs that was passed in as input parameter.

Return type
dict

Examples

>>> from ads.common import auth as authutil
>>> from ads.common import oci_client as oc
>>> auth = authutil.default_signer()
>>> oc.OCIClientFactory(**auth).object_storage # Creates Object storage client

ads.common.auth.get_signer(oci_config=None, oci_profile=None, **client_kwargs)

ads.common.auth.resource_principal(client_kwargs=None)
Prepares authentication and extra arguments necessary for creating clients for different OCI services using Re-
source Principals.
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Parameters
client_kwargs (dict) – kwargs that are required to instantiate the Client if we need to override
the defaults.

Returns

Contains keys - config, signer and client_kwargs.

• The config contains and empty dictionary.

• The signer contains the signer object created from the resource principal.

• client_kwargs contains the client_kwargs that was passed in as input parameter.

Return type
dict

Examples

>>> from ads.common import auth as authutil
>>> from ads.common import oci_client as oc
>>> auth = authutil.resource_principal({"timeout": 6000})
>>> oc.OCIClientFactory(**auth).object_storage # Creates Object Storage client with␣
→˓timeout set to 6000 seconds using resource principal authentication

23.1.1.3.4 ads.common.data module

class ads.common.data.ADSData(X=None, y=None, name='', dataset_type=None)
Bases: object

This class wraps the input dataframe to various models, evaluation, and explanation frameworks. It’s primary
purpose is to hold any metadata relevant to these tasks. This can include it’s:

• X - the independent variables as some dataframe-like structure,

• y - the dependent variable or target column as some array-like structure,

• name - a string to name the data for user convenience,

• dataset_type - the type of the X value.

As part of this initiative, ADSData knows how to turn itself into an onnxruntime compatible data structure with
the method .to_onnxrt(), which takes and onnx session as input.

Parameters

• X (Union[pandas.DataFrame, dask.DataFrame, numpy.ndarray, scipy.
sparse.csr.csr_matrix]) – If str, URI for the dataset. The dataset could be read
from local or network file system, hdfs, s3 and gcs Should be none if X_train, y_train,
X_test, Y_test are provided

• y (Union[str, pandas.DataFrame, dask.DataFrame, pandas.Series, dask.
Series, numpy.ndarray]) – If str, name of the target in X, otherwise series of labels
corresponding to X

• name (str, optional) – Name to identify this data

• dataset_type (ADSDataset optional) – When this value is available, would be used to
evaluate the ads task type
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• kwargs – Additional keyword arguments that would be passed to the underlying Pandas read
API.

static build(X=None, y=None, name='', dataset_type=None, **kwargs)
Returns an ADSData object built from the (source, target) or (X,y)

Parameters

• X (Union[pandas.DataFrame, dask.DataFrame, numpy.ndarray, scipy.
sparse.csr.csr_matrix]) – If str, URI for the dataset. The dataset could be read from
local or network file system, hdfs, s3 and gcs Should be none if X_train, y_train, X_test,
Y_test are provided

• y (Union[str, pandas.DataFrame, dask.DataFrame, pandas.Series, dask.
Series, numpy.ndarray]) – If str, name of the target in X, otherwise series of labels
corresponding to X

• name (str, optional) – Name to identify this data

• dataset_type (ADSDataset, optional) – When this value is available, would be used
to evaluate the ads task type

• kwargs – Additional keyword arguments that would be passed to the underlying Pandas
read API.

Returns
ads_data – A built ADSData object

Return type
ads.common.data.ADSData

Examples

>>> data = open_csv("my.csv")

>>> data_ads = ADSData(data, 'target').build(data, 'target')

to_onnxrt(sess, idx_range=None, model=None, impute_values={}, **kwargs)
Returns itself formatted as an input for the onnxruntime session inputs passed in.

Parameters

• sess (Session) – The session object

• idx_range (Range) – The range of inputs to convert to onnx

• model (SupportedModel) – A model that supports being serialized for the onnx runtime.

• kwargs (additional keyword arguments) –

– sess_inputs - Pass in the output from onnxrun-
time.InferenceSession(“model.onnx”).get_inputs()

– input_dtypes (list) - If sess_inputs cannot be passed in, pass in the numpy dtypes of each
input

– input_shapes (list) - If sess_inputs cannot be passed in, pass in the shape of each input

– input_names (list) -If sess_inputs cannot be passed in, pass in the name of each input

Returns
ort – array of inputs formatted for the given session.
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Return type
Array

23.1.1.3.5 ads.common.model module

class ads.common.model.ADSModel(est, target=None, transformer_pipeline=None, client=None,
booster=None, classes=None, name=None)

Bases: object

Construct an ADSModel

Parameters

• est (fitted estimator object) – The estimator can be a standard sklearn estimator,
a keras, lightgbm, or xgboost estimator, or any other object that implement methods from
(BaseEstimator, RegressorMixin) for regression or (BaseEstimator, ClassifierMixin) for clas-
sification.

• target (PandasSeries) – The target column you are using in your dataset, this is assigned
as the “y” attribute.

• transformer_pipeline (TransformerPipeline) – A custom trasnformer pipeline ob-
ject.

• client (Str) – Currently unused.

• booster (Str) – Currently unused.

• classes (list, optional) – List of target classes. Required for classification problem if
the est does not contain classes attribute.

• name (str, optional) – Name of the model.

static convert_dataframe_schema(df, drop=None)

feature_names(X=None)

static from_estimator(est, transformers=None, classes=None, name=None)
Build ADSModel from a fitted estimator

Parameters

• est (fitted estimator object) – The estimator can be a standard sklearn estimator or
any object that implement methods from (BaseEstimator, RegressorMixin) for regression
or (BaseEstimator, ClassifierMixin) for classification.

• transformers (a scalar or an iterable of objects implementing
transform function, optional) – The transform function would be applied on
data before calling predict and predict_proba on estimator.

• classes (list, optional) – List of target classes. Required for classification problem
if the est does not contain classes attribute.

• name (str, optional) – Name of the model.

Returns
model

Return type
ads.common.model.ADSModel
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Examples

>>> model = MyModelClass.train()
>>> model_ads = from_estimator(model)

static get_init_types(df, underlying_model=None)

is_classifier()

Returns True if ADS believes that the model is a classifier

Returns
Boolean

Return type
True if the model is a classifier, False otherwise.

predict(X)
Runs the models predict function on some data

Parameters
X (MLData) – A MLData object which holds the examples to be predicted on.

Returns
Usually a list or PandasSeries of predictions

Return type
Union[List, pandas.Series], depending on the estimator

predict_proba(X)
Runs the models predict probabilities function on some data

Parameters
X (MLData) – A MLData object which holds the examples to be predicted on.

Returns
Usually a list or PandasSeries of predictions

Return type
Union[List, pandas.Series], depending on the estimator

prepare(target_dir=None, data_sample=None, X_sample=None, y_sample=None,
include_data_sample=False, force_overwrite=False, fn_artifact_files_included=False,
fn_name='model_api', inference_conda_env=None, data_science_env=False,
ignore_deployment_error=False, use_case_type=None, inference_python_version=None,
imputed_values={}, **kwargs)

Prepare model artifact directory to be published to model catalog

Parameters

• target_dir (str, default: model.name[:12]) – Target directory under which the
model artifact files need to be added

• data_sample (ADSData) – Note: This format is preferable to X_sample and y_sample.
A sample of the test data that will be provided to predict() API of scoring script Used to
generate schema_input.json and schema_output.json which defines the input and output
formats

• X_sample (pandas.DataFrame) – A sample of input data that will be provided to predict()
API of scoring script Used to generate schema.json which defines the input formats
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• y_sample (pandas.Series) – A sample of output data that is expected to be re-
turned by predict() API of scoring script, corresponding to X_sample Used to generate
schema_output.json which defines the output formats

• force_overwrite (bool, default: False) – If True, overwrites the target directory
if exists already

• fn_artifact_files_included (bool, default: True) – If True, generates artifacts
to export a model as a function without ads dependency

• fn_name (str, default: 'model_api') – Required parameter if
fn_artifact_files_included parameter is setup.

• inference_conda_env (str, default: None) – Conda environment to use within the
model deployment service for inferencing

• data_science_env (bool, default: False) – If set to True, datascience environment
represented by the slug in the training conda environment will be used.

• ignore_deployment_error (bool, default: False) – If set to True, the prepare will
ignore all the errors that may impact model deployment

• use_case_type (str) – The use case type of the model. Use it
through UserCaseType class or string provided in UseCaseType. For
example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type=”binary_classification”. Check with UseCaseType class to see all
supported types.

• inference_python_version (str, default:None.) – If provided will be added to
the generated runtime yaml

• **kwargs –

• -------- –

• max_col_num ((int, optional). Defaults to utils.
DATA_SCHEMA_MAX_COL_NUM.) – The maximum column size of the data that allows to
auto generate schema.

Returns
model_artifact

Return type
an instance of ModelArtifact that can be used to test the generated scoring script

rename(name)
Changes the name of a model

Parameters
name (str) – A string which is supplied for naming a model.

score(X, y_true, score_fn=None)
Scores a model according to a custom score function

Parameters

• X (MLData) – A MLData object which holds the examples to be predicted on.

• y_true (MLData) – A MLData object which holds ground truth labels for the examples
which are being predicted on.

• score_fn (Scorer (callable)) – A callable object that returns a score, usually created
with sklearn.metrics.make_scorer().

23.1. ads package 541



ADS Documentation, Release 2.6.4

Returns
Almost always a scalar score (usually a float).

Return type
float, depending on the estimator

show_in_notebook()

Describe the model by showing it’s properties

summary()

A summary of the ADSModel

transform(X)
Process some MLData through the selected ADSModel transformers

Parameters
X (MLData) – A MLData object which holds the examples to be transformed.

visualize_transforms()

A graph of the ADSModel transformer pipeline. It is only supported in JupyterLabs Notebooks.

23.1.1.3.6 ads.common.model_metadata module

class ads.common.model_metadata.ExtendedEnumMeta(name, bases, namespace, **kwargs)
Bases: ABCMeta

The helper metaclass to extend functionality of a general class.

values(cls)→ list:
Gets the list of class attributes.

values()→ list
Gets the list of class attributes.

Returns
The list of class values.

Return type
list

class ads.common.model_metadata.Framework

Bases: str

BERT = 'bert'

CUML = 'cuml'

EMCEE = 'emcee'

ENSEMBLE = 'ensemble'

FLAIR = 'flair'

GENSIM = 'gensim'

H20 = 'h2o'

KERAS = 'keras'
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LIGHT_GBM = 'lightgbm'

MXNET = 'mxnet'

NLTK = 'nltk'

ORACLE_AUTOML = 'oracle_automl'

OTHER = 'other'

PROPHET = 'prophet'

PYMC3 = 'pymc3'

PYOD = 'pyod'

PYSTAN = 'pystan'

PYTORCH = 'pytorch'

SCIKIT_LEARN = 'scikit-learn'

SKTIME = 'sktime'

SPACY = 'spacy'

STATSMODELS = 'statsmodels'

TENSORFLOW = 'tensorflow'

TRANSFORMERS = 'transformers'

WORD2VEC = 'word2vec'

XGBOOST = 'xgboost'

class ads.common.model_metadata.MetadataCustomCategory

Bases: str

OTHER = 'Other'

PERFORMANCE = 'Performance'

TRAINING_AND_VALIDATION_DATASETS = 'Training and Validation Datasets'

TRAINING_ENV = 'Training Environment'

TRAINING_PROFILE = 'Training Profile'

class ads.common.model_metadata.MetadataCustomKeys

Bases: str

CLIENT_LIBRARY = 'ClientLibrary'

CONDA_ENVIRONMENT = 'CondaEnvironment'

CONDA_ENVIRONMENT_PATH = 'CondaEnvironmentPath'

ENVIRONMENT_TYPE = 'EnvironmentType'

MODEL_ARTIFACTS = 'ModelArtifacts'
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MODEL_SERIALIZATION_FORMAT = 'ModelSerializationFormat'

SLUG_NAME = 'SlugName'

TRAINING_DATASET = 'TrainingDataset'

TRAINING_DATASET_NUMBER_OF_COLS = 'TrainingDatasetNumberOfCols'

TRAINING_DATASET_NUMBER_OF_ROWS = 'TrainingDatasetNumberOfRows'

TRAINING_DATASET_SIZE = 'TrainingDatasetSize'

VALIDATION_DATASET = 'ValidationDataset'

VALIDATION_DATASET_NUMBER_OF_COLS = 'ValidationDataSetNumberOfCols'

VALIDATION_DATASET_NUMBER_OF_ROWS = 'ValidationDatasetNumberOfRows'

VALIDATION_DATASET_SIZE = 'ValidationDatasetSize'

class ads.common.model_metadata.MetadataCustomPrintColumns

Bases: str

CATEGORY = 'Category'

DESCRIPTION = 'Description'

KEY = 'Key'

VALUE = 'Value'

exception ads.common.model_metadata.MetadataDescriptionTooLong(key: str, length: int)
Bases: ValueError

Maximum allowed length of metadata description has been exceeded. See https://docs.oracle.com/en-us/iaas/
data-science/using/models_saving_catalog.htm for more details.

exception ads.common.model_metadata.MetadataSizeTooLarge(size: int)
Bases: ValueError

Maximum allowed size for model metadata has been exceeded. See https://docs.oracle.com/en-us/iaas/
data-science/using/models_saving_catalog.htm for more details.

class ads.common.model_metadata.MetadataTaxonomyKeys

Bases: str

ALGORITHM = 'Algorithm'

ARTIFACT_TEST_RESULT = 'ArtifactTestResults'

FRAMEWORK = 'Framework'

FRAMEWORK_VERSION = 'FrameworkVersion'

HYPERPARAMETERS = 'Hyperparameters'

USE_CASE_TYPE = 'UseCaseType'

class ads.common.model_metadata.MetadataTaxonomyPrintColumns

Bases: str
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KEY = 'Key'

VALUE = 'Value'

exception ads.common.model_metadata.MetadataValueTooLong(key: str, length: int)
Bases: ValueError

Maximum allowed length of metadata value has been exceeded. See https://docs.oracle.com/en-us/iaas/
data-science/using/models_saving_catalog.htm for more details.

class ads.common.model_metadata.ModelCustomMetadata

Bases: ModelMetadata

Class that represents Model Custom Metadata.

get(self, key: str)→ ModelCustomMetadataItem
Returns the model metadata item by provided key.

reset(self )→ None
Resets all model metadata items to empty values.

to_dataframe(self )→ pd.DataFrame
Returns the model metadata list in a data frame format.

size(self )→ int
Returns the size of the model metadata in bytes.

validate(self )→ bool
Validates metadata.

to_dict(self )
Serializes model metadata into a dictionary.

to_yaml(self )
Serializes model metadata into a YAML.

add(self, key: str, value: str, description: str = '', category: str = MetadataCustomCategory.OTHER, replace:
bool = False)→ None:
Adds a new model metadata item. Replaces existing one if replace flag is True.

remove(self, key: str)→ None
Removes a model metadata item by key.

clear(self )→ None
Removes all metadata items.

isempty(self )→ bool
Checks if metadata is empty.

to_json(self )
Serializes model metadata into a JSON.

to_json_file(self, file_path: str, storage_options: dict = None)→ None
Saves the metadata to a local file or object storage.
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Examples

>>> metadata_custom = ModelCustomMetadata()
>>> metadata_custom.add(key="format", value="pickle")
>>> metadata_custom.add(key="note", value="important note", description="some␣
→˓description")
>>> metadata_custom["format"].description = "some description"
>>> metadata_custom.to_dataframe()

Key Value Description Category
----------------------------------------------------------------------------
0 format pickle some description user defined
1 note important note some description user defined
>>> metadata_custom

metadata:
- category: user defined
description: some description
key: format
value: pickle

- category: user defined
description: some description
key: note
value: important note

>>> metadata_custom.remove("format")
>>> metadata_custom

metadata:
- category: user defined

description: some description
key: note
value: important note

>>> metadata_custom.to_dict()
{'metadata': [{

'key': 'note',
'value': 'important note',
'category': 'user defined',
'description': 'some description'

}]}
>>> metadata_custom.reset()
>>> metadata_custom

metadata:
- category: None

description: None
key: note
value: None

>>> metadata_custom.clear()
>>> metadata_custom.to_dataframe()

Key Value Description Category
----------------------------------------------------------------------------

Initializes custom model metadata.

add(key: str, value: str, description: str = '', category: str = 'Other', replace: bool = False)→ None
Adds a new model metadata item. Overrides the existing one if replace flag is True.

Parameters
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• key (str) – The metadata item key.

• value (str) – The metadata item value.

• description (str) – The metadata item description.

• category (str) – The metadata item category.

• replace (bool) – Overrides the existing metadata item if replace flag is True.

Returns
Nothing.

Return type
None

Raises

• TypeError – If provided key is not a string. If provided description not a string.

• ValueError – If provided key is empty. If provided value is empty. If provided value
cannot be serialized to JSON. If item with provided key is already registered and replace
flag is False. If provided category is not supported.

• MetadataValueTooLong – If the length of provided value exceeds 255 charracters.

• MetadataDescriptionTooLong – If the length of provided description exceeds 255 char-
racters.

clear()→ None
Removes all metadata items.

Returns
Nothing.

Return type
None

isempty()→ bool
Checks if metadata is empty.

Returns
True if metadata is empty, False otherwise.

Return type
bool

remove(key: str)→ None
Removes a model metadata item.

Parameters
key (str) – The key of the metadata item that should be removed.

Returns
Nothing.

Return type
None

set_training_data(path: str, data_size: Optional[str] = None)
Adds training_data path and data size information into model custom metadata.

Parameters

• path (str) – The path where the training_data is stored.
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• data_size (str) – The size of the training_data.

Returns
Nothing.

Return type
None

set_validation_data(path: str, data_size: Optional[str] = None)
Adds validation_data path and data size information into model custom metadata.

Parameters

• path (str) – The path where the validation_data is stored.

• data_size (str) – The size of the validation_data.

Returns
Nothing.

Return type
None

to_dataframe()→ DataFrame
Returns the model metadata list in a data frame format.

Returns
The model metadata in a dataframe format.

Return type
pandas.DataFrame

class ads.common.model_metadata.ModelCustomMetadataItem(key: str, value: Optional[str] = None,
description: Optional[str] = None,
category: Optional[str] = None)

Bases: ModelTaxonomyMetadataItem

Class that represents model custom metadata item.

key

The model metadata item key.

Type
str

value

The model metadata item value.

Type
str

description

The model metadata item description.

Type
str

category

The model metadata item category.

Type
str

548 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

reset(self )→ None
Resets model metadata item.

to_dict(self )→ dict
Serializes model metadata item to dictionary.

to_yaml(self )
Serializes model metadata item to YAML.

size(self )→ int
Returns the size of the metadata in bytes.

update(self, value: str = '', description: str = '', category: str = '')→ None
Updates metadata item information.

to_json(self )→ JSON
Serializes metadata item into a JSON.

to_json_file(self, file_path: str, storage_options: dict = None)→ None
Saves the metadata item value to a local file or object storage.

validate(self )→ bool
Validates metadata item.

property category: str

property description: str

reset()→ None
Resets model metadata item.

Resets value, description and category to None.

Returns
Nothing.

Return type
None

update(value: str, description: str, category: str)→ None
Updates metadata item.

Parameters

• value (str) – The value of model metadata item.

• description (str) – The description of model metadata item.

• category (str) – The category of model metadata item.

Returns
Nothing.

Return type
None

validate()→ bool
Validates metadata item.

Returns
True if validation passed.

23.1. ads package 549



ADS Documentation, Release 2.6.4

Return type
bool

Raises

• ValueError – If invalid category provided.

• MetadataValueTooLong – If value exceeds the length limit.

class ads.common.model_metadata.ModelMetadata

Bases: ABC

The base abstract class representing model metadata.

get(self, key: str)→ ModelMetadataItem
Returns the model metadata item by provided key.

reset(self )→ None
Resets all model metadata items to empty values.

to_dataframe(self )→ pd.DataFrame
Returns the model metadata list in a data frame format.

size(self )→ int
Returns the size of the model metadata in bytes.

validate(self )→ bool
Validates metadata.

to_dict(self )
Serializes model metadata into a dictionary.

to_yaml(self )
Serializes model metadata into a YAML.

to_json(self )
Serializes model metadata into a JSON.

to_json_file(self, file_path: str, storage_options: dict = None)→ None
Saves the metadata to a local file or object storage.

Initializes Model Metadata.

get(key: str)→ ModelMetadataItem
Returns the model metadata item by provided key.

Parameters
key (str) – The key of model metadata item.

Returns
The model metadata item.

Return type
ModelMetadataItem

Raises
ValueError – If provided key is empty or metadata item not found.

property keys: Tuple[str]

Returns all registered metadata keys.
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Returns
The list of metadata keys.

Return type
Tuple[str]

reset()→ None
Resets all model metadata items to empty values.

Resets value, description and category to None for every metadata item.

size()→ int
Returns the size of the model metadata in bytes.

Returns
The size of model metadata in bytes.

Return type
int

abstract to_dataframe()→ DataFrame
Returns the model metadata list in a data frame format.

Returns
The model metadata in a dataframe format.

Return type
pandas.DataFrame

to_dict()

Serializes model metadata into a dictionary.

Returns
The model metadata in a dictionary representation.

Return type
Dict

to_json()

Serializes model metadata into a JSON.

Returns
The model metadata in a JSON representation.

Return type
JSON

to_json_file(file_path: str, storage_options: Optional[dict] = None)→ None
Saves the metadata to a local file or object storage.

Parameters

• file_path (str) – The file path to store the data.
“oci://bucket_name@namespace/folder_name/” “oci://bucket_name@namespace/folder_name/metadata.json”
“path/to/local/folder” “path/to/local/folder/metadata.json”

• storage_options (dict. Default None) – Parameters passed on to the backend
filesystem class. Defaults to options set using DatasetFactory.set_default_storage().

Returns
Nothing.
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Return type
None

Raises

• ValueError – When file path is empty.:

• TypeError – When file path not a string.:

Examples

>>> metadata = ModelTaxonomyMetadataItem()
>>> storage_options = {"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))}
>>> storage_options
{'log_requests': False,

'additional_user_agent': '',
'pass_phrase': None,
'user': '<user-id>',
'fingerprint': '05:15:2b:b1:46:8a:32:ec:e2:69:5b:32:01:**:**:**)',
'tenancy': '<tenancy-id>',
'region': 'us-ashburn-1',
'key_file': '/home/datascience/.oci/oci_api_key.pem'}

>>> metadata.to_json_file(file_path = 'oci://bucket_name@namespace/folder_name/
→˓metadata_taxonomy.json', storage_options=storage_options)
>>> metadata_item.to_json_file("path/to/local/folder/metadata_taxonomy.json")

to_yaml()

Serializes model metadata into a YAML.

Returns
The model metadata in a YAML representation.

Return type
Yaml

validate()→ bool
Validates model metadata.

Returns
True if metadata is valid.

Return type
bool

validate_size()→ bool
Validates model metadata size.

Validates the size of metadata. Throws an error if the size of the metadata exceeds expected value.

Returns
True if metadata size is valid.

Return type
bool

Raises
MetadataSizeTooLarge – If the size of the metadata exceeds expected value.
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class ads.common.model_metadata.ModelMetadataItem

Bases: ABC

The base abstract class representing model metadata item.

to_dict(self )→ dict
Serializes model metadata item to dictionary.

to_yaml(self )
Serializes model metadata item to YAML.

size(self )→ int
Returns the size of the metadata in bytes.

to_json(self )→ JSON
Serializes metadata item to JSON.

to_json_file(self, file_path: str, storage_options: dict = None)→ None
Saves the metadata item value to a local file or object storage.

validate(self )→ bool
Validates metadata item.

size()→ int
Returns the size of the model metadata in bytes.

Returns
The size of model metadata in bytes.

Return type
int

to_dict()→ dict
Serializes model metadata item to dictionary.

Returns
The dictionary representation of model metadata item.

Return type
dict

to_json()

Serializes metadata item into a JSON.

Returns
The metadata item in a JSON representation.

Return type
JSON

to_json_file(file_path: str, storage_options: Optional[dict] = None)→ None
Saves the metadata item value to a local file or object storage.

Parameters

• file_path (str) – The file path to store the data.
“oci://bucket_name@namespace/folder_name/” “oci://bucket_name@namespace/folder_name/result.json”
“path/to/local/folder” “path/to/local/folder/result.json”

• storage_options (dict. Default None) – Parameters passed on to the backend
filesystem class. Defaults to options set using DatasetFactory.set_default_storage().
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Returns
Nothing.

Return type
None

Raises

• ValueError – When file path is empty.:

• TypeError – When file path not a string.:

Examples

>>> metadata_item = ModelCustomMetadataItem(key="key1", value="value1")
>>> storage_options = {"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))}
>>> storage_options
{'log_requests': False,

'additional_user_agent': '',
'pass_phrase': None,
'user': '<user-id>',
'fingerprint': '05:15:2b:b1:46:8a:32:ec:e2:69:5b:32:01:**:**:**)',
'tenancy': '<tenency-id>',
'region': 'us-ashburn-1',
'key_file': '/home/datascience/.oci/oci_api_key.pem'}

>>> metadata_item.to_json_file(file_path = 'oci://bucket_name@namespace/folder_
→˓name/file.json', storage_options=storage_options)
>>> metadata_item.to_json_file("path/to/local/folder/file.json")

to_yaml()

Serializes model metadata item to YAML.

Returns
The model metadata item in a YAML representation.

Return type
Yaml

abstract validate()→ bool
Validates metadata item.

Returns
True if validation passed.

Return type
bool

class ads.common.model_metadata.ModelProvenanceMetadata(repo: Optional[str] = None, git_branch:
Optional[str] = None, git_commit:
Optional[str] = None, repository_url:
Optional[str] = None,
training_script_path: Optional[str] =
None, training_id: Optional[str] = None,
artifact_dir: Optional[str] = None)

Bases: DataClassSerializable

ModelProvenanceMetadata class.
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Examples

>>> provenance_metadata = ModelProvenanceMetadata.fetch_training_code_details()
ModelProvenanceMetadata(repo=<git.repo.base.Repo '/home/datascience/.git'>, git_
→˓branch='master', git_commit='99ad04c31803f1d4ffcc3bf4afbd6bcf69a06af2',␣
→˓repository_url='file:///home/datascience', "", "")
>>> provenance_metadata.assert_path_not_dirty("your_path", ignore=False)

artifact_dir: str = None

assert_path_not_dirty(path: str, ignore: bool)
Checks if all the changes in this path has been commited.

Parameters

• path ((str)) – path.

• (bool) (ignore) – whether to ignore the changes or not.

Raises
ChangesNotCommitted – if there are changes not being commited.:

Returns
Nothing.

Return type
None

classmethod fetch_training_code_details(training_script_path: Optional[str] = None, training_id:
Optional[str] = None, artifact_dir: Optional[str] = None)

Fetches the training code details: repo, git_branch, git_commit, repository_url, training_script_path and
training_id.

Parameters

• training_script_path ((str, optional). Defaults to None.) – Training
script path.

• training_id ((str, optional). Defaults to None.) – The training OCID for
model.

• artifact_dir (str) – artifact directory to store the files needed for deployment.

Returns
A ModelProvenanceMetadata instance.

Return type
ModelProvenanceMetadata

git_branch: str = None

git_commit: str = None

repo: str = None

repository_url: str = None

training_id: str = None

training_script_path: str = None
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class ads.common.model_metadata.ModelTaxonomyMetadata

Bases: ModelMetadata

Class that represents Model Taxonomy Metadata.

get(self, key: str)→ ModelTaxonomyMetadataItem
Returns the model metadata item by provided key.

reset(self )→ None
Resets all model metadata items to empty values.

to_dataframe(self )→ pd.DataFrame
Returns the model metadata list in a data frame format.

size(self )→ int
Returns the size of the model metadata in bytes.

validate(self )→ bool
Validates metadata.

to_dict(self )
Serializes model metadata into a dictionary.

to_yaml(self )
Serializes model metadata into a YAML.

to_json(self )
Serializes model metadata into a JSON.

to_json_file(self, file_path: str, storage_options: dict = None)→ None
Saves the metadata to a local file or object storage.

Examples

>>> metadata_taxonomy = ModelTaxonomyMetadata()
>>> metadata_taxonomy.to_dataframe()

Key Value
--------------------------------------------
0 UseCaseType binary_classification
1 Framework sklearn
2 FrameworkVersion 0.2.2
3 Algorithm algorithm
4 Hyperparameters {}

>>> metadata_taxonomy.reset()
>>> metadata_taxonomy.to_dataframe()

Key Value
--------------------------------------------
0 UseCaseType None
1 Framework None
2 FrameworkVersion None
3 Algorithm None
4 Hyperparameters None
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>>> metadata_taxonomy
metadata:
- key: UseCaseType

category: None
description: None
value: None

Initializes Model Metadata.

to_dataframe()→ DataFrame
Returns the model metadata list in a data frame format.

Returns
The model metadata in a dataframe format.

Return type
pandas.DataFrame

class ads.common.model_metadata.ModelTaxonomyMetadataItem(key: str, value: Optional[str] = None)
Bases: ModelMetadataItem

Class that represents model taxonomy metadata item.

key

The model metadata item key.

Type
str

value

The model metadata item value.

Type
str

reset(self )→ None
Resets model metadata item.

to_dict(self )→ dict
Serializes model metadata item to dictionary.

to_yaml(self )
Serializes model metadata item to YAML.

size(self )→ int
Returns the size of the metadata in bytes.

update(self, value: str = '')→ None
Updates metadata item information.

to_json(self )→ JSON
Serializes metadata item into a JSON.

to_json_file(self, file_path: str, storage_options: dict = None)→ None
Saves the metadata item value to a local file or object storage.

validate(self )→ bool
Validates metadata item.
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property key: str

reset()→ None
Resets model metadata item.

Resets value to None.

Returns
Nothing.

Return type
None

update(value: str)→ None
Updates metadata item value.

Parameters
value (str) – The value of model metadata item.

Returns
Nothing.

Return type
None

validate()→ bool
Validates metadata item.

Returns
True if validation passed.

Return type
bool

Raises
ValueError – If invalid UseCaseType provided. If invalid Framework provided.

property value: str

class ads.common.model_metadata.UseCaseType

Bases: str

ANOMALY_DETECTION = 'anomaly_detection'

BINARY_CLASSIFICATION = 'binary_classification'

CLUSTERING = 'clustering'

DIMENSIONALITY_REDUCTION = 'dimensionality_reduction/representation'

IMAGE_CLASSIFICATION = 'image_classification'

MULTINOMIAL_CLASSIFICATION = 'multinomial_classification'

NER = 'ner'

OBJECT_LOCALIZATION = 'object_localization'

OTHER = 'other'

RECOMMENDER = 'recommender'
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REGRESSION = 'regression'

SENTIMENT_ANALYSIS = 'sentiment_analysis'

TIME_SERIES_FORECASTING = 'time_series_forecasting'

TOPIC_MODELING = 'topic_modeling'

23.1.1.3.7 ads.common.decorator.runtime_dependency module

The module that provides the decorator helping to add runtime dependencies in functions.

Examples

>>> @runtime_dependency(module="pandas", short_name="pd")
... def test_function()
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)

>>> @runtime_dependency(module="pandas", short_name="pd")
... @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", install_
→˓from="ads[optional]")
... def test_function()
... pass

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", err_msg=
→˓"Custom error message.")
... def test_function()
... pass

class ads.common.decorator.runtime_dependency.OptionalDependency

Bases: object

BDS = 'oracle-ads[bds]'

BOOSTED = 'oracle-ads[boosted]'

DATA = 'oracle-ads[data]'

GEO = 'oracle-ads[geo]'

LABS = 'oracle-ads[labs]'

MYSQL = 'oracle-ads[mysql]'
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NOTEBOOK = 'oracle-ads[notebook]'

ONNX = 'oracle-ads[onnx]'

OPCTL = 'oracle-ads[opctl]'

OPTUNA = 'oracle-ads[optuna]'

PYTORCH = 'oracle-ads[torch]'

TENSORFLOW = 'oracle-ads[tensorflow]'

TEXT = 'oracle-ads[text]'

VIZ = 'oracle-ads[viz]'

ads.common.decorator.runtime_dependency.runtime_dependency(module: str, short_name: str = '',
object: Optional[str] = None,
install_from: Optional[str] = None,
err_msg: str = '',
is_for_notebook_only=False)

The decorator which is helping to add runtime dependencies to functions.

Parameters

• module (str) – The module name to be imported.

• short_name ((str, optional). Defaults to empty string.) – The short name for
the imported module.

• object ((str, optional). Defaults to None.) – The name of the object to be im-
ported. Can be a function or a class, or any variable provided by module.

• install_from ((str, optional). Defaults to None.) – The parameter helping to
answer from where the required dependency can be installed.

• err_msg ((str, optional). Defaults to empty string.) – The custom error mes-
sage.

• is_for_notebook_only ((bool, optional). Defaults to False.) – If the value
of this flag is set to True, the dependency will be added only in case when the current envi-
ronment is a jupyter notebook.

Raises

• ModuleNotFoundError – In case if requested module not found.

• ImportError – In case if object cannot be imported from the module.

Examples

>>> @runtime_dependency(module="pandas", short_name="pd")
... def test_function()
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)
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>>> @runtime_dependency(module="pandas", short_name="pd")
... @runtime_dependency(module="pandas", object="DataFrame", short_name="df")
... def test_function()
... print(df)
... print(pd)

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df",␣
→˓install_from="ads[optional]")
... def test_function()
... pass

>>> @runtime_dependency(module="pandas", object="DataFrame", short_name="df", err_
→˓msg="Custom error message.")
... def test_function()
... pass

23.1.1.3.8 ads.common.decorator.deprecate module

class ads.common.decorator.deprecate.TARGET_TYPE(value)
Bases: Enum

An enumeration.

ATTRIBUTE = 'Attribute'

CLASS = 'Class'

METHOD = 'Method'

ads.common.decorator.deprecate.deprecated(deprecated_in: str, removed_in: Optional[str] = None,
details: Optional[str] = None, target_type: Optional[str] =
None)

This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted
when the function is used.

Parameters

• deprecated_in (str) – Version of ADS where this function deprecated.

• removed_in (str) – Future version where this function will be removed.

• details (str) – More information to be shown.

23.1.1.3.9 ads.common.model_introspect module

The module that helps to minimize the number of errors of the model post-deployment process. The model provides a
simple testing harness to ensure that model artifacts are thoroughly tested before being saved to the model catalog.
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Classes

ModelIntrospect
Class to introspect model artifacts.

Examples

>>> model_introspect = ModelIntrospect(artifact=model_artifact)
>>> model_introspect()
... Test key Test name Result Message
... ----------------------------------------------------------------------------
... test_key_1 test_name_1 Passed test passed
... test_key_2 test_name_2 Not passed some error occured
>>> model_introspect.status
... Passed

class ads.common.model_introspect.Introspectable

Bases: ABC

Base class that represents an introspectable object.

exception ads.common.model_introspect.IntrospectionNotPassed

Bases: ValueError

class ads.common.model_introspect.ModelIntrospect(artifact: Introspectable)
Bases: object

Class to introspect model artifacts.

Parameters

• status (str) – Returns the current status of model introspection. The possible variants:
Passed, Not passed, Not tested.

• failures (int) – Returns the number of failures of introspection result.

run(self )→ None
Invokes model artifacts introspection.

to_dataframe(self )→ pd.DataFrame
Serializes model introspection result into a DataFrame.

Examples

>>> model_introspect = ModelIntrospect(artifact=model_artifact)
>>> result = model_introspect()
... Test key Test name Result Message
... ----------------------------------------------------------------------------
... test_key_1 test_name_1 Passed test passed
... test_key_2 test_name_2 Not passed some error occured

Initializes the Model Introspect.

Parameters
artifact (Introspectable) – The instance of ModelArtifact object.
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Raises

• ValueError – If model artifact object not provided.:

• TypeError – If provided input paramater not a ModelArtifact instance.:

property failures: int

Calculates the number of failures.

Returns
The number of failures.

Return type
int

run()→ DataFrame
Invokes introspection.

Returns
The introspection result in a DataFrame format.

Return type
pd.DataFrame

property status: str

Gets the current status of model introspection.

to_dataframe()→ DataFrame
Serializes model introspection result into a DataFrame.

Returns
The model introspection result in a DataFrame representation.

Return type
pandas.DataFrame

class ads.common.model_introspect.PrintItem(key: str = '', case: str = '', result: str = '', message: str = '')
Bases: object

Class represents the model introspection print item.

case: str = ''

key: str = ''

message: str = ''

result: str = ''

to_list()→ List[str]
Converts instance to a list representation.

Returns
The instance in a list representation.

Return type
List[str]

class ads.common.model_introspect.TEST_STATUS

Bases: str

NOT_PASSED = 'Failed'
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NOT_TESTED = 'Skipped'

PASSED = 'Passed'

23.1.1.3.10 ads.common.model_export_util module

class ads.common.model_export_util.ONNXTransformer

Bases: object

This is a transformer to convert X [pandas.Dataframe, pd.Series] data into Onnx readable dtypes and formats. It
is Serializable, so it can be reloaded at another time.

Examples

>>> from ads.common.model_export_util import ONNXTransformer
>>> onnx_data_transformer = ONNXTransformer()
>>> train_transformed = onnx_data_transformer.fit_transform(train.X, {"column_name1
→˓": "impute_value1", "column_name2": "impute_value2"}})
>>> test_transformed = onnx_data_transformer.transform(test.X)

fit(X: Union[DataFrame, Series, ndarray, list], impute_values: Optional[Dict] = None)
Fits the OnnxTransformer on the dataset :param X: The Dataframe for the training data :type X:
Union[pandas.DataFrame, pandas.Series, np.ndarray, list]

Returns
Self – The fitted estimator

Return type
ads.Model

fit_transform(X: Union[DataFrame, Series], impute_values: Optional[Dict] = None)
Fits, then transforms the data :param X: The Dataframe for the training data :type X:
Union[pandas.DataFrame, pandas.Series]

Returns
The transformed X data

Return type
Union[pandas.DataFrame, pandas.Series]

static load(filename, **kwargs)
Loads the Onnx model to disk :param filename: The filename location for where the model should be
loaded :type filename: Str

Returns
onnx_transformer – The loaded model

Return type
ONNXTransformer

save(filename, **kwargs)
Saves the Onnx model to disk :param filename: The filename location for where the model should be saved
:type filename: Str

Returns
filename – The filename where the model was saved
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Return type
Str

transform(X: Union[DataFrame, Series, ndarray, list])
Transforms the data for the OnnxTransformer.

Parameters
X (Union[pandas.DataFrame, pandas.Series, np.ndarray, list]) – The
Dataframe for the training data

Returns
The transformed X data

Return type
Union[pandas.DataFrame, pandas.Series, np.ndarray, list]

ads.common.model_export_util.prepare_generic_model(model_path: str, fn_artifact_files_included: bool
= False, fn_name: str = 'model_api',
force_overwrite: bool = False, model:
Optional[Any] = None, data_sample:
Optional[ADSData] = None,
use_case_type=None, X_sample:
Optional[Union[list, tuple, Series, ndarray,
DataFrame]] = None, y_sample:
Optional[Union[list, tuple, Series, ndarray,
DataFrame]] = None, **kwargs)→
ModelArtifact

Generates template files to aid model deployment. The model could be accompanied by other artifacts all of
which can be dumped at model_path. Following files are generated: * func.yaml * func.py * requirements.txt *
score.py

Parameters

• model_path (str) – Path where the artifacts must be saved. The serialized model object
and any other associated files/objects must be saved in the model_path directory

• fn_artifact_files_included (bool) – Default is False, if turned off, function artifacts
are not generated.

• fn_name (str) – Opional parameter to specify the function name

• force_overwrite (bool) – Opional parameter to specify if the model_artifact should over-
write the existing model_path (if it exists)

• model ((Any, optional). Defaults to None.) – This is an optional model object
which is only used to extract taxonomy metadata. Supported models: automl, keras, light-
gbm, pytorch, sklearn, tensorflow, and xgboost. If the model is not under supported frame-
works, then extracting taxonomy metadata will be skipped. The alternative way is using
atifact.populate_metadata(model=model, usecase_type=UseCaseType.REGRESSION).

• data_sample (ADSData) – A sample of the test data that will be provided to predict() API
of scoring script Used to generate schema_input and schema_output

• use_case_type (str) – The use case type of the model

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame,
dask.dataframe.core.Series, dask.dataframe.core.DataFrame]) – A sample
of input data that will be provided to predict() API of scoring script Used to generate input
schema.
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• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame,
dask.dataframe.core.Series, dask.dataframe.core.DataFrame]) – A sam-
ple of output data that is expected to be returned by predict() API of scoring script,
corresponding to X_sample Used to generate output schema.

• **kwargs –

• ________ –

• data_science_env (bool, default: False) – If set to True, the datascience environ-
ment represented by the slug in the training conda environment will be used.

• inference_conda_env (str, default: None) – Conda environment to
use within the model deployment service for inferencing. For example,
oci://bucketname@namespace/path/to/conda/env

• ignore_deployment_error (bool, default: False) – If set to True, the prepare
method will ignore all the errors that may impact model deployment.

• underlying_model (str, default: 'UNKNOWN') – Underlying Model Type, could be
“automl”, “sklearn”, “h2o”, “lightgbm”, “xgboost”, “torch”, “mxnet”, “tensorflow”, “keras”,
“pyod” and etc.

• model_libs (dict, default: {}) – Model required libraries where the key is the library
names and the value is the library versions. For example, {numpy: 1.21.1}.

• progress (int, default: None) – max number of progress.

• inference_python_version (str, default:None.) – If provided will be added to the
generated runtime yaml

• max_col_num ((int, optional). Defaults to utils.
DATA_SCHEMA_MAX_COL_NUM.) – The maximum column size of the data that allows
to auto generate schema.

Examples

>>> import cloudpickle
>>> import os
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.datasets import make_classification
>>> import ads
>>> from ads.common.model_export_util import prepare_generic_model
>>> import yaml
>>> import oci
>>>
>>> ads.set_auth('api_key', oci_config_location=oci.config.DEFAULT_LOCATION,␣
→˓profile='DEFAULT')
>>> model_artifact_location = os.path.expanduser('~/myusecase/model/')
>>> inference_conda_env="oci://my-bucket@namespace/conda_environments/cpu/Data_
→˓Exploration_and_Manipulation_for_CPU_Python_3.7/2.0/dataexpl_p37_cpu_v2"
>>> inference_python_version = "3.7"
>>> if not os.path.exists(model_artifact_location):
... os.makedirs(model_artifact_location)
>>> X, y = make_classification(n_samples=100, n_features=20, n_classes=2)
>>> lrmodel = LogisticRegression().fit(X, y)
>>> with open(os.path.join(model_artifact_location, 'model.pkl'), "wb") as mfile:

(continues on next page)
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(continued from previous page)

... cloudpickle.dump(lrmodel, mfile)
>>> modelartifact = prepare_generic_model(
... model_artifact_location,
... model = lrmodel,
... force_overwrite=True,
... inference_conda_env=inference_conda_env,
... ignore_deployment_error=True,
... inference_python_version=inference_python_version
... )
>>> modelartifact.reload() # Call reload to update the ModelArtifact object with␣
→˓the generated score.py
>>> assert len(modelartifact.predict(X[:5])['prediction']) == 5 #Test the generated␣
→˓score.py works. This may require customization.
>>> with open(os.path.join(model_artifact_location, "runtime.yaml")) as rf:
... content = yaml.load(rf, Loader=yaml.FullLoader)
... assert content['MODEL_DEPLOYMENT']['INFERENCE_CONDA_ENV']['INFERENCE_ENV_
→˓PATH'] == inference_conda_env
... assert content['MODEL_DEPLOYMENT']['INFERENCE_CONDA_ENV']['INFERENCE_PYTHON_
→˓VERSION'] == inference_python_version
>>> # Save Model to model artifact
>>> ocimodel = modelartifact.save(
... project_id="oci1......", # OCID of the project to which the model to be␣
→˓associated
... compartment_id="oci1......", # OCID of the compartment where the model will␣
→˓reside
... display_name="LRModel_01",
... description="My Logistic Regression Model",
... ignore_pending_changes=True,
... timeout=100,
... ignore_introspection=True,
... )
>>> print(f"The OCID of the model is: {ocimodel.id}")

Returns
model_artifact – A generic model artifact

Return type
ads.model_artifact.model_artifact

ads.common.model_export_util.serialize_model(model=None, target_dir=None, X=None, y=None,
model_type=None, **kwargs)

Parameters

• model (ads.Model) – A model to be serialized

• target_dir (str, optional) – directory to output the serialized model

• X (Union[pandas.DataFrame, pandas.Series]) – The X data

• y (Union[list, pandas.DataFrame, pandas.Series]) – Tbe Y data

• model_type (str, optional) – A string corresponding to the model type

Returns
model_kwargs – A dictionary of model kwargs for the serialized model
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Return type
Dict

23.1.1.3.11 ads.common.function.fn_util module

ads.common.function.fn_util.generate_fn_artifacts(path: str, fn_name: Optional[str] = None,
fn_attributes=None, artifact_type_generic=False,
**kwargs)

Generates artifacts for fn (https://fnproject.io) at the provided path -

• func.py

• func.yaml

• requirements.txt if not there. If exists appends fdk to the file.

• score.py

Parameters

• path (str) – Target folder where the artifacts are placed.

• fn_attributes (dict) – dictionary specifying all the function attributes as described in
https://github.com/fnproject/docs/blob/master/fn/develop/func-file.md

• artifact_type_generic (bool) – default is False. This attribute decides which template
to pick for score.py. If True, it is assumed that the code to load is provided by the user.

ads.common.function.fn_util.get_function_config()→ dict
Returns dictionary loaded from func_conf.yaml

ads.common.function.fn_util.prepare_fn_attributes(func_name: str, schema_version=20180708,
version=None, python_runtime=None,
entry_point=None, memory=None)→ dict

Workaround for collections.namedtuples. The defaults are not supported.

ads.common.function.fn_util.write_score(path, **kwargs)

23.1.1.3.12 ads.common.utils module

exception ads.common.utils.FileOverwriteError

Bases: Exception

class ads.common.utils.JsonConverter(*, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None, separators=None,
default=None)

Bases: JSONEncoder

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys
is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.
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If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such
check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON spec-
ification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a
ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’, ‘, ‘: ‘) if indent
is None and (‘,’, ‘: ‘) otherwise. To get the most compact JSON representation, you should specify (‘,’, ‘:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

default(obj)
Converts an object to JSON based on its type

Parameters
obj (Object) – An object which is being converted to Json, supported types are pandas
Timestamp, series, dataframe, or categorical or numpy ndarrays.

Returns
Json

Return type
A json repersentation of the object.

ads.common.utils.camel_to_snake(name: str)→ str
Converts the camel case string to the snake representation.

Parameters
name (str) – The name to convert.

Returns
str

Return type
The name converted to the snake representation.

ads.common.utils.copy_file(uri_src: str, uri_dst: str, force_overwrite: Optional[bool] = False, auth:
Optional[Dict] = None, chunk_size: Optional[int] = 8192,
progressbar_description: Optional[str] = 'Copying `{uri_src}` to `{uri_dst}`')→
str

Copies file from uri_src to uri_dst. If uri_dst specifies a directory, the file will be copied into uri_dst using the
base filename from uri_src. Returns the path to the newly created file.

Parameters

• uri_src (str) – The URI of the source file, which can be local path or OCI object storage
URI.

• uri_dst (str) – The URI of the destination file, which can be local path or OCI object
storage URI.
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• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files or not.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• chunk_size ((int, optinal). Defaults to DEFAULT_BUFFER_SIZE) – How much data can
be copied in one iteration.

Returns
The path to the newly created file.

Return type
str

Raises
FileExistsError – If a destination file exists and force_overwrite set to False.

ads.common.utils.copy_from_uri(uri: str, to_path: str, unpack: Optional[bool] = False, force_overwrite:
Optional[bool] = False, auth: Optional[Dict] = None)→ None

Copies file(s) to local path. Can be a folder, archived folder or a separate file. The source files can be located in
a local folder or in OCI Object Storage.

Parameters

• uri (str) – The URI of the source file or directory, which can be local path or OCI object
storage URI.

• to_path (str) – The local destination path. If this is a directory, the source files will be
placed under it.

• unpack ((bool, optional). Defaults to False.) – Indicate if zip or tar.gz file spec-
ified by the uri should be unpacked. This option has no effect on other files.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files or not.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
Nothing

Return type
None

Raises
ValueError – If destination path is already exist and force_overwrite is set to False.

ads.common.utils.download_from_web(url: str, to_path: str)→ None
Downloads a single file from http/https/ftp.

Parameters

• url (str) – The URL of the source file.

• to_path (path-like object) – Local destination path.
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Returns
Nothing

Return type
None

ads.common.utils.ellipsis_strings(raw, n=24)
takes a sequence (<string>, list(<string>), tuple(<string>), pd.Series(<string>) and Ellipsis’ize them at position
n

ads.common.utils.extract_lib_dependencies_from_model(model)→ dict
Extract a dictionary of library dependencies for a model

Parameters
model –

Returns
Dict

Return type
A dictionary of library dependencies.

ads.common.utils.first_not_none(itr)
Returns the first non-none result from an iterable, similar to any() but return value not true/false

ads.common.utils.flatten(d, parent_key='')
Flattens nested dictionaries to a single layer dictionary

Parameters

• d (dict) – The dictionary that needs to be flattened

• parent_key (str) – Keys in the dictionary that are nested

Returns
a_dict – a single layer dictionary

Return type
dict

ads.common.utils.folder_size(path: str)→ int
Recursively calculating a size of the path folder.

Parameters
path (str) – Path to the folder.

Returns
The size fo the folder in bytes.

Return type
int

ads.common.utils.generate_requirement_file(requirements: dict, file_path: str, file_name: str =
'requirements.txt')

Generate requirements file at file_path.

Parameters

• requirements (dict) – Key is the library name and value is the version

• file_path (str) – Directory to save requirements.txt

• file_name (str) – Opional parameter to specify the file name

23.1. ads package 571



ADS Documentation, Release 2.6.4

ads.common.utils.get_base_modules(model)
Get the base modules from an ADS model

ads.common.utils.get_bootstrap_styles()

Returns HTML bootstrap style information

ads.common.utils.get_compute_accelerator_ncores()

ads.common.utils.get_cpu_count()

Returns the number of CPUs available on this machine

ads.common.utils.get_dataframe_styles(max_width=75)
Styles used for dataframe, example usage:

df.style .set_table_styles(utils.get_dataframe_styles()) .set_table_attributes(‘class=table’) .render())

Returns
styles – A list of dataframe table styler styles.

Return type
array

ads.common.utils.get_files(directory: str)
List out all the file names under this directory.

Parameters
directory (str) – The directory to list out all the files from.

Returns
List of the files in the directory.

Return type
List

ads.common.utils.get_oci_config()

Returns the OCI config location, and the OCI config profile.

ads.common.utils.get_progress_bar(max_progress, description='Initializing')
this will return an instance of ProgressBar, sensitive to the runtime environment

ads.common.utils.get_random_name_for_resource()→ str
Returns randomly generated easy to remember name. It consists from 1 adjective and 1 animal word, tailed by
UTC timestamp (joined with ‘-‘). This is an ADS default resource name generated for models, jobs, jobruns,
model deployments, pipelines.

Returns
Randomly generated easy to remember name for oci resources - models, jobs, jobruns, model de-
ployments, pipelines. Example: polite-panther-2022-08-17-21:15.46; strange-spider-2022-08-
17-23:55.02

Return type
str

ads.common.utils.get_sqlalchemy_engine(connection_url, *args, **kwargs)
The SqlAlchemny docs say to use a single engine per connection_url, this class will take care of that.

Parameters
connection_url (string) – The URL to connect to
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Returns
engine – The engine from which SqlAlchemny commands can be ran on

Return type
SqlAlchemny engine

ads.common.utils.get_value(obj, attr, default=None)
Gets a copy of the value from a nested dictionary of an object with nested attributes.

Parameters

• obj – An object or a dictionary

• attr – Attributes as a string seprated by dot(.)

• default – Default value to be returned if attribute is not found.

Returns
A copy of the attribute value. For dict or list, a deepcopy will be returned.

Return type
Any

ads.common.utils.highlight_text(text)
Returns text with html highlights. :param text: The text to be highlighted. :type text: String

Returns
ht – The text with html highlight information.

Return type
String

ads.common.utils.horizontal_scrollable_div(html)
Wrap html with the necessary html to make horizontal scrolling possible.

Examples

display(HTML(utils.horizontal_scrollable_div(my_html)))

Parameters
html (str) – Your HTML to wrap.

Returns
Wrapped HTML.

Return type
type

ads.common.utils.human_size(num_bytes: int, precision: Optional[int] = 2)→ str
Converts bytes size to a string representing its value in B, KB, MB and GB.

Parameters

• num_bytes (int) – The size in bytes.

• precision ((int, optional). Defaults to 2.) – The precision of converting the
bytes value.

Returns
A string representing the size in B, KB, MB and GB.

Return type
str
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ads.common.utils.inject_and_copy_kwargs(kwargs, **args)
Takes in a dictionary and returns a copy with the args injected

Examples

>>> foo(arg1, args, utils.inject_and_copy_kwargs(kwargs, arg3=12, arg4=42))

Parameters

• kwargs (dict) – The original kwargs.

• **args (type) – A series of arguments, foo=42, bar=12 etc

Returns
d – new dictionary object that you can use in place of kwargs

Return type
dict

ads.common.utils.is_data_too_wide(data: Union[list, tuple, Series, ndarray, DataFrame], max_col_num:
int)→ bool

Returns true if the data has too many columns.

Parameters

• data (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]) – A sam-
ple of data that will be used to generate schema.

• max_col_num (int.) – The maximum column size of the data that allows to auto generate
schema.

ads.common.utils.is_debug_mode()

Returns true if ADS is in debug mode.

ads.common.utils.is_documentation_mode()

Returns true if ADS is in documentation mode.

ads.common.utils.is_notebook()

Returns true if the environment is a jupyter notebook.

ads.common.utils.is_resource_principal_mode()

Returns true if ADS is in resource principal mode.

ads.common.utils.is_same_class(obj, cls)
checks to see if object is the same class as cls

ads.common.utils.is_test()

Returns true if ADS is in test mode.

class ads.common.utils.ml_task_types(value)
Bases: Enum

An enumeration.

BINARY_CLASSIFICATION = 2

BINARY_TEXT_CLASSIFICATION = 4
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MULTI_CLASS_CLASSIFICATION = 3

MULTI_CLASS_TEXT_CLASSIFICATION = 5

REGRESSION = 1

UNSUPPORTED = 6

ads.common.utils.numeric_pandas_dtypes()

Returns a list of the “numeric” pandas data types

ads.common.utils.oci_config_file()

Returns the OCI config file location

ads.common.utils.oci_config_location()

Returns oci configuration file location.

ads.common.utils.oci_config_profile()

Returns the OCI config profile location.

ads.common.utils.oci_key_location()

Returns the OCI key location

ads.common.utils.oci_key_profile()

Returns key profile value specified in oci configuration file.

ads.common.utils.print_user_message(msg, display_type='tip', see_also_links=None, title='Tip')
This method is deprecated and will be removed in future releases. Prints in html formatted block one of
tip|info|warn type.

Parameters

• msg (str or list) – The actual message to display. display_type is “module’, msg can be
a list of [module name, module package name], i.e. [“automl”, “ads[ml]”]

• display_type (str (default 'tip')) – The type of user message.

• see_also_links (list of tuples in the form of [('display_name', 'url')])
–

• title (str (default 'tip')) – The title of user message.

ads.common.utils.random_valid_ocid(prefix='ocid1.dataflowapplication.oc1.iad')
Generates a random valid ocid.

Parameters
prefix (str) – A prefix, corresponding to a region location.

Returns
ocid – a valid ocid with the given prefix.

Return type
str

ads.common.utils.remove_file(file_path: str, auth: Optional[Dict] = None)→ None
Reoves file.

Parameters

• file_path (str) – The path of the source file, which can be local path or OCI object storage
URI.
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• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
Nothing.

Return type
None

ads.common.utils.replace_spaces(lst)
Replace all spaces with underscores for strings in the list.

Requires that the list contains strings for each element.

lst: list of strings

ads.common.utils.set_oci_config(oci_config_location, oci_config_profile)

Parameters

• oci_config_location – location of the config file, for example, ~/.oci/config

• oci_config_profile – The profile to load from the config file. Defaults to “DEFAULT”

ads.common.utils.snake_to_camel(name: str, capitalized_first_token: Optional[bool] = False)→ str
Converts the snake case string to the camel representation.

Parameters

• name (str) – The name to convert.

• capitalized_first_token ((bool, optional). Defaults to False.) – Wether
the first token needs to be capitalized or not.

Returns
str

Return type
The name converted to the camel representation.

ads.common.utils.split_data(X, y, random_state=42, test_size=0.3)
Splits data using Sklearn based on the input type of the data.

Parameters

• X (a Pandas Dataframe) – The data points.

• y (a Pandas Dataframe) – The labels.

• random_state (int) – A random state for reproducability.

• test_size (int) – The number of elements that should be included in the test dataset.

ads.common.utils.to_dataframe(data: Union[list, tuple, Series, ndarray, DataFrame])
Convert to pandas DataFrame.

Parameters
data (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame]) – Convert data
to pandas DataFrame.

Returns
pandas DataFrame.
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Return type
pd.DataFrame

ads.common.utils.truncate_series_top_n(series, n=24)
take a series which can be interpreted as a dict, index=key, this function sorts by the values and takes the top-n
values, and returns a new series

ads.common.utils.wrap_lines(li, heading='')
Wraps the elements of iterable into multi line string of fixed width

23.1.1.3.13 Module contents

23.1.1.3.14 ads.common.model_metadata_mixin module

class ads.common.model_metadata_mixin.MetadataMixin

Bases: object

MetadataMixin class which populates the custom metadata, taxonomy metadata, input/output schema and prove-
nance metadata.

populate_metadata(use_case_type: Optional[str] = None, data_sample: Optional[ADSData] = None,
X_sample: Optional[Union[list, tuple, Series, ndarray, DataFrame]] = None,
y_sample: Optional[Union[list, tuple, Series, ndarray, DataFrame]] = None,
training_script_path: Optional[str] = None, training_id: Optional[str] = None,
ignore_pending_changes: bool = True, max_col_num: int = 2000)

Populates input schema and output schema. If the schema exceeds the limit of 32kb, save as json files to
the artifact directory.

Parameters

• use_case_type ((str, optional). Defaults to None.) – The use case type of the
model.

• data_sample ((ADSData, optional). Defaults to None.) – A sample of the data
that will be used to generate intput_schema and output_schema.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input
schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of output data that will be used to generate output
schema.

• training_script_path (str. Defaults to None.) – Training script path.

• training_id ((str, optional). Defaults to None.) – The training model OCID.

• ignore_pending_changes (bool. Defaults to False.) – Ignore the pending
changes in git.

• max_col_num ((int, optional). Defaults to utils.
DATA_SCHEMA_MAX_COL_NUM.) – The maximum number of columns allowed in
auto generated schema.

Returns
Nothing.
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Return type
None

23.1.1.4 ads.bds package

23.1.1.4.1 Submodules

23.1.1.4.2 ads.bds.auth module

exception ads.bds.auth.KRB5KinitError

Bases: Exception

KRB5KinitError class when kinit -kt command failed to generate cached ticket with the keytab file and the krb5
config file.

ads.bds.auth.has_kerberos_ticket()

Whether kerberos cache ticket exists.

ads.bds.auth.init_ccache_with_keytab(principal: str, keytab_file: str)→ None
Initialize credential cache using keytab file.

Parameters

• principal (str) – The unique identity to which Kerberos can assign tickets.

• keytab_path (str) – Path to your keytab file.

Returns
Nothing.

Return type
None

ads.bds.auth.krbcontext(principal: str, keytab_path: str, kerb5_path: str = '~/.bds_config/krb5.conf')→ None
A context manager for Kerberos-related actions. It provides a Kerberos context that you can put code inside. It
will initialize credential cache automatically with keytab if no cached ticket exists. Otherwise, does nothing.

Parameters

• principal (str) – The unique identity to which Kerberos can assign tickets.

• keytab_path (str) – Path to your keytab file.

• kerb5_path ((str, optional).) – Path to your krb5 config file.

Returns
Nothing.

Return type
None
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Examples

>>> from ads.bds.auth import krbcontext
>>> from pyhive import hive
>>> with krbcontext(principal = "your_principal", keytab_path = "your_keytab_path"):
>>> hive_cursor = hive.connect(host="your_hive_host",
... port="your_hive_port",
... auth='KERBEROS',
... kerberos_service_name="hive").cursor()

ads.bds.auth.refresh_ticket(principal: str, keytab_path: str, kerb5_path: str = '~/.bds_config/krb5.conf')→
None

generate new cached ticket based on the principal and keytab file path.

Parameters

• principal (str) – The unique identity to which Kerberos can assign tickets.

• keytab_path (str) – Path to your keytab file.

• kerb5_path ((str, optional).) – Path to your krb5 config file.

Returns
Nothing.

Return type
None

Examples

>>> from ads.bds.auth import refresh_ticket
>>> from pyhive import hive
>>> refresh_ticket(principal = "your_principal", keytab_path = "your_keytab_path")
>>> hive_cursor = hive.connect(host="your_hive_host",
... port="your_hive_port",
... auth='KERBEROS',
... kerberos_service_name="hive").cursor()

23.1.1.4.3 Module contents

23.1.1.5 ads.data_labeling package

23.1.1.5.1 Submodules

23.1.1.5.2 ads.data_labeling.interface.loader module

class ads.data_labeling.interface.loader.Loader

Bases: ABC

Data Loader Interface.

abstract load(**kwargs)→ Any
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23.1.1.5.3 ads.data_labeling.interface.parser module

class ads.data_labeling.interface.parser.Parser

Bases: ABC

Data Parser Interface.

abstract parse()→ Any

23.1.1.5.4 ads.data_labeling.interface.reader module

class ads.data_labeling.interface.reader.Reader

Bases: ABC

Data Reader Interface.

info()→ Serializable

abstract read()→ Any

23.1.1.5.5 ads.data_labeling.boundingbox module

class ads.data_labeling.boundingbox.BoundingBoxItem(top_left: ~typing.Tuple[float, float], bottom_left:
~typing.Tuple[float, float], bottom_right:
~typing.Tuple[float, float], top_right:
~typing.Tuple[float, float], labels:
~typing.List[str] = <factory>)

Bases: object

BoundingBoxItem class representing bounding box label.

labels

List of labels for this bounding box.

Type
List[str]

top_left

Top left corner of this bounding box.

Type
Tuple[float, float]

bottom_left

Bottom left corner of this bounding box.

Type
Tuple[float, float]

bottom_right

Bottom right corner of this bounding box.

Type
Tuple[float, float]
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top_right

Top right corner of this bounding box.

Type
Tuple[float, float]

Examples

>>> item = BoundingBoxItem(
... labels = ['cat','dog']
... bottom_left=(0.2, 0.4),
... top_left=(0.2, 0.2),
... top_right=(0.8, 0.2),
... bottom_right=(0.8, 0.4))
>>> item.to_yolo(categories = ['cat','dog', 'horse'])

bottom_left: Tuple[float, float]

bottom_right: Tuple[float, float]

classmethod from_yolo(bbox: List[Tuple], categories: Optional[List[str]] = None)→ BoundingBoxItem
Converts the YOLO formated annotations to BoundingBoxItem.

Parameters

• bboxes (List[Tuple]) – The list of bounding box annotations in YOLO format. Exam-
ple: [(0, 0.511560675, 0.50234826, 0.47013485, 0.57803468)]

• categories (List[str]) – The list of object categories in proper order for model train-
ing. Example: [‘cat’,’dog’,’horse’]

Returns
The BoundingBoxItem.

Return type
BoundingBoxItem

Raises
TypeError – When categories list has a wrong format.

labels: List[str]

to_yolo(categories: List[str])→ List[Tuple[int, float, float, float, float]]
Converts BoundingBoxItem to the YOLO format.

Parameters
categories (List[str]) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

Returns
The list of YOLO formatted bounding boxes.

Return type
List[Tuple[int, float, float, float, float]]

Raises

• ValueError – When categories list not provided. When categories list not matched with
the labels.
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• TypeError – When categories list has a wrong format.

top_left: Tuple[float, float]

top_right: Tuple[float, float]

class ads.data_labeling.boundingbox.BoundingBoxItems(items: ~typ-
ing.List[~ads.data_labeling.boundingbox.BoundingBoxItem]
= <factory>)

Bases: object

BoundingBoxItems class which consists of a list of BoundingBoxItem.

items

List of BoundingBoxItem.

Type
List[BoundingBoxItem]

Examples

>>> item = BoundingBoxItem(
... labels = ['cat','dog']
... bottom_left=(0.2, 0.4),
... top_left=(0.2, 0.2),
... top_right=(0.8, 0.2),
... bottom_right=(0.8, 0.4))
>>> items = BoundingBoxItems(items = [item])
>>> items.to_yolo(categories = ['cat','dog', 'horse'])

items: List[BoundingBoxItem]

to_yolo(categories: List[str])→ List[Tuple[int, float, float, float, float]]
Converts BoundingBoxItems to the YOLO format.

Parameters
categories (List[str]) – The list of object categories in proper order for model training.
Example: [‘cat’,’dog’,’horse’]

Returns
The list of YOLO formatted bounding boxes.

Return type
List[Tuple[int, float, float, float, float]]

Raises

• ValueError – When categories list not provided. When categories list not matched with
the labels.

• TypeError – When categories list has a wrong format.

582 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

23.1.1.5.6 ads.data_labeling.constants module

class ads.data_labeling.constants.AnnotationType

Bases: object

AnnotationType class which contains all the annotation types that data labeling service supports.

BOUNDING_BOX = 'BOUNDING_BOX'

ENTITY_EXTRACTION = 'ENTITY_EXTRACTION'

MULTI_LABEL = 'MULTI_LABEL'

SINGLE_LABEL = 'SINGLE_LABEL'

class ads.data_labeling.constants.DatasetType

Bases: object

DatasetType class which contains all the dataset types that data labeling service supports.

DOCUMENT = 'DOCUMENT'

IMAGE = 'IMAGE'

TEXT = 'TEXT'

class ads.data_labeling.constants.Formats

Bases: object

Common formats class which contains all the common formats that are supported to convert to.

SPACY = 'spacy'

YOLO = 'yolo'

23.1.1.5.7 ads.data_labeling.data_labeling_service module

class ads.data_labeling.data_labeling_service.DataLabeling(compartment_id: Optional[str] =
None, dls_cp_client_auth:
Optional[dict] = None,
dls_dp_client_auth: Optional[dict] =
None)

Bases: OCIWorkRequestMixin

Class for data labeling service. Integrate the data labeling service APIs.

Examples

>>> import ads
>>> import pandas
>>> from ads.data_labeling.data_labeling_service import DataLabeling
>>> ads.set_auth("api_key")
>>> dls = DataLabeling()
>>> dls.list_dataset()
>>> metadata_path = dls.export(dataset_id="your dataset id",

(continues on next page)
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(continued from previous page)

... path="oci://<bucket_name>@<namespace>/folder")
>>> df = pd.DataFrame.ads.read_labeled_data(metadata_path)

Initialize a DataLabeling class.

Parameters

• compartment_id (str, optional) – OCID of data labeling datasets’ compartment

• dls_cp_client_auth (dict, optional) – Data Labeling control plane client auth. De-
fault is None. The default authetication is set using ads.set_auth API. If you need to over-
ride the default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal
to create appropriate authentication signer and kwargs required to instantiate IdentityClient
object.

• dls_dp_client_auth (dict, optional) – Data Labeling data plane client auth. Default
is None. The default authetication is set using ads.set_auth API. If you need to override the
default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to create
appropriate authentication signer and kwargs required to instantiate IdentityClient object.

Returns
Nothing.

Return type
None

export(dataset_id: str, path: str, include_unlabeled=False)→ str
Export dataset based on the dataset_id and save the jsonl files under the path (metadata jsonl file and the
records jsonl file) to the object storage path provided by the user and return the metadata jsonl path.

Parameters

• dataset_id (str) – The dataset id of which the snapshot will be generated.

• path (str) – The object storage path to store the generated snapshot.
“oci://<bucket_name>@<namespace>/prefix”

• include_unlabeled (bool, Optional. Defaults to False.) – Whether to in-
clude unlabeled records or not.

Returns
oci path of the metadata jsonl file.

Return type
str

list_dataset(**kwargs)→ DataFrame
List all the datasets created from the data labeling service under a given compartment.

Parameters
kwargs (dict, optional) – Additional keyword arguments will be passed to
oci.data_labeling_serviceDataLabelingManagementClient.list_datasets method.

Returns
pandas dataframe which contains the dataset information.

Return type
pandas.DataFrame

Raises
Exception – If pagination.list_call_get_all_results() fails
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23.1.1.5.8 ads.data_labeling.metadata module

class ads.data_labeling.metadata.Metadata(source_path: str = '', records_path: str = '', labels:
~typing.List[str] = <factory>, dataset_name: str = '',
compartment_id: str = '', dataset_id: str = '',
annotation_type: str = '', dataset_type: str = '')

Bases: DataClassSerializable

The class that representing the labeled dataset metadata.

source_path

Contains information on where all the source data(image/text/document) stores.

Type
str

records_path

Contains information on where records jsonl file stores.

Type
str

labels

List of classes/labels for the dataset.

Type
List

dataset_name

Dataset display name on the Data Labeling Service console.

Type
str

compartment_id

Compartment id of the labeled dataset.

Type
str

dataset_id

Dataset id.

Type
str

annotation_type

Type of the labeling/annotation task. Currently supports SINGLE_LABEL, MULTI_LABEL, EN-
TITY_EXTRACTION, BOUNDING_BOX.

Type
str

dataset_type

Type of the dataset. Currently supports Text, Image, DOCUMENT.

Type
str

annotation_type: str = ''
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compartment_id: str = ''

dataset_id: str = ''

dataset_name: str = ''

dataset_type: str = ''

classmethod from_dls_dataset(dataset: Dataset)→ Metadata
Contructs a Metadata instance from OCI DLS dataset.

Parameters
dataset (OCIDLSDataset) – OCIDLSDataset object.

Returns
The ads labeled dataset metadata instance.

Return type
Metadata

labels: List[str]

records_path: str = ''

source_path: str = ''

to_dataframe()→ DataFrame
Converts the metadata to dataframe format.

Returns
The metadata in Pandas dataframe format.

Return type
pandas.DataFrame

to_dict()→ Dict
Converts to dictionary representation.

Returns
The metadata in dictionary type.

Return type
Dict

23.1.1.5.9 ads.data_labeling.ner module

class ads.data_labeling.ner.NERItem(label: str = '', offset: int = 0, length: int = 0)
Bases: object

NERItem class which is a representation of a token span.

label

Entity name.

Type
str
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offset

The token span’s entity start index position in the text.

Type
int

length

Length of the token span.

Type
int

classmethod from_spacy(token)→ NERItem

label: str = ''

length: int = 0

offset: int = 0

to_spacy()→ tuple
Converts one NERItem to the spacy format.

Returns
NERItem in the spacy format

Return type
Tuple

class ads.data_labeling.ner.NERItems(items: ~typing.List[~ads.data_labeling.ner.NERItem] = <factory>)
Bases: object

NERItems class consists of a list of NERItem.

items

List of NERItem.

Type
List[NERItem]

items: List[NERItem]

to_spacy()→ List[tuple]
Converts NERItems to the spacy format.

Returns
List of NERItems in the Spacy format.

Return type
List[tuple]

exception ads.data_labeling.ner.WrongEntityFormatLabelIsEmpty

Bases: ValueError

exception ads.data_labeling.ner.WrongEntityFormatLabelNotString

Bases: ValueError

exception ads.data_labeling.ner.WrongEntityFormatLengthIsNegative

Bases: ValueError
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exception ads.data_labeling.ner.WrongEntityFormatLengthNotInteger

Bases: ValueError

exception ads.data_labeling.ner.WrongEntityFormatOffsetIsNegative

Bases: ValueError

exception ads.data_labeling.ner.WrongEntityFormatOffsetNotInteger

Bases: ValueError

23.1.1.5.10 ads.data_labeling.record module

class ads.data_labeling.record.Record(path: str = '', content: Optional[Any] = None, annotation:
Optional[Union[Tuple, str, List[BoundingBoxItem],
List[NERItem]]] = None)

Bases: object

Class representing Record.

path

File path.

Type
str

content

Content of the record.

Type
Any

annotation

Annotation/label of the record.

Type
Union[Tuple, str, List[BoundingBoxItem], List[NERItem]]

annotation: Union[Tuple, str, List[BoundingBoxItem], List[NERItem]] = None

content: Any = None

path: str = ''

to_dict()→ Dict
Convert the Record instance to a dictionary.

Returns
Dictionary representation of the Record instance.

Return type
Dict

to_tuple()→ Tuple[str, Any, Union[Tuple, str, List[BoundingBoxItem], List[NERItem]]]
Convert the Record instance to a tuple.

Returns
Tuple representation of the Record instance.

Return type
Tuple
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23.1.1.5.11 ads.data_labeling.mixin.data_labeling module

class ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin

Bases: object

Mixin class for labeled text data.

static read_labeled_data(path: Optional[str] = None, dataset_id: Optional[str] = None,
compartment_id: Optional[str] = None, auth: Optional[Dict] = None,
materialize: bool = False, encoding: str = 'utf-8', include_unlabeled: bool =
False, format: Optional[str] = None, chunksize: Optional[int] = None)

Loads the dataset generated by data labeling service from either the export file or the Data Labeling Service.

Parameters

• path ((str, optional). Defaults to None) – The export file path, can be either
local or object storage path.

• dataset_id ((str, optional). Defaults to None) – The dataset OCID.

• compartment_id (str. Defaults to the compartment_id from the env
variable.) – The compartment OCID of the dataset.

• auth ((dict, optional). Defaults to None) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• materialize ((bool, optional). Defaults to False) – Whether the content of
the dataset file should be loaded or it should return the file path to the content. By default
the content will not be loaded.

• encoding ((str, optional). Defaults to 'utf-8') – Encoding of files. Only used
for “TEXT” dataset.

• include_unlabeled ((bool, optional). Default to False) – Whether to load
the unlabeled records or not.

• format ((str, optional). Defaults to None) – Output format of annotations. Can
be None, “spacy” for dataset Entity Extraction type or “yolo for Object Detection type.

– When None, it outputs List[NERItem] or List[BoundingBoxItem],

– When “spacy”, it outputs List[Tuple],

– When “yolo”, it outputs List[List[Tuple]].

• chunksize ((int, optional). Defaults to None) – The amount of records that
should be read in one iteration. The result will be returned in a generator format.

Returns
pd.Dataframe if chunksize is not specified. Generator[pd.Dataframe] if chunksize is speci-
fied.

Return type
Union[Generator[pd.DataFrame, Any, Any], pd.DataFrame]
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Examples

>>> import pandas as pd
>>> import ads
>>> from ads.common import auth as authutil
>>> df = pd.DataFrame.ads.read_labeled_data(path="path_to_your_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=False)

Path Content Annotations
--------------------------------------------------------------------
0 path/to/the/content/file yes
1 path/to/the/content/file no

>>> df = pd.DataFrame.ads.read_labeled_data_from_dls(dataset_id="your_dataset_
→˓ocid",
... compartment_id="your_
→˓compartment_id",
... auth=authutil.api_keys(),
... materialize=False)

Path Content Annotations
--------------------------------------------------------------------
0 path/to/the/content/file yes
1 path/to/the/content/file no

render_bounding_box(options: Optional[Dict] = None, content_column: str = 'Content',
annotations_column: str = 'Annotations', categories: Optional[List[str]] = None,
limit: int = 50, path: Optional[str] = None)→ None

Renders bounding box dataset. Displays only first 50 rows.

Parameters

• options (dict) – The colors options specified for rendering.

• content_column (Optional[str]) – The column name with the content data.

• annotations_column (Optional[str]) – The column name for the annotations list.

• categories (Optional List[str]) – The list of object categories in proper order for
model training. Only used when bounding box annotations are in YOLO format. Example:
[‘cat’,’dog’,’horse’]

• limit (Optional[int]. Defaults to 50) – The maximum amount of records to dis-
play.

• path (Optional[str]) – Path to save the image with annotations to local directory.

Returns
Nothing

Return type
None
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Examples

>>> import pandas as pd
>>> import ads
>>> from ads.common import auth as authutil
>>> df = pd.DataFrame.ads.read_labeled_data(path="path_to_your_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True)
>>> df.ads.render_bounding_box(content_column="Content", annotations_column=
→˓"Annotations")

render_ner(options: Dict = None, content_column: str = 'Content', annotations_column: str =
'Annotations', limit: int = 50)→ None

Renders NER dataset. Displays only first 50 rows.

Parameters

• options (dict) – The colors options specified for rendering.

• content_column (Optional[str]) – The column name with the content data.

• annotations_column (Optional[str]) – The column name for the annotations list.

• limit (Optional[int]. Defaults to 50) – The maximum amount of records to dis-
play.

Returns
Nothing

Return type
None

Examples

>>> import pandas as pd
>>> import ads
>>> from ads.common import auth as authutil
>>> df = pd.DataFrame.ads.read_labeled_data(path="path_to_your_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True)
>>> df.ads.render_ner(content_column="Content", annotations_column="Annotations
→˓")

23.1.1.5.12 ads.data_labeling.parser.export_metadata_parser module

class ads.data_labeling.parser.export_metadata_parser.MetadataParser

Bases: Parser

MetadataParser class which parses the metadata from the record.

EXPECTED_KEYS = ['id', 'compartmentId', 'displayName', 'labelsSet',
'annotationFormat', 'datasetSourceDetails', 'datasetFormatDetails']
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static parse(json_data: Dict[Any, Any])→ Metadata
Parses the metadata jsonl file.

Parameters
json_data (dict) – dictionary format of the metadata jsonl file content.

Returns
Metadata object which contains the useful fields from the metadata jsonl file

Return type
Metadata

23.1.1.5.13 ads.data_labeling.parser.export_record_parser module

class ads.data_labeling.parser.export_record_parser.BoundingBoxRecordParser(dataset_source_path:
str, format:
Optional[str] =
None, categories:
Op-
tional[List[str]]
= None)

Bases: RecordParser

BoundingBoxRecordParser class which parses the label of BoundingBox label data.

Initiates a RecordParser instance.

Parameters

• dataset_source_path (str) – Dataset source path.

• format ((str, optional). Defaults to None.) – Output format of annotations.

• categories ((List[str], optional). Defaults to None.) – The list of object cat-
egories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
RecordParser instance.

Return type
RecordParser

class ads.data_labeling.parser.export_record_parser.EntityType

Bases: object

Entity type class for supporting multiple types of entities.

GENERIC = 'GENERIC'

IMAGEOBJECTSELECTION = 'IMAGEOBJECTSELECTION'

TEXTSELECTION = 'TEXTSELECTION'

class ads.data_labeling.parser.export_record_parser.MultiLabelRecordParser(dataset_source_path:
str, format:
Optional[str] =
None, categories:
Op-
tional[List[str]] =
None)
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Bases: RecordParser

MultiLabelRecordParser class which parses the label of Multiple label data.

Initiates a RecordParser instance.

Parameters

• dataset_source_path (str) – Dataset source path.

• format ((str, optional). Defaults to None.) – Output format of annotations.

• categories ((List[str], optional). Defaults to None.) – The list of object cat-
egories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
RecordParser instance.

Return type
RecordParser

class ads.data_labeling.parser.export_record_parser.NERRecordParser(dataset_source_path: str,
format: Optional[str] =
None, categories:
Optional[List[str]] =
None)

Bases: RecordParser

NERRecordParser class which parses the label of NER label data.

Initiates a RecordParser instance.

Parameters

• dataset_source_path (str) – Dataset source path.

• format ((str, optional). Defaults to None.) – Output format of annotations.

• categories ((List[str], optional). Defaults to None.) – The list of object cat-
egories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
RecordParser instance.

Return type
RecordParser

class ads.data_labeling.parser.export_record_parser.RecordParser(dataset_source_path: str,
format: Optional[str] = None,
categories: Optional[List[str]]
= None)

Bases: Parser

RecordParser class which parses the labels from the record.
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Examples

>>> from ads.data_labeling.parser.export_record_parser import␣
→˓SingleLabelRecordParser
>>> from ads.data_labeling.parser.export_record_parser import MultiLabelRecordParser
>>> from ads.data_labeling.parser.export_record_parser import NERRecordParser
>>> from ads.data_labeling.parser.export_record_parser import␣
→˓BoundingBoxRecordParser
>>> import fsspec
>>> import json
>>> from ads.common import auth as authutil
>>> labels = []
>>> with fsspec.open("/path/to/records_file.jsonl", **authutil.api_keys()) as f:
>>> for line in f:
>>> bounding_box_labels = BoundingBoxRecordParser("source_data_path").
→˓parse(json.loads(line))
>>> labels.append(bounding_box_labels)

Initiates a RecordParser instance.

Parameters

• dataset_source_path (str) – Dataset source path.

• format ((str, optional). Defaults to None.) – Output format of annotations.

• categories ((List[str], optional). Defaults to None.) – The list of object cat-
egories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
RecordParser instance.

Return type
RecordParser

parse(record: Dict)→ Record
Extracts the annotations from the record content. Constructs and returns a Record instance containing the
file path and the labels.

Parameters
record (Dict) – Content of the record from the record file.

Returns
Record instance which contains the file path as well as the annotations.

Return type
Record

class ads.data_labeling.parser.export_record_parser.RecordParserFactory

Bases: object

RecordParserFactory class which contains a list of registered parsers and allows to register new RecordParsers.

Current parsers include:

• SingleLabelRecordParser

• MultiLabelRecordParser

• NERRecordParser

• BoundingBoxRecordParser
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static parser(annotation_type: str, dataset_source_path: str, format: Optional[str] = None, categories:
Optional[List[str]] = None)→ RecordParser

Gets the parser based on the annotation_type.

Parameters

• annotation_type (str) – Annotation type which can be SINGLE_LABEL,
MULTI_LABEL, ENTITY_EXTRACTION and BOUNDING_BOX.

• dataset_source_path (str) – Dataset source path.

• format ((str, optional). Defaults to None.) – Output format of annotations.
Can be None, “spacy” for dataset Entity Extraction type or “yolo” for Object Detection
type. When None, it outputs List[NERItem] or List[BoundingBoxItem]. When “spacy”, it
outputs List[Tuple]. When “yolo”, it outputs List[List[Tuple]].

• categories ((List[str], optional). Defaults to None.) – The list of object
categories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
RecordParser corresponding to the annotation type.

Return type
RecordParser

Raises
ValueError – If annotation_type is not supported.

classmethod register(annotation_type: str, parser)→ None
Registers a new parser.

Parameters

• annotation_type (str) – Annotation type which can be SINGLE_LABEL,
MULTI_LABEL, ENTITY_EXTRACTION and BOUNDING_BOX.

• parser (RecordParser) – A new Parser class to be registered.

Returns
Nothing.

Return type
None

class ads.data_labeling.parser.export_record_parser.SingleLabelRecordParser(dataset_source_path:
str, format:
Optional[str] =
None, categories:
Op-
tional[List[str]]
= None)

Bases: RecordParser

SingleLabelRecordParser class which parses the label of Single label data.

Initiates a RecordParser instance.

Parameters

• dataset_source_path (str) – Dataset source path.

• format ((str, optional). Defaults to None.) – Output format of annotations.
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• categories ((List[str], optional). Defaults to None.) – The list of object cat-
egories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
RecordParser instance.

Return type
RecordParser

23.1.1.5.14 ads.data_labeling.reader.dataset_reader module

The module containing classes to read labeled datasets. Allows to read labeled datasets from exports or from the cloud.

Classes

LabeledDatasetReader
The LabeledDatasetReader class to read labeled dataset.

ExportReader
The ExportReader class to read labeled dataset from the export.

DLSDatasetReader
The DLSDatasetReader class to read labeled dataset from the cloud.

Examples

>>> from ads.common import auth as authutil
>>> from ads.data_labeling import LabeledDatasetReader
>>> ds_reader = LabeledDatasetReader.from_export(
... path="oci://bucket_name@namespace/dataset_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True
... )
>>> ds_reader.info()

------------------------------------------------------------------------
annotation_type SINGLE_LABEL
compartment_id TEST_COMPARTMENT
dataset_id TEST_DATASET
dataset_name test_dataset_name
dataset_type TEXT
labels ['yes', 'no']
records_path path/to/records
source_path path/to/dataset

>>> ds_reader.read()
Path Content Annotations

-----------------------------------------------------------------------
0 path/to/the/content/file1 file content yes
1 path/to/the/content/file2 file content no
2 path/to/the/content/file3 file content no
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>>> next(ds_reader.read(iterator=True))
("path/to/the/content/file1", "file content", "yes")

>>> next(ds_reader.read(iterator=True, chunksize=2))
[("path/to/the/content/file1", "file content", "yes"),
("path/to/the/content/file2", "file content", "no")]

>>> next(ds_reader.read(chunksize=2))
Path Content Annotations

----------------------------------------------------------------------
0 path/to/the/content/file1 file content yes
1 path/to/the/content/file2 file content no

>>> ds_reader = LabeledDatasetReader.from_DLS(
... dataset_id="dataset_OCID",
... compartment_id="compartment_OCID",
... auth=authutil.api_keys(),
... materialize=True
... )

class ads.data_labeling.reader.dataset_reader.DLSDatasetReader(dataset_id: str, compartment_id:
str, auth: Dict, encoding='utf-8',
materialize: bool = False,
include_unlabeled: bool = False)

Bases: Reader

The DLSDatasetReader class to read labeled dataset from the cloud.

info(self )→ Metadata
Gets the labeled dataset metadata.

read(self )→ Generator[Tuple, Any, Any]
Reads the labeled dataset.

Initializes the DLS dataset reader instance.

Parameters

• dataset_id (str) – The dataset OCID.

• compartment_id (str) – The compartment OCID of the dataset.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files. The en-
coding is used to extract the metadata information of the labeled dataset and also to extract
the content of the text dataset records.

• materialize ((bool, optional). Defaults to False.) – Whether the content of
dataset files should be loaded/materialized or not. By default the content will not be materi-
alized.

• include_unlabeled ((bool, optional). Defaults to False.) – Whether to load
the unlabeled records or not.
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Raises

• ValueError – When dataset_id is empty or not a string.:

• TypeError – When dataset_id not a string.:

info()→ Metadata
Gets the labeled dataset metadata.

Returns
The labeled dataset metadata.

Return type
Metadata

read(format: Optional[str] = None)→ Generator[Tuple, Any, Any]
Reads the labeled dataset records.

Parameters
format ((str, optional). Defaults to None.) – Output format of annotations. Can
be None, “spacy” for dataset Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem]. When “spacy”, it outputs
List[Tuple]. When “yolo”, it outputs List[List[Tuple]].

Returns
The labeled dataset records.

Return type
Generator[Tuple, Any, Any]

class ads.data_labeling.reader.dataset_reader.ExportReader(path: str, auth: Optional[Dict] = None,
encoding='utf-8', materialize: bool =
False, include_unlabeled: bool =
False)

Bases: Reader

The ExportReader class to read labeled dataset from the export.

info(self )→ Metadata
Gets the labeled dataset metadata.

read(self )→ Generator[Tuple, Any, Any]
Reads the labeled dataset.

Initializes the labeled dataset export reader instance.

Parameters

• path (str) – The metadata file path, can be either local or object storage path.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files. The en-
coding is used to extract the metadata information of the labeled dataset and also to extract
the content of the text dataset records.

• materialize ((bool, optional). Defaults to False.) – Whether the content of
dataset files should be loaded/materialized or not. By default the content will not be materi-
alized.
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• include_unlabeled ((bool, optional). Defaults to False.) – Whether to load
the unlabeled records or not.

Raises

• ValueError – When path is empty or not a string.:

• TypeError – When path not a string.:

info()→ Metadata
Gets the labeled dataset metadata.

Returns
The labeled dataset metadata.

Return type
Metadata

read(format: Optional[str] = None)→ Generator[Tuple, Any, Any]
Reads the labeled dataset records.

Parameters
format ((str, optional). Defaults to None.) – Output format of annotations. Can
be None, “spacy” for dataset Entity Extraction type or “yolo” for Object Detection type.
When None, it outputs List[NERItem] or List[BoundingBoxItem]. When “spacy”, it outputs
List[Tuple]. When “yolo”, it outputs List[List[Tuple]].

Returns
The labeled dataset records.

Return type
Generator[Tuple, Any, Any]

class ads.data_labeling.reader.dataset_reader.LabeledDatasetReader(reader: Reader)
Bases: object

The labeled dataset reader class.

info(self )→ Metadata
Gets labeled dataset metadata.

read(self, iterator: bool = False)→ Union[Generator[Any, Any, Any], pd.DataFrame]
Reads labeled dataset.

from_export(cls, path: str, auth: Dict = None, encoding='utf-8', materialize: bool = False)→
'LabeledDatasetReader'

Constructs a Labeled Dataset Reader instance.

Examples

>>> from ads.common import auth as authutil
>>> from ads.data_labeling import LabeledDatasetReader

>>> ds_reader = LabeledDatasetReader.from_export(
... path="oci://bucket_name@namespace/dataset_metadata.jsonl",
... auth=authutil.api_keys(),
... materialize=True
... )
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>>> ds_reader = LabeledDatasetReader.from_DLS(
... dataset_id="dataset_OCID",
... compartment_id="compartment_OCID",
... auth=authutil.api_keys(),
... materialize=True
... )

>>> ds_reader.info()
------------------------------------------------------------------------
annotation_type SINGLE_LABEL
compartment_id TEST_COMPARTMENT
dataset_id TEST_DATASET
dataset_name test_dataset_name
dataset_type TEXT
labels ['yes', 'no']
records_path path/to/records
source_path path/to/dataset

>>> ds_reader.read()
Path Content Annotations

-----------------------------------------------------------------------
0 path/to/the/content/file1 file content yes
1 path/to/the/content/file2 file content no
2 path/to/the/content/file3 file content no

>>> next(ds_reader.read(iterator=True))
("path/to/the/content/file1", "file content", "yes")

>>> next(ds_reader.read(iterator=True, chunksize=2))
[("path/to/the/content/file1", "file content", "yes"),
("path/to/the/content/file2", "file content", "no")]

>>> next(ds_reader.read(chunksize=2))
Path Content Annotations

----------------------------------------------------------------------
0 path/to/the/content/file1 file content yes
1 path/to/the/content/file2 file content no

Initializes the labeled dataset reader instance.

Parameters
reader (Reader) – The Reader instance which reads and extracts the labeled dataset.

classmethod from_DLS(dataset_id: str, compartment_id: Optional[str] = None, auth: Optional[dict] =
None, encoding: str = 'utf-8', materialize: bool = False, include_unlabeled: bool =
False)→ LabeledDatasetReader

Constructs Labeled Dataset Reader instance.

Parameters

• dataset_id (str) – The dataset OCID.

• compartment_id (str. Defaults to the compartment_id from the env
variable.) – The compartment OCID of the dataset.
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• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files.

• materialize ((bool, optional). Defaults to False.) – Whether the content of
the dataset file should be loaded or it should return the file path to the content. By default
the content will not be loaded.

Returns
The LabeledDatasetReader instance.

Return type
LabeledDatasetReader

classmethod from_export(path: str, auth: Optional[dict] = None, encoding: str = 'utf-8', materialize:
bool = False, include_unlabeled: bool = False)→ LabeledDatasetReader

Constructs Labeled Dataset Reader instance.

Parameters

• path (str) – The metadata file path, can be either local or object storage path.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files.

• materialize ((bool, optional). Defaults to False.) – Whether the content of
the dataset file should be loaded or it should return the file path to the content. By default
the content will not be loaded.

Returns
The LabeledDatasetReader instance.

Return type
LabeledDatasetReader

info()→ Serializable
Gets the labeled dataset metadata.

Returns
The labeled dataset metadata.

Return type
Metadata

read(iterator: bool = False, format: Optional[str] = None, chunksize: Optional[int] = None)→
Union[Generator[Any, Any, Any], DataFrame]

Reads the labeled dataset records.

Parameters

• iterator ((bool, optional). Defaults to False.) – True if the result should be
represented as a Generator. Fasle if the result should be represented as a Pandas DataFrame.

• format ((str, optional). Defaults to None.) – Output format of annotations.
Can be None, “spacy” or “yolo”.
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• chunksize ((int, optional). Defaults to None.) – The number of records that
should be read in one iteration. The result will be returned in a generator format.

Returns

• Union[ – Generator[Tuple[str, str, Any], Any, Any], Generator[List[Tuple[str, str, Any]],
Any, Any], Generator[pd.DataFrame, Any, Any], pd.DataFrame

• ] – pd.Dataframe if iterator and chunksize are not specified. Generator[pd.Dataframe] ` if
`iterator equal to False and chunksize is specified. Generator[List[Tuple[str, str, Any]]] if
iterator equal to True and chunksize is specified. Generator[Tuple[str, str, Any]] if iterator
equal to True and chunksize is not specified.

23.1.1.5.15 ads.data_labeling.reader.jsonl_reader module

class ads.data_labeling.reader.jsonl_reader.JsonlReader(path: str, auth: Optional[Dict] = None,
encoding='utf-8')

Bases: Reader

JsonlReader class which reads the file.

Initiates a JsonlReader object.

Parameters

• path (str) – object storage path or local path for a file.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding of files. Only used
for “TEXT” dataset.

Examples

>>> from ads.data_labeling.reader.jsonl_reader import JsonlReader
>>> path = "your/path/to/jsonl/file.jsonl"
>>> from ads.common import auth as authutil
>>> reader = JsonlReader(path=path, auth=authutil.api_keys(), encoding="utf-8")
>>> next(reader.read())

read(skip: Optional[int] = None)→ Generator[Dict, Any, Any]
Reads and yields the content of the file.

Parameters
skip ((int, optional). Defaults to None.) – The number of records that should be
skipped.

Returns
The content of the file.

Return type
Generator[Dict, Any, Any]

Raises
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• ValueError – If skip not empty and not a positive integer.

• FileNotFoundError – When file not found.

23.1.1.5.16 ads.data_labeling.reader.metadata_reader module

class ads.data_labeling.reader.metadata_reader.DLSMetadataReader(dataset_id: str,
compartment_id: str, auth:
dict)

Bases: Reader

DLSMetadataReader class which reads the metadata jsonl file from the cloud.

Initializes the DLS metadata reader instance.

Parameters

• dataset_id (str) – The dataset OCID.

• compartment_id (str) – The compartment OCID of the dataset.

• auth (dict) – The default authetication is set using ads.set_auth API. If you need to over-
ride the default, use the ads.common.auth.api_keys or ads.common.auth.resource_principal
to create appropriate authentication signer and kwargs required to instantiate IdentityClient
object.

Raises

• ValueError – When dataset_id is empty or not a string.:

• TypeError – When dataset_id not a string.:

read()→ Metadata
Reads the content from the metadata file.

Returns
The metadata of the labeled dataset.

Return type
Metadata

Raises

• DatasetNotFoundError – If dataset not found.

• ReadDatasetError – If any error occured in attempt to read dataset.

exception ads.data_labeling.reader.metadata_reader.DatasetNotFoundError(id: str)
Bases: Exception

exception ads.data_labeling.reader.metadata_reader.EmptyMetadata

Bases: Exception

Empty Metadata.

class ads.data_labeling.reader.metadata_reader.ExportMetadataReader(path: str, auth:
Optional[Dict] = None,
encoding='utf-8')

Bases: JsonlReader

ExportMetadataReader class which reads the metadata jsonl file from local/object storage path.

Initiates a JsonlReader object.
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Parameters

• path (str) – object storage path or local path for a file.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding of files. Only used
for “TEXT” dataset.

Examples

>>> from ads.data_labeling.reader.jsonl_reader import JsonlReader
>>> path = "your/path/to/jsonl/file.jsonl"
>>> from ads.common import auth as authutil
>>> reader = JsonlReader(path=path, auth=authutil.api_keys(), encoding="utf-8")
>>> next(reader.read())

read()→ Metadata
Reads the content from the metadata file.

Returns
The metadata of the labeled dataset.

Return type
Metadata

class ads.data_labeling.reader.metadata_reader.MetadataReader(reader: Reader)
Bases: object

MetadataReader class which reads and extracts the labeled dataset metadata.

Examples

>>> from ads.data_labeling import MetadataReader
>>> import oci
>>> import os
>>> from ads.common import auth as authutil
>>> reader = MetadataReader.from_export_file("metadata_export_file_path",
... auth=authutil.api_keys())
>>> reader.read()

Initiate a MetadataReader instance.

Parameters
reader (Reader) – Reader instance which reads and extracts the labeled dataset metadata.

classmethod from_DLS(dataset_id: str, compartment_id: Optional[str] = None, auth: Optional[dict] =
None)→ MetadataReader

Contructs a MetadataReader instance.

Parameters

• dataset_id (str) – The dataset OCID.
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• compartment_id ((str, optional). Default None) – The compartment OCID of
the dataset.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
The MetadataReader instance whose reader is a DLSMetadataReader instance.

Return type
MetadataReader

classmethod from_export_file(path: str, auth: Optional[Dict] = None)→ MetadataReader
Contructs a MetadataReader instance.

Parameters

• path (str) – metadata file path, can be either local or object storage path.

• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
The MetadataReader instance whose reader is a ExportMetadataReader instance.

Return type
MetadataReader

read()→ Metadata
Reads the content from the metadata file.

Returns
The metadata of the labeled dataset.

Return type
Metadata

exception ads.data_labeling.reader.metadata_reader.ReadDatasetError(id: str)
Bases: Exception

23.1.1.5.17 ads.data_labeling.reader.record_reader module

class ads.data_labeling.reader.record_reader.RecordReader(reader: Reader, parser: Parser, loader:
Optional[Loader] = None,
include_unlabeled: bool = False,
encoding: str = 'utf-8', materialize: bool
= False)

Bases: object

Record Reader Class consists of parser, reader and loader. Reader reads the the content from the record file.
Parser parses the label for each record. And Loader loads the content of the file path in that record.
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Examples

>>> import os
>>> import oci
>>> from ads.data_labeling import RecordReader
>>> from ads.common import auth as authutil
>>> file_path = "/path/to/your_record.jsonl"
>>> dataset_type = "IMAGE"
>>> annotation_type = "BOUNDING_BOX"
>>> record_reader = RecordReader.from_export_file(file_path, dataset_type,␣
→˓annotation_type, "image_file_path", authutil.api_keys())
>>> next(record_reader.read())

Initiates a RecordReader instance.

Parameters

• reader (Reader) – Reader instance to read content from the record file.

• parser (Parser) – Parser instance to parse the labels from record file.

• loader (Loader. Defaults to None.) – Loader instance to load the content from the
file path in the record.

• materialize (bool, optional. Defaults to False.) – Whether to materialize the
content using loader.

• include_unlabeled ((bool, optional). Default to False.) – Whether to load
the unlabeled records or not.

• encoding (str, optional) – Encoding for text files. Used only to extract the content of
the text dataset contents.

Raises
ValueError – If the record reader and record parser must be specified. If the loader is not
specified when materialize if True.

classmethod from_DLS(dataset_id: str, dataset_type: str, annotation_type: str, dataset_source_path: str,
compartment_id: Optional[str] = None, auth: Optional[Dict] = None,
include_unlabeled: bool = False, encoding: str = 'utf-8', materialize: bool = False,
format: Optional[str] = None, categories: Optional[List[str]] = None)→
RecordReader

Constructs Record Reader instance.

Parameters

• dataset_id (str) – The dataset OCID.

• dataset_type (str) – Dataset type. Currently supports TEXT, IMAGE and DOCU-
MENT.

• annotation_type (str) – Annotation Type. Currently TEXT supports SIN-
GLE_LABEL, MULTI_LABEL, ENTITY_EXTRACTION. IMAGE supports SIN-
GLE_LABEL, MULTI_LABEL and BOUNDING_BOX. DOCUMENT supports SIN-
GLE_LABEL and MULTI_LABEL.

• dataset_source_path (str) – Dataset source path.

• compartment_id ((str, optional). Defaults to None.) – The compartment
OCID of the dataset.
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• auth ((dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• encoding ((str, optional). Defaults to 'utf-8'.) – Encoding for files.

• materialize ((bool, optional). Defaults to False.) – Whether the content of
the dataset file should be loaded or it should return the file path to the content. By default
the content will not be loaded.

• format ((str, optional). Defaults to None.) – Output format of annotations.
Can be None, “spacy” for dataset Entity Extraction type or “yolo” for Object Detection
type. When None, it outputs List[NERItem] or List[BoundingBoxItem]. When “spacy”, it
outputs List[Tuple]. When “yolo”, it outputs List[List[Tuple]].

• categories ((List[str], optional). Defaults to None.) – The list of object
categories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

Returns
The RecordReader instance.

Return type
RecordReader

classmethod from_export_file(path: str, dataset_type: str, annotation_type: str, dataset_source_path:
str, auth: Optional[Dict] = None, include_unlabeled: bool = False,
encoding: str = 'utf-8', materialize: bool = False, format: Optional[str]
= None, categories: Optional[List[str]] = None,
includes_metadata=False)→ RecordReader

Initiates a RecordReader instance.

Parameters

• path (str) – Record file path.

• dataset_type (str) – Dataset type. Currently supports TEXT, IMAGE and DOCU-
MENT.

• annotation_type (str) – Annotation Type. Currently TEXT supports SIN-
GLE_LABEL, MULTI_LABEL, ENTITY_EXTRACTION. IMAGE supports SIN-
GLE_LABEL, MULTI_LABEL and BOUNDING_BOX. DOCUMENT supports SIN-
GLE_LABEL and MULTI_LABEL.

• dataset_source_path (str) – Dataset source path.

• auth ((dict, optional). Default None) – The default authetication is set using
ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• include_unlabeled ((bool, optional). Default to False.) – Whether to load
the unlabeled records or not.

• encoding ((str, optional). Defaults to "utf-8".) – Encoding for text files.
Used only to extract the content of the text dataset contents.

• materialize ((bool, optional). Defaults to False.) – Whether to materialize
the content by loader.

• format ((str, optional). Defaults to None.) – Output format of annotations.
Can be None, “spacy” for dataset Entity Extraction type or “yolo” for Object Detection
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type. When None, it outputs List[NERItem] or List[BoundingBoxItem]. When “spacy”, it
outputs List[Tuple]. When “yolo”, it outputs List[List[Tuple]].

• categories ((List[str], optional). Defaults to None.) – The list of object
categories in proper order for model training. Example: [‘cat’,’dog’,’horse’]

• includes_metadata ((bool, optional). Defaults to False.) – Determines
whether the export file includes metadata or not.

Returns
A RecordReader instance.

Return type
RecordReader

read()→ Generator[Tuple[str, Union[List, str]], Any, Any]
Reads the record.

Yields
Generator[Tuple[str, Union[List, str]], Any, Any] – File path, content and labels in a tuple.

23.1.1.5.18 ads.data_labeling.visualizer.image_visualizer module

The module that helps to visualize Image Dataset.

ads.data_labeling.visualizer.image_visualizer.render(items: List[LabeledImageItem], options: Dict
= None)

Renders Labeled Image dataset.

Examples

>>> bbox1 = BoundingBoxItem(bottom_left=(0.3, 0.4),
>>> top_left=(0.3, 0.09),
>>> top_right=(0.86, 0.09),
>>> bottom_right=(0.86, 0.4),
>>> labels=['dolphin', 'fish'])

>>> record1 = LabeledImageItem(img_obj1, [bbox1])

>>> bbox2 = BoundingBoxItem(bottom_left=(0.2, 0.4),
>>> top_left=(0.2, 0.2),
>>> top_right=(0.8, 0.2),
>>> bottom_right=(0.8, 0.4),
>>> labels=['dolphin'])
>>> bbox3 = BoundingBoxItem(bottom_left=(0.5, 1.0),
>>> top_left=(0.5, 0.8),
>>> top_right=(0.8, 0.8),
>>> bottom_right=(0.8, 1.0),
>>> labels=['shark'])

>>> record2 = LabeledImageItem(img_obj2, [bbox2, bbox3])
>>> render(items = [record1, record2], options={"default_color":"blue", "colors": {
→˓"dolphin":"blue", "whale":"red"}})
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class ads.data_labeling.visualizer.image_visualizer.ImageLabeledDataFormatter

Bases: object

The ImageRender class to render Image items in a notebook session.

static render_item(item: LabeledImageItem, options: Optional[Dict] = None, path: Optional[str] =
None)→ None

Renders image dataset.

Parameters

• item (LabeledImageItem) – Item to render.

• options (Optional[dict]) – Render options.

• path (str) – Path to save the image with annotations to local directory.

Returns
Nothing.

Return type
None

Raises

• ValueError – If items not provided. If path is not valid.

• TypeError – If items provided in a wrong format.

class ads.data_labeling.visualizer.image_visualizer.LabeledImageItem(img: ImageFile, boxes:
List[BoundingBoxItem])

Bases: object

Data class representing Image Item.

img

the labeled image object.

Type
ImageFile

boxes

a list of BoundingBoxItem

Type
List[BoundingBoxItem]

boxes: List[BoundingBoxItem]

img: ImageFile

class ads.data_labeling.visualizer.image_visualizer.RenderOptions(default_color: str, colors:
Optional[dict])

Bases: object

Data class representing render options.

default_color

The specified default color.

Type
str
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colors

The multiple specified colors.

Type
Optional[dict]

colors: Optional[dict]

default_color: str

classmethod from_dict(options: dict)→ RenderOptions
Constructs an instance of RenderOptions from a dictionary.

Parameters
options (dict) – Render options in dictionary format.

Returns
The instance of RenderOptions.

Return type
RenderOptions

to_dict()

Converts RenderOptions instance to dictionary format.

Returns
The render options in dictionary format.

Return type
dict

exception ads.data_labeling.visualizer.image_visualizer.WrongEntityFormat

Bases: ValueError

ads.data_labeling.visualizer.image_visualizer.render(items: List[LabeledImageItem], options:
Optional[Dict] = None, path: Optional[str] =
None)→ None

Render image dataset.

Parameters

• items (List[LabeledImageItem]) – The list of LabeledImageItem to render.

• options (dict, optional) – The options for rendering.

• path (str) – Path to save the images with annotations to local directory.

Returns
Nothing.

Return type
None

Raises

• ValueError – If items not provided. If path is not valid.

• TypeError – If items provided in a wrong format.
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Examples

>>> bbox1 = BoundingBoxItem(bottom_left=(0.3, 0.4),
>>> top_left=(0.3, 0.09),
>>> top_right=(0.86, 0.09),
>>> bottom_right=(0.86, 0.4),
>>> labels=['dolphin', 'fish'])

>>> record1 = LabeledImageItem(img_obj1, [bbox1])
>>> render(items = [record1])

23.1.1.5.19 ads.data_labeling.visualizer.text_visualizer module

The module that helps to visualize NER Text Dataset.

ads.data_labeling.visualizer.text_visualizer.render(items: List[LabeledTextItem], options: Dict =
None)→ str

Renders NER dataset to Html format.

Examples

>>> record1 = LabeledTextItem("London is the capital of the United Kingdom", [NERItem(
→˓'city', 0, 6), NERItem("country", 29, 14)])
>>> record2 = LabeledTextItem("Houston area contractor seeking a Sheet Metal␣
→˓Superintendent.", [NERItem("city", 0, 6)])
>>> result = render(items = [record1, record2], options={"default_color":"#DDEECC",
→˓"colors": {"city":"#DDEECC", "country":"#FFAAAA"}})
>>> display(HTML(result))

class ads.data_labeling.visualizer.text_visualizer.LabeledTextItem(txt: str, ents:
List[NERItem])

Bases: object

Data class representing NER Item.

txt

The labeled sentence.

Type
str

ents

The list of entities.

Type
List[NERItem]

ents: List[NERItem]

txt: str
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class ads.data_labeling.visualizer.text_visualizer.RenderOptions(default_color: str, colors:
Optional[dict])

Bases: object

Data class representing render options.

default_color

The specified default color.

Type
str

colors

The multiple specified colors.

Type
Optional[dict]

colors: Optional[dict]

default_color: str

classmethod from_dict(options: dict)→ RenderOptions
Constructs an instance of RenderOptions from a dictionary.

Parameters
options (dict) – Render options in dictionary format.

Returns
The instance of RenderOptions.

Return type
RenderOptions

to_dict()

Converts RenderOptions instance to dictionary format.

Returns
The render options in dictionary format.

Return type
dict

class ads.data_labeling.visualizer.text_visualizer.TextLabeledDataFormatter

Bases: object

The TextLabeledDataFormatter class to render NER items into Html format.

static render(items: List[LabeledTextItem], options: Optional[Dict] = None)→ str
Renders NER dataset to Html format.

Parameters

• items (List[LabeledTextItem]) – Items to render.

• options (Optional[dict]) – Render options.

Returns
Html representation of rendered NER dataset.

Return type
str
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Raises

• ValueError – If items not provided.

• TypeError – If items provided in a wrong format.

ads.data_labeling.visualizer.text_visualizer.render(items: List[LabeledTextItem], options:
Optional[Dict] = None)→ str

Renders NER dataset to Html format.

Parameters

• items (List[LabeledTextItem]) – The list of NER items to render.

• options (dict, optional) – The options for rendering.

Returns
Html string.

Return type
str

Examples

>>> record = LabeledTextItem("London is the capital of the United Kingdom",␣
→˓[NERItem('city', 0, 6), NERItem("country", 29, 14)])
>>> result = render(items = [record], options={"default_color":"#DDEECC", "colors":
→˓{"city":"#DDEECC", "country":"#FFAAAA"}})
>>> display(HTML(result))

23.1.1.5.20 Module contents

23.1.1.6 ads.database package

23.1.1.6.1 Subpackages

23.1.1.6.2 Submodules

23.1.1.6.3 ads.database.connection module

class ads.database.connection.Connector(secret_id: Optional[str] = None, key: Optional[str] = None,
repository_path: Optional[str] = None, **kwargs)

Bases: object

Validate that a connection could be made for the given set of connection parameters, and contruct a Connector
object provided that the validation is successful.

Parameters

• secret_id (str, optional) – The ocid of the secret to retrieve from Oracle Cloud In-
frastructure Vault.

• key (str, optional) – The key to find the database directory.

• repository_path (str, optional) – The local database information store, default to
~/.database unless specified otherwise.
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• kwargs (dict, optional) – Name-value pairs that are to be added to the list of connection
parameters. For example, database_name=”mydb”, database_type=”oracle”, username =
“root”, password = “pwd”.

Return type
A Connector object.

connect()

class ads.database.connection.OracleConnector(oracle_connection_config)
Bases: object

ads.database.connection.get_repository(key: str, repository_path: Optional[str] = None)→ dict
Get all values from local database store.

Parameters

• key (str) – The key to find the database directory.

• repository_path (str, optional) – The path to local database store, default to
~/.database unless specified otherwise.

Return type
A dictionary of all values in the store.

ads.database.connection.import_wallet(wallet_path: str, key: str, repository_path: Optional[str] = None)
→ None

Saves wallet to local database store. Unzip the wallet zip file, update sqlnet.ora and store wallet files.

Parameters

• wallet_path (str) – The local path to the downloaded wallet zip file.

• key (str) – The key to find the database directory.

• repository_path (str, optional) – The local database store, default to ~/.database
unless specified otherwise.

ads.database.connection.update_repository(value: dict, key: str, replace: bool = True, repository_path:
Optional[str] = None)→ dict

Saves value into local database store.

Parameters

• value (dict) – The values to store locally.

• key (str) – The key to find the local database directory.

• replace (bool, default to True) – If set to false, updates the stored value.

• repository_path (str: str, optional) – The local database store, default to
~/.database unless specified otherwise.

Return type
A dictionary of all values in the repository for the given key.
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23.1.1.6.4 Module contents

23.1.1.7 ads.dataflow package

23.1.1.7.1 Submodules

23.1.1.7.2 ads.dataflow.dataflow module

class ads.dataflow.dataflow.DataFlow(compartment_id=None,
dataflow_base_folder='/home/datascience/dataflow', os_auth=None,
df_auth=None)

Bases: object

create_app(app_config: dict, overwrite_script=False, overwrite_archive=False)→ object
Create a new dataflow application with the supplied app config. app_config contains parameters needed to
create a new application, according to oci.data_flow.models.CreateApplicationDetails.

Parameters

• app_config (dict) – the config file that contains all necessary parameters used to create
a dataflow app

• overwrite_script (bool) – whether to overwrite the existing pyscript script on Object
Storage

• overwrite_archive (bool) – whether to overwrite the existing archive file on Object
Storage

Returns
df_app – New dataflow application.

Return type
oci.dataflow.models.Application

get_app(app_id: str)
Get the Project based on app_id.

Parameters
app_id (str, required) – The OCID of the dataflow app to get.

Returns
app – The oci.dataflow.models.Application with the matching ID.

Return type
oci.dataflow.models.Application

list_apps(include_deleted: bool = False, compartment_id: Optional[str] = None, datetime_format: str =
'%Y-%m-%d %H:%M:%S', **kwargs)→ object

List all apps in a given compartment, or in the current notebook session’s compartment.

Parameters

• include_deleted (bool, optional, default=False) – Whether to include deleted
apps in the returned list.

• compartment_id (str, optional, default: NB_SESSION_COMPARTMENT_OCID) –
The compartment specified to list apps.

• datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change
format for date time fields.
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Returns
dsl – List of Dataflow applications.

Return type
List

load_app(app_id: str, target_folder: Optional[str] = None)→ object
Load an existing dataflow application based on application id. The existing dataflow application can be
created either from dataflow service or the dataflow integration of ADS.

Parameters

• app_id (str, required) – The OCID of the dataflow app to load.

• target_folder (str, optional,) – the folder to store the local artifacts of this appli-
cation. If not specified, the target_folder will use the dataflow_base_folder by default.

Returns
dfa – A dataflow application of type ads.dataflow.dataflow.DataFlowApp

Return type
ads.dataflow.dataflow.DataFlowApp

prepare_app(display_name: str, script_bucket: str, pyspark_file_path: str, spark_version: str = '2.4.4',
compartment_id: Optional[str] = None, archive_path: Optional[str] = None, archive_bucket:
Optional[str] = None, logs_bucket: str = 'dataflow-logs', driver_shape: str =
'VM.Standard2.4', executor_shape: str = 'VM.Standard2.4', num_executors: int = 1,
arguments: list = [], script_parameters: dict = [])→ dict

Check if the parameters provided by users to create an application are valid and then prepare
app_configuration for creating an app or saving for future reuse.

Parameters

• display_name (str, required) – A user-friendly name. This name is not necessarily
unique.

• script_bucket (str, required) – bucket in object storage to upload the pyspark file

• pyspark_file_path (str, required) – path to the pyspark file

• spark_version (str) – Allowed values are “2.4.4”, “3.0.2”.

• compartment_id (str) – OCID of the compartment to create a dataflow app. If not pro-
vided, compartment_id will use the same as the notebook session.

• archive_path (str, optional) – path to the archive file

• archive_bucket (str, optional) – bucket in object storage to upload the archive file

• logs_bucket (str, default is 'dataflow-logs') – bucket in object storage to put
run logs

• driver_shape (str) – The value to assign to the driver_shape property of this
CreateApplicationDetails. Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”, “VM.Standard2.16”,
“VM.Standard2.24”.

• executor_shape (str) – The value to assign to the executor_shape property of this
CreateApplicationDetails. Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”, “VM.Standard2.16”,
“VM.Standard2.24”.

• num_executors (int) – The number of executor VMs requested.
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• arguments (list of str) – The values passed into the command line string to run the
application

• script_parameters (dict) – The value of the parameters passed to the running appli-
cation as command line arguments for the pyspark script.

Returns
app_configuration

Return type
dictionary containing all the validated params for CreateApplicationDetails.

template(job_type: str = 'standard_pyspark', script_str: str = '', file_dir: Optional[str] = None, file_name:
Optional[str] = None)→ str

Populate a prewritten pyspark or sparksql python script with user’s choice to write additional lines and save
in local directory.

Parameters

• job_type (str, default is 'standard_pyspark') – Currently supports two types,
‘standard_pyspark’ or ‘sparksql’

• script_str (str, optional, default is '') – code provided by user to write in the
python script

• file_dir (str, optional) – Directory to save the python script in local directory

• file_name (str, optional) – name of the python script to save to the local directory

Returns
script_path – Path to the template generated python file in local directory

Return type
str

class ads.dataflow.dataflow.DataFlowApp(app_config, app_response, app_dir, oci_link, **kwargs)
Bases: DataFlow

property config: dict

Retrieve the app_config file used to create the data flow app

Returns
app_config – dictionary containing all the validated params for this DataFlowApp

Return type
Dict

get_run(run_id: str)
Get the Run based on run_id

Parameters
run_id (str, required) – The OCID of the dataflow run to get.

Returns
df_run – The oci.dataflow.models.Run with the matching ID.

Return type
oci.dataflow.models.Run

list_runs(include_failed: bool = False, datetime_format: str = '%Y-%m-%d %H:%M:%S', **kwargs)→
object

List all run of a dataflow app
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Parameters

• include_failed (bool, optional, default=False) – Whether to include failed
runs in the returned list

• datetime_format (str, optional, default: '%Y-%m-%d %H:%M:%S') – Change
format for date time fields

Returns
df_runs – List of Data flow runs.

Return type
List

property oci_link: object

Retrieve the oci link of the data flow app

Returns
oci_link – a link to the app page in an oci console.

Return type
str

prepare_run(run_display_name: str, compartment_id: Optional[str] = None, logs_bucket: str = '',
driver_shape: str = 'VM.Standard2.4', executor_shape: str = 'VM.Standard2.4',
num_executors: int = 1, **kwargs)→ dict

Check if the parameters provided by users to create a run are valid and then prepare run_config for creating
run details.

Parameters

• run_display_name (str) – A user-friendly name. This name is not necessarily unique.

• compartment_id (str) – OCID of the compartment to create a dataflow run. If not pro-
vided, compartment_id will use the same as the dataflow app.

• logs_bucket (str) – bucket in object storage to put run logs, if not provided, will use the
same logs_bucket as defined in app_config

• driver_shape (str) – The value to assign to the driver_shape property of this
CreateApplicationDetails. Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”, “VM.Standard2.16”,
“VM.Standard2.24”.

• executor_shape (str) – The value to assign to the executor_shape property of this
CreateApplicationDetails. Allowed values for this property are: “VM.Standard2.1”,
“VM.Standard2.2”, “VM.Standard2.4”, “VM.Standard2.8”, “VM.Standard2.16”,
“VM.Standard2.24”.

• num_executors (int) – The number of executor VMs requested.

Returns
run_config – Dictionary containing all the validated params for CreateRunDetails.

Return type
Dict

run(run_config: dict, save_log_to_local: bool = False, copy_script_to_object_storage: bool = True,
copy_archive_to_object_storage: bool = True, pyspark_file_path: Optional[str] = None, archive_path:
Optional[str] = None, wait: bool = True)→ object
Create a new dataflow run with the supplied run config. run_config contains parameters needed to create a
new run, according to oci.data_flow.models.CreateRunDetails.
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Parameters

• run_config (dict, required) – The config file that contains all necessary parameters
used to create a dataflow run

• save_log_to_local (bool, optional) – A boolean value that defaults to false. If set
to true, it saves the log files to local dir

• copy_script_to_object_storage (bool, optional) – A boolean value that defaults
to true. Local script will be copied to object storage

• copy_archive_to_object_storage (bool, optional) – A boolean value that de-
faults to true. Local archive file will be copied to object storage

• pyspark_file_path (str, optional) – The pyspark file path used for creating the
dataflow app. if pyspark_file_path isn’t specified then reuse the path that the app was cre-
ated with.

• archive_path (str, optional) – The archive file path used for creating the dataflow
app. if archive_path isn’t specified then reuse the path that the app was created with.

• wait (bool, optional) – A boolean value that defaults to true. When True, the return
will be ads.dataflow.dataflow.DataFlowRun in terminal state. When False, the return will
be a ads.dataflow.dataflow.RunObserver.

Returns
df_run – Either a new Data Flow run or a run observer.

Return type
Variable

class ads.dataflow.dataflow.DataFlowLog(text, oci_path, log_local_dir)
Bases: object

head(n: int = 10)
Show the first n lines of the log as the output of the notebook cell

Parameters
n (int, default is 10) – the number of lines from head of the log file

Return type
None

property local_dir

Get the local directory where the log file is saved.

Returns
local_dir – Path to the local directory where the log file is saved.

Return type
str

property local_path

Get the path of the log file in local directory

Returns
local_path – Path of the log file in local directory

Return type
str
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property oci_path

Get the path of the log file in object storage

Returns
oci_path – Path of the log file in object storage

Return type
str

save(log_dir=None)
save the log file to a local directory.

Parameters

• log_dir (str,) – The path to the local directory to save log file, if not

• set –

• default. (log will be saved to the _local_dir by) –

Return type
None

show_all()

Show all content of the log as the output of the notebook cell

Return type
None

tail(n: int = 10)
Show the last n lines of the log as the output of the notebook cell

Parameters
n (int, default is 10) – the number of lines from tail of the log file

Return type
None

class ads.dataflow.dataflow.DataFlowRun(run_config, run_response, save_log_to_local, local_dir,
**kwargs)

Bases: DataFlow

LOG_OUTPUTS = ['stdout', 'stderr']

property config: dict

Retrieve the run_config file used to create the Data Flow run

Returns
run_config – dictionary containing all the validated params for this DataFlowRun

Return type
Dict

fetch_log(log_type: str)→ object
Fetch the log information of a run

Parameters
log_type (str, have two values, 'stdout' or 'stderr') –

Returns
dfl – a Data Flow log object
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Return type
DataFlowLog

property local_dir: str

Retrieve the local directory of the data flow run

Returns
local_dir – the local path to the Data Flow run

Return type
str

property log_stderr: object

Retrieve the stderr of the data flow run

Returns
log_error – a clickable link that opens the stderror log in another tab in jupyter notebook
environment

Return type
ads.dataflow.dataflow.DataFlowLog

property log_stdout: object

Retrieve the stdout of the data flow run

Returns
log_out – a clickable link that opens the stdout log in another tab in a JupyterLab notebook
environment

Return type
ads.dataflow.dataflow.DataFlowLog

property oci_link: object

Retrieve the oci link of the data flow run

Returns
oci_link – link to the run page in an oci console

Return type
str

property status: str

Retrieve the status of the data flow run

Returns
status – String that describes the status of the run

Return type
str

update_config(param_dict)→ None
Modify the run_config file used to create the data flow run

Parameters
param_dict (Dict) – Dictionary containing the key value pairs of the run_config parameters
and the updated values.

Return type
None
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class ads.dataflow.dataflow.RunObserver(app, run_config, save_log_to_local)
Bases: object

property config: dict

Retrieve the run_config file used to create the data flow run

Returns
run_config – Dictionary containing all the validated parameters for this Data Flow run

Return type
Dict

property local_dir: str

Retrieve the local directory of the data flow run

Returns
local_dir – the local path to the Data Flow run

Return type
str

property oci_link: object

Retrieve the oci link of the data flow run

Returns
oci_link – link to the run page in an oci console

Return type
str

property status: str

Returns the lifecycle state of the Data Flow run

update_config(param_dict)→ None
Modify the run_config file used to create the data flow run

Parameters
param_dict (Dict) – dictionary containing the key value pairs of the run_config parameters
and the updated values.

Return type
None

wait()

Wait and monitor the run creation process.

Parameters
None –

Returns
df_run – The oci.dataflow.models.Run after monitoring is done.

Return type
oci.dataflow.models.Run

class ads.dataflow.dataflow.SPARK_VERSION

Bases: str

v2_4_4 = '2.4.4'

v3_0_2 = '3.0.2'
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23.1.1.7.3 ads.dataflow.dataflowsummary module

class ads.dataflow.dataflowsummary.SummaryList(entity_list, datetime_format='%Y-%m-%d
%H:%M:%S')

Bases: list

abstract filter(selection, instance=None)
Abstract filter method for dataflow summary.

abstract sort_by(columns, reverse=False)
Abstract sort method for dataflow summary.

to_dataframe(datetime_format=None)
Abstract to_dataframe method for dataflow summary.

23.1.1.7.4 Module contents

23.1.1.8 ads.dataset package

23.1.1.8.1 Submodules

23.1.1.8.2 ads.dataset.classification_dataset module

class ads.dataset.classification_dataset.BinaryClassificationDataset(df, sampled_df, target,
target_type, shape,
positive_class=None,
**kwargs)

Bases: ClassificationDataset

Dataset for binary classification

set_positive_class(positive_class, missing_value=False)
Return new dataset with values in target column mapped to True or False in accordance with the specified
positive label.

Parameters

• positive_class (same dtype as target) – The target label which should be identi-
fied as positive outcome from model.

• missing_value (bool) – missing values will be converted to this

Returns
dataset

Return type
same type as the caller

Raises
ValidationError – if the positive_class is not present in target
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Examples

>>> ds = DatasetFactory.open("iris.csv")
>>> ds_with_target = ds.set_target('class')
>>> ds_with_pos_class = ds.set_positive_class('setosa')

class ads.dataset.classification_dataset.BinaryTextClassificationDataset(df, sampled_df,
target, target_type,
shape, **kwargs)

Bases: BinaryClassificationDataset

Dataset for binary text classification

auto_transform()

Automatically chooses the most effective dataset transformation

select_best_features(score_func=None, k=12)
Automatically chooses the best features and removes the rest

class ads.dataset.classification_dataset.ClassificationDataset(df, sampled_df, target, target_type,
shape, **kwargs)

Bases: ADSDatasetWithTarget

Dataset for classification task

auto_transform(fix_imbalance: bool = True, correlation_threshold: float = 0.7, frac: float = 1.0,
correlation_methods: str = 'pearson')

Return transformed dataset with several optimizations applied automatically. The optimizations include:

• Dropping constant and primary key columns, which has no predictive quality,

• Imputation, to fill in missing values in noisy data:

– For continuous variables, fill with mean if less than 40% is missing, else drop,

– For categorical variables, fill with most frequent if less than 40% is missing, else drop,

• Dropping strongly co-correlated columns that tend to produce less generalizable models,

• Balancing dataset using up or down sampling.

Parameters

• fix_imbalance (bool, defaults to True.) – Fix imbalance between classes in
dataset. Used only for classification datasets.

• correlation_threshold (float, defaults to 0.7. It must be between 0
and 1, inclusive.) – The correlation threshold where columns with correlation higher
than the threshold will be considered as strongly co-correlated and recommended to be
taken care of.

• frac (float, defaults to 1.0. Range -> (0, 1].) – What fraction of the data
should be used in the calculation?

• correlation_methods (Union[list, str], defaults to 'pearson'.) –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,
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– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’].

Returns
transformed_dataset – The dataset after transformation

Return type
ADSDatasetWithTarget

Examples

>>> ds_clean = ds.auto_transform(correlation_threshold=0.6)

convert_to_text_classification(text_column: str)
Builds a new dataset with the given text column as the only feature besides target.

Parameters
text_column (str) – Feature name to use for text classification task

Returns
ds – Dataset with one text feature and a classification target

Return type
TextClassificationDataset

Examples

>>> review_ds = DatasetFactory.open("review_data.csv")
>>> ds_text_class = review_ds.convert_to_text_classification('reviews')

down_sample(sampler=None)
Fixes an imbalanced dataset by down-sampling.

Parameters
sampler (An instance of SamplerMixin) – Should implement fit_resample(X,y)
method. If None, does random down sampling.

Returns
down_sampled_ds – A down-sampled dataset.

Return type
ClassificationDataset

Examples

>>> ds = DatasetFactory.open("some_data.csv")
>>> ds_balanced_small = ds.down_sample()

up_sample(sampler='default')
Fixes imbalanced dataset by up-sampling

Parameters
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• sampler (An instance of SamplerMixin) – Should implement fit_resample(X,y)
method. If ‘default’, either SMOTE or random sampler will be used

• fill_missing_type (a string) – Can either be ‘mean’, ‘mode’ or ‘median’.

Returns
up_sampled_ds – an up-sampled dataset

Return type
ClassificationDataset

Examples

>>> ds = DatasetFactory.open("some_data.csv")
>>> ds_balanced_large = ds.up_sample()

class ads.dataset.classification_dataset.MultiClassClassificationDataset(df, sampled_df,
target, target_type,
shape, **kwargs)

Bases: ClassificationDataset

Dataset for multi-class classification

class ads.dataset.classification_dataset.MultiClassTextClassificationDataset(df, sampled_df,
target,
target_type,
shape,
**kwargs)

Bases: MultiClassClassificationDataset

Dataset for multi-class text classification

auto_transform()

Automatically chooses the most effective dataset transformation

select_best_features(score_func=None, k=12)
Automatically chooses the best features and removes the rest

23.1.1.8.3 ads.dataset.correlation module

23.1.1.8.4 ads.dataset.correlation_plot module

class ads.dataset.correlation_plot.BokehHeatMap(ds)
Bases: object

Generate a HeatMap or horizontal bar plot to compare features.

debug()

Return True if in debug mode, otherwise False.

flatten_corr_matrix(corr_matrix)
Flatten a correlation matrix into a pandas Dataframe.

Parameters
corr_matrix (Pandas Dataframe) – The correlation matrix to be flattened.
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Returns
corr_flatten – The flattened correlation matrix.

Return type
Pandas DataFrame

generate_heatmap(corr_matrix, title: str, msg: str, correlation_threshold: float)
Generate a heatmap from a correlation matrix.

Parameters

• corr_matrix (Pandas Dataframe) – The dataframe to be used for heatmap generation.

• title (str) – title of the heatmap.

• msg (str) – An additional msg to include in the plot.

• correlation_threshold (float) – A float between 0 and 1 which is used for excluding
correlations which are not intense enough from the plot.

Returns
tab – A matplotlib Panel object which includes a plotted heatmap

Return type
matplotlib Panel

generate_target_heatmap(corr_matrix, title: str, correlation_target: str, msg: str, correlation_threshold:
float)

Generate a heatmap from a correlation matrix and its targets.

Parameters

• corr_matrix (Pandas Dataframe) – The dataframe to be used for heatmap generation.

• title (str) – title of the heatmap.

• correlation_target (str) – The target column name for computing correlations
against.

• msg (str) – An additional msg to include in the plot.

• correlation_threshold (float) – A float between 0 and 1 which is used for excluding
correlations which are not intense enough from the plot.

Returns
tab – A matplotlib Panel object which includes a plotted heatmap.

Return type
matplotlib Panel

plot_correlation_heatmap(ds, plot_type: str = 'heatmap', correlation_target: str = None,
correlation_threshold=-1, correlation_methods: str = 'pearson', **kwargs)

Plots a correlation heatmap.

Parameters

• ds (Pandas Slice) – A data slice or file

• plot_type (str Defaults to "heatmap") – The type of plot - “bar” is another option.

• correlation_target (str, Defaults to None) – the target column for correlation
calculations.

• correlation_threshold (float, Defaults to -1) – the threshold for computing
correlation heatmap elements.
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• correlation_methods (str, Defaults to "pearson") – the way to compute corre-
lations, other options are “cramers v” and “correlation ratio”

plot_hbar(matrix, low: float = 1, high=1, title: str = None, tool_tips: list = None, column_name: str =
None)

Plots a histogram bar-graph.

Parameters

• matrix (Pandas Dataframe) – The dataframe to be plotted.

• low (float, Defaults to 1) – The color mapping value for “low” points.

• high (float, Defaults to 1) – The color mapping value for “high” points.

• title (str, Defaults to None) – The optional title of the heat map.

• tool_tips (list of str, Defaults to None) – An optional list of tool tips to in-
clude with the plot.

• column_name (str, Defaults to None) – The name of the column which is being
plotted.

Returns
fig – A matplotlib heatmap figure object.

Return type
matplotlib Figure

plot_heat_map(matrix, xrange: list, yrange: list, low: float = 1, high=1, title: str = None, tool_tips: list =
None)

Plots a matrix as a heatmap.

Parameters

• matrix (Pandas Dataframe) – The dataframe to be plotted.

• xrange (List of floats) – The range of x values to plot.

• yrange (List of floats) – The range of y values to plot.

• low (float, Defaults to 1) – The color mapping value for “low” points.

• high (float, Defaults to 1) – The color mapping value for “high” points.

• title (str, Defaults to None) – The optional title of the heat map.

• tool_tips (list of str, Defaults to None) – An optional list of tool tips to in-
clude with the plot.

Returns
fig – A matplotlib heatmap figure object.

Return type
matplotlib Figure

ads.dataset.correlation_plot.plot_correlation_heatmap(ds=None, **kwargs)→ None
Plots a correlation heatmap.

Parameters
ds (Pandas Slice) – A data slice or file
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23.1.1.8.5 ads.dataset.dask_series module

23.1.1.8.6 ads.dataset.dataframe_transformer module

class ads.dataset.dataframe_transformer.DataFrameTransformer(func_name, target_name,
target_sample_val, args=None,
kw_args=None)

Bases: TransformerMixin

A DataFrameTransformer object.

fit(df )
Takes in a DF and returns a fitted model

transform(df )
Takes in a DF and returns a transformed DF

ads.dataset.dataframe_transformer.expand_lambda_function(lambda_func)
Returns a lambda function after expansion.

23.1.1.8.7 ads.dataset.dataset module

class ads.dataset.dataset.ADSDataset(df, sampled_df, shape, name='', description=None,
type_discovery=True, types={}, metadata=None,
progress=<ads.dataset.progress.DummyProgressBar object>,
transformer_pipeline=None, interactive=False, **kwargs)

Bases: PandasDataset

An ADSDataset Object.

The ADSDataset object cannot be used for classification or regression problems until a target has been set using
set_target. To see some rows in the data use any of the usual Pandas functions like head(). There are also a
variety of converters, to_dask, to_pandas, to_h2o, to_xgb, to_csv, to_parquet, to_json & to_hdf .

assign_column(column, arg)
Return new dataset with new column or values of the existing column mapped according to input corre-
spondence.

Used for adding a new column or substituting each value in a column with another value, that may be
derived from a function, a pandas.Series or a pandas.DataFrame.

Parameters

• column (str) – Name of the feature to update.

• arg (function, dict, Series or DataFrame) – Mapping correspondence.

Returns
dataset – a dataset with the specified column assigned.

Return type
same type as the caller
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Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_same_size = ds.assign_column('target',lambda x: x>15 if x not None)
>>> ds_bigger = ds.assign_column('new_col', np.arange(ds.shape[0]))

astype(types)
Convert data type of features.

Parameters
types (dict) – key is the existing feature name value is the data type to which the values of
the feature should be converted. Valid data types: All numpy datatypes (Example: np.float64,
np.int64, . . . ) or one of categorical, continuous, ordinal or datetime.

Returns
updated_dataset – an ADSDataset with new data types

Return type
ADSDataset

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_reformatted = ds.astype({"target": "categorical"})

call(func, *args, sample_size=None, **kwargs)
Runs a custom function on dataframe

func will receive the pandas dataframe (which represents the dataset) as an argument named ‘df’ by default.
This can be overridden by specifying the dataframe argument name in a tuple (func, dataframe_name).

Parameters

• func (Union[callable, tuple]) – Custom function that takes pandas dataframe as
input Alternatively a (callable, data) tuple where data is a string indicating the keyword of
callable that expects the dataframe name

• args (iterable, optional) – Positional arguments passed into func

• sample_size (int, Optional) – To use a sampled dataframe

• kwargs (mapping, optional) – A dictionary of keyword arguments passed into func

Returns
func – a plotting function that contains *args and **kwargs

Return type
function
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Examples

>>> ds = DatasetFactory.open("classfication_data.csv")
>>> def f1(df):
... return(sum(df), axis=0)
>>> sum_ds = ds.call(f1)

compute()

corr(correlation_methods: Union[list, str] = 'pearson', frac: float = 1.0, sample_size: float = 1.0,
nan_threshold: float = 0.8, overwrite: Optional[bool] = None, force_recompute: bool = False)

Compute pairwise correlation of numeric and categorical columns, output a matrix or a list of matrices
computed using the correlation methods passed in.

Parameters

• correlation_methods (Union[list, str], default to 'pearson') –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,

– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’].

• frac – Is deprecated and replaced by sample_size.

• sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What
fraction of the data should be used in the calculation?

• nan_threshold (float, default to 0.8, Range -> [0, 1]) – Only compute a
correlation when the proportion of the values, in a column, is less than or equal to
nan_threshold.

• overwrite – Is deprecated and replaced by force_recompute.

• force_recompute (bool, default to be False) –

– If False, it calculates the correlation matrix if there is no cached correlation matrix.
Otherwise, it returns the cached correlation matrix.

– If True, it calculates the correlation matrix regardless whether there is cached result or
not.

Returns
correlation – The pairwise correlations as a matrix (DataFrame) or list of matrices

Return type
Union[list, pandas.DataFrame]

property ddf

df_read_functions = ['head', 'describe', '_get_numeric_data']

drop_columns(columns)
Return new dataset with specified columns removed.
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Parameters
columns (str or list) – columns to drop.

Returns
dataset – a dataset with specified columns dropped.

Return type
same type as the caller

Raises
ValidationError – If any of the feature names is not found in the dataset.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_smaller = ds.drop_columns(['col1', 'col2'])

merge(data, **kwargs)
Merges this dataset with another ADSDataset or pandas dataframe.

Parameters

• data (Union[ADSDataset, pandas.DataFrame]) – Data to merge.

• kwargs (dict, optional) – additional keyword arguments that would be passed to un-
derlying dataframe’s merge API.

Examples

>>> ds1 = DatasetFactory.open("data1.csv")
>>> ds2 = DatasetFactory.open("data2.csv")
>>> ds_12 = ds1.merge(ds2)

rename_columns(columns)
Returns a new dataset with altered column names.

dict values must be unique (1-to-1). Labels not contained in a dict will be left as-is. Extra labels listed don’t
throw an error.

Parameters
columns (dict-like or function or list of str) – dict to rename columns selec-
tively, or list of names to rename all columns, or a function like str.upper

Returns
dataset – A dataset with specified columns renamed.

Return type
same type as the caller
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Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_renamed = ds.rename_columns({'col1': 'target'})

sample(frac=None, random_state=42)
Returns random sample of dataset.

Parameters

• frac (float, optional) – Fraction of axis items to return.

• random_state (int or np.random.RandomState) – If int we create a new RandomState
with this as the seed Otherwise we draw from the passed RandomState

Returns
sampled_dataset – An ADSDataset which was randomly sampled.

Return type
ADSDataset

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_sample = ds.sample()

set_description(description)
Sets description for the dataset.

Give your dataset a description.

Parameters
description (str) – Description of the dataset.

Examples

>>> ds = DatasetFactory.open("data1.csv")
>>> ds_renamed = ds.set_description("dataset1 is from "data1.csv"")

set_name(name)
Sets name for the dataset.

This name will be used to filter the datasets returned by ds.list() API. Calling this API is optional. By
default name of the dataset is set to empty.

Parameters
name (str) – Name of the dataset.
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Examples

>>> ds = DatasetFactory.open("data1.csv")
>>> ds_renamed = ds.set_name("dataset1")

set_target(target, type_discovery=True, target_type=None)
Returns a dataset tagged based on the type of target.

Parameters

• target (str) – name of the feature to use as target.

• type_discovery (bool) – This is set as True by default.

• target_type (type) – If provided, then the target will be typed with the provided value.

Returns
ds – tagged according to the type of the target column.

Return type
ADSDataset

Examples

>>> ds = DatasetFactory.open("classfication_data.csv")
>>> ds_with_target= ds.set_target("target_class")

show_corr(frac: float = 1.0, sample_size: float = 1.0, nan_threshold: float = 0.8, overwrite: Optional[bool]
= None, force_recompute: bool = False, correlation_target: Optional[str] = None, plot_type: str
= 'heatmap', correlation_threshold: float = -1, correlation_methods='pearson', **kwargs)

Show heatmap or barplot of pairwise correlation of numeric and categorical columns, output three tabs
which are heatmap or barplot of correlation matrix of numeric columns vs numeric columns using pearson
correlation method, categorical columns vs categorical columns using Cramer’s V method, and numeric vs
categorical columns, excluding NA/null values and columns which have more than 80% of NA/null values.
By default, only ‘pearson’ correlation is calculated and shown in the first tab. Set correlation_methods=’all’
to show all correlation charts.

Parameters

• frac (Is superseded by sample_size) –

• sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What
fraction of the data should be used in the calculation?

• nan_threshold (float, defaults to 0.8, Range -> [0, 1]) – In the default
case, it will only calculate the correlation of the columns which has less than or equal
to 80% of missing values.

• overwrite – Is deprecated and replaced by force_recompute.

• force_recompute (bool, default to be False.) –

– If False, it calculates the correlation matrix if there is no cached correlation matrix.
Otherwise, it returns the cached correlation matrix.

– If True, it calculates the correlation matrix regardless whether there is cached result or
not.
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• plot_type (str, default to "heatmap") – It can only be “heatmap” or “bar”. Note
that if “bar” is chosen, correlation_target also has to be set and the bar chart will only show
the correlation values of the pairs which have the target in them.

• correlation_target (str, default to Non) – It can be any columns of type con-
tinuous, ordinal, categorical or zipcode. When correlation_target is set, only pairs that
contains correlation_target will show.

• correlation_threshold (float, default to -1) – It can be any number between
-1 and 1.

• correlation_methods (Union[list, str], defaults to 'pearson') –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,

– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’].

Return type
None

show_in_notebook(correlation_threshold=-1, selected_index=0, sample_size=0, visualize_features=True,
correlation_methods='pearson', **kwargs)

Provide visualization of dataset.

• Display feature distribution. The data table display will show a maximum of 8 digits,

• Plot the correlation between the dataset features (as a heatmap) only when all the features are contin-
uous or ordinal,

• Display data head.

Parameters

• correlation_threshold (int, default -1) – The correlation threshold to select,
which only show features that have larger or equal correlation values than the threshold.

• selected_index (int, str, default 0) – The displayed output is stacked into an
accordion widget, use selected_index to force the display to open a specific element, use
the (zero offset) index or any prefix string of the name (eg, ‘corr’ for correlations)

• sample_size (int, default 0) – The size (in rows) to sample for visualizations

• visualize_features (bool default False) – For the “Features” section control if
feature visualizations are shown or not. If not only a summary of the numeric statistics is
shown. The numeric statistics are also always shows for wide (>64 features) datasets

• correlation_methods (Union[list, str], default to 'pearson') –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,

– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].
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Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’].

snapshot(snapshot_dir=None, name='', storage_options=None)
Snapshot the dataset with modifications made so far.

Optionally caller can invoke ds.set_name() before saving to identify the dataset uniquely at the time of using
ds.list().

The snapshot can be reloaded by providing the URI returned by this API to DatasetFactory.open()

Parameters

• snapshot_dir (str, optional) – Directory path under which dataset snapshot will be
created. Defaults to snapshots_dir set using DatasetFactory.set_default_storage().

• name (str, optional, default: "") – Name to uniquely identify the snapshot using
DatasetFactory.list_snapshots(). If not provided, an auto-generated name is used.

• storage_options (dict, optional) – Parameters passed on to the backend filesystem
class. Defaults to storage_options set using DatasetFactory.set_default_storage().

Returns
p_str – the URI to access the snapshotted dataset.

Return type
str

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_uri = ds.snapshot()

to_avro(path, schema=None, storage_options=None, **kwargs)
Save data to Avro files. Avro is a remote procedure call and data serialization framework developed within
Apache’s Hadoop project. It uses JSON for defining data types and protocols, and serializes data in a
compact binary format.

Parameters

• path (string) – Path to a target filename. May contain a * to denote many filenames.

• schema (dict) – Avro schema dictionary, see below.

• storage_options (dict, optional) – Parameters passed to the backend filesystem
class. Defaults to storage_options set using DatasetFactory.set_default_storage().

• kwargs (dict, optional) – See https://fastavro.readthedocs.io/en/latest/writer.html
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Notes

Avro schema is a complex dictionary describing the data, see https://avro.apache.org/docs/1.8.2/
gettingstartedpython.html#Defining+a+schema and https://fastavro.readthedocs.io/en/latest/writer.html.
Its structure is as follows:

{'name': 'Test',
'namespace': 'Test',
'doc': 'Descriptive text',
'type': 'record',
'fields': [

{'name': 'a', 'type': 'int'},
]}

where the “name” field is required, but “namespace” and “doc” are optional descriptors; “type” must always
be “record”. The list of fields should have an entry for every key of the input records, and the types are like
the primitive, complex or logical types of the Avro spec (https://avro.apache.org/docs/1.8.2/spec.html).

Examples

>>> ds = DatasetFactory.open("data.avro")
>>> ds.to_avro("my/path.avro")

to_csv(path, storage_options=None, **kwargs)
Save the materialized dataframe to csv file.

Parameters

• path (str) – Location to write to. If there are more than one partitions in df, should include
a glob character to expand into a set of file names, or provide a name_function=parameter.
Supports protocol specifications such as “oci://”, “s3://”.

• storage_options (dict, optional) – Parameters passed on to the backend filesystem
class. Defaults to storage_options set using DatasetFactory.set_default_storage().

• kwargs (dict, optional) –

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> [ds_link] = ds.to_csv("my/path.csv")

to_dask(filter=None, frac=None, npartitions=None, include_transformer_pipeline=False)
Returns a copy of the data as dask.dataframe.core.DataFrame, and a sklearn pipeline optionally that holds
the transformations run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

Parameters

• filter (str, optional) – The query string to filter the dataframe, for example
ds.to_dask(filter=”age > 50 and location == ‘san francisco”) See also https://pandas.pydata.
org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

• frac (float, optional) – fraction of original data to return.
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• include_transformer_pipeline (bool, default: False) – If True, (dataframe,
transformer_pipeline) is returned as a tuple.

Returns

• dataframe (dask.dataframe.core.DataFrame) – if include_transformer_pipeline is False.

• (data, transformer_pipeline) (tuple of dask.dataframe.core.DataFrame and
dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_dask = ds.to_dask()

Notes

See also http://docs.dask.org/en/latest/dataframe-api.html#dataframe and https://scikit-learn.org/stable/
modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

to_dask_dataframe(filter=None, frac=None, npartitions=None, include_transformer_pipeline=False)

to_h2o(filter=None, frac=None, include_transformer_pipeline=False)
Returns a copy of the data as h2o.H2OFrame, and a sklearn pipeline optionally that holds the transforma-
tions run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

Parameters

• filter (str, optional) – The query string to filter the dataframe, for example
ds.to_h2o(filter=”age > 50 and location == ‘san francisco”) See also https://pandas.pydata.
org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

• frac (float, optional) – fraction of original data to return.

• include_transformer_pipeline (bool, default: False) – If True, (dataframe,
transformer_pipeline) is returned as a tuple.

Returns

• dataframe (h2o.H2OFrame) – if include_transformer_pipeline is False.

• (data, transformer_pipeline) (tuple of h2o.H2OFrame and
dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_as_h2o = ds.to_h2o()
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Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.
pipeline.Pipeline

to_h2o_dataframe(filter=None, frac=None, include_transformer_pipeline=False)

to_hdf(path: str, key: str, storage_options: Optional[dict] = None, **kwargs)→ str
Save data to Hierarchical Data Format (HDF) files.

Parameters

• path (string) – Path to a target filename.

• key (string) – Datapath within the files.

• storage_options (dict, optional) – Parameters passed to the backend filesystem
class. Defaults to storage_options set using DatasetFactory.set_default_storage().

• kwargs (dict, optional) –

Returns
The filename of the HDF5 file created.

Return type
str

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds.to_hdf(path="my/path.h5", key="df")

to_json(path, storage_options=None, **kwargs)
Save data to JSON files.

Parameters

• path (str) – Location to write to. If there are more than one partitions in df, should include
a glob character to expand into a set of file names, or provide a name_function=parameter.
Supports protocol specifications such as “oci://”, “s3://”.

• storage_options (dict, optional) – Parameters passed on to the backend filesystem
class. Defaults to storage_options set using DatasetFactory.set_default_storage().

• kwargs (dict, optional) –

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds.to_json("my/path.json")

to_pandas(filter=None, frac=None, include_transformer_pipeline=False)
Returns a copy of the data as pandas.DataFrame, and a sklearn pipeline optionally that holds the transfor-
mations run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.
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Parameters

• filter (str, optional) – The query string to filter the dataframe, for example
ds.to_pandas(filter=”age > 50 and location == ‘san francisco”) See also https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

• frac (float, optional) – fraction of original data to return.

• include_transformer_pipeline (bool, default: False) – If True, (dataframe,
transformer_pipeline) is returned as a tuple

Returns

• dataframe (pandas.DataFrame) – if include_transformer_pipeline is False.

• (data, transformer_pipeline) (tuple of pandas.DataFrame and
dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds_as_df = ds.to_pandas()

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.
pipeline.Pipeline

to_pandas_dataframe(filter=None, frac=None, include_transformer_pipeline=False)

to_parquet(path, storage_options=None, **kwargs)
Save data to parquet file.

Parameters

• path (str) – Location to write to. If there are more than one partitions in df, should include
a glob character to expand into a set of file names, or provide a name_function=parameter.
Supports protocol specifications such as “oci://”, “s3://”.

• storage_options (dict, optional) – Parameters passed on to the backend filesystem
class. Defaults to storage_options set using DatasetFactory.set_default_storage().

• kwargs (dict, optional) –

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> ds.to_parquet("my/path")

to_xgb(filter=None, frac=None, include_transformer_pipeline=False)
Returns a copy of the data as xgboost.DMatrix, and a sklearn pipeline optionally that holds the transforma-
tions run so far on the data.

The pipeline returned can be updated with the transformations done offline and passed along with the
dataframe to Dataset.open API if the transformations need to be reproduced at the time of scoring.

Parameters
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• filter (str, optional) – The query string to filter the dataframe, for example
ds.to_xgb(filter=”age > 50 and location == ‘san francisco”) See also https://pandas.pydata.
org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

• frac (float, optional) – fraction of original data to return.

• include_transformer_pipeline (bool, default: False) – If True, (dataframe,
transformer_pipeline) is returned as a tuple.

Returns

• dataframe (xgboost.DMatrix) – if include_transformer_pipeline is False.

• (data, transformer_pipeline) (tuple of xgboost.DMatrix and
dataset.pipeline.TransformerPipeline) – if include_transformer_pipeline is True.

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> xgb_dmat = ds.to_xgb()

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.
pipeline.Pipeline

to_xgb_dmatrix(filter=None, frac=None, include_transformer_pipeline=False)

23.1.1.8.8 ads.dataset.dataset_browser module

class ads.dataset.dataset_browser.DatasetBrowser

Bases: ABC

static GitHub(user: str, repo: str, branch: str = 'master')
Returns a GitHubDataset

static filesystem(folder: str)
Returns a LocalFilesystemDataset.

filter_list(L, filter_pattern)→ List[str]
Filters a list of dataset names.

static list(filter_pattern='*')→ List[str]
Return a list of dataset browser strings.

abstract open(**kwargs)
Return new dataset for the given name.

Parameters
name (str) – the name of the dataset to open.

Returns
ds

Return type
Dataset
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Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

static seaborn()

Returns a SeabornDataset.

static sklearn()

Returns a SklearnDataset.

static web(index_url: str)
Returns a WebDataset.

class ads.dataset.dataset_browser.GitHubDatasets(user: str, repo: str, branch: str)
Bases: DatasetBrowser

list(filter_pattern: str = '.*')→ List[str]
Return a list of dataset browser strings.

open(name: str, **kwargs)
Return new dataset for the given name.

Parameters
name (str) – the name of the dataset to open.

Returns
ds

Return type
Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

class ads.dataset.dataset_browser.LocalFilesystemDatasets(folder: str)
Bases: DatasetBrowser

list(filter_pattern: str = '.*')→ List[str]
Return a list of dataset browser strings.

open(name: str, **kwargs)
Return new dataset for the given name.

Parameters
name (str) – the name of the dataset to open.

Returns
ds

Return type
Dataset
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Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

class ads.dataset.dataset_browser.SeabornDatasets

Bases: DatasetBrowser

list(filter_pattern: str = '.*')→ List[str]
Return a list of dataset browser strings.

open(name: str, **kwargs)
Return new dataset for the given name.

Parameters
name (str) – the name of the dataset to open.

Returns
ds

Return type
Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

class ads.dataset.dataset_browser.SklearnDatasets

Bases: DatasetBrowser

list(filter_pattern: str = '.*')→ List[str]
Return a list of dataset browser strings.

open(name: str, **kwargs)
Return new dataset for the given name.

Parameters
name (str) – the name of the dataset to open.

Returns
ds

Return type
Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

sklearn_datasets = ['breast_cancer', 'diabetes', 'iris', 'wine', 'digits']

class ads.dataset.dataset_browser.WebDatasets(index_url: str)
Bases: DatasetBrowser
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list(filter_pattern: str = '.*')→ List[str]
Return a list of dataset browser strings.

open(name: str, **kwargs)
Return new dataset for the given name.

Parameters
name (str) – the name of the dataset to open.

Returns
ds

Return type
Dataset

Examples

ds_browser = DatasetBrowser(“sklearn”)

ds = ds_browser.open(“iris”)

23.1.1.8.9 ads.dataset.dataset_with_target module

class ads.dataset.dataset_with_target.ADSDatasetWithTarget(df, sampled_df, target, target_type,
shape, sample_max_rows=-1,
type_discovery=True, types={},
parent=None, name='',
metadata=None,
transformer_pipeline=None,
description=None,
progress=<ads.dataset.progress.DummyProgressBar
object>, **kwargs)

Bases: ADSDataset

This class provides APIs for preparing dataset for modeling.

auto_transform(correlation_threshold: float = 0.7, frac: float = 1.0, sample_size=1.0,
correlation_methods: Union[str, list] = 'pearson')

Return transformed dataset with several optimizations applied automatically. The optimizations include:

• Dropping constant and primary key columns, which has no predictive quality,

• Imputation, to fill in missing values in noisy data:

– For continuous variables, fill with mean if less than 40% is missing, else drop,

– For categorical variables, fill with most frequent if less than 40% is missing, else drop,

• Dropping strongly co-correlated columns that tend to produce less generalizable models.

Parameters

• correlation_threshold (float, defaults to 0.7. It must be between 0
and 1, inclusive) – the correlation threshold where columns with correlation higher
than the threshold will be considered as strongly co-correlated and recommended to be
taken care of.

• frac (Is superseded by sample_size) –
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• sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What
fraction of the data should be used in the calculation?

• correlation_methods (Union[list, str], defaults to 'pearson') –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,

– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’].

Returns
transformed_dataset

Return type
ADSDatasetWithTarget

Examples

>>> ds_clean = ds.auto_transform()

get_recommendations(correlation_methods: str = 'pearson', correlation_threshold: float = 0.7, frac: float
= 1.0, sample_size: float = 1.0, overwrite: bool = None, force_recompute: bool =
False, display_format: str = 'widget')

Generate recommendations for dataset optimization. This includes:

• Identifying constant and primary key columns, which has no predictive quality,

• Imputation, to fill in missing values in noisy data:

– For continuous variables, fill with mean if less than 40% is missing, else drop,

– For categorical variables, fill with most frequent if less than 40% is missing, else drop,

• Identifying strongly co-correlated columns that tend to produce less generalizable models,

• Automatically balancing dataset for classification problems using up or down sampling.

Parameters

• correlation_methods (Union[list, str], default to 'pearson') –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,

– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’].

• correlation_threshold (float, defaults to 0.7. It must be between 0
and 1, inclusive) – The correlation threshold where columns with correlation higher
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than the threshold will be considered as strongly co-correlated and recommended to be
taken care of.

• frac (Is superseded by sample_size) –

• sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What
fraction of the data should be used in the calculation?

• overwrite – Is deprecated and replaced by force_recompute.

• force_recompute (bool, default to be False) –

– If False, it calculates the correlation matrix if there is no cached correlation matrix.
Otherwise, it returns the cached correlation matrix.

– If True, it calculates the correlation matrix regardless whether there is cached result or
not.

• display_format (string, defaults to 'widget'.) – Should be either ‘widget’ or
‘table’. If ‘widget’, a GUI style interface is popped out; if ‘table’, a table of suggestions is
shown.

get_transformed_dataset()

Return the transformed dataset with the recommendations applied.

This method should be called after applying the recommendations using the Recommenda-
tion#show_in_notebook() API.

rename_columns(columns)
Returns a dataset with columns renamed.

select_best_features(score_func=None, k=12)
Return new dataset containing only the top k features.

Parameters

• k (int, default 12) – The top ‘k’ features to select.

• score_func (function) – Scoring function to use to rank the features. This scoring
function should take a 2d array X(features) and an array like y(target) and return a numeric
score for each feature in the same order as X.

Notes

See also https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html and
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html

Examples

>>> ds = DatasetBrowser("sklearn").open("iris")
>>> ds_small = ds.select_best_features(k=2)

suggest_recommendations(correlation_methods: Union[str, list] = 'pearson', print_code: bool = True,
correlation_threshold: float = 0.7, overwrite: Optional[bool] = None,
force_recompute: bool = False, frac: float = 1.0, sample_size: float = 1.0,
**kwargs)

Returns a pandas dataframe with suggestions for dataset optimization. This includes:

646 Chapter 23. Class Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html


ADS Documentation, Release 2.6.4

• Identifying constant and primary key columns, which has no predictive quality,

• Imputation, to fill in missing values in noisy data:

– For continuous variables, fill with mean if less than 40% is missing, else drop,

– For categorical variables, fill with most frequent if less than 40% is missing, else drop,

• Identifying strongly co-correlated columns that tend to produce less generalizable models,

• Automatically balancing dataset for classification problems using up or down sampling.

Parameters

• correlation_methods (Union[list, str], default to 'pearson') –

– ‘pearson’: Use Pearson’s Correlation between continuous features,

– ’cramers v’: Use Cramer’s V correlations between categorical features,

– ’correlation ratio’: Use Correlation Ratio Correlation between categorical and continu-
ous features,

– ’all’: Is equivalent to [‘pearson’, ‘cramers v’, ‘correlation ratio’].

Or a list containing any combination of these methods, for example, [‘pearson’, ‘cramers
v’]

• print_code (bool, Defaults to True) – Print Python code for the suggested actions.

• correlation_threshold (float. Defaults to 0.7. It must be between 0
and 1, inclusive) – the correlation threshold where columns with correlation higher
than the threshold will be considered as strongly co-correated and recommended to be
taken care of.

• frac (Is superseded by sample_size) –

• sample_size (float, defaults to 1.0. Float, Range -> (0, 1]) – What
fraction of the data should be used in the calculation?

• overwrite – Is deprecated and replaced by force_recompute.

• force_recompute (bool, default to be False) –

– If False, it calculates the correlation matrix if there is no cached correlation matrix.
Otherwise, it returns the cached correlation matrix.

– If True, it calculates the correlation matrix regardless whether there is cached result or
not.

Returns
suggestion dataframe

Return type
pandas.DataFrame
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Examples

>>> suggestion_df = ds.suggest_recommendations(correlation_threshold=0.7)

train_test_split(test_size=0.1, random_state=42)
Splits dataset to train and test data.

Parameters

• test_size (Union[float, int], optional, default=0.1) –

• random_state (Union[int, RandomState], optional, default=None) –

– If int, random_state is the seed used by the random number generator;

– If RandomState instance, random_state is the random number generator;

– If None, the random number generator is the RandomState instance used by np.random.

Returns
train_data, test_data – tuple of ADSData instances

Return type
tuple

Examples

>>> ds = DatasetFactory.open("data.csv")
>>> train, test = ds.train_test_split()

train_validation_test_split(test_size=0.1, validation_size=0.1, random_state=42)
Splits dataset to train, validation and test data.

Parameters

• test_size (Union[float, int], optional, default=0.1) –

• validation_size (Union[float, int], optional, default=0.1) –

• random_state (Union[int, RandomState], optional, default=None) –

– If int, random_state is the seed used by the random number generator;

– If RandomState instance, random_state is the random number generator;

– If None, the random number generator is the RandomState instance used by np.random.

Returns
train_data, validation_data, test_data – tuple of ADSData instances

Return type
tuple
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Examples

>>> ds = DatasetFactory.open("data.csv")
>>> train, valid, test = ds.train_validation_test_split()

type_of_target()

Return the target type for the dataset.

Returns
target_type – an object of TypedFeature

Return type
TypedFeature

Examples

>>> ds = ds.set_target('target_class')
>>> assert(ds.type_of_target() == 'categorical')

visualize_transforms()

Render a representation of the dataset’s transform DAG.

23.1.1.8.10 ads.dataset.exception module

exception ads.dataset.exception.DatasetError(*args, **kwargs)
Bases: BaseException

Base class for dataset errors.

exception ads.dataset.exception.ValidationError(msg)
Bases: DatasetError

Handles validation errors in dataset.

23.1.1.8.11 ads.dataset.factory module

class ads.dataset.factory.CustomFormatReaders

Bases: object

DEFAULT_SQL_ARRAYSIZE = 50000

DEFAULT_SQL_CHUNKSIZE = 12007

DEFAULT_SQL_CTU = False

DEFAULT_SQL_MIL = 128

static read_arff(path, **kwargs)

static read_avro(path: str, **kwargs)→ DataFrame

static read_html(path, html_table_index: Optional[int] = None, **kwargs)
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static read_json(path: str, **kwargs)→ DataFrame

static read_libsvm(path: str, **kwargs)→ DataFrame

static read_log(path, **kwargs)

classmethod read_sql(path: str, table: Optional[str] = None, **kwargs)→ DataFrame

Parameters

• path – str This is the connection URL that gets passed to sqlalchemy’s create_engine
method

• table – str This is either the name of a table to select * from or a sql query to be run

• kwargs –

Returns
pd.DataFrame

static read_tsv(path: str, **kwargs)→ DataFrame

static read_xml(path: str, **kwargs)→ DataFrame
Load data from xml file.

Parameters

• path (str) – Path to XML file

• storage_options (dict, optional) – Storage options passed to Pandas to read the
file.

Returns
dataframe

Return type
pandas.DataFrame

class ads.dataset.factory.DatasetFactory

Bases: object

static download(remote_path, local_path, storage=None, overwrite=False)
Download a remote file or directory to local storage.

Parameters

• remote_path (str) – Supports protocols like oci, s3, also supports glob expressions

• local_path (str) – Supports glob expressions

• storage (dict) – Parameters passed on to the backend remote filesystem class.

• overwrite (bool, default False) – If True, the method will overwrite any existing
files in the local_path
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Examples

>>> DatasetFactory.download("oci://Bucket/prefix/to/data/*.csv",
... "/home/datascience/data/")

static from_dataframe(df, target: Optional[str] = None, **kwargs)
Returns an object of ADSDatasetWithTarget or ADSDataset given a pandas.DataFrame

Parameters

• df (pandas.DataFrame) –

• target (str) –

• kwargs (dict) – See DatasetFactory.open() for supported kwargs

Returns
dataset – according to the type of target

Return type
an object of ADSDataset target is not specified, otherwise an object of ADSDatasetWithTar-
get tagged

Examples

>>> df = pd.DataFrame(data)
>>> ds = from_dataframe(df)

classmethod infer_target_type(target, target_series, discover_target_type=True)

static list_snapshots(snapshot_dir=None, name='', storage_options=None, **kwargs)
Displays the URIs for dataset snapshots under the given directory path.

Parameters

• snapshot_dir (str) – Return all dataset snapshots created using ADSDataset.snapshot()
within this directory. The path can contain protocols such as oci, s3.

• name (str, optional) – The list of snapshots in the directory gets filtered by the name.
Accepts glob expressions. default = “ads_”

• storage_options (dict) – Parameters passed on to the backend filesystem class.

Example

>>> DatasetFactory.list_snapshots(snapshot_dir="oci://my_bucket/snapshots_dir",
... name="ads_iris_")

Returns a list of all snapshots (recursively) saved to obj storage bucket “my_bucket” with prefix “/snap-
shots_dir/ads_iris_**” sorted by time created.

static open(source, target=None, format='infer', reader_fn: Optional[Callable] = None, name:
Optional[str] = None, description='', npartitions: Optional[int] = None, type_discovery=True,
html_table_index=None, column_names='infer', sample_max_rows=10000,
positive_class=None, transformer_pipeline=None, types={}, **kwargs)

Returns an object of ADSDataset or ADSDatasetWithTarget read from the given path
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Parameters

• source (Union[str, pandas.DataFrame, h2o.DataFrame, pyspark.sql.
dataframe.DataFrame]) – If str, URI for the dataset. The dataset could be read from
local or network file system, hdfs, s3, gcs and optionally pyspark in pyspark conda env

• target (str, optional) – Name of the target in dataset. If set an ADSDatasetWithTar-
get object is returned, otherwise an ADSDataset object is returned which can be used to
understand the dataset through visualizations

• format (str, default: infer) – Format of the dataset. Supported formats: CSV, TSV,
Parquet, libsvm, JSON, XLS/XLSX (Excel), HDF5, SQL, XML, Apache server log files
(clf, log), ARFF. By default, the format would be inferred from the ending of the dataset
file path.

• reader_fn (Callable, default: None) – The user may pass in their own custom
reader function. It must accept (path, **kwarg) and return a pandas DataFrame

• name (str, optional default: "") –

• description (str, optional default: "") – Text describing the dataset

• npartitions (int, deprecated) – Number of partitions to split the data By default
this is set to the max number of cores supported by the backend compute accelerator

• type_discovery (bool, default: True) – If false, the data types of the dataframe are
used as such. By default, the dataframe columns are associated with the best suited data
types. Associating the features with the disovered datatypes would impact visualizations
and model prediction.

• html_table_index (int, optional) – The index of the dataframe table in html con-
tent. This is used when the format of dataset is html

• column_names ('infer', list of str or None, default: 'infer') – Supported
only for CSV and TSV. List of column names to use. By default, column names are in-
ferred from the first line of the file. If set to None, column names would be auto-generated
instead of inferring from file. If the file already contains a column header, specify header=0
to ignore the existing column names.

• sample_max_rows (int, default: 10000, use -1 auto calculate sample
size, use 0 (zero) for no sampling) – Sample size of the dataframe to use for
visualization and optimization.

• positive_class (Any, optional) – Label in target for binary classification problems
which should be identified as positive for modeling. By default, the first unique value is
considered as the positive label.

• types (dict, optional) – Dictionary of <feature_name> : <data_type> to override the
data type of features.

• transformer_pipeline (datasets.pipeline.TransformerPipeline,
optional) – A pipeline of transformations done outside the sdk and need to be
applied at the time of scoring

• storage_options (dict, default: varies by source type) – Parameters passed
on to the backend filesystem class.

• sep (str) – Delimiting character for parsing the input file.

• kwargs (additional keyword arguments that would be passed to
underlying dataframe read API) – based on the format of the dataset

Returns
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• dataset (An instance of ADSDataset)

• (or)

• dataset_with_target (An instance of ADSDatasetWithTarget)

Examples

>>> ds = DatasetFactory.open("/path/to/data.data", format='csv', delimiter=" ",
... na_values="n/a", skipinitialspace=True)

>>> ds = DatasetFactory.open("/path/to/data.csv", target="col_1", prefix="col_",
... skiprows=1, encoding="ISO-8859-1")

>>> ds = DatasetFactory.open("oci://bucket@namespace/path/to/data.tsv",
... column_names=["col1", "col2", "col3"], header=0)

>>> ds = DatasetFactory.open("oci://bucket@namespace/path/to/data.csv",
... storage_options={"config": "~/.oci/config",
... "profile": "USER_2"}, delimiter = ';')

>>> ds = DatasetFactory.open("/path/to/data.parquet", engine='pyarrow',
... types={"col1": "ordinal",
... "col2": "categorical",
... "col3" : "continuous",
... "col4" : "float64"})

>>> ds = DatasetFactory.open(df, target="class", sample_max_rows=5000,
... positive_class="yes")

>>> ds = DatasetFactory.open("s3://path/to/data.json.gz", format="json",
... compression="gzip", orient="records")

static open_to_pandas(source: str, format: Optional[str] = None, reader_fn: Optional[Callable] =
None, **kwargs)→ DataFrame

static set_default_storage(snapshots_dir=None, storage_options=None)
Set default storage directory and options.

Both snapshots_dir and storage_options can be overridden at the API scope.

Parameters

• snapshots_dir (str) – Path for the snapshots directory. Can contain protocols such as
oci, s3

• storage_options (dict, optional) – Parameters passed on to the backend filesystem
class.

static upload(local_file_or_dir, remote_file_or_dir, storage_options=None)
Upload local file or directory to remote storage

Parameters

• local_file_or_dir (str) – Supports glob expressions
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• remote_file_or_dir (str) – Supports protocols like oci, s3, also supports glob expres-
sions

• storage_options (dict) – Parameters passed on to the backend remote filesystem class.

ads.dataset.factory.get_format_reader(path: ElaboratedPath, **kwargs)→ Callable

ads.dataset.factory.load_dataset(path: ElaboratedPath, reader_fn: Callable, **kwargs)→ DataFrame

23.1.1.8.12 ads.dataset.feature_engineering_transformer module

class ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer(feature_metadata=None)
Bases: TransformerMixin

fit(X, y=None)

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

• X (array-like of shape (n_samples, n_features)) – Input samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs),
default=None) – Target values (None for unsupervised transformations).

• **fit_params (dict) – Additional fit parameters.

Returns
X_new – Transformed array.

Return type
ndarray array of shape (n_samples, n_features_new)

transform(df, progress=<ads.dataset.progress.DummyProgressBar object>, fit_transform=False)

23.1.1.8.13 ads.dataset.feature_selection module

class ads.dataset.feature_selection.FeatureImportance(ds, score_func=None, n=None)
Bases: object

show_in_notebook(fig_size=(10, 10))
Shows selected features in the notebook with matplotlib.

23.1.1.8.14 ads.dataset.forecasting_dataset module

class ads.dataset.forecasting_dataset.ForecastingDataset(df, sampled_df, target, target_type, shape,
**kwargs)

Bases: ADSDatasetWithTarget

select_best_features(score_func=None, k=12)
Not yet implemented
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23.1.1.8.15 ads.dataset.helper module

class ads.dataset.helper.DatasetDefaults

Bases: object

sampling_confidence_interval = 1.0

sampling_confidence_level = 95

exception ads.dataset.helper.DatasetLoadException(exc_msg)
Bases: BaseException

class ads.dataset.helper.ElaboratedPath(source: Union[str, List[str]], format: Optional[str] = None,
name: Optional[str] = None, **kwargs)

Bases: object

The Elaborated Path class unifies all of the operations and information related to a path or pathlist. Whether the
user wants to An Elaborated path can accept any of the following as a valid source: * A single path * A glob
pattern path * A directory * A list of paths (Note: all of these paths must be from the same filesystem AND have
the same format) * A sqlalchemy connection url

Parameters

• source –

• format –

• kwargs –

By the end of this method, this class needs to have paths, format, and name ready

property format: str

property name: str

property num_paths: int

This method will return the number of paths found with the associated original glob, folder, or path. If this
returns 0, :return:

property paths: List[str]

a list of str Each element will be a valid path

Type
return

ads.dataset.helper.calculate_sample_size(population_size, min_size_to_sample, confidence_level=95,
confidence_interval=1.0)

Find sample size for a population using Cochran’s Sample Size Formula.
With default values for confidence_level (percentage, default: 95%) and confidence_interval (margin of
error, percentage, default: 1%)

SUPPORTED CONFIDENCE LEVELS: 50%, 68%, 90%, 95%, and 99% ONLY - this is because the Z-score is
table based, and I’m only providing Z for common confidence levels.

ads.dataset.helper.concatenate(X, y)

ads.dataset.helper.convert_columns(df, feature_metadata=None, dtypes=None)

ads.dataset.helper.convert_to_html(plot)

23.1. ads package 655



ADS Documentation, Release 2.6.4

ads.dataset.helper.deprecate_default_value(var, old_value, new_value, warning_msg, warning_type)

ads.dataset.helper.deprecate_variable(old_var, new_var, warning_msg, warning_type)

ads.dataset.helper.down_sample(df, target)
Fixes imbalanced dataset by down-sampling

Parameters

• df (pandas.DataFrame) –

• target (name of the target column in df ) –

Returns
downsampled_df

Return type
pandas.DataFrame

ads.dataset.helper.fix_column_names(X)

ads.dataset.helper.generate_sample(df: DataFrame, n: int, confidence_level: int = 95, confidence_interval:
float = 1.0, **kwargs)

ads.dataset.helper.get_dtype(feature_type, dtype)

ads.dataset.helper.get_feature_type(name, series)

ads.dataset.helper.get_fill_val(feature_types, column, action, constant='constant')

ads.dataset.helper.is_text_data(df, target=None)

ads.dataset.helper.map_types(types)

ads.dataset.helper.parse_apache_log_datetime(x)

Parses datetime with timezone formatted as:
[day/month/year:hour:minute:second zone]

Source: https://mmas.github.io/read-apache-access-log-pandas .. rubric:: Example

>>> parse_datetime(‘13/Nov/2015:11:45:42 +0000’) datetime.datetime(2015, 11, 3, 11, 45, 4, tzinfo=<UTC>)

Due to problems parsing the timezone (%z) with datetime.strptime, the timezone will be obtained using the pytz
library.

ads.dataset.helper.parse_apache_log_str(x)
Returns the string delimited by two characters.

Source: https://mmas.github.io/read-apache-access-log-pandas .. rubric:: Example

>>> parse_str(‘[my string]’) ‘my string’

ads.dataset.helper.rename_duplicate_cols(original_cols)

ads.dataset.helper.up_sample(df, target, sampler='default', feature_types=None)
Fixes imbalanced dataset by up-sampling

Parameters

• df (Union[pandas.DataFrame, dask.dataframe.core.DataFrame]) –

• target (name of the target column in df ) –

• sampler (Should implement fit_resample(X,y) method) –
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• fillna (a dictionary contains the column name as well as the fill
value,) – only needed when the column has missing values

Returns
upsampled_df

Return type
Union[pandas.DataFrame, dask.dataframe.core.DataFrame]

ads.dataset.helper.visualize_transformation(transformer_pipeline, text=None)

ads.dataset.helper.write_parquet(path, data, engine='fastparquet', metadata_dict=None,
compression=None, storage_options=None)

Uses fast parquet to write dask dataframe and custom metadata in parquet format

Parameters

• path (str) – Path to write to

• data (pandas.DataFrame) –

• engine (string) – “auto” by default

• metadata_dict (Deprecated, will not pass through ) –

• compression ({{'snappy', 'gzip', 'brotli', None}}, default 'snappy') – Name
of the compression to use

• storage_options (dict, optional) – storage arguments required to read the path

Returns
str

Return type
the file path the parquet was written to

23.1.1.8.16 ads.dataset.label_encoder module

class ads.dataset.label_encoder.DataFrameLabelEncoder

Bases: TransformerMixin

Label encoder for pandas.dataframe. dask.dataframe.core.DataFrame

fit(X)
Fits a DataFrameLAbelEncoder.

transform(X)
Transforms a dataset using the DataFrameLAbelEncoder.

23.1.1.8.17 ads.dataset.pipeline module

class ads.dataset.pipeline.TransformerPipeline(steps)
Bases: Pipeline

add(transformer)
Add transformer to data transformation pipeline

Parameters
transformer (Union[TransformerMixin, tuple(str, TransformerMixin)]) – if
tuple, (name, transformer implementing transform)
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steps: List[Any]

visualize()

23.1.1.8.18 ads.dataset.plot module

class ads.dataset.plot.Plotting(df, feature_types, x, y=None, plot_type='infer', yscale=None)
Bases: object

select_best_plot()

Returns the best plot for a given dataset

show_in_notebook(**kwargs)
Visualizes the dataset by plotting the distribution of a feature or relationship between two features.

Parameters

• figsize (tuple) – defines the size of the fig

• ------- –

23.1.1.8.19 ads.dataset.progress module

class ads.dataset.progress.DummyProgressBar(*args, **kwargs)
Bases: ProgressBar

update(*args, **kwargs)
Updates the progress bar

class ads.dataset.progress.IpythonProgressBar(max_progress=100, description='Running',
verbose=False)

Bases: ProgressBar

update(description=None)
Updates the progress bar

class ads.dataset.progress.ProgressBar

Bases: object

abstract update(description)

class ads.dataset.progress.TqdmProgressBar(max_progress=100, description='Running', verbose=False)
Bases: ProgressBar

update(description=None)
Updates the progress bar
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23.1.1.8.20 ads.dataset.recommendation module

class ads.dataset.recommendation.Recommendation(ds, recommendation_transformer)
Bases: object

recommendation_type_labels = ['Constant Columns', 'Potential Primary Key Columns',
'Imputation', 'Multicollinear Columns', 'Identify positive label for target', 'Fix
imbalance in dataset']

recommendation_types = ['constant_column', 'primary_key', 'imputation',
'strong_correlation', 'positive_class', 'fix_imbalance']

show_in_notebook()

23.1.1.8.21 ads.dataset.recommendation_transformer module

class ads.dataset.recommendation_transformer.RecommendationTransformer(feature_metadata=None,
correlation=None,
target=None,
is_balanced=False,
target_type=None,
feature_ranking=None,
len=0,
fix_imbalance=True,
auto_transform=True,
correla-
tion_threshold=0.7)

Bases: TransformerMixin

fit(X)

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

• X (array-like of shape (n_samples, n_features)) – Input samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs),
default=None) – Target values (None for unsupervised transformations).

• **fit_params (dict) – Additional fit parameters.

Returns
X_new – Transformed array.

Return type
ndarray array of shape (n_samples, n_features_new)

transform(X, progress=<ads.dataset.progress.DummyProgressBar object>, fit_transform=False,
update_transformer_log=False)

transformer_log(action)
local wrapper to both log and record in the actions_performed array
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23.1.1.8.22 ads.dataset.regression_dataset module

class ads.dataset.regression_dataset.RegressionDataset(df, sampled_df, target, target_type, shape,
**kwargs)

Bases: ADSDatasetWithTarget

23.1.1.8.23 ads.dataset.sampled_dataset module

class ads.dataset.sampled_dataset.PandasDataset(sampled_df, type_discovery=True, types={},
metadata=None,
progress=<ads.dataset.progress.DummyProgressBar
object>)

Bases: object

This class provides APIs that can work on a sampled dataset.

plot(x, y=None, plot_type='infer', yscale=None, verbose=True, sample_size=0)
Supports plotting feature distribution, and relationship between features.

Parameters

• x (str) – The name of the feature to plot

• y (str, optional) – Name of the feature to plot against x

• plot_type (str, default: infer) – Override the inferred plot type for certain com-
binations of the data types of x and y. By default, the best plot type is inferred based on x
and y data types. Valid values:

– box_plot - discrete feature vs continuous feature. Draw a box plot to show distributions
with respect to categories,

– scatter - continuous feature vs continuous feature. Draw a scatter plot with possibility of
several semantic groupings.

• yscale (str, optional) – One of {“linear”, “log”, “symlog”, “logit”}. The y axis scale
type to apply. Can be used when either x or y is an ordinal feature.

• verbose (bool, default True) – Displays Note/Tips if True

plot_gis_scatter(lon='longitude', lat='latitude', ax=None)
Supports plotting Choropleth maps

Parameters

• df (pandas dataframe) – The dataframe to plot

• x (str) – The name of the feature to plot, usually the longitude

• y (str) – THe name of the feature to plot, usually the latitude

summary(feature_name=None)
Display list of features & their datatypes. Shows the column name and the feature’s meta_data if given a
specific feature name.

Parameters
date_col (str) – The name of the feature

Returns
a dictionary that contains requested information
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Return type
dict

timeseries(date_col)
Supports any plotting operations where x=datetime.

Parameters
date_col (str) – The name of the feature to plot

Returns
a plotting object that contains a date column and dataframe

Return type
func

23.1.1.8.24 ads.dataset.target module

class ads.dataset.target.TargetVariable(sampled_ds, target, target_type)
Bases: object

This class provides target specific APIs.

is_balanced()

Returns True if the target is balanced, False otherwise.

Returns
is_balanced

Return type
bool

show_in_notebook(feature_names=None)
Plot target distribution or target versus feature relation.

Parameters
feature_names (list, Optional) – Plot target against a list of features. Display target
distribution if feature_names is not provided.

23.1.1.8.25 ads.dataset.timeseries module

class ads.dataset.timeseries.Timeseries(col_name, df, date_range=None, min=None, max=None)
Bases: object

plot(**kwargs)

23.1.1.8.26 Module contents

23.1.1.9 ads.evaluations package

23.1.1.9.1 Submodules

23.1.1.9.2 ads.evaluations.evaluation_plot module
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class ads.evaluations.evaluation_plot.EvaluationPlot

Bases: object

EvaluationPlot holds data and methods for plots and it used to output them

baseline(bool)
whether to plot the null model or zero information model

baseline_kwargs(dict)
keyword arguments for the baseline plot

color_wheel(dict)
color information used by the plot

font_sz(dict)
dictionary of plot methods

perfect(bool)
determines whether a “perfect” classifier curve is displayed

perfect_kwargs(dict)
parameters for the perfect classifier for precision/recall curves

prob_type(str)
model type, i.e. classification or regression

get_legend_labels(legend_labels)
Renders the legend labels on the plot

plot(evaluation, plots, num_classes, perfect, baseline, legend_labels)
Generates the evalation plot

baseline = None

baseline_kwargs = {'c': '.2', 'ls': '--'}

color_wheel = ['teal', 'blueviolet', 'forestgreen', 'peru', 'y', 'dodgerblue', 'r']

double_overlay_plots = ['pr_and_roc_curve', 'lift_and_gain_chart']

font_sz = {'l': 14, 'm': 12, 's': 10, 'xl': 16, 'xs': 8}

classmethod get_legend_labels(legend_labels)
Gets the legend labels, resolves any conflicts such as length, and renders the labels for the plot

Parameters
(dict) (legend_labels) – key/value dictionary containing legend label data

Return type
Nothing
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Examples

EvaluationPlot.get_legend_labels({‘class_0’: ‘green’, ‘class_1’: ‘yellow’, ‘class_2’: ‘red’})

perfect = None

perfect_kwargs = {'color': 'gold', 'label': 'Perfect Classifier', 'ls': '--'}

classmethod plot(evaluation, plots, num_classes, perfect=False, baseline=True, legend_labels=None)
Generates the evaluation plot

Parameters

• (DataFrame) (evaluation) – DataFrame with models as columns and metrics as rows.

• (str) (plots) – The plot type based on class attribute prob_type.

• (int) (num_classes) – The number of classes for the model.

• (bool (baseline) – Whether to display the curve of a perfect classifier. Default value is
False.

• optional) – Whether to display the curve of a perfect classifier. Default value is False.

• (bool – Whether to display the curve of the baseline, featureless model. Default value is
True.

• optional) – Whether to display the curve of the baseline, featureless model. Default
value is True.

• (dict (legend_labels) – Legend labels dictionary. Default value is None. If leg-
end_labels not specified class names will be used for plots.

• optional) – Legend labels dictionary. Default value is None. If legend_labels not speci-
fied class names will be used for plots.

Return type
Nothing

prob_type = None

single_overlay_plots = ['lift_chart', 'gain_chart', 'roc_curve', 'pr_curve']

23.1.1.9.3 ads.evaluations.evaluator module

class ads.evaluations.evaluator.ADSEvaluator(test_data, models, training_data=None,
positive_class=None, legend_labels=None,
show_full_name=False)

Bases: object

ADS Evaluator class. This class holds field and methods for creating and using ADS evaluator objects.

evaluations

list of evaluations.

Type
list[DataFrame]
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is_classifier

Whether the model has a non-empty classes_ attribute indicating the presence of class labels.

Type
bool

legend_labels

List of legend labels. Defaults to None.

Type
dict

metrics_to_show

Names of metrics to show.

Type
list[str]

models

The object built using ADSModel.from_estimator().

Type
list[ads.common.model.ADSModel]

positive_class

The class to report metrics for binary dataset, assumed to be true.

Type
str or int

show_full_name

Whether to show the name of the evaluator in relevant contexts.

Type
bool

test_data

Test data to evaluate model on.

Type
ads.common.data.ADSData

training_data

Training data to evaluate model.

Type
ads.common.data.ADSData

Positive_Class_names

Class attribute listing the ways to represent positive classes

Type
list

add_metrics(func, names)
Adds the listed metics to the evaluator it is called on

del_metrics(names)
Removes listed metrics from the evaluator object it is called on
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add_models(models, show_full_name)
Adds the listed models to the evaluator object

del_models(names)
Removes the listed models from the evaluator object

show_in_notebook(plots, use_training_data, perfect, baseline, legend_labels)
Visualize evalutation plots in the notebook

calculate_cost(tn_weight, fp_weight, fn_weight, tp_weight, use_training_data)
Returns a cost associated with the input weights

Creates an ads evaluator object.

Parameters

• test_data (ads.common.data.ADSData instance) – Test data to evaluate model on.
The object can be built using ADSData.build().

• models (list[ads.common.model.ADSModel]) – The object can be built using
ADSModel.from_estimator(). Maximum length of the list is 3

• training_data (ads.common.data.ADSData instance, optional) – Training data
to evaluate model on and compare metrics against test data. The object can be built using
ADSData.build()

• positive_class (str or int, optional) – The class to report metrics for binary
dataset. If the target classes is True or False, positive_class will be set to True by default. If
the dataset is multiclass or multilabel, this will be ignored.

• legend_labels (dict, optional) – List of legend labels. Defaults to None. If leg-
end_labels not specified class names will be used for plots.

• show_full_name (bool, optional) – Show the name of the evaluator object. Defaults
to False.

Examples

>>> train, test = ds.train_test_split()
>>> model1 = MyModelClass1.train(train)
>>> model2 = MyModelClass2.train(train)
>>> evaluator = ADSEvaluator(test, [model1, model2])

>>> legend_labels={'class_0': 'one', 'class_1': 'two', 'class_2': 'three'}
>>> multi_evaluator = ADSEvaluator(test, models=[model1, model2],
... legend_labels=legend_labels)

class EvaluationMetrics(ev_test, ev_train, use_training=False, less_is_more=None, precision=4)
Bases: object

Class holding evaluation metrics.

ev_test

evaluation test metrics
Type

list
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ev_train

evaluation training metrics
Type

list

use_training

use training data
Type

bool

less_is_more

metrics list
Type

list

show_in_notebook()

Shows visualization metrics as a color coded table

DEFAULT_LABELS_MAP = {'accuracy': 'Accuracy', 'auc': 'ROC AUC', 'f1': 'F1',
'hamming_loss': 'Hamming distance', 'kappa_score_': "Cohen's kappa coefficient",
'precision': 'Precision', 'recall': 'Recall'}

property precision

show_in_notebook(labels={'accuracy': 'Accuracy', 'auc': 'ROC AUC', 'f1': 'F1', 'hamming_loss':
'Hamming distance', 'kappa_score_': "Cohen's kappa coefficient", 'precision':
'Precision', 'recall': 'Recall'})

Visualizes evaluation metrics as a color coded table.
Parameters
labels (dictionary) – map printing specific labels for metrics display

Return type
Nothing

Positive_Class_Names = ['yes', 'y', 't', 'true', '1']

add_metrics(funcs, names)
Adds the listed metrics to the evaluator object it is called on.

Parameters

• funcs (list) – The list of metrics to be added. This function will be provided y_true and
y_pred, the true and predicted values for each model.

• names (list[str])) – The list of metric names corresponding to the functions.

Return type
Nothing
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Examples

>>> def f1(y_true, y_pred):
... return np.max(y_true - y_pred)
>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.add_metrics([f1], ['Max Residual'])
>>> evaluator.metrics
Output table will include the desired metric

add_models(models, show_full_name=False)
Adds the listed models to the evaluator object it is called on.

Parameters

• models (list[ADSModel]) – The list of models to be added

• show_full_name (bool, optional) – Whether to show the full model name. Defaults
to False. ** NOT USED **

Return type
Nothing

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.add_models("model3])

calculate_cost(tn_weight, fp_weight, fn_weight, tp_weight, use_training_data=False)
Returns a cost associated with the input weights.

Parameters

• tn_weight (int, float) – The weight to assign true negatives in calculating the cost

• fp_weight (int, float) – The weight to assign false positives in calculating the cost

• fn_weight (int, float) – The weight to assign false negatives in calculating the cost

• tp_weight (int, float) – The weight to assign true positives in calculating the cost

• use_training_data (bool, optional) – Use training data to pull the metrics. Defaults
to False

Returns
DataFrame with the cost calculated for each model

Return type
pandas.DataFrame
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Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> costs_table = evaluator.calculate_cost(0, 10, 1000, 0)

del_metrics(names)
Removes the listed metrics from the evaluator object it is called on.

Parameters
names (list[str]) – The list of names of metrics to be deleted. Names can be found by
calling evaluator.test_evaluations.index.

Returns
None

Return type
None

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.del_metrics(['mse])
>>> evaluator.metrics
Output table will exclude the desired metric

del_models(names)
Removes the listed models from the evaluator object it is called on.

Parameters
names (list[str]) – the list of models to be delete. Names are the model names by de-
fault, and assigned internally when conflicts exist. Actual names can be found using evalua-
tor.test_evaluations.columns

Return type
Nothing

Examples

>>> model3.rename("model3")
>>> evaluator = ADSEvaluator(test, [model1, model2, model3])
>>> evaluator.del_models([model3])

property metrics

Returns evaluation metrics

Returns
HTML representation of a table comparing relevant metrics.

Return type
metrics
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Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.metrics
Outputs table displaying metrics.

property raw_metrics

Returns the raw metric numbers

Parameters

• metrics (list, optional) – Request metrics to pull. Defaults to all.

• use_training_data (bool, optional) – Use training data to pull metrics. Defaults to
False

Returns
The requested raw metrics for each model. If metrics is None return all.

Return type
dict

Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> raw_metrics_dictionary = evaluator.raw_metrics()

show_in_notebook(plots=None, use_training_data=False, perfect=False, baseline=True,
legend_labels=None)

Visualize evaluation plots.

Parameters

• plots (list, optional) – Filter the plots that are displayed. Defaults to None. The
name of the plots are as below:

– regression - residuals_qq, residuals_vs_fitted

– binary classification - normalized_confusion_matrix, roc_curve, pr_curve

– multi class classification - normalized_confusion_matrix, precision_by_label, re-
call_by_label, f1_by_label

• use_training_data (bool, optional) – Use training data to generate plots. Defaults
to False. By default, this method uses test data to generate plots

• legend_labels (dict, optional) – Rename legend labels, that used for multi class
classification plots. Defaults to None. legend_labels dict keys are the same as class names.
legend_labels dict values are strings. If legend_labels not specified class names will be
used for plots.

Returns
Nothing. Outputs several evaluation plots as specified by plots.

Return type
None
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Examples

>>> evaluator = ADSEvaluator(test, [model1, model2])
>>> evaluator.show_in_notebook()

>>> legend_labels={'class_0': 'green', 'class_1': 'yellow', 'class_2': 'red'}
>>> multi_evaluator = ADSEvaluator(test, [model1, model2],
... legend_labels=legend_labels)
>>> multi_evaluator.show_in_notebook(plots=["normalized_confusion_matrix",
... "precision_by_label", "recall_by_label", "f1_by_label"])

23.1.1.9.4 ads.evaluations.statistical_metrics module

class ads.evaluations.statistical_metrics.ModelEvaluator(y_true, y_pred, model_name,
classes=None, positive_class=None,
y_score=None)

Bases: object

ModelEvaluator takes in the true and predicted values and returns a pandas dataframe

y_true

Type
array-like object holding the true values for the model

y_pred

Type
array-like object holding the predicted values for the model

model_name(str)

Type
the name of the model

classes(list)

Type
list of target classes

positive_class(str)

Type
label for positive outcome from model

y_score

Type
array-like object holding the scores for true values for the model

metrics(dict)

Type
dictionary object holding model data

get_metrics()

Gets the metrics information in a dataframe based on the number of classes
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safe_metrics_call(scoring_functions, \*args)
Applies sklearn scoring functions to parameters in args

get_metrics()

Gets the metrics information in a dataframe based on the number of classes

Parameters
self ((ModelEvaluator instance)) – The ModelEvaluator instance with the metrics.

Returns
Pandas dataframe containing the metrics

Return type
pandas.DataFrame

safe_metrics_call(scoring_functions, *args)
Applies the sklearn function in scoring_functions to parameters in args.

Parameters

• scoring_functions ((dict)) – Scoring functions dictionary

• args ((keyword arguments)) – Arguments passed to the sklearn function from metrics

Returns
Nothing

Raises
Exception – If an error is enountered applying the sklearn function fn to arguments.
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23.1.1.9.5 Module contents

23.1.1.10 ads.explanations package

23.1.1.10.1 Submodules

23.1.1.10.2 ads.explanations.base_explainer module

23.1.1.10.3 ads.explanations.explainer module

23.1.1.10.4 ads.explanations.mlx_global_explainer module

23.1.1.10.5 ads.explanations.mlx_interface module

23.1.1.10.6 ads.explanations.mlx_local_explainer module

23.1.1.10.7 ads.explanations.mlx_whatif_explainer module

23.1.1.10.8 Module contents

23.1.1.11 ads.feature_engineering package

23.1.1.11.1 Submodules

23.1.1.11.2 ads.feature_engineering.exceptions module

exception ads.feature_engineering.exceptions.InvalidFeatureType(tname: str)
Bases: TypeError

exception ads.feature_engineering.exceptions.NameAlreadyRegistered(name: str)
Bases: NameError

exception ads.feature_engineering.exceptions.TypeAlreadyAdded(tname: str)
Bases: TypeError

exception ads.feature_engineering.exceptions.TypeAlreadyRegistered(tname: str)
Bases: TypeError

exception ads.feature_engineering.exceptions.TypeNotFound(tname: str)
Bases: TypeError

exception ads.feature_engineering.exceptions.WarningAlreadyExists(name: str)
Bases: ValueError

exception ads.feature_engineering.exceptions.WarningNotFound(name: str)
Bases: ValueError
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23.1.1.11.3 ads.feature_engineering.feature_type_manager module

The module that helps to manage feature types. Provides functionalities to register, unregister, list feature types.

Classes

FeatureTypeManager
Feature Types Manager class that manages feature types.

Examples

>>> from ads.feature_engineering.feature_type.base import FeatureType
>>> class NewType(FeatureType):
... description="My personal type."
... pass
>>> FeatureTypeManager.feature_type_register(NewType)
>>> FeatureTypeManager.feature_type_registered()

Name Feature Type Description
---------------------------------------------------------------------------------
0 Continuous continuous Type representing continuous values.
1 DateTime date_time Type representing date and/or time.
2 Category category Type representing discrete unordered values.
3 Ordinal ordinal Type representing ordered values.
4 NewType new_type My personal type.

>>> FeatureTypeManager.warning_registered()
Feature Type Warning Handler

----------------------------------------------------------------------
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

>>> FeatureTypeManager.validator_registered()
Feature Type Validator Condition ␣

→˓Handler
-----------------------------------------------------------------------------------------
→˓--
0 phone_number is_phone_number () default_
→˓handler
1 phone_number is_phone_number {'country_code': '+7'} specific_country_
→˓handler
2 credit_card is_credit_card () default_
→˓handler

>>> FeatureTypeManager.feature_type_unregister(NewType)
>>> FeatureTypeManager.feature_type_reset()
>>> FeatureTypeManager.feature_type_object('continuous')
Continuous

class ads.feature_engineering.feature_type_manager.FeatureTypeManager

Bases: object
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Feature Types Manager class that manages feature types.

Provides functionalities to register, unregister, list feature types.

feature_type_object(cls, feature_type: Union[FeatureType, str])→ FeatureType
Gets a feature type by class object or name.

feature_type_register(cls, feature_type_cls: FeatureType)→ None
Registers a feature type.

feature_type_unregister(cls, feature_type_cls: Union[FeatureType, str])→ None
Unregisters a feature type.

feature_type_reset(cls)→ None
Resets feature types to be default.

feature_type_registered(cls)→ pd.DataFrame
Lists all registered feature types as a DataFrame.

warning_registered(cls)→ pd.DataFrame
Lists registered warnings for all registered feature types.

validator_registered(cls)→ pd.DataFrame
Lists registered validators for all registered feature types.

Examples

>>> from ads.feature_engineering.feature_type.base import FeatureType
>>> class NewType(FeatureType):
... pass
>>> FeatureTypeManager.register_feature_type(NewType)
>>> FeatureTypeManager.feature_type_registered()

Name Feature Type Description
-------------------------------------------------------------------------------
0 Continuous continuous Type representing continuous values.
1 DateTime date_time Type representing date and/or time.
2 Category category Type representing discrete unordered values.
3 Ordinal ordinal Type representing ordered values.

>>> FeatureTypeManager.warning_registered()
Feature Type Warning Handler

----------------------------------------------------------------------
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

>>> FeatureTypeManager.validator_registered()
Feature Type Validator Condition ␣

→˓Handler
------------------------------------------------------------------------------------
→˓-------
0 phone_number is_phone_number () default_
→˓handler
1 phone_number is_phone_number {'country_code': '+7'} specific_country_
→˓handler

(continues on next page)
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(continued from previous page)

2 credit_card is_credit_card () default_
→˓handler

>>> FeatureTypeManager.feature_type_unregister(NewType)
>>> FeatureTypeManager.feature_type_reset()
>>> FeatureTypeManager.feature_type_object('continuous')
Continuous

classmethod feature_type_object(feature_type: Union[FeatureType, str])→ FeatureType
Gets a feature type by class object or name.

Parameters
feature_type (Union[FeatureType, str]) – The FeatureType subclass or a str indicat-
ing feature type.

Returns
Found feature type.

Return type
FeatureType

Raises

• TypeNotFound – If provided feature type not registered.

• TypeError – If provided feature type not a subclass of FeatureType.

classmethod feature_type_register(feature_type_cls: FeatureType)→ None
Registers new feature type.

Parameters
feature_type (FeatureType) – Subclass of FeatureType to be registered.

Returns
Nothing.

Return type
None

Raises

• TypeError – Type is not a subclass of FeatureType.

• TypeError – Type has already been registered.

• NameError – Name has already been used.

classmethod feature_type_registered()→ DataFrame
Lists all registered feature types as a DataFrame.

Returns
The list of feature types in a DataFrame format.

Return type
pd.DataFrame

classmethod feature_type_reset()→ None
Resets feature types to be default.

Returns
Nothing.
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Return type
None

classmethod feature_type_unregister(feature_type: Union[FeatureType, str])→ None
Unregisters a feature type.

Parameters
feature_type ((FeatureType | str)) – The FeatureType subclass or a str indicating
feature type.

Returns
Nothing.

Return type
None

Raises
TypeError – In attempt to unregister a default feature type.

classmethod is_type_registered(feature_type: Union[FeatureType, str])→ bool
Checks if provided feature type registered in the system.

Parameters
feature_type (Union[FeatureType, str]) – The FeatureType subclass or a str indicat-
ing feature type.

Returns
True if provided feature type registered, False otherwise.

Return type
bool

classmethod validator_registered()→ DataFrame
Lists registered validators for registered feature types.

Returns
The list of registered validators for registered feature types in a DataFrame format.

Return type
pd.DataFrame

Examples

>>> FeatureTypeManager.validator_registered()
Feature Type Validator Condition ␣

→˓ Handler
--------------------------------------------------------------------------------
→˓-----------
0 phone_number is_phone_number () ␣
→˓default_handler
1 phone_number is_phone_number {'country_code': '+7'} specific_
→˓country_handler
2 credit_card is_credit_card () ␣
→˓default_handler

classmethod warning_registered()→ DataFrame
Lists registered warnings for all registered feature types.

676 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

Returns
The list of registered warnings for registered feature types in a DataFrame format.

Return type
pd.DataFrame

Examples

>>> FeatureTypeManager.warning_registered()
Feature Type Warning Handler

----------------------------------------------------------------------
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

23.1.1.11.4 ads.feature_engineering.accessor.dataframe_accessor module

The ADS accessor for the Pandas DataFrame. The accessor will be initialized with the pandas object the user is
interacting with.

Examples

>>> from ads.feature_engineering.accessor.dataframe_accessor import ADSDataFrameAccessor
>>> from ads.feature_engineering.feature_type.continuous import Continuous
>>> from ads.feature_engineering.feature_type.creditcard import CreditCard
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.base import Tag

>>> df = pd.DataFrame({'Name': ['Alex'], 'CreditCard': ["4532640527811543"]})
>>> df.ads.feature_type
{'Name': ['string'], 'Credit Card': ['string']}
>>> df.ads.feature_type_description

Column Feature Type Description
------------------------------------------------------------------
0 Name string Type representing string values.
1 Credit Card string Type representing string values.
>>> df.ads.default_type
{'Name': 'string', 'Credit Card': 'string'}
>>> df.ads.feature_type = {'Name':['string', Tag('abc')]}
>>> df.ads.tags
{'Name': ['abc']}
>>> df.ads.feature_type = {'Credit Card':['credit_card']}
>>> df.ads.feature_select(include=['credit_card'])

Credit Card
-------------------------------
0 4532640527811543

class ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor(pandas_obj)
Bases: ADSFeatureTypesMixin, EDAMixin, DBAccessMixin, DataLabelingAccessMixin

ADS accessor for the Pandas DataFrame.
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columns

The column labels of the DataFrame.

Type
List[str]

tags(self )→ Dict[str, str]
Gets the dictionary of user defined tags for the dataframe.

default_type(self )→ Dict[str, str]
Gets the map of columns and associated default feature type names.

feature_type(self )→ Dict[str, List[str]]
Gets the list of registered feature types.

feature_type_description(self )→ pd.DataFrame
Gets the list of registered feature types in a DataFrame format.

sync(self, src: Union[pd.DataFrame, pd.Series])→ pd.DataFrame
Syncs feature types of current DataFrame with that from src.

feature_select(self, include: List[Union[FeatureType, str]] = None, exclude: List[Union[FeatureType,
str]] = None)→ pd.DataFrame

Gets the list of registered feature types in a DataFrame format.

help(self, prop: str = None)→ None
Provids docstring for affordable methods and properties.

Examples

>>> from ads.feature_engineering.accessor.dataframe_accessor import␣
→˓ADSDataFrameAccessor
>>> from ads.feature_engineering.feature_type.continuous import Continuous
>>> from ads.feature_engineering.feature_type.creditcard import CreditCard
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.base import Tag
df = pd.DataFrame({'Name': ['Alex'], 'CreditCard': ["4532640527811543"]})
>>> df.ads.feature_type
{'Name': ['string'], 'Credit Card': ['string']}
>>> df.ads.feature_type_description

Column Feature Type Description
-------------------------------------------------------------------
0 Name string Type representing string values.
1 Credit Card string Type representing string values.
>>> df.ads.default_type
{'Name': 'string', 'Credit Card': 'string'}
>>> df.ads.feature_type = {'Name':['string', Tag('abc')]}
>>> df.ads.tags
{'Name': ['abc']}
>>> df.ads.feature_type = {'Credit Card':['credit_card']}
>>> df.ads.feature_select(include=['credit_card'])

Credit Card
------------------------------
0 4532640527811543
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Initializes ADS Pandas DataFrame Accessor.

Parameters
pandas_obj (pandas.DataFrame) – Pandas dataframe

Raises
ValueError – If provided DataFrame has duplicate columns.

property default_type: Dict[str, str]

Gets the map of columns and associated default feature type names.

Returns
The dictionary where key is column name and value is the name of default feature type.

Return type
Dict[str, str]

feature_select(include: Optional[List[Union[FeatureType, str]]] = None, exclude:
Optional[List[Union[FeatureType, str]]] = None)→ DataFrame

Returns a subset of the DataFrame’s columns based on the column feature_types.

Parameters

• include (List[Union[FeatureType, str]], optional) – Defaults to None. A list
of FeatureType subclass or str to be included.

• exclude (List[Union[FeatureType, str]], optional) – Defaults to None. A list
of FeatureType subclass or str to be excluded.

Raises

• ValueError – If both of include and exclude are empty

• ValueError – If include and exclude are used simultaneously

Returns
The subset of the frame including the feature types in include and excluding the feature types
in exclude.

Return type
pandas.DataFrame

property feature_type: Dict[str, List[str]]

Gets the list of registered feature types.

Returns
The dictionary where key is column name and value is list of associated feature type names.

Return type
Dict[str, List[str]]

property feature_type_description: DataFrame

Gets the list of registered feature types in a DataFrame format.

Return type
pandas.DataFrame
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Examples

>>> df.ads.feature_type_description()
Column Feature Type Description

-------------------------------------------------------------------
0 City string Type representing string values.
1 Phone Number string Type representing string values.

info()→ Any
Gets information about the dataframe.

Returns
The information about the dataframe.

Return type
Any

model_schema(max_col_num: int = 2000)
Generates schema from the dataframe.

Parameters
max_col_num (int, optional. Defaults to 1000) – The maximum column size of
the data that allows to auto generate schema.

Examples

>>> df = pd.read_csv('./orcl_attrition.csv', usecols=['Age', 'Attrition'])
>>> schema = df.ads.model_schema()
>>> schema
Schema:

- description: Attrition
domain:

constraints: []
stats:
count: 1470
unique: 2
values: String

dtype: object
feature_type: String
name: Attrition
required: true
- description: Age
domain:

constraints: []
stats:
25%: 31.0
50%: 37.0
75%: 44.0
count: 1470.0
max: 61.0
mean: 37.923809523809524
min: 19.0
std: 9.135373489136732

(continues on next page)
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values: Integer
dtype: int64
feature_type: Integer
name: Age
required: true

>>> schema.to_dict()
{'Schema': [{'dtype': 'object',

'feature_type': 'String',
'name': 'Attrition',
'domain': {'values': 'String',

'stats': {'count': 1470, 'unique': 2},
'constraints': []},

'required': True,
'description': 'Attrition'},
{'dtype': 'int64',
'feature_type': 'Integer',
'name': 'Age',
'domain': {'values': 'Integer',

'stats': {'count': 1470.0,
'mean': 37.923809523809524,
'std': 9.135373489136732,
'min': 19.0,
'25%': 31.0,
'50%': 37.0,
'75%': 44.0,
'max': 61.0},
'constraints': []},

'required': True,
'description': 'Age'}]}

Returns
data schema.

Return type
ads.feature_engineering.schema.Schema

Raises
ads.feature_engineering.schema.DataSizeTooWide – If the number of columns of
input data exceeds max_col_num.

sync(src: Union[DataFrame, Series])→ DataFrame
Syncs feature types of current DataFrame with that from src.

Syncs feature types of current dataframe with that from src, where src can be a dataframe or a series. In
either case, only columns with matched names are synced.

Parameters
src (pd.DataFrame | pd.Series) – The source to sync from.

Returns
Synced dataframe.

Return type
pandas.DataFrame
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property tags: Dict[str, List[str]]

Gets the dictionary of user defined tags for the dataframe. Key is column name and value is list of tag
names.

Returns
The map of columns and associated default tags.

Return type
Dict[str, List[str]]

23.1.1.11.5 ads.feature_engineering.accessor.series_accessor module

The ADS accessor for the Pandas Series. The accessor will be initialized with the pandas object the user is interacting
with.

Examples

>>> from ads.feature_engineering.accessor.series_accessor import ADSSeriesAccessor
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.ordinal import Ordinal
>>> from ads.feature_engineering.feature_type.base import Tag
>>> series = pd.Series(['name1', 'name2', 'name3'])
>>> series.ads.default_type
'string'
>>> series.ads.feature_type
['string']
>>> series.ads.feature_type_description

Feature Type Description
----------------------------------------------------
0 string Type representing string values.
>>> series.ads.feature_type = ['string', Ordinal, Tag('abc')]
>>> series.ads.feature_type
['string', 'ordinal', 'abc']
>>> series1 = series.dropna()
>>> series1.ads.sync(series)
>>> series1.ads.feature_type
['string', 'ordinal', 'abc']

class ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor(pandas_obj: Series)
Bases: ADSFeatureTypesMixin, EDAMixinSeries

ADS accessor for Pandas Series.

name

The name of Series.

Type
str

tags

The list of tags for the Series.

Type
List[str]
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help(self, prop: str = None)→ None
Provids docstring for affordable methods and properties.

sync(self, src: Union[pd.DataFrame, pd.Series])→ None
Syncs feature types of current series with that from src.

default_type(self )→ str
Gets the name of default feature type for the series.

feature_type(self )→ List[str]
Gets the list of registered feature types for the series.

feature_type_description(self )→ pd.DataFrame
Gets the list of registered feature types in a DataFrame format.

Examples

>>> from ads.feature_engineering.accessor.series_accessor import ADSSeriesAccessor
>>> from ads.feature_engineering.feature_type.string import String
>>> from ads.feature_engineering.feature_type.ordinal import Ordinal
>>> from ads.feature_engineering.feature_type.base import Tag
>>> series = pd.Series(['name1', 'name2', 'name3'])
>>> series.ads.default_type
'string'
>>> series.ads.feature_type
['string']
>>> series.ads.feature_type_description

Feature Type Description
----------------------------------------------------
0 string Type representing string values.
>>> series.ads.feature_type = ['string', Ordinal, Tag('abc')]
>>> series.ads.feature_type
['string', 'ordinal', 'abc']
>>> series1 = series.dropna()
>>> series1.ads.sync(series)
>>> series1.ads.feature_type
['string', 'ordinal', 'abc']

Initializes ADS Pandas Series Accessor.

Parameters
pandas_obj (pd.Series) – The pandas series

property default_type: str

Gets the name of default feature type for the series.

Returns
The name of default feature type.

Return type
str

property feature_type: List[str]

Gets the list of registered feature types for the series.

Returns
Names of feature types.
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Return type
List[str]

Examples

>>> series = pd.Series(['name1'])
>>> series.ads.feature_type = ['name', 'string', Tag('tag for name')]
>>> series.ads.feature_type
['name', 'string', 'tag for name']

property feature_type_description: DataFrame

Gets the list of registered feature types in a DataFrame format.

Returns
The DataFrame with feature types for this series.

Return type
pd.DataFrame

Examples

>>> series = pd.Series(['name1'])
>>> series.ads.feature_type = ['name', 'string', Tag('Name tag')]
>>> series.ads.feature_type_description

Feature Type Description
----------------------------------------------------------
0 name Type representing name values.
1 string Type representing string values.
2 Name tag Tag.

sync(src: Union[DataFrame, Series])→ None
Syncs feature types of current series with that from src.

The src could be a dataframe or a series. In either case, only columns with matched names are synced.

Parameters
src ((pd.DataFrame | pd.Series)) – The source to sync from.

Returns
Nothing.

Return type
None

Examples

>>> series = pd.Series(['name1', 'name2', 'name3', None])
>>> series.ads.feature_type = ['name']
>>> series.ads.feature_type
['name', string]
>>> series.dropna().ads.feature_type
['string']
>>> series1 = series.dropna()

(continues on next page)
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>>> series1.ads.sync(series)
>>> series1.ads.feature_type
['name', 'string']

class ads.feature_engineering.accessor.series_accessor.ADSSeriesValidator(feature_type_list:
List[FeatureType],
series: Series)

Bases: object

Class helper to invoke registerred validator on a series level.

Initializes ADS series validator.

Parameters

• feature_type_list (List[FeatureType]) – The list of feature types.

• series (pd.Series) – The pandas series.

23.1.1.11.6 ads.feature_engineering.accessor.mixin.correlation module

ads.feature_engineering.accessor.mixin.correlation.cat_vs_cat(df: DataFrame, normal_form: bool
= True)→ DataFrame

Calculates the correlation of all pairs of categorical features and categorical features.

ads.feature_engineering.accessor.mixin.correlation.cat_vs_cont(df: DataFrame,
categorical_columns,
continuous_columns,
normal_form: bool = True)→
DataFrame

Calculates the correlation of all pairs of categorical features and continuous features.

ads.feature_engineering.accessor.mixin.correlation.cont_vs_cont(df: DataFrame, normal_form:
bool = True)→ DataFrame

Calculates the Pearson correlation between two columns of the DataFrame.

23.1.1.11.7 ads.feature_engineering.accessor.mixin.eda_mixin module

This exploratory data analysis (EDA) Mixin is used in the ADS accessor for the Pandas Dataframe. The series of
purpose-driven methods enable the data scientist to complete analysis on the dataframe.

From the accessor we have access to the pandas object the user is interacting with as well as corresponding lists of
feature types per column.

class ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin

Bases: object

correlation_ratio()→ DataFrame
Generate a Correlation Ratio data frame for all categorical-continuous variable pairs.

Returns

• pandas.DataFrame

• Correlation Ratio correlation data frame with the following 3 columns –
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1. Column 1 (name of the first categorical/continuous column)

2. Column 2 (name of the second categorical/continuous column)

3. Value (correlation value)

Note: Pairs will be replicated. For example for variables x and y, we would have (x,y), (y,x) both with
same correlation value. We will also have (x,x) and (y,y) with value 1.0.

correlation_ratio_plot()→ Axes
Generate a heatmap of the Correlation Ratio correlation for all categorical-continuous variable pairs.

Returns
Correlation Ratio correlation plot object that can be updated by the customer

Return type
Plot object

cramersv()→ DataFrame
Generate a Cramer’s V correlation data frame for all categorical variable pairs.

Gives a warning for dropped non-categorical columns.

Returns

Cramer’s V correlation data frame with the following 3 columns:

1. Column 1 (name of the first categorical column)

2. Column 2 (name of the second categorical column)

3. Value (correlation value)

Return type
pandas.DataFrame

Note: Pairs will be replicated. For example for variables x and y, we would have (x,y), (y,x) both with
same correlation value. We will also have (x,x) and (y,y) with value 1.0.

cramersv_plot()→ Axes
Generate a heatmap of the Cramer’s V correlation for all categorical variable pairs.

Gives a warning for dropped non-categorical columns.

Returns
Cramer’s V correlation plot object that can be updated by the customer

Return type
Plot object

feature_count()→ DataFrame
Counts the number of columns for each feature type and each primary feature. The column of primary is
the number of primary feature types that is assigned to the column.

Returns
The number of columns for each feature type The number of columns for each primary feature

Return type
Dataframe with
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Examples

>>> df.ads.feature_type
{'PassengerId': ['ordinal', 'category'],
'Survived': ['ordinal'],
'Pclass': ['ordinal'],
'Name': ['category'],
'Sex': ['category']}
>>> df.ads.feature_count()

Feature Type Count Primary
0 category 3 2
1 ordinal 3 3

feature_plot()→ DataFrame
For every column in the dataframe plot generate a list of summary plots based on the most relevant feature
type.

Returns
Dataframe with 2 columns: 1. Column - feature name 2. Plot - plot object

Return type
pandas.DataFrame

feature_stat()→ DataFrame
Summary statistics Dataframe provided.

This returns feature stats on each column using FeatureType summary method.

Examples

>>> df = pd.read_csv('~/advanced-ds/tests/vor_datasets/vor_titanic.csv')
>>> df.ads.feature_stat().head()

Column Metric Value
0 PassengerId count 891.000
1 PassengerId mean 446.000
2 PassengerId standard deviation 257.354
3 PassengerId sample minimum 1.000
4 PassengerId lower quartile 223.500

Returns
Dataframe with 3 columns: name, metric, value

Return type
pandas.DataFrame

pearson()→ DataFrame
Generate a Pearson correlation data frame for all continuous variable pairs.

Gives a warning for dropped non-numerical columns.

Returns

• pandas.DataFrame

• Pearson correlation data frame with the following 3 columns –
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1. Column 1 (name of the first continuous column)

2. Column 2 (name of the second continuous column)

3. Value (correlation value)

Note: Pairs will be replicated. For example for variables x and y, we’d have (x,y), (y,x) both with same
correlation value. We’ll also have (x,x) and (y,y) with value 1.0.

pearson_plot()→ Axes
Generate a heatmap of the Pearson correlation for all continuous variable pairs.

Returns
Pearson correlation plot object that can be updated by the customer

Return type
Plot object

warning()→ DataFrame
Generates a data frame that lists feature specific warnings.

Returns
The list of feature specific warnings.

Return type
pandas.DataFrame

Examples

>>> df.ads.warning()
Column Feature Type Warning Message Metric ␣

→˓ Value
--------------------------------------------------------------------------------
→˓------
0 Age continuous Zeros Age has 38 zeros Count ␣
→˓ 38
1 Age continuous Zeros Age has 12.2% zeros Percentage ␣
→˓ 12.2%

23.1.1.11.8 ads.feature_engineering.accessor.mixin.eda_mixin_series module

This exploratory data analysis (EDA) Mixin is used in the ADS accessor for the Pandas Series. The series of purpose-
driven methods enable the data scientist to complete univariate analysis.

From the accessor we have access to the pandas object the user is interacting with as well as corresponding list of
feature types.

class ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries

Bases: object

feature_plot()→ Axes
For the series generate a summary plot based on the most relevant feature type.

Returns
Plot object for the series based on the most relevant feature type.
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Return type
matplotlib.axes._subplots.AxesSubplot

feature_stat()→ DataFrame
Summary statistics Dataframe provided.

This returns feature stats on series using FeatureType summary method.

Examples

>>> df = pd.read_csv('~/advanced-ds/tests/vor_datasets/vor_titanic.csv')
>>> df['Cabin'].ads.feature_stat()

Metric Value
0 count 891
1 unqiue 147
2 missing 687

Returns
Dataframe with 2 columns and rows for different metric values

Return type
pandas.DataFrame

warning()→ DataFrame
Generates a data frame that lists feature specific warnings.

Returns
The list of feature specific warnings.

Return type
pandas.DataFrame

Examples

>>> df["Age"].ads.warning()
Feature Type Warning Message Metric Value
---------------------------------------------------------------------------

0 continuous Zeros Age has 38 zeros Count 38
1 continuous Zeros Age has 12.2% zeros Percentage 12.2%

23.1.1.11.9 ads.feature_engineering.accessor.mixin.feature_types_mixin module

The module that represents the ADS Feature Types Mixin class that extends Pandas Series and Dataframe accessors.
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Classes

ADSFeatureTypesMixin
ADS Feature Types Mixin class that extends Pandas Series and Dataframe accessors.

class ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin

Bases: object

ADS Feature Types Mixin class that extends Pandas Series and DataFrame accessors.

warning_registered(cls)→ pd.DataFrame
Lists registered warnings for registered feature types.

validator_registered(cls)→ pd.DataFrame
Lists registered validators for registered feature types.

help(self, prop: str = None)→ None
Help method that prints either a table of available properties or, given a property, returns its docstring.

help(prop: Optional[str] = None)→ None
Help method that prints either a table of available properties or, given an individual property, returns its
docstring.

Parameters
prop (str) – The Name of property.

Returns
Nothing.

Return type
None

validator_registered()→ DataFrame
Lists registered validators for registered feature types.

Returns
The list of registered validators for registered feature types

Return type
pandas.DataFrame

Examples

>>> df.ads.validator_registered()
Column Feature Type Validator Condition ␣

→˓ Handler
--------------------------------------------------------------------------------
→˓----------------------
0 PhoneNumber phone_number is_phone_number () ␣
→˓ default_handler
1 PhoneNumber phone_number is_phone_number {'country_code': '+7'} ␣
→˓specific_country_handler
2 CreditCard credit_card is_credit_card () ␣
→˓ default_handler
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>>> df['PhoneNumber'].ads.validator_registered()
Feature Type Validator Condition ␣

→˓ Handler
--------------------------------------------------------------------------------
→˓-----------
0 phone_number is_phone_number () ␣
→˓default_handler
1 phone_number is_phone_number {'country_code': '+7'} specific_
→˓country_handler

warning_registered()→ DataFrame
Lists registered warnings for all registered feature types.

Returns
The list of registered warnings for registered feature types.

Return type
pandas.DataFrame

Examples

>>> df.ads.warning_registered()
Column Feature Type Warning Handler

-------------------------------------------------------------------------
0 Age continuous zeros zeros_handler
1 Age continuous high_cardinality high_cardinality_handler

>>> df["Age"].ads.warning_registered()
Feature Type Warning Handler

---------------------------------------------------------------
0 continuous zeros zeros_handler
1 continuous high_cardinality high_cardinality_handler

23.1.1.11.10 ads.feature_engineering.adsstring.common_regex_mixin module

class ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

Bases: object

property address

property credit_card

property date

property email

property ip

property link

property phone_number_US

property price
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redact(fields: Union[List[str], Dict[str, str]])→ str
Remove personal information in a string. For example, “Jane’s phone number is 123-456-7890” is turned
into “Jane’s phone number is [phone_number_US].”

Parameters
fields ((list(str) | dict)) – either a list of fields to redact, e.g. [‘email’,
‘phone_number_US’], in which case the redacted text is replaced with capitalized word like
[EMAIL] or [PHONE_NUMBER_US_WITH_EXT], or a dictionary where key is a field to
redact and value is the replacement text, e.g., {‘email’: ‘HIDDEN_EMAIL’}.

Returns
redacted string

Return type
str

redact_map = {'address': '[ADDRESS]', 'address_with_zip': '[ADDRESS_WITH_ZIP]',
'credit_card': '[CREDIT_CARD]', 'date': '[DATE]', 'email': '[EMAIL]', 'ip': '[IP]',
'ipv6': '[IPV6]', 'link': '[LINK]', 'phone_number_US': '[PHONE_NUMBER_US]',
'phone_number_US_with_ext': '[PHONE_NUMBER_US_WITH_EXT]', 'po_box': '[PO_BOX]',
'price': '[PRICE]', 'ssn': '[SSN]', 'time': '[TIME]', 'zip_code': '[ZIP_CODE]'}

property ssn

property time

property zip_code

23.1.1.11.11 ads.feature_engineering.adsstring.oci_language module

class ads.feature_engineering.adsstring.oci_language.OCILanguage(auth=None)
Bases: object

property absa: DataFrame

property key_phrase: DataFrame

property language_dominant: DataFrame

property ner: DataFrame

property text_classification: DataFrame

23.1.1.11.12 ads.feature_engineering.adsstring.string module

class ads.feature_engineering.adsstring.string.ADSString(text: str, language='english')
Bases: str, CommonRegexMixin

Defines an enhanced string class for the purporse of performing NLP tasks. Its functionalities can be extended
by registering plugins.

plugins

list of plugins that add functionalities to the class.

Type
List
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string

plain string

Type
str

Example

>>> ADSString.nlp_backend('nltk')
>>> s = ADSString("Walking my dog on a breezy day is the best.")
>>> s.lower() # regular string methods still work
>>> s.replace("a", "e")
>>> s.nouns
>>> s.parts_of_speech
>>> s = ADSString("get in touch with my associate at john.smith@gmail.com to␣
→˓schedule")
>>> s.emails
>>> ADSString.plugin_register(OCILanguage)
>>> s = ADSString("This movie is awesome.")
>>> s.absa

Initialze the class and register plugins.

Parameters

• text (str) – input text

• language (str, optional) – language of the text, by default “english”.

Raises
TypeError – input text is not a string.

capitalize()

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()

Return a version of the string suitable for caseless comparisons.

center(width, fillchar=' ', /)
Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count(sub[, start[, end ]])→ int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional argu-
ments start and end are interpreted as in slice notation.

encode(encoding='utf-8', errors='strict')
Encode the string using the codec registered for encoding.

encoding
The encoding in which to encode the string.

errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding er-
rors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’
as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
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endswith(suffix[, start[, end ]])→ bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that
position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs(tabsize=8)
Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find(sub[, start[, end ]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format(*args, **kwargs)→ str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified
by braces (‘{’ and ‘}’).

format_map(mapping)→ str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by
braces (‘{’ and ‘}’).

help()→ None
List available properties.

Parameters
plugin (Any) – registered plugin

Return type
None

index(sub[, start[, end ]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character
in the string.

isalpha()

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the
string.

isascii()

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in
the string.
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isdigit()

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the
string.

isidentifier()

Return True if the string is a valid Python identifier, False otherwise.

Use keyword.iskeyword() to test for reserved identifiers such as “def” and “class”.

islower()

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character
in the string.

isnumeric()

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the
string.

istitle()

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase
characters only cased ones.

isupper()

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased
character in the string.

join(iterable, /)
Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new
string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

language_model_cache = {}

ljust(width, fillchar=' ', /)
Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()

Return a copy of the string converted to lowercase.
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lstrip(chars=None, /)
Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

maketrans(y=None, z=None, /)
Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two
arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be
mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

nlp_backend()→ None
Set backend for extracting NLP related properties.

Parameters
backend (str, optional) – name of backend, by default ‘nltk’.

Raises

• ModuleNotFoundError – module corresponding to backend is not found.

• ValueError – input backend is invalid.

Return type
None

partition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the
part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

plugin_clear()→ None
Clears plugins.

plugin_list()→ None
List registered plugins.

plugin_register()→ None
Register a plugin

Parameters
plugin (Any) – plugin to register

Return type
None

plugins = []

redact(fields: Union[List[str], Dict[str, str]])→ str
Remove personal information in a string. For example, “Jane’s phone number is 123-456-7890” is turned
into “Jane’s phone number is [phone_number_US].”

Parameters
fields ((list(str) | dict)) – either a list of fields to redact, e.g. [‘email’,
‘phone_number_US’], in which case the redacted text is replaced with capitalized word like
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[EMAIL] or [PHONE_NUMBER_US_WITH_EXT], or a dictionary where key is a field to
redact and value is the replacement text, e.g., {‘email’: ‘HIDDEN_EMAIL’}.

Returns
redacted string

Return type
str

replace(old, new, count=-1, /)
Return a copy with all occurrences of substring old replaced by new.

count
Maximum number of occurrences to replace. -1 (the default value) means replace all occur-
rences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind(sub[, start[, end ]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex(sub[, start[, end ]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust(width, fillchar=' ', /)
Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple
containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string. None (the default value) means split ac-
cording to any whitespace, and discard empty strings from the result.

maxsplit
Maximum number of splits to do. -1 (the default value) means no limit.

Splits are done starting at the end of the string and working to the front.

rstrip(chars=None, /)
Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.
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split(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string. None (the default value) means split according to
any whitespace, and discard empty strings from the result.

maxsplit
Maximum number of splits to do. -1 (the default value) means no limit.

splitlines(keepends=False)
Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith(prefix[, start[, end ]])→ bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to
try.

property string

strip(chars=None, /)
Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower
case.

translate(table, /)
Replace each character in the string using the given translation table.

table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings,
or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this opera-
tion raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()

Return a copy of the string converted to uppercase.

zfill(width, /)
Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

ads.feature_engineering.adsstring.string.to_adsstring(func: Callable)→ Callable
Decorator that converts output of a function to ADSString if it returns a string.

Parameters
func (Callable) – function to decorate

Returns
decorated function
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Return type
Callable

ads.feature_engineering.adsstring.string.wrap_output_string(decorator: Callable)→ Callable
Class decorator that applies a decorator to all methods of a class.

Parameters
decorator (Callable) – decorator to apply

Returns
class decorator

Return type
Callable

23.1.1.11.13 ads.feature_engineering.feature_type.address module

The module that represents an Address feature type.

Classes:

Address
The Address feature type.

class ads.feature_engineering.feature_type.address.Address

Bases: String

Type representing address.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the location of given address on map base on zip code.

23.1. ads package 699



ADS Documentation, Release 2.6.4

Example

>>> from ads.feature_engineering.feature_type.address import Address
>>> import pandas as pd
>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',

'1 Berkeley Street, Boston, MA 67891',
'54305 Oxford Street, Seattle, WA 95132',
''])

>>> Address.validator.is_address(address)
0 True
1 True
2 True
3 False
dtype: bool

description = 'Type representing address.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
'1 Berkeley Street, Boston, MA 67891',
'54305 Oxford Street, Seattle, WA 95132',
''],

name='address')
>>> address.ads.feature_type = ['address']
>>> address.ads.feature_domain()
constraints: []
stats:

count: 4
missing: 1
unique: 3

values: Address

Returns
Domain based on the Address feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the location of given address on map base on zip code.
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Examples

>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
'1 Berkeley Street, Boston, MA 67891',
'54305 Oxford Street, Seattle, WA 95132',
''],

name='address')
>>> address.ads.feature_type = ['address']
>>> address.ads.feature_plot()

Returns
Plot object for the series based on the Address feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> address = pd.Series(['1 Miller Drive, New York, NY 12345',
'1 Berkeley Street, Boston, MA 67891',
'54305 Oxford Street, Seattle, WA 95132',
''],

name='address')
>>> address.ads.feature_type = ['address']
>>> address.ads.feature_stat()

Metric Value
0 count 4
1 unique 3
2 missing 1

Returns
Summary statistics of the Series provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.address.default_handler(data: Series, *args, **kwargs)→
Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pd.Series) – The data to process.
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Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.14 ads.feature_engineering.feature_type.base module

class ads.feature_engineering.feature_type.base.FeatureBaseType(classname, bases, dictionary)
Bases: type

The helper metaclass to extend fucntionality of FeatureType class.

class ads.feature_engineering.feature_type.base.FeatureBaseTypeMeta(classname, bases,
dictionary)

Bases: FeatureBaseType, ABCMeta

The class to provide compatibility between ABC and FeatureBaseType metaclass.

class ads.feature_engineering.feature_type.base.FeatureType

Bases: ABC

Abstract case for feature types. Default class attribute include name and description. Name is auto generated
using camel to snake conversion unless specified.

description = 'Base feature type.'

name = 'feature_type'

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

class ads.feature_engineering.feature_type.base.Name

Bases: object

class ads.feature_engineering.feature_type.base.Tag(name: str)
Bases: object

Class for free form tags. Name must be specified.

Initialize a tag instance.

Parameters
name (str) – The name of the tag.
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23.1.1.11.15 ads.feature_engineering.feature_type.boolean module

The module that represents a Boolean feature type.

Classes:

Boolean
The feature type that represents binary values True/False.

Functions:

default_handler(data: pd.Series) -> pd.Series
Processes given data and indicates if the data matches requirements.

class ads.feature_engineering.feature_type.boolean.Boolean

Bases: FeatureType

Type representing binary values True/False.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Show the counts of observations in True/False using bars.

Examples

>>> from ads.feature_engineering.feature_type.boolean import Boolean
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> Boolean.validator.is_boolean(s)
0 True
1 True
2 True
3 True

(continues on next page)
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(continued from previous page)

4 False
5 False
dtype: bool

description = 'Type representing binary values True/False.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> s.ads.feature_domain()
constraints:
- expression: $x in [True, False]

language: python
stats:

count: 6
missing: 2
unique: 2

values: Boolean

Returns
Domain based on the Boolean feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the counts of observations in True/False using bars.

Parameters
x (pandas.Series) – The feature being evaluated.

Returns
Plot object for the series based on the Boolean feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> s.ads.feature_plot()

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).
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Parameters
x (pandas.Series) – The feature being evaluated.

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
>>> s.ads.feature_type = ['boolean']
>>> s.ads.feature_stat()

Metric Value
0 count 6
1 unique 2
2 missing 2

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.boolean.default_handler(data: Series, *args, **kwargs)→
Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.16 ads.feature_engineering.feature_type.category module

The module that represents a Category feature type.

Classes:

Category
The Category feature type.

class ads.feature_engineering.feature_type.category.Category

Bases: FeatureType

Type representing discrete unordered values.

description

The feature type description.
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Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the counts of observations in each categorical bin using bar chart.

description = 'Type representing discrete unordered values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S',
→˓ 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='category')
>>> cat.ads.feature_type = ['category']
>>> cat.ads.feature_domain()
constraints:
- expression: $x in ['S', 'C', 'Q', '']

language: python
stats:

count: 22
missing: 3
unique: 3

values: Category

Returns
Domain based on the Category feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the counts of observations in each categorical bin using bar chart.

Parameters
x (pandas.Series) – The feature being evaluated.
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Returns
Plot object for the series based on the Category feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

Examples

>>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S',
→˓ 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='ategory')
>>> cat.ads.feature_type = ['ategory']
>>> cat.ads.feature_plot()

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count) if there are any.

Parameters
x (pandas.Series) – The feature being evaluated.

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

Examples

>>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S',
→˓ 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='ategory')
>>> cat.ads.feature_type = ['ategory']
>>> cat.ads.feature_stat()

Metric Value
0 count 22
1 unique 3
2 missing 3

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>
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23.1.1.11.17 ads.feature_engineering.feature_type.constant module

The module that represents a Constant feature type.

Classes:

Constant
The Constant feature type.

class ads.feature_engineering.feature_type.constant.Constant

Bases: FeatureType

Type representing constant values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the counts of observations in bars.

description = 'Type representing constant values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type. .. rubric:: Example

>>> s = pd.Series([1, 1, 1, 1, 1], name='constant')
>>> s.ads.feature_type = ['constant']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 5
unique: 1

values: Constant

Returns
Domain based on the Constant feature type.
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Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the counts of observations in bars.

Parameters
x (pandas.Series) – The feature being shown.

Examples

>>> s = pd.Series([1, 1, 1, 1, 1], name='constant')
>>> s.ads.feature_type = ['constant']
>>> s.ads.feature_plot()

Returns
Plot object for the series based on the Constant feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Parameters
x (pandas.Series) – The feature being evaluated.

Returns
Summary statistics of the Series provided.

Return type
pandas.DataFrame

Examples

>>> s = pd.Series([1, 1, 1, 1, 1], name='constant')
>>> s.ads.feature_type = ['constant']
>>> s.ads.feature_stat()

Metric Value
0 count 5
1 unique 1

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>
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23.1.1.11.18 ads.feature_engineering.feature_type.continuous module

The module that represents a Continuous feature type.

Classes:

Continuous
The Continuous feature type.

class ads.feature_engineering.feature_type.continuous.Continuous

Bases: FeatureType

Type representing continuous values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows distributions of datasets using box plot.

description = 'Type representing continuous values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
4.43, 3.26, np.NaN, None], name='continuous')

>>> cts.ads.feature_type = ['continuous']
>>> cts.ads.feature_domain()
constraints: []
stats:

count: 10.0
lower quartile: 3.058
mean: 4.959

(continues on next page)
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(continued from previous page)

median: 3.81
missing: 2.0
sample maximum: 13.32
sample minimum: 2.25
skew: 2.175
standard deviation: 3.62
upper quartile: 4.908

values: Continuous

Returns
Domain based on the Continuous feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows distributions of datasets using box plot.

Examples

>>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
4.43, 3.26, np.NaN, None], name='continuous')

>>> cts.ads.feature_type = ['continuous']
>>> cts.ads.feture_plot()

Returns
Plot object for the series based on the Continuous feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, mean, standard deviation, sample minimum, lower quartile, median,
75%, upper quartile, skew and missing(count).

Examples

>>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
4.43, 3.26, np.NaN, None], name='continuous')

>>> cts.ads.feature_type = ['continuous']
>>> cts.ads.feature_stat()

Metric Value
0 count 10.000
1 mean 4.959
2 standard deviation 3.620
3 sample minimum 2.250
4 lower quartile 3.058
5 median 3.810

(continues on next page)
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6 upper quartile 4.908
7 sample maximum 13.320
8 skew 2.175
9 missing 2.000

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1.1.11.19 ads.feature_engineering.feature_type.creditcard module

The module that represents a CreditCard feature type.

Classes:

CreditCard
The CreditCard feature type.

Functions:

default_handler(data: pd.Series) -> pd.Series
Processes given data and indicates if the data matches requirements.

_luhn_checksum(card_number: str) -> float
Implements Luhn algorithm to validate a credit card number.

class ads.feature_engineering.feature_type.creditcard.CreditCard

Bases: String

Type representing credit card numbers.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

712 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the counts of observations in each credit card type using bar chart.

Examples

>>> from ads.feature_engineering.feature_type.creditcard import CreditCard
>>> import pandas as pd
>>> s = pd.Series(["4532640527811543", None, "4556929308150929", "4539944650919740",
→˓ "4485348152450846", "4556593717607190"], name='credit_card')
>>> s.ads.feature_type = ['credit_card']
>>> CreditCard.validator.is_credit_card(s)
0 True
1 False
2 True
3 True
4 True
5 True
Name: credit_card, dtype: bool

description = 'Type representing credit card numbers.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> visa = [
"4532640527811543",
None,
"4556929308150929",
"4539944650919740",
"4485348152450846",
"4556593717607190",
]

>>> mastercard = [
"5334180299390324",
"5111466404826446",
"5273114895302717",
"5430972152222336",
"5536426859893306",
]

>>> amex = [
"371025944923273",
"374745112042294",
"340984902710890",

(continues on next page)
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"375767928645325",
"370720852891659",
]

>>> creditcard_list = visa + mastercard + amex
>>> creditcard_series = pd.Series(creditcard_list,name='card')
>>> creditcard_series.ads.feature_type = ['credit_card']
>>> creditcard_series.ads.feature_domain()
constraints: []
stats:

count: 16
count_Amex: 5
count_Diners Club: 2
count_MasterCard: 3
count_Visa: 5
count_missing: 1
missing: 1
unique: 15

values: CreditCard

Returns
Domain based on the CreditCard feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the counts of observations in each credit card type using bar chart.

Examples

>>> visa = [
"4532640527811543",
None,
"4556929308150929",
"4539944650919740",
"4485348152450846",
"4556593717607190",
]

>>> mastercard = [
"5334180299390324",
"5111466404826446",
"5273114895302717",
"5430972152222336",
"5536426859893306",
]

>>> amex = [
"371025944923273",
"374745112042294",
"340984902710890",
"375767928645325",
"370720852891659",

(continues on next page)
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]
>>> creditcard_list = visa + mastercard + amex
>>> creditcard_series = pd.Series(creditcard_list,name='card')
>>> creditcard_series.ads.feature_type = ['credit_card']
>>> creditcard_series.ads.feature_plot()

Returns
Plot object for the series based on the CreditCard feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)
Generates feature statistics.

Feature statistics include (total)count, unique(count), missing(count) and
count of each credit card type.

Examples

>>> visa = [
"4532640527811543",
None,
"4556929308150929",
"4539944650919740",
"4485348152450846",
"4556593717607190",
]

>>> mastercard = [
"5334180299390324",
"5111466404826446",
"5273114895302717",
"5430972152222336",
"5536426859893306",
]

>>> amex = [
"371025944923273",
"374745112042294",
"340984902710890",
"375767928645325",
"370720852891659",
]

>>> creditcard_list = visa + mastercard + amex
>>> creditcard_series = pd.Series(creditcard_list,name='card')
>>> creditcard_series.ads.feature_type = ['credit_card']
>>> creditcard_series.ads.feature_stat()

Metric Value
0 count 16
1 unique 15
2 missing 1
3 count_Amex 5

(continues on next page)
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4 count_Visa 5
5 count_MasterCard 3
6 count_Diners Club 2
7 count_missing 1

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.creditcard.default_handler(data: Series, *args, **kwargs)
→ Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.20 ads.feature_engineering.feature_type.datetime module

The module that represents a DateTime feature type.

Classes:

DateTime
The DateTime feature type.

class ads.feature_engineering.feature_type.datetime.DateTime

Bases: FeatureType

Type representing date and/or time.

description

The feature type description.

Type
str

name

The feature type name.

Type
str
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warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows distributions of datetime datasets using histograms.

Example

>>> from ads.feature_engineering.feature_type.datetime import DateTime
>>> import pandas as pd
>>> s = pd.Series(["12/12/12", "12/12/13", None, "12/12/14"], name='datetime')
>>> s.ads.feature_type = ['date_time']
>>> DateTime.validator.is_datetime(s)
0 True
1 True
2 False
3 True
Name: datetime, dtype: bool

description = 'Type representing date and/or time.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000', '', None, np.nan,
→˓'April/13/2011', 'April/15/11'], name='datetime')
>>> s.ads.feature_type = ['date_time']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 8
missing: 3
sample maximum: April/15/11
sample minimum: 3/11/2000

values: DateTime

Returns
Domain based on the DateTime feature type.

Return type
ads.feature_engineering.schema.Domain
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static feature_plot(x: Series)→ Axes
Shows distributions of datetime datasets using histograms.

Examples

>>> x = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000', '', None, np.nan,
→˓'April/13/2011', 'April/15/11'], name='datetime')
>>> x.ads.feature_type = ['date_time']
>>> x.ads.feature_plot()

Returns
Plot object for the series based on the DateTime feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, sample maximum, sample minimum, and missing(count) if there is
any.

Examples

>>> x = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000', '', None, np.nan,
→˓'April/13/2011', 'April/15/11'], name='datetime')
>>> x.ads.feature_type = ['date_time']
>>> x.ads.feature_stat()

Metric Value
0 count 8
1 sample maximum April/15/11
2 sample minimum 3/11/2000
3 missing 3

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.datetime.default_handler(data: Series, *args, **kwargs)→
Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.
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Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.21 ads.feature_engineering.feature_type.discrete module

The module that represents a Discrete feature type.

Classes:

Discrete
The Discrete feature type.

class ads.feature_engineering.feature_type.discrete.Discrete

Bases: FeatureType

Type representing discrete values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows distributions of datasets using box plot.

description = 'Type representing discrete values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.
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Examples

>>> discrete_numbers = pd.Series([35, 25, 13, 42],
name='discrete')

>>> discrete_numbers.ads.feature_type = ['discrete']
>>> discrete_numbers.ads.feature_domain()
constraints: []
stats:

count: 4
unique: 4

values: Discrete

Returns
Domain based on the Discrete feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows distributions of datasets using box plot.

Examples

>>> discrete_numbers = pd.Series([35, 25, 13, 42],
name='discrete')

>>> discrete_numbers.ads.feature_type = ['discrete']
>>> discrete_numbers.ads.feature_stat()

Metric Value
0 count 4
1 unique 4

Returns
Plot object for the series based on the Discrete feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> discrete_numbers = pd.Series([35, 25, 13, 42],
name='discrete')

>>> discrete_numbers.ads.feature_type = ['discrete']
>>> discrete_numbers.ads.feature_stat()

discrete
count 4
unique 4
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Returns
Summary statistics of the Series provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1.1.11.22 ads.feature_engineering.feature_type.document module

The module that represents a Document feature type.

Classes:

Document
The Document feature type.

class ads.feature_engineering.feature_type.document.Document

Bases: FeatureType

Type representing document values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

description = 'Type representing document values.'

classmethod feature_domain()

Returns
Nothing.

Return type
None
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validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1.1.11.23 ads.feature_engineering.feature_type.gis module

The module that represents a GIS feature type.

Classes:

GIS
The GIS feature type.

class ads.feature_engineering.feature_type.gis.GIS

Bases: FeatureType

Type representing geographic information.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the location of given address on map base on longitude and latitute.
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Example

>>> from ads.feature_engineering.feature_type.gis import GIS
>>> import pandas as pd
>>> s = pd.Series(["-18.2193965, -93.587285",

"-21.0255305, -122.478584",
"85.103913, 19.405744",
"82.913736, 178.225672",
"62.9795085,-66.989705",
"54.5604395,95.235090",
"24.2811855,-162.380403",
"-1.818319,-80.681214",
None,
"(51.816119, 175.979008)",
"(54.3392995,-11.801615)"],
name='gis')

>>> s.ads.feature_type = ['gis']
>>> GIS.validator.is_gis(s)
0 True
1 True
2 True
3 True
4 True
5 True
6 True
7 True
8 False
9 True
10 True
Name: gis, dtype: bool

description = 'Type representing geographic information.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> gis = pd.Series([
"69.196241,-125.017615",
"5.2272595,-143.465712",
"-33.9855425,-153.445155",
"43.340610,86.460554",
"24.2811855,-162.380403",
"2.7849025,-7.328156",
"45.033805,157.490179",
"-1.818319,-80.681214",
"-44.510428,-169.269477",
"-56.3344375,-166.407038",
"",
np.NaN,
None

(continues on next page)

23.1. ads package 723



ADS Documentation, Release 2.6.4

(continued from previous page)

],
name='gis'

)
>>> gis.ads.feature_type = ['gis']
>>> gis.ads.feature_domain()
constraints: []
stats:

count: 13
missing: 3
unique: 10

values: GIS

Returns
Domain based on the GIS feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the location of given address on map base on longitude and latitute.

Examples

>>> gis = pd.Series([
"69.196241,-125.017615",
"5.2272595,-143.465712",
"-33.9855425,-153.445155",
"43.340610,86.460554",
"24.2811855,-162.380403",
"2.7849025,-7.328156",
"45.033805,157.490179",
"-1.818319,-80.681214",
"-44.510428,-169.269477",
"-56.3344375,-166.407038",
"",
np.NaN,
None
],
name='gis'

)
>>> gis.ads.feature_type = ['gis']
>>> gis.ads.feature_plot()

Returns
Plot object for the series based on the GIS feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.
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Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> gis = pd.Series([
"69.196241,-125.017615",
"5.2272595,-143.465712",
"-33.9855425,-153.445155",
"43.340610,86.460554",
"24.2811855,-162.380403",
"2.7849025,-7.328156",
"45.033805,157.490179",
"-1.818319,-80.681214",
"-44.510428,-169.269477",
"-56.3344375,-166.407038",
"",
np.NaN,
None
],
name='gis'

)
>>> gis.ads.feature_type = ['gis']
>>> gis.ads.feature_stat()

gis
count 13
unique 10
missing 3

Returns
Summary statistics of the Series provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.gis.default_handler(data: Series, *args, **kwargs)→ Series
Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series
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23.1.1.11.24 ads.feature_engineering.feature_type.integer module

The module that represents an Integer feature type.

Classes:

Integer
The Integer feature type.

class ads.feature_engineering.feature_type.integer.Integer

Bases: FeatureType

Type representing integer values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows distributions of datasets using box plot.

description = 'Type representing integer values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series([True, False, True, False, np.NaN, None], name='integer')
>>> s.ads.feature_type = ['integer']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 6
freq: 2
missing: 2
top: true

(continues on next page)
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unique: 2
values: Integer

Returns
Domain based on the Integer feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows distributions of datasets using box plot.

Examples

>>> x = pd.Series([1, 0, 1, 2, 3, 4, np.nan], name='integer')
>>> x.ads.feature_type = ['integer']
>>> x.ads.feature_plot()

Returns
Plot object for the series based on the Integer feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, mean, standard deviation, sample minimum, lower quartile, median,
75%, upper quartile, max and missing(count) if there is any.

Examples

>>> x = pd.Series([1, 0, 1, 2, 3, 4, np.nan], name='integer')
>>> x.ads.feature_type = ['integer']
>>> x.ads.feature_stat()

Metric Value
0 count 7
1 mean 1
2 standard deviation 1
3 sample minimum 0
4 lower quartile 1
5 median 1
6 upper quartile 2
7 sample maximum 4
8 missing 1

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame
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validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1.1.11.25 ads.feature_engineering.feature_type.ip_address module

The module that represents an IpAddress feature type.

Classes:

IpAddress
The IpAddress feature type.

class ads.feature_engineering.feature_type.ip_address.IpAddress

Bases: FeatureType

Type representing IP Address.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

Example

>>> from ads.feature_engineering.feature_type.ip_address import IpAddress
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address
→˓')
>>> s.ads.feature_type = ['ip_address']
>>> IpAddress.validator.is_ip_address(s)
0 True
1 True

(continues on next page)
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2 False
3 False
4 False
Name: ip_address, dtype: bool

description = 'Type representing IP Address.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.
→˓NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 6
missing: 2
unique: 3

values: IpAddress

Returns
Domain based on the IpAddress feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.
→˓NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address']
>>> s.ads.feature_stat()

Metric Value
0 count 6
1 unique 2
2 missing 2

Returns
Summary statistics of the Series provided.

Return type
pandas.DataFrame
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validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.ip_address.default_handler(data: Series, *args, **kwargs)
→ Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.26 ads.feature_engineering.feature_type.ip_address_v4 module

The module that represents an IpAddressV4 feature type.

Classes:

IpAddressV4
The IpAddressV4 feature type.

class ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4

Bases: FeatureType

Type representing IP Address V4.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.
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Example

>>> from ads.feature_engineering.feature_type.ip_address_v4 import IpAddressV4
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address
→˓')
>>> s.ads.feature_type = ['ip_address_v4']
>>> IpAddressV4.validator.is_ip_address_v4(s)
0 True
1 False
2 False
3 False
4 False
Name: ip_address, dtype: bool

description = 'Type representing IP Address V4.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4',␣
→˓np.NaN, None], name='ip_address_v4')
>>> s.ads.feature_type = ['ip_address_v4']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 6
missing: 2
unique: 4

values: IpAddressV4

Returns
Domain based on the IpAddressV4 feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).
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Examples

>>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4',␣
→˓np.NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address_v4']
>>> s.ads.feature_stat()

Metric Value
0 count 6
1 unique 4
2 missing 2

Returns
Summary statistics of the Series provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.ip_address_v4.default_handler(data: Series, *args,
**kwargs)→ Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.27 ads.feature_engineering.feature_type.ip_address_v6 module

The module that represents an IpAddressV6 feature type.

Classes:

IpAddressV6
The IpAddressV6 feature type.

class ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6

Bases: FeatureType

Type representing IP Address V6.

description

The feature type description.

Type
str
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name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

Example

>>> from ads.feature_engineering.feature_type.ip_address_v6 import IpAddressV6
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address
→˓')
>>> s.ads.feature_type = ['ip_address_v6']
>>> IpAddressV6.validator.is_ip_address_v6(s)
0 False
1 True
2 False
3 False
4 False
Name: ip_address, dtype: bool

description = 'Type representing IP Address V6.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.
→˓NaN, None], name='ip_address_v6')
>>> s.ads.feature_type = ['ip_address_v6']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 6
missing: 2
unique: 2

values: IpAddressV6
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Returns
Domain based on the IpAddressV6 feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).

Examples

>>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.
→˓NaN, None], name='ip_address')
>>> s.ads.feature_type = ['ip_address_v6']
>>> s.ads.feature_stat()

Metric Value
0 count 6
1 unique 2
2 missing 2

Returns
Summary statistics of the Series provided.

Return type
Pandas Dataframe

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.ip_address_v6.default_handler(data: Series, *args,
**kwargs)→ Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series
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23.1.1.11.28 ads.feature_engineering.feature_type.lat_long module

The module that represents a LatLong feature type.

Classes:

LatLong
The LatLong feature type.

Functions:

default_handler(data: pd.Series) -> pd.Series
Processes given data and indicates if the data matches requirements.

class ads.feature_engineering.feature_type.lat_long.LatLong

Bases: String

Type representing longitude and latitute.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the location of given address on map base on longitude and latitute.

Example

>>> from ads.feature_engineering.feature_type.lat_long import LatLong
>>> import pandas as pd
>>> s = pd.Series(["-18.2193965, -93.587285",

"-21.0255305, -122.478584",
"85.103913, 19.405744",
"82.913736, 178.225672",
"62.9795085,-66.989705",
"54.5604395,95.235090",
"24.2811855,-162.380403",
"-1.818319,-80.681214",

(continues on next page)
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None,
"(51.816119, 175.979008)",
"(54.3392995,-11.801615)"],
name='latlong')

>>> s.ads.feature_type = ['lat_long']
>>> LatLong.validator.is_lat_long(s)
0 True
1 True
2 True
3 True
4 True
5 True
6 True
7 True
8 False
9 True
10 True
Name: latlong, dtype: bool

description = 'Type representing longitude and latitute.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> latlong_series = pd.Series([
"69.196241,-125.017615",
"5.2272595,-143.465712",
"-33.9855425,-153.445155",
"43.340610,86.460554",
"24.2811855,-162.380403",
"2.7849025,-7.328156",
"45.033805,157.490179",
"-1.818319,-80.681214",
"-44.510428,-169.269477",
"-56.3344375,-166.407038",
"",
np.NaN,
None
],
name='latlong'

)
>>> latlong_series.ads.feature_type = ['lat_long']
>>> latlong_series.ads.feature_domain()
constraints: []
stats:

count: 13
missing: 3
unique: 10

values: LatLong
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Returns
Domain based on the LatLong feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the location of given address on map base on longitude and latitute.

Examples

>>> latlong_series = pd.Series([
"69.196241,-125.017615",
"5.2272595,-143.465712",
"-33.9855425,-153.445155",
"43.340610,86.460554",
"24.2811855,-162.380403",
"2.7849025,-7.328156",
"45.033805,157.490179",
"-1.818319,-80.681214",
"-44.510428,-169.269477",
"-56.3344375,-166.407038",
"",
np.NaN,
None

],
name='latlong'

)
>>> latlong_series.ads.feature_type = ['lat_long']
>>> latlong_series.ads.feature_plot()

Returns
Plot object for the series based on the LatLong feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generate feature statistics.

Feature statistics include (total)count, unique(count) and missing(count) if there is any.

Examples

>>> latlong_series = pd.Series([
"69.196241,-125.017615",
"5.2272595,-143.465712",
"-33.9855425,-153.445155",
"43.340610,86.460554",
"24.2811855,-162.380403",
"2.7849025,-7.328156",
"45.033805,157.490179",

(continues on next page)
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"-1.818319,-80.681214",
"-44.510428,-169.269477",
"-56.3344375,-166.407038",
"",
np.NaN,
None

],
name='latlong'

)
>>> latlong_series.ads.feature_type = ['lat_long']
>>> latlong_series.ads.feature_stat()

Metric Value
0 count 13
1 unique 10
2 missing 3

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.lat_long.default_handler(data: Series, *args, **kwargs)→
Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series

23.1.1.11.29 ads.feature_engineering.feature_type.object module

The module that represents an Object feature type.

Classes:

Object
The Object feature type.

class ads.feature_engineering.feature_type.object.Object

Bases: FeatureType

Type representing object.
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description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

description = 'Type representing object.'

classmethod feature_domain()

Returns
Nothing.

Return type
None

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1.1.11.30 ads.feature_engineering.feature_type.ordinal module

The module that represents an Ordinal feature type.

Classes:

Ordinal
The Ordinal feature type.

class ads.feature_engineering.feature_type.ordinal.Ordinal

Bases: FeatureType

Type representing ordered values.

description

The feature type description.

Type
str
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name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the counts of observations in each categorical bin using bar chart.

description = 'Type representing ordered values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan], name='ordinal')
>>> x.ads.feature_type = ['ordinal']
>>> x.ads.feature_domain()
constraints:
- expression: $x in [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

language: python
stats:

count: 10
missing: 1
unique: 9

values: Ordinal

Returns
Domain based on the Ordinal feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the counts of observations in each categorical bin using bar chart.
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Examples

>>> x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan], name='ordinal')
>>> x.ads.feature_type = ['ordinal']
>>> x.ads.feature_plot()

Returns
The bart chart plot object for the series based on the Continuous feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count), and missing(count) if there is any.

Examples

>>> x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan], name='ordinal')
>>> x.ads.feature_type = ['ordinal']
>>> x.ads.feature_stat()

Metric Value
0 count 10
1 unique 9
2 missing 1

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1.1.11.31 ads.feature_engineering.feature_type.phone_number module

The module that represents a Phone Number feature type.

Classes:

PhoneNumber
The Phone Number feature type.

Functions:

default_handler(data: pd.Series) -> pd.Series
Processes given data and indicates if the data matches requirements.
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class ads.feature_engineering.feature_type.phone_number.PhoneNumber

Bases: String

Type representing phone numbers.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

Examples

>>> from ads.feature_engineering.feature_type.phone_number import PhoneNumber
>>> import pandas as pd
>>> s = pd.Series([None, "1-640-124-5367", "1-573-916-4412"])
>>> PhoneNumber.validator.is_phone_number(s)
0 False
1 True
2 True
dtype: bool

description = 'Type representing phone numbers.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan,
→˓ None], name='phone')
>>> s.ads.feature_type = ['phone_number']
>>> s.ads.feature_domain()
constraints: []
stats:

count: 7
(continues on next page)
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missing: 4
unique: 2

values: PhoneNumber

Returns
Domain based on the PhoneNumber feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count) if there is any.

Examples

>>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan,
→˓ None], name='phone')
>>> s.ads.feature_type = ['phone_number']
>>> s.ads.feature_stat()

Metric Value
1 count 7
2 unique 2
3 missing 4

Returns
Summary statistics of the Series or Dataframe provided.

Return type
pandas.DataFrame

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.phone_number.default_handler(data: Series, *args,
**kwargs)→ Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pandas.Series) – The data to process.

Returns
The logical list indicating if the data matches requirements.

Return type
pandas.Series
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23.1.1.11.32 ads.feature_engineering.feature_type.string module

The module that represents a String feature type.

Classes:

String
The feature type that represents string values.

class ads.feature_engineering.feature_type.string.String

Bases: FeatureType

Type representing string values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows distributions of datasets using wordcloud.

Example

>>> from ads.feature_engineering.feature_type.string import String
>>> import pandas as pd
>>> s = pd.Series(["Hello", "world", None], name='string')
>>> String.validator.is_string(s)
0 True
1 True
2 False
Name: string, dtype: bool

description = 'Type representing string values.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.
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Examples

>>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S',
→˓'S', 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
>>> string.ads.feature_type = ['string']
>>> string.ads.feature_domain()
constraints: []
stats:

count: 22
missing: 3
unique: 3

values: String

Returns
Domain based on the String feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows distributions of datasets using wordcloud.

Examples

>>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S',
→˓'S', 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
>>> string.ads.feature_type = ['string']
>>> string.ads.feature_plot()

Returns
Plot object for the series based on the String feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count) if there is any.

Examples

>>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S',
→˓'S', 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
>>> string.ads.feature_type = ['string']
>>> string.ads.feature_stat()

Metric Value
0 count 22

(continues on next page)
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1 unique 3
2 missing 3

Returns
Summary statistics of the Series or Dataframe provided.

Return type
Pandas Dataframe

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.string.default_handler(data: Series, *args, **kwargs)→
Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pd.Series) – The data to process.

Returns
pd.Series

Return type
The logical list indicating if the data matches requirements.

23.1.1.11.33 ads.feature_engineering.feature_type.text module

The module that represents a Text feature type.

Classes:

Text
The Text feature type.

class ads.feature_engineering.feature_type.text.Text

Bases: String

Type representing text values.

description

The feature type description.

Type
str

name

The feature type name.

Type
str
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warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_plot(x: pd.Series)→ plt.Axes
Shows distributions of datasets using wordcloud.

description = 'Type representing text values.'

classmethod feature_domain()

Returns
Nothing.

Return type
None

static feature_plot(x: Series)→ Axes
Shows distributions of datasets using wordcloud.

Examples

>>> text = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S
→˓', 'S',

'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='text')
>>> text.ads.feature_type = ['text']
>>> text.ads.feature_plot()

Returns
Plot object for the series based on the Text feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

23.1. ads package 747



ADS Documentation, Release 2.6.4

23.1.1.11.34 ads.feature_engineering.feature_type.unknown module

The module that represents an Unknown feature type.

Classes:

Text
The Unknown feature type.

class ads.feature_engineering.feature_type.unknown.Unknown

Bases: FeatureType

Type representing third-party dtypes.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

description = 'Type representing unknown type.'

classmethod feature_domain()

Returns
Nothing.

Return type
None

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>
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23.1.1.11.35 ads.feature_engineering.feature_type.zip_code module

The module that represents a ZipCode feature type.

Classes:

ZipCode
The ZipCode feature type.

Functions:

default_handler(data: pd.Series) -> pd.Series
Processes given data and indicates if the data matches requirements.

class ads.feature_engineering.feature_type.zip_code.ZipCode

Bases: String

Type representing postal code.

description

The feature type description.

Type
str

name

The feature type name.

Type
str

warning

Provides functionality to register warnings and invoke them.

Type
FeatureWarning

validator

Provides functionality to register validators and invoke them.

feature_stat(x: pd.Series)→ pd.DataFrame
Generates feature statistics.

feature_plot(x: pd.Series)→ plt.Axes
Shows the geometry distribution base on location of zipcode.

Example

>>> from ads.feature_engineering.feature_type.zip_code import ZipCode
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(["94065", "90210", np.NaN, None], name='zipcode')
>>> ZipCode.validator.is_zip_code(s)
0 True
1 True
2 False
3 False
Name: zipcode, dtype: bool
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description = 'Type representing postal code.'

classmethod feature_domain(x: Series)→ Domain
Generate the domain of the data of this feature type.

Examples

>>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
>>> zipcode.ads.feature_type = ['zip_code']
>>> zipcode.ads.feature_domain()
constraints: []
stats:

count: 4
missing: 2
unique: 2

values: ZipCode

Returns
Domain based on the ZipCode feature type.

Return type
ads.feature_engineering.schema.Domain

static feature_plot(x: Series)→ Axes
Shows the geometry distribution base on location of zipcode.

Examples

>>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
>>> zipcode.ads.feature_type = ['zip_code']
>>> zipcode.ads.feature_plot()

Returns
Plot object for the series based on the ZipCode feature type.

Return type
matplotlib.axes._subplots.AxesSubplot

static feature_stat(x: Series)→ DataFrame
Generates feature statistics.

Feature statistics include (total)count, unique(count) and missing(count).
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Examples

>>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
>>> zipcode.ads.feature_type = ['zip_code']
>>> zipcode.ads.feature_stat()

Metric Value
0 count 4
1 unique 2
2 missing 2

Returns
Summary statistics of the Series provided.

Return type
Pandas Dataframe

validator =
<ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator
object>

warning =
<ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning object>

ads.feature_engineering.feature_type.zip_code.default_handler(data: Series, *args, **kwargs)→
Series

Processes given data and indicates if the data matches requirements.

Parameters
data (pd.Series) – The data to process.

Returns
pd.Series

Return type
The logical list indicating if the data matches requirements.

23.1.1.11.36 ads.feature_engineering.feature_type.handler.feature_validator module

The module that helps to register custom validators for the feature types and extending registered validators with dis-
patching based on the specific arguments.

Classes

FeatureValidator
The Feature Validator class to manage custom validators.

FeatureValidatorMethod
The Feature Validator Method class. Extends methods which requires dispatching based on the spe-
cific arguments.

class ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator

Bases: object

The Feature Validator class to manage custom validators.
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register(self, name: str, handler: Callable, condition: Union[Tuple, Dict[str, Any]] = None, replace: bool
= False)→ None

Registers new validator.

unregister(self, name: str, condition: Union[Tuple, Dict[str, Any]] = None)→ None
Unregisters validator.

registered(self )→ pd.DataFrame
Gets the list of registered validators.

Examples

>>> series = pd.Series(['+1-202-555-0141', '+1-202-555-0142'], name='Phone Number')

>>> def phone_number_validator(data: pd.Series) -> pd.Series:
... print("phone_number_validator")
... return data

>>> def universal_phone_number_validator(data: pd.Series, country_code) -> pd.
→˓Series:
... print("universal_phone_number_validator")
... return data

>>> def us_phone_number_validator(data: pd.Series, country_code) -> pd.Series:
... print("us_phone_number_validator")
... return data

>>> PhoneNumber.validator.register(name="is_phone_number", handler=phone_number_
→˓validator, replace=True)
>>> PhoneNumber.validator.register(name="is_phone_number", handler=universal_phone_
→˓number_validator, condition = ('country_code',))
>>> PhoneNumber.validator.register(name="is_phone_number", handler=us_phone_number_
→˓validator, condition = {'country_code':'+1'})

>>> PhoneNumber.validator.is_phone_number(series)
phone_number_validator
0 +1-202-555-0141
1 +1-202-555-0142

>>> PhoneNumber.validator.is_phone_number(series, country_code = '+7')
universal_phone_number_validator
0 +1-202-555-0141
1 +1-202-555-0142

>>> PhoneNumber.validator.is_phone_number(series, country_code = '+1')
us_phone_number_validator
0 +1-202-555-0141
1 +1-202-555-0142

752 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

>>> PhoneNumber.validator.registered()
Validator Condition ␣

→˓Handler
--------------------------------------------------------------------------------

→˓-
0 is_phone_number () phone_number_

→˓validator
1 is_phone_number ('country_code') universal_phone_number_

→˓validator
2 is_phone_number {'country_code': '+1'} us_phone_number_

→˓validator

>>> series.ads.validator.is_phone_number()
phone_number_validator

0 +1-202-555-0141
1 +1-202-555-0142

>>> series.ads.validator.is_phone_number(country_code = '+7')
universal_phone_number_validator

0 +1-202-555-0141
1 +1-202-555-0142

>>> series.ads.validator.is_phone_number(country_code = '+1')
us_phone_number_validator
0 +1-202-555-0141
1 +1-202-555-0142

Initializes the FeatureValidator.

register(name: str, handler: Callable, condition: Optional[Union[Tuple, Dict[str, Any]]] = None, replace:
bool = False)→ None

Registers new validator.

Parameters

• name (str) – The validator name.

• handler (callable) – The handler.

• condition (Union[Tuple, Dict[str, Any]]) – The condition for the validator.

• replace (bool) – The flag indicating if the registered validator should be replaced with
the new one.

Returns
Nothing.

Return type
None

Raises

• ValueError – The name is empty or handler is not provided.

• TypeError – The handler is not callable. The name of the validator is not a string.

• ValidatorAlreadyExists – The validator is already registered.
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registered()→ DataFrame
Gets the list of registered validators.

Returns
The list of registerd validators.

Return type
pd.DataFrame

unregister(name: str, condition: Optional[Union[Tuple, Dict[str, Any]]] = None)→ None
Unregisters validator.

Parameters

• name (str) – The name of the validator to be unregistered.

• condition (Union[Tuple, Dict[str, Any]]) – The condition for the validator to be
unregistered.

Returns
Nothing.

Return type
None

Raises

• TypeError – The name of the validator is not a string.

• ValidatorNotFound – The validator not found.

• ValidatorWIthConditionNotFound – The validator with provided condition not found.

class ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod(handler:
Callable)

Bases: object

The Feature Validator Method class.

Extends methods which requires dispatching based on the specific arguments.

register(self, condition: Union[Tuple, Dict[str, Any]], handler: Callable)→ None
Registers new handler.

unregister(self, condition: Union[Tuple, Dict[str, Any]])→ None
Unregisters existing handler.

registered(self )→ pd.DataFrame
Gets the list of registered handlers.

Initializes the Feature Validator Method.

Parameters
handler (Callable) – The handler that will be called by default if suitable one not found.

register(condition: Union[Tuple, Dict[str, Any]], handler: Callable)→ None
Registers new handler.

Parameters

• condition (Union[Tuple, Dict[str, Any]]) – The condition which will be used to
register a new handler.

• handler (Callable) – The handler to be registered.
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Returns
Nothing.

Return type
None

Raises
ValueError – If condition not provided or provided in the wrong format. If handler not
provided or has wrong format.

registered()→ DataFrame
Gets the list of registered handlers.

Returns
The list of registerd handlers.

Return type
pd.DataFrame

unregister(condition: Union[Tuple, Dict[str, Any]])→ None
Unregisters existing handler.

Parameters
condition (Union[Tuple, Dict[str, Any]]) – The condition which will be used to
unregister a handler.

Returns
Nothing.

Return type
None

Raises
ValueError – If condition not provided or provided in the wrong format. If condition not
registered.

exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorAlreadyExists(name:
str)

Bases: ValueError

exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorNotFound(name:
str)

Bases: ValueError

exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorWithConditionAlreadyExists(name:
str)

Bases: ValueError

exception ads.feature_engineering.feature_type.handler.feature_validator.ValidatorWithConditionNotFound(name:
str)

Bases: ValueError

exception ads.feature_engineering.feature_type.handler.feature_validator.WrongHandlerMethodSignature(handler_name:
str,
con-
di-
tion:
str,
han-
dler_signature:
str)
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Bases: ValueError

23.1.1.11.37 ads.feature_engineering.feature_type.handler.feature_warning module

The module that helps to register custom warnings for the feature types.

Classes

FeatureWarning
The Feature Warning class. Provides functionality to register warning handlers and invoke them.

Examples

>>> warning = FeatureWarning()
>>> def warning_handler_zeros_count(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 38 zeros', 'Count', 38]],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> def warning_handler_zeros_percentage(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 12.2% zeros', 'Percentage', '12.2%']],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> warning.register(name="zeros_count", handler=warning_handler_zeros_count)
>>> warning.register(name="zeros_percentage", handler=warning_handler_percentage)
>>> warning.registered()

Name Handler
----------------------------------------------------------
0 zeros_count warning_handler_zeros_count
1 zeros_percentage warning_handler_zeros_percentage

>>> warning.zeros_percentage(data_series)
Warning Message Metric Value

----------------------------------------------------------------
0 Zeros Age has 38 zeros Count 38

>>> warning.zeros_count(data_series)
Warning Message Metric Value

----------------------------------------------------------------
1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning(data_series)
Warning Message Metric Value

----------------------------------------------------------------
0 Zeros Age has 38 zeros Count 38
1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning.unregister('zeros_count')
>>> warning(data_series)

(continues on next page)
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(continued from previous page)

Warning Message Metric Value
----------------------------------------------------------------
0 Zeros Age has 12.2% zeros Percentage 12.2%

class ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning

Bases: object

The Feature Warning class.

Provides functionality to register warning handlers and invoke them.

register(self, name: str, handler: Callable)→ None
Registers a new warning for the feature type.

unregister(self, name: str)→ None
Unregisters warning.

registered(self )→ pd.DataFrame
Gets the list of registered warnings.

Examples

>>> warning = FeatureWarning()
>>> def warning_handler_zeros_count(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 38 zeros', 'Count', 38]],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> def warning_handler_zeros_percentage(data):
... return pd.DataFrame(
... [['Zeros', 'Age has 12.2% zeros', 'Percentage', '12.2%']],
... columns=['Warning', 'Message', 'Metric', 'Value'])
>>> warning.register(name="zeros_count", handler=warning_handler_zeros_count)
>>> warning.register(name="zeros_percentage", handler=warning_handler_percentage)
>>> warning.registered()

Warning Handler
----------------------------------------------------------
0 zeros_count warning_handler_zeros_count
1 zeros_percentage warning_handler_zeros_percentage

>>> warning.zeros_percentage(data_series)
Warning Message Metric Value

----------------------------------------------------------------
0 Zeros Age has 38 zeros Count 38

>>> warning.zeros_count(data_series)
Warning Message Metric Value

----------------------------------------------------------------
1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning(data_series)
Warning Message Metric Value

----------------------------------------------------------------
(continues on next page)
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(continued from previous page)

0 Zeros Age has 38 zeros Count 38
1 Zeros Age has 12.2% zeros Percentage 12.2%

>>> warning.unregister('zeros_count')
>>> warning(data_series)

Warning Message Metric Value
----------------------------------------------------------------
0 Zeros Age has 12.2% zeros Percentage 12.2%

Initializes the FeatureWarning.

register(name: str, handler: Callable, replace: bool = False)→ None
Registers a new warning.

Parameters

• name (str) – The warning name.

• handler (callable) – The handler associated with the warning.

• replace (bool) – The flag indicating if the registered warning should be replaced with
the new one.

Returns
Nothing

Return type
None

Raises

• ValueError – If warning name is empty or handler not defined.

• TypeError – If handler is not callable.

• WarningAlreadyExists – If warning is already registered.

registered()→ DataFrame
Gets the list of registered warnings.

Return type
pd.DataFrame

Examples

>>> The list of registerd warnings in DataFrame format.
Name Handler

-----------------------------------------------------------
0 zeros_count warning_handler_zeros_count
1 zeros_percentage warning_handler_zeros_percentage

unregister(name: str)→ None
Unregisters warning.

Parameters
name (str) – The name of warning to be unregistered.
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Returns
Nothing.

Return type
None

Raises

• ValueError – If warning name is not provided or empty.

• WarningNotFound – If warning not found.

23.1.1.11.38 ads.feature_engineering.feature_type.handler.warnings module

The module with all default warnings provided to user. These are registered to relevant feature types directly in the
feature type files themselves.

ads.feature_engineering.feature_type.handler.warnings.high_cardinality_handler(s: Series)→
DataFrame

Warning if number of unique values (including Nan) in series is greater than or equal to 15.

Parameters
s (pd.Series) – Pandas series - column of some feature type.

Returns
Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’ and 1 rows, which lists count
of unique values.

Return type
pd.Dataframe

ads.feature_engineering.feature_type.handler.warnings.missing_values_handler(s: Series)→
DataFrame

Warning for > 5 percent missing values (Nans) in series.

Parameters
s (pd.Series) – Pandas series - column of some feature type.

Returns
Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’ and 2 rows, where first row
is count of missing values and second is percentage of missing values.

Return type
pd.Dataframe

ads.feature_engineering.feature_type.handler.warnings.skew_handler(s: Series)→ DataFrame
Warning if absolute value of skew is greater than 1.

Parameters
s (pd.Series) – Pandas series - column of some feature type, expects continuous values.

Returns
Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’ and 1 rows, which lists skew
value of that column.

Return type
pd.Dataframe
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ads.feature_engineering.feature_type.handler.warnings.zeros_handler(s: Series)→ DataFrame
Warning for greater than 10 percent zeros in series.

Parameters
s (pd.Series) – Pandas series - column of some feature type.

Returns
Dataframe with 4 columns ‘Warning’, ‘Message’, ‘Metric’, ‘Value’ and 2 rows, where first row
is count of zero values and second is percentage of zero values.

Return type
pd.Dataframe

23.1.1.11.39 Module contents

23.1.1.12 ads.hpo package

23.1.1.12.1 Submodules

23.1.1.12.2 ads.hpo.distributions module

class ads.hpo.distributions.CategoricalDistribution(choices: Sequence[Union[None, bool, int, float,
str]])

Bases: Distribution

A categorical distribution.

Parameters
choices – Parameter value candidates. It is recommended to restrict the types of the choices to
the following: None, bool, int, float and str.

class ads.hpo.distributions.DiscreteUniformDistribution(low: float, high: float, step: float)
Bases: Distribution

A discretized uniform distribution in the linear domain.

Note: If the range [low, high] is not divisible by 𝑞, high will be replaced with the maximum of 𝑘𝑞 + lowhigh,
where 𝑘 is an integer.

Parameters

• low (float) – Lower endpoint of the range of the distribution. low is included in the range.

• high (float) – Upper endpoint of the range of the distribution. high is included in the range.

• step (float) – A discretization step.

class ads.hpo.distributions.Distribution(dist)
Bases: object

Defines the abstract base class for hyperparameter search distributions

get_distribution()

Returns the distribution
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class ads.hpo.distributions.DistributionEncode(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
default=None)

Bases: JSONEncoder

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys
is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such
check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON spec-
ification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a
ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’, ‘, ‘: ‘) if indent
is None and (‘,’, ‘: ‘) otherwise. To get the most compact JSON representation, you should specify (‘,’, ‘:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

default(dist: Distribution)→ Dict[str, Any]
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
# Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

static from_json(json_object: Dict[Any, Any])

class ads.hpo.distributions.IntLogUniformDistribution(low: float, high: float, step: float = 1)
Bases: Distribution

A uniform distribution on integers in the log domain.

Parameters

• low – Lower endpoint of the range of the distribution. low is included in the range.
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• high – Upper endpoint of the range of the distribution. high is included in the range.

• step – A step for spacing between values.

class ads.hpo.distributions.IntUniformDistribution(low: float, high: float, step: float = 1)
Bases: Distribution

A uniform distribution on integers.

Note: If the range [low, high] is not divisible by step, high will be replaced with the maximum of 𝑘 × step +
lowhigh, where 𝑘 is an integer.

Parameters

• low – Lower endpoint of the range of the distribution. low is included in the range.

• high – Upper endpoint of the range of the distribution. high is included in the range.

• step – A step for spacing between values.

class ads.hpo.distributions.LogUniformDistribution(low: float, high: float)
Bases: Distribution

A uniform distribution in the log domain.

Parameters

• low – Lower endpoint of the range of the distribution. low is included in the range.

• high – Upper endpoint of the range of the distribution. high is excluded from the range.

class ads.hpo.distributions.UniformDistribution(low: float, high: float)
Bases: Distribution

A uniform distribution in the linear domain.

Parameters

• low – Lower endpoint of the range of the distribution. low is included in the range.

• high – Upper endpoint of the range of the distribution. high is excluded from the range.

ads.hpo.distributions.decode(s: str)
Decodes a string to an object

Parameters
s (str) – The string being decoded to a distribution object

Returns
Decoded string

Return type
Distribution or Dict

ads.hpo.distributions.encode(o: Distribution)→ str
Encodes a distribution to a string

Parameters
o (Distribution) – The distribution to encode

Returns
The distribution encoded as a string
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Return type
str (DistributionEncode)

23.1.1.12.3 ads.hpo.search_cv module

class ads.hpo.search_cv.ADSTuner(model, strategy='perfunctory', scoring=None, cv=5, study_name=None,
storage=None, load_if_exists=True, random_state=None, loglevel=20,
n_jobs=1, X=None, y=None)

Bases: BaseEstimator

Hyperparameter search with cross-validation.

Returns a hyperparameter tuning object

Parameters

• model – Object to use to fit the data. This is assumed to implement the scikit-learn estimator
or pipeline interface.

• strategy – perfunctory, detailed or a dictionary/mapping of hyperparameter and its
distribution . If obj:perfunctory, picks a few relatively more important hyperparmeters to
tune . If obj:detailed, extends to a larger search space. If obj:dict, user defined search space:
Dictionary where keys are hyperparameters and values are distributions. Distributions are
assumed to implement the ads distribution interface.

• scoring (Optional[Union[Callable[..., float], str]]) – String or callable to
evaluate the predictions on the validation data. If None, score on the estimator is used.

• cv (int) – Integer to specify the number of folds in a CV splitter. If estimator is a classifier
and y is either binary or multiclass, sklearn.model_selection.StratifiedKFold is
used. otherwise, sklearn.model_selection.KFold is used.

• study_name (str,) – Name of the current experiment for the ADSTuner object. One AD-
STuner object can only be attached to one study_name.

• storage – Database URL. (e.g. sqlite:///example.db). Default to sqlite:////tmp/hpo_*.db.

• load_if_exists – Flag to control the behavior to handle a conflict of study names.
In the case where a study named study_name already exists in the storage, a
DuplicatedStudyError is raised if load_if_exists is set to False. Otherwise, the
existing one is returned.

• random_state – Seed of the pseudo random number generator. If int, this is the seed used
by the random number generator. If None, the global random state from numpy.random is
used.

• loglevel – loglevel. can be logging.NOTSET, logging.INFO, logging.DEBUG, log-
ging.WARNING

• n_jobs (int) – Number of parallel jobs. -1 means using all processors.

• X (TwoDimArrayLikeType, Union[List[List[float]], np.ndarray,) –

• pd.DataFrame – Training data.

• spmatrix – Training data.

• ADSData] – Training data.

• y (Union[OneDimArrayLikeType, TwoDimArrayLikeType], optional) –

• OneDimArrayLikeType (Union[List[float], np.ndarray, pd.Series]) –
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• TwoDimArrayLikeType (Union[List[List[float]], np.ndarray, pd.
DataFrame, spmatrix, ADSData]) – Target.

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.svm import SVC

tuner = ADSTuner(
SVC(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)

X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])

property best_index

returns: Index which corresponds to the best candidate parameter setting. :rtype: int

property best_params

returns: Parameters of the best trial. :rtype: Dict[str, Any]

property best_score

returns: Mean cross-validated score of the best estimator. :rtype: float

best_scores(n: int = 5, reverse: bool = True)
Return the best scores from the study

Parameters

• n (int) – The maximum number of results to show. Defaults to 5. If None or negative
return all.

• reverse (bool) – Whether to reverse the sort order so results are in descending order.
Defaults to True

Returns
List of the best scores

Return type
list[float or int]

Raises
ValueError –

get_status()

return the status of the current tuning process.

Alias for the property status.

Returns
The status of the process

Return type
Status

Example:
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from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.get_status()

halt()

Halt the current running tuning process.

Returns
Nothing

Return type
None

Raises
InvalidStateTransition –

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.halt()

is_completed()

Returns
True if the ADSTuner instance has completed; False otherwise.

Return type
bool

is_halted()
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Returns
True if the ADSTuner instance is halted; False otherwise.

Return type
bool

is_running()

Returns
True if the ADSTuner instance is running; False otherwise.

Return type
bool

is_terminated()

Returns
True if the ADSTuner instance has been terminated; False otherwise.

Return type
bool

property n_trials

returns: Number of completed trials. Alias for trial_count. :rtype: int

static optimizer(study_name, pruner, sampler, storage, load_if_exists, objective_func, global_start,
global_stop, **kwargs)

Static method for running ADSTuner tuning process

Parameters

• study_name (str) – The name of the study.

• pruner – The pruning method for pruning trials.

• sampler – The sampling method used for tuning.

• storage (str) – Storage endpoint.

• load_if_exists (bool) – Load existing study if it exists.

• objective_func – The objective function to be maximized.

• global_start (multiprocesing.Value) – The global start time.

• global_stop (multiprocessing.Value) – The global stop time.

• kwargs (dict) – Keyword/value pairs passed into the optimize process

Raises
Exception – Raised for any exceptions thrown by the underlying optimization process

Returns
Nothing

Return type
None

plot_best_scores(best=True, inferior=True, time_interval=1, fig_size=(800, 500))
Plot optimization history of all trials in a study.

Parameters

• best – controls whether to plot the lines for the best scores so far.

• inferior – controls whether to plot the dots for the actual objective scores.
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• time_interval – how often(in seconds) the plot refresh to check on the new trial results.

• fig_size (tuple) – width and height of the figure.

Returns
Nothing.

Return type
None

plot_contour_scores(params=None, time_interval=1, fig_size=(800, 500))
Contour plot of the scores.

Parameters

• params (Optional[List[str]]) – Parameter list to visualize. Defaults to all.

• time_interval (float) – Time interval for the plot. Defaults to 1.

• fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

Returns
Nothing.

Return type
None

plot_edf_scores(time_interval=1, fig_size=(800, 500))
Plot the EDF (empirical distribution function) of the scores.

Only completed trials are used.

Parameters

• time_interval (float) – Time interval for the plot. Defaults to 1.

• fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

Returns
Nothing.

Return type
None

plot_intermediate_scores(time_interval=1, fig_size=(800, 500))
Plot intermediate values of all trials in a study.

Parameters

• time_interval (float) – Time interval for the plot. Defaults to 1.

• fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

Returns
Nothing.

Return type
None

plot_parallel_coordinate_scores(params=None, time_interval=1, fig_size=(800, 500))
Plot the high-dimentional parameter relationships in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

Parameters
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• params (Optional[List[str]]) – Parameter list to visualize. Defaults to all.

• time_interval (float) – Time interval for the plot. Defaults to 1.

• fig_size (tuple[int, int]) – Figure size. Defaults to (800, 500).

Returns
Nothing.

Return type
None

plot_param_importance(importance_evaluator='Fanova', time_interval=1, fig_size=(800, 500))
Plot hyperparameter importances.

Parameters

• importance_evaluator (str) – Importance evaluator. Valid values: “Fanova”, “Mean-
DecreaseImpurity”. Defaults to “Fanova”.

• time_interval (float) – How often the plot refresh to check on the new trial results.

• fig_size (tuple) – Width and height of the figure.

Raises
NotImplementedErorr – Raised for unsupported importance evaluators

Returns
Nothing.

Return type
None

resume()

Resume the current halted tuning process.

Returns
Nothing

Return type
None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.halt()
tuner.resume()
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property score_remaining

returns: The difference between the best score and the optimal score. :rtype: float

Raises
ExitCriterionError – Error is raised if there is no score-based criteria for tuning.

property scoring_name

returns: Scoring name. :rtype: str

search_space(strategy=None, overwrite=False)
Returns the search space. If strategy is not passed in, return the existing search space. When strategy is
passed in, overwrite the existing search space if overwrite is set True, otherwise, only update the existing
search space.

Parameters

• strategy (Union[str, dict], optional) – perfunctory, detailed or a dictio-
nary/mapping of the hyperparameters and their distributions. If obj:perfunctory, picks a
few relatively more important hyperparmeters to tune . If obj:detailed, extends to a larger
search space. If obj:dict, user defined search space: Dictionary where keys are parameters
and values are distributions. Distributions are assumed to implement the ads distribution
interface.

• overwrite (bool, optional) – Ignored when strategy is None. Otherwise, search space
is overwritten if overwrite is set True and updated if it is False.

Returns
A mapping of the hyperparameters and their distributions.

Return type
dict

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.search_space()

property sklearn_steps

returns: Search space which corresponds to the best candidate parameter setting. :rtype: int

property status

returns: The status of the current tuning process. :rtype: Status

terminate()

Terminate the current tuning process.
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Returns
Nothing

Return type
None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.terminate()

property time_elapsed

Return the time in seconds that the HPO process has been searching

Returns
int

Return type
The number of seconds the HPO process has been searching

property time_remaining

Returns the number of seconds remaining in the study

Returns
int

Return type
Number of seconds remaining in the budget. 0 if complete/terminated

Raises
ExitCriterionError – Error is raised if time has not been included in the budget.

property time_since_resume

Return the seconds since the process has been resumed from a halt.

Returns
int

Return type
the number of seconds since the process was last resumed

Raises
NoRestartError –

property trial_count

returns: Number of completed trials. Alias for trial_count. :rtype: int
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property trials

returns: Trial data up to this point. :rtype: pandas.DataFrame

trials_export(file_uri, metadata=None, script_dict={'model': None, 'scoring': None})
Export the meta data as well as files needed to reconstruct the ADSTuner object to the object storage. Data
is not stored. To resume the same ADSTuner object from object storage and continue tuning from previous
trials, you have to provide the dataset.

Parameters

• file_uri (str) – Object storage path, ‘oci://bucketname@namespace/filepath/on/objectstorage’.
For example, oci://test_bucket@ociodsccust/tuner/test.zip

• metadata (str, optional) – User defined metadata

• script_dict (dict, optional) – Script paths for model and scoring. This is only rec-
ommended for unsupported models and user-defined scoring functions. You can store the
model and scoring function in a dictionary with keys model and scoring and the respec-
tive paths as values. The model and scoring scripts must import necessary libraries for the
script to run. The model and scoring variables must be set to your model and scoring
function.

Returns
Nothing

Return type
None

Example:

# Print out a list of supported models
from ads.hpo.ads_search_space import model_list
print(model_list)

# Example scoring dictionary
{'model':'/home/datascience/advanced-ds/notebooks/scratch/ADSTunerV2/mymodel.py
→˓',
'scoring':'/home/datascience/advanced-ds/notebooks/scratch/ADSTunerV2/
→˓customized_scoring.py'}

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)], synchronous=True)
tuner.trials_export('oci://<bucket_name>@<namespace>/tuner/test.zip')
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classmethod trials_import(file_uri, delete_zip_file=True, target_file_path=None)
Import the database file from the object storage

Parameters

• file_uri (str) – ‘oci://bucketname@namespace/filepath/on/objectstorage’ Example:
‘oci://<bucket_name>@<namespace>/tuner/test.zip’

• delete_zip_file (bool, defaults to True, optional) – Whether delete the zip
file afterwards.

• target_file_path (str, optional) – The path where the zip file will be saved. For
example, ‘/home/datascience/myfile.zip’.

Returns
ADSTuner object

Return type
ADSTuner

Examples

>>> from ads.hpo.stopping_criterion import *
>>> from ads.hpo.search_cv import ADSTuner
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import SGDClassifier
>>> X, y = load_iris(return_X_y=True)
>>> tuner = ADSTuner.trials_import('oci://<bucket_name>@<namespace>/tuner/test.
→˓zip')
>>> tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)], synchronous=True)

property trials_remaining

returns: The number of trials remaining in the budget. :rtype: int

Raises
ExitCriterionError – Raised if the current tuner does not include a trials-based exit con-
dition.

tune(X=None, y=None, exit_criterion=[], loglevel=None, synchronous=False)
Run hypyerparameter tuning until one of the <code>exit_criterion</code> is met. The default is to run 50
trials.

Parameters

• X (TwoDimArrayLikeType, Union[List[List[float]], np.ndarray, pd.
DataFrame, spmatrix, ADSData]) – Training data.

• y (Union[OneDimArrayLikeType, TwoDimArrayLikeType], optional) –

• OneDimArrayLikeType (Union[List[float], np.ndarray, pd.Series]) –

• TwoDimArrayLikeType (Union[List[List[float]], np.ndarray, pd.
DataFrame, spmatrix, ADSData]) – Target.

• exit_criterion (list, optional) – A list of ads stopping criterion. Can be
ScoreValue(), NTrials(), TimeBudget(). For example, [ScoreValue(0.96), NTrials(40),
TimeBudget(10)]. It will exit when any of the stopping criterion is satisfied in the
exit_criterion list. By default, the run will stop after 50 trials.

• loglevel (int, optional) – Log level.

772 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

• synchronous (boolean, optional) – Tune synchronously or not. Defaults to False

Returns
Nothing

Return type
None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.svm import SVC

tuner = ADSTuner(
SVC(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])

wait()

Wait for the current tuning process to finish running.

Returns
Nothing

Return type
None

Example:

from ads.hpo.stopping_criterion import *
from ads.hpo.search_cv import ADSTuner
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier

tuner = ADSTuner(
SGDClassifier(),
strategy='detailed',
scoring='f1_weighted',
random_state=42

)
tuner.search_space({'max_iter': 100})
X, y = load_iris(return_X_y=True)
tuner.tune(X=X, y=y, exit_criterion=[TimeBudget(1)])
tuner.wait()

exception ads.hpo.search_cv.DuplicatedStudyError

Bases: Exception

DuplicatedStudyError is raised when a new tuner process is created with a study name that already exists in
storage.
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exception ads.hpo.search_cv.ExitCriterionError

Bases: Exception

ExitCriterionError is raised when an attempt is made to check exit status for a different exit type than the tuner
was initialized with. For example, if an HPO study has an exit criteria based on the number of trials and a request
is made for the time remaining, which is a different exit criterion, an exception is raised.

exception ads.hpo.search_cv.InvalidStateTransition

Bases: Exception

Invalid State Transition is raised when an invalid transition request is made, such as calling halt without a running
process.

exception ads.hpo.search_cv.NoRestartError

Bases: Exception

NoRestartError is raised when an attempt is made to check how many seconds have transpired since the HPO
process was last resumed from a halt. This can happen if the process has been terminated or it was never halted
and then resumed to begin with.

class ads.hpo.search_cv.State(value)
Bases: Enum

An enumeration.

COMPLETED = 5

HALTED = 3

INITIATED = 1

RUNNING = 2

TERMINATED = 4

23.1.1.12.4 ads.hpo.stopping_criterion

class ads.hpo.stopping_criterion.NTrials(n_trials: int)
Bases: object

Exit based on number of trials.

Parameters
n_trials (int) – Number of trials (sets of hyperparamters tested). If None, there is no limitation
on the number of trials.

Returns
NTrials object

Return type
NTrials

class ads.hpo.stopping_criterion.ScoreValue(score: float)
Bases: object

Exit if the score is greater than or equal to the threshold.

Parameters
score (float) – The threshold for exiting the tuning process. If a trial value is greater or equal
to score, process exits.
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Returns
ScoreValue object

Return type
ScoreValue

class ads.hpo.stopping_criterion.TimeBudget(seconds: float)
Bases: object

Exit based on the number of seconds.

Parameters
seconds (float) – Time limit, in seconds. If None there is no time limit.

Returns
TimeBudget object

Return type
TimeBudget

23.1.1.12.5 Module contents

23.1.1.13 ads.jobs package

23.1.1.13.1 Submodules

23.1.1.13.2 ads.jobs.ads_job module

class ads.jobs.ads_job.Job(name: Optional[str] = None, infrastructure=None, runtime=None)
Bases: Builder

Represents a Job containing infrastructure and runtime.

Example

Here is an example for creating and running a job:

from ads.jobs import Job, DataScienceJob, PythonRuntime
# Define an OCI Data Science job to run a python script
job = (

Job(name="<job_name>")
.with_infrastructure(

DataScienceJob()
.with_compartment_id("<compartment_ocid>")
.with_project_id("<project_ocid>")
.with_subnet_id("<subnet_ocid>")
.with_shape_name("VM.Standard2.1")
.with_block_storage_size(50)
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")

)
.with_runtime(

ScriptRuntime()
.with_source("oci://bucket_name@namespace/path/to/script.py")

(continues on next page)
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(continued from previous page)

.with_service_conda("tensorflow26_p37_cpu_v2")

.with_environment_variable(ENV="value")

.with_argument("argument", key="value")

.with_freeform_tag(tag_name="tag_value")
)

)
# Create and Run the job
run = job.create().run()
# Stream the job run outputs
run.watch()

If you are in an OCI notebook session and you would like to use the same infrastructure configurations, the in-
frastructure configuration can be simplified. Here is another example of creating and running a jupyter notebook
as a job:

from ads.jobs import Job, DataScienceJob, NotebookRuntime
# Define an OCI Data Science job to run a jupyter Python notebook
job = (

Job(name="<job_name>")
.with_infrastructure(

# The same configurations as the OCI notebook session will be used.
DataScienceJob()
.with_log_group_id("<log_group_ocid>")
.with_log_id("<log_ocid>")

)
.with_runtime(

NotebookRuntime()
.with_notebook("path/to/notebook.ipynb")
.with_service_conda(tensorflow26_p37_cpu_v2")
# Saves the notebook with outputs to OCI object storage.
.with_output("oci://bucket_name@namespace/path/to/dir")

)
).create()
# Run and monitor the job
run = job.run().watch()
# Download the notebook and outputs to local directory
run.download(to_dir="path/to/local/dir/")

See also:

https
//docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/jobs/index.html

Initializes a job.

The infrastructure and runtime can be configured when initializing the job,
or by calling with_infrastructure() and with_runtime().

The infrastructure should be a subclass of ADS job Infrastructure, e.g., DataScienceJob, DataFlow. The runtime
should be a subclass of ADS job Runtime, e.g., PythonRuntime, ScriptRuntime.

Parameters

• name (str, optional) – The name of the job, by default None. If it is None, a default
name may be generated by the infrastructure, depending on the implementation of the in-
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frastructure. For OCI data science job, the default name contains the job artifact name and a
timestamp. If no artifact, a randomly generated easy to remember name with timestamp will
be generated, like ‘strange-spider-2022-08-17-23:55.02’.

• infrastructure (Infrastructure, optional) – Job infrastructure, by default None

• runtime (Runtime, optional) – Job runtime, by default None.

create(**kwargs)→ Job
Creates the job on the infrastructure.

Returns
The job instance (self)

Return type
Job

static dataflow_job(compartment_id: Optional[str] = None, **kwargs)→ List[Job]
List data flow jobs under a given compartment.

Parameters

• compartment_id (str) – compartment id

• kwargs – additional keyword arguments

Returns
list of Job instances

Return type
List[Job]

static datascience_job(compartment_id: Optional[str] = None, **kwargs)→ List[DataScienceJob]
Lists the existing data science jobs in the compartment.

Parameters
compartment_id (str) – The compartment ID for listing the jobs. This is optional if running
in an OCI notebook session. The jobs in the same compartment of the notebook session will
be returned.

Returns
A list of Job objects.

Return type
list

delete()→ None
Deletes the job from the infrastructure.

download(to_dir: str, output_uri=None, **storage_options)
Downloads files from remote output URI to local.

Parameters

• to_dir (str) – Local directory to which the files will be downloaded to.

• output_uri ((str, optional). Default is None.) – The remote URI from which
the files will be downloaded. Defaults to None. If output_uri is not specified, this method
will try to get the output_uri from the runtime.

• storage_options – Extra keyword arguments for particular storage connection. This
method uses fsspec to download the files from remote URI. storage_options will to be
passed into fsspec.open_files().
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Returns
The job instance (self)

Return type
Job

Raises
AttributeError – The output_uri is not specified and the runtime is not configured with
output_uri.

static from_dataflow_job(job_id: str)→ Job
Create a Data Flow job given a job id.

Parameters
job_id (str) – id of the job

Returns
a Job instance

Return type
Job

static from_datascience_job(job_id)→ Job
Loads a data science job from OCI.

Parameters
job_id (str) – OCID of an existing data science job.

Returns
A job instance.

Return type
Job

classmethod from_dict(config: dict)→ Job
Initializes a job from a dictionary containing the configurations.

Parameters
config (dict) – A dictionary containing the infrastructure and runtime specifications.

Returns
A job instance

Return type
Job

Raises
NotImplementedError – If the type of the intrastructure or runtime is not supported.

property id: str

The ID of the job. For jobs running on OCI, this is the OCID.

Returns
ID of the job.

Return type
str

property infrastructure: Union[DataScienceJob, DataFlow]

The job infrastructure.

Returns
Job infrastructure.
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Return type
Infrastructure

property kind: str

The kind of the object as showing in YAML.

Returns
“job”

Return type
str

property name: str

The name of the job. For jobs running on OCI, this is the display name.

Returns
The name of the job.

Return type
str

run(name=None, args=None, env_var=None, freeform_tags=None, wait=False)→
Union[DataScienceJobRun, DataFlowRun]
Runs the job.

Parameters

• name (str, optional) – Name of the job run, by default None. The infrastructure han-
dles the naming of the job run. For data science job, if a name is not provided, a default
name will be generated containing the job name and the timestamp of the run. If no arti-
fact, a randomly generated easy to remember name with timestamp will be generated, like
‘strange-spider-2022-08-17-23:55.02’.

• args (str, optional) – Command line arguments for the job run, by default None.
This will override the configurations on the job. If this is None, the args from the job
configuration will be used.

• env_var (dict, optional) – Additional environment variables for the job run, by de-
fault None

• freeform_tags (dict, optional) – Freeform tags for the job run, by default None

• wait (bool, optional) – Indicate if this method call should wait for the job run. By
default False, this method returns as soon as the job run is created. If this is set to True,
this method will stream the job logs and wait until it finishes, similar to job.run().watch().

Returns
A job run instance, depending on the infrastructure.

Return type
Job Run Instance

run_list(**kwargs)→ list
Gets a list of runs of the job.

Returns
A list of job run instances, the actual object type depends on the infrastructure.

Return type
list
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property runtime: Runtime

The job runtime.

Returns
The job runtime

Return type
Runtime

status()→ str
Status of the job

Returns
Status of the job

Return type
str

to_dict()→ dict
Serialize the job specifications to a dictionary.

Returns
A dictionary containing job specifications.

Return type
dict

with_infrastructure(infrastructure)→ Job
Sets the infrastructure for the job.

Parameters
infrastructure (Infrastructure) – Job infrastructure.

Returns
The job instance (self)

Return type
Job

with_name(name: str)→ Job
Sets the job name.

Parameters
name (str) – Job name.

Returns
The job instance (self)

Return type
Job

with_runtime(runtime)→ Job
Sets the runtime for the job.

Parameters
runtime (Runtime) – Job runtime.

Returns
The job instance (self)

Return type
Job
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23.1.1.13.3 ads.jobs.builders.runtimes.python_runtime module

class ads.jobs.builders.runtimes.python_runtime.CondaRuntime(spec: Optional[Dict] = None,
**kwargs)

Bases: Runtime

Represents a job runtime with conda pack

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_CONDA = 'conda'

CONST_CONDA_REGION = 'region'

CONST_CONDA_SLUG = 'slug'

CONST_CONDA_TYPE = 'type'

CONST_CONDA_TYPE_CUSTOM = 'published'

CONST_CONDA_TYPE_SERVICE = 'service'

CONST_CONDA_URI = 'uri'

attribute_map = {'conda': 'conda', 'env': 'env', 'freeformTags': 'freeform_tags'}

property conda: dict

The conda pack specification

Returns
A dictionary with “type” and “slug” as keys.

Return type
dict

with_custom_conda(uri: str, region: Optional[str] = None)
Specifies the custom conda pack for running the job

Parameters

• uri (str) – The OCI object storage URI for the conda pack, e.g.
“oci://your_bucket@namespace/object_name.” In the Environment Explorer of an
OCI notebook session, this is shown as the “source” of the conda pack.

• region (str, optional) – The region of the bucket storing the custom conda pack,
by default None. If region is not specified, ADS will use the region from your authen-
tication credentials, * For API Key, config[“region”] is used. * For Resource Principal,
signer.region is used.

This is required if the conda pack is stored in a different region.

Returns
The runtime instance.
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Return type
self

See also:

https
//docs.oracle.com/en-us/iaas/data-science/using/conda_publishs_object.htm

with_service_conda(slug: str)
Specifies the service conda pack for running the job

Parameters
slug (str) – The slug name of the service conda pack

Returns
The runtime instance.

Return type
self

class ads.jobs.builders.runtimes.python_runtime.DataFlowNotebookRuntime(spec: Optional[Dict]
= None, **kwargs)

Bases: DataFlowRuntime, NotebookRuntime

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

convert(overwrite=False)

class ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime(spec: Optional[Dict] = None,
**kwargs)

Bases: CondaRuntime

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_ARCHIVE_BUCKET = 'archiveBucket'

CONST_ARCHIVE_URI = 'archiveUri'

CONST_CONDA_AUTH_TYPE = 'condaAuthType'

CONST_CONFIGURATION = 'configuration'

CONST_SCRIPT_BUCKET = 'scriptBucket'
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CONST_SCRIPT_PATH = 'scriptPathURI'

property archive_bucket: str

Bucket to save archive zip

property archive_uri

The Uri of archive zip

attribute_map = {'archiveUri': 'archive_uri', 'condaAuthType': 'conda_auth_type',
'configuration': 'configuration', 'env': 'env', 'freeformTags': 'freeform_tags',
'scriptBucket': 'script_bucket', 'scriptPathURI': 'script_path_uri'}

property configuration: dict

Configuration for Spark

convert(**kwargs)

property script_bucket: str

Bucket to save script

property script_uri: str

The URI of the source code

with_archive_bucket(bucket)→ DataFlowRuntime
Set object storage bucket to save the archive zip, in case archive uri given is local.

Parameters
bucket (str) – name of the bucket

Returns
runtime instance itself

Return type
DataFlowRuntime

with_archive_uri(uri: str)→ DataFlowRuntime
Set archive uri (which is a zip file containing dependencies).

Parameters
uri (str) – uri to the archive zip

Returns
runtime instance itself

Return type
DataFlowRuntime

with_conda(conda_spec: Optional[dict] = None)

with_configuration(config: dict)→ DataFlowRuntime
Set Configuration for Spark.

Parameters
config (dict) – dictionary of configuration details https://spark.apache.org/docs/latest/
configuration.html#available-properties. Example: { “spark.app.name” : “My App Name”,
“spark.shuffle.io.maxRetries” : “4” }

Returns
runtime instance itself
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Return type
DataFlowRuntime

with_custom_conda(uri: str, region: Optional[str] = None, auth_type: Optional[str] = None)
Specifies the custom conda pack for running the job

Parameters

• uri (str) – The OCI object storage URI for the conda pack, e.g.
“oci://your_bucket@namespace/object_name.” In the Environment Explorer of an
OCI notebook session, this is shown as the “source” of the conda pack.

• region (str, optional) – The region of the bucket storing the custom conda pack,
by default None. If region is not specified, ADS will use the region from your authen-
tication credentials, * For API Key, config[“region”] is used. * For Resource Principal,
signer.region is used. This is required if the conda pack is stored in a different region.

• auth_type (str, (="resource_principal")) – One of “resource_principal”,
“api_keys”, “instance_principal”, etc. Auth mechanism used to read the conda back uri
provided.

Returns
The runtime instance.

Return type
self

See also:

https
//docs.oracle.com/en-us/iaas/data-science/using/conda_publishs_object.htm

with_script_bucket(bucket)→ DataFlowRuntime
Set object storage bucket to save the script, in case script uri given is local.

Parameters
bucket (str) – name of the bucket

Returns
runtime instance itself

Return type
DataFlowRuntime

with_script_uri(path)→ DataFlowRuntime
Set script uri.

Parameters
uri (str) – uri to the script

Returns
runtime instance itself

Return type
DataFlowRuntime

with_service_conda(slug: str)
Specifies the service conda pack for running the job

Parameters
slug (str) – The slug name of the service conda pack
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Returns
The runtime instance.

Return type
self

class ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime(spec: Optional[Dict] = None,
**kwargs)

Bases: CondaRuntime, _PythonRuntimeMixin

Represents a job runtime with source code from git repository

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_BRANCH = 'branch'

CONST_COMMIT = 'commit'

CONST_GIT_SSH_SECRET_ID = 'gitSecretId'

CONST_GIT_URL = 'url'

CONST_SKIP_METADATA = 'skipMetadataUpdate'

attribute_map = {'branch': 'branch', 'commit': 'commit', 'conda': 'conda',
'entryFunction': 'entry_function', 'entrypoint': 'entrypoint', 'env': 'env',
'freeformTags': 'freeform_tags', 'gitSecretId': 'git_secret_id', 'outputDir':
'output_dir', 'outputUri': 'output_uri', 'pythonPath': 'python_path',
'skipMetadataUpdate': 'skip_metadata_update', 'url': 'url'}

property branch: str

Git branch name.

property commit: str

Git commit ID (SHA1 hash)

property skip_metadata_update

Indicate if the metadata update should be skipped after the job run

By default, the job run metadata will be updated with the following freeform tags: * repo: The URL of
the Git repository * commit: The Git commit ID * module: The entry script/module * method: The entry
function/method * outputs. The prefix of the output files in object storage.

This update step also requires resource principals to have the permission to update the job run.

Returns
True if the metadata update will be skipped. Otherwise False.

Return type
bool

property ssh_secret_ocid

The OCID of the OCI Vault secret storing the Git SSH key.
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property url: str

URL of the Git repository.

with_argument(*args, **kwargs)
Specifies the arguments for running the script/function.

When running a python script, the arguments will be the command line arguments. For example,
with_argument(“arg1”, “arg2”, key1=”val1”, key2=”val2”) will generate the command line arguments:
“arg1 arg2 –key1 val1 –key2 val2”

When running a function, the arguments will be passed into the function. Arguments can also be list, dict
or any JSON serializable object. For example, with_argument(“arg1”, “arg2”, key1=[“val1a”, “val1b”],
key2=”val2”) will be passed in as “your_function(“arg1”, “arg2”, key1=[“val1a”, “val1b”], key2=”val2”)

Returns
The runtime instance.

Return type
self

with_source(url: str, branch: Optional[str] = None, commit: Optional[str] = None, secret_ocid:
Optional[str] = None)

Specifies the Git repository and branch/commit for the job source code.

Parameters

• url (str) – URL of the Git repository.

• branch (str, optional) – Git branch name, by default None, the default branch will be
used.

• commit (str, optional) – Git commit ID (SHA1 hash), by default None, the most recent
commit will be used.

• secret_ocid (str) – The secret OCID storing the SSH key content for checking out the
Git repository.

Returns
The runtime instance.

Return type
self

class ads.jobs.builders.runtimes.python_runtime.NotebookRuntime(spec: Optional[Dict] = None,
**kwargs)

Bases: CondaRuntime

Represents a job runtime with Jupyter notebook

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_EXCLUDE_TAG = 'excludeTags'

CONST_NOTEBOOK_ENCODING = 'notebookEncoding'
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CONST_NOTEBOOK_PATH = 'notebookPathURI'

CONST_OUTPUT_URI = 'outputURI'

attribute_map = {'conda': 'conda', 'env': 'env', 'excludeTags': 'exclude_tags',
'freeformTags': 'freeform_tags', 'notebookEncoding': 'notebook_encoding',
'notebookPathURI': 'notebook_path_uri', 'outputURI': 'output_uri'}

property exclude_tag: list

A list of cell tags indicating cells to be excluded from the job

property notebook_encoding: str

The encoding of the notebook

property notebook_uri: str

The URI of the notebook

property output_uri: list

URI for storing the output notebook and files

with_exclude_tag(*tags)
Specifies the cell tags in the notebook to exclude cells from the job script.

Parameters
*tags (list) – A list of tags (strings).

Returns
The runtime instance.

Return type
self

with_notebook(path: str, encoding='utf-8')
Specifies the notebook to be converted to python script and run as a job.

Parameters
path (str) – The path of the Jupyter notebook

Returns
The runtime instance.

Return type
self

with_output(output_uri: str)
Specifies the output URI for storing the output notebook and files.

Parameters
output_uri (str) – URI for storing the output notebook and files. For example,
oci://bucket@namespace/path/to/dir

Returns
The runtime instance.

Return type
self

class ads.jobs.builders.runtimes.python_runtime.PythonRuntime(spec: Optional[Dict] = None,
**kwargs)

23.1. ads package 787



ADS Documentation, Release 2.6.4

Bases: ScriptRuntime, _PythonRuntimeMixin

Represents a job runtime using ADS driver script to run Python code

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_WORKING_DIR = 'workingDir'

attribute_map = {'conda': 'conda', 'entryFunction': 'entry_function', 'entrypoint':
'entrypoint', 'env': 'env', 'freeformTags': 'freeform_tags', 'outputDir':
'output_dir', 'outputUri': 'output_uri', 'pythonPath': 'python_path',
'scriptPathURI': 'script_path_uri', 'workingDir': 'working_dir'}

with_working_dir(working_dir: str)
Specifies the working directory in the job run. By default, the working directory will the directory con-
taining the user code (job artifact directory). This can be changed by specifying a relative path to the job
artifact directory.

Parameters
working_dir (str) – The path of the working directory. This can be a relative path from
the job artifact directory.

Returns
The runtime instance.

Return type
self

property working_dir: str

The working directory for the job run.

class ads.jobs.builders.runtimes.python_runtime.ScriptRuntime(spec: Optional[Dict] = None,
**kwargs)

Bases: CondaRuntime

Represents job runtime with scripts and conda pack

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_ENTRYPOINT = 'entrypoint'

CONST_SCRIPT_PATH = 'scriptPathURI'
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attribute_map = {'conda': 'conda', 'entrypoint': 'entrypoint', 'env': 'env',
'freeformTags': 'freeform_tags', 'scriptPathURI': 'script_path_uri'}

property entrypoint: str

The relative path of the script to be set as entrypoint when source is a zip/tar/directory.

property script_uri: str

The URI of the source code

property source_uri: str

The URI of the source code

with_entrypoint(entrypoint: str)
Specify the entrypoint for the job

Parameters
entrypoint (str) – The relative path of the script to be set as entrypoint when source is a
zip/tar/directory.

Returns
The runtime instance.

Return type
self

with_script(uri: str)
Specifies the source code script for the job

Parameters
uri (str) – URI to the Python or Shell script, which can be any URI sup-
ported by fsspec, including http://, https:// and OCI object storage. For example:
oci://your_bucket@your_namespace/path/to/script.py

Returns
The runtime instance.

Return type
self

with_source(uri: str, entrypoint: Optional[str] = None)
Specifies the source code for the job

Parameters

• uri (str) – URI to the source code, which can be a (.py/.sh) script, a zip/tar file or di-
rectory containing the scripts/modules If the source code is a single file, URI can be any
URI supported by fsspec, including http://, https:// and OCI object storage. For example:
oci://your_bucket@your_namespace/path/to/script.py If the source code is a directory, only
local directory is supported.

• entrypoint (str, optional) – The relative path of the script to be set as entrypoint
when source is a zip/tar/directory. By default None. This is not needed when the source is
a single script.

Returns
The runtime instance.

Return type
self
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23.1.1.13.4 ads.jobs.builders.infrastructure.dataflow module

class ads.jobs.builders.infrastructure.dataflow.DataFlow(spec: Optional[dict] = None, **kwargs)
Bases: Infrastructure

Initialize the object with specifications.

User can either pass in the specification as a dictionary or through keyword arguments.

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_BUCKET_URI = 'logs_bucket_uri'

CONST_COMPARTMENT_ID = 'compartment_id'

CONST_CONFIG = 'configuration'

CONST_DRIVER_SHAPE = 'driver_shape'

CONST_EXECUTE = 'execute'

CONST_EXECUTOR_SHAPE = 'executor_shape'

CONST_ID = 'id'

CONST_LANGUAGE = 'language'

CONST_METASTORE_ID = 'metastore_id'

CONST_NUM_EXECUTORS = 'num_executors'

CONST_SPARK_VERSION = 'spark_version'

CONST_WAREHOUSE_BUCKET_URI = 'warehouse_bucket_uri'

attribute_map = {'compartment_id': 'compartmentId', 'configuration':
'configuration', 'driver_shape': 'driverShape', 'execute': 'execute',
'executor_shape': 'executorShape', 'id': 'id', 'logs_bucket_uri': 'logsBucketUri',
'metastore_id': 'metastoreId', 'num_executors': 'numExecutors', 'spark_version':
'sparkVersion', 'warehouse_bucket_uri': 'warehouseBucketUri'}

create(runtime: DataFlowRuntime, **kwargs)→ DataFlow
Create a Data Flow job given a runtime.

Parameters

• runtime – runtime to bind to the Data Flow job

• kwargs – additional keyword arguments

Returns
a Data Flow job instance

Return type
DataFlow
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delete()

Delete a Data Flow job and canceling associated runs.

Return type
None

classmethod from_dict(config: dict)→ DataFlow
Load a Data Flow job instance from a dictionary of configurations.

Parameters
config (dict) – dictionary of configurations

Returns
a Data Flow job instance

Return type
DataFlow

classmethod from_id(id: str)→ DataFlow
Load a Data Flow job given an id.

Parameters
id (str) – id of the Data Flow job to load

Returns
a Data Flow job instance

Return type
DataFlow

property job_id: Optional[str]

The OCID of the job

classmethod list_jobs(compartment_id: Optional[str] = None, **kwargs)→ List[DataFlow]
List Data Flow jobs in a given compartment.

Parameters

• compartment_id (str) – id of that compartment

• kwargs – additional keyword arguments for filtering jobs

Returns
list of Data Flow jobs

Return type
List[DataFlow]

property name: str

Display name of the job

run(name: Optional[str] = None, args: Optional[List[str]] = None, env_vars: Optional[Dict[str, str]] =
None, freeform_tags: Optional[Dict[str, str]] = None, wait: bool = False, **kwargs)→ DataFlowRun
Run a Data Flow job.

Parameters

• name (str, optional) – name of the run. If a name is not provided, a randomly generated
easy to remember name with timestamp will be generated, like ‘strange-spider-2022-08-
17-23:55.02’.

• args (List[str], optional) – list of command line arguments
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• env_vars (Dict[str, str], optional) – dictionary of environment variables (not
used for data flow)

• freeform_tags (Dict[str, str], optional) – freeform tags

• wait (bool, optional) – whether to wait for a run to terminate

• kwargs – additional keyword arguments

Returns
a DataFlowRun instance

Return type
DataFlowRun

run_list(**kwargs)→ List[DataFlowRun]
List runs associated with a Data Flow job.

Parameters
kwargs – additional arguments for filtering runs.

Returns
list of DataFlowRun instances

Return type
List[DataFlowRun]

to_dict()→ dict
Serialize job to a dictionary.

Returns
serialized job as a dictionary

Return type
dict

to_yaml()→ str
Serializes the object into YAML string.

Returns
YAML stored in a string.

Return type
str

with_compartment_id(id: str)→ DataFlow
Set compartment id for a Data Flow job.

Parameters
id (str) – compartment id

Returns
the Data Flow instance itself

Return type
DataFlow

with_configuration(configs: dict)→ DataFlow
Set configuration for a Data Flow job.

Parameters
configs (dict) – dictionary of configurations
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Returns
the Data Flow instance itself

Return type
DataFlow

with_driver_shape(shape: str)→ DataFlow
Set driver shape for a Data Flow job.

Parameters
shape (str) – driver shape

Returns
the Data Flow instance itself

Return type
DataFlow

with_execute(exec: str)→ DataFlow
Set command for spark-submit.

Parameters
exec (str) – str of commands

Returns
the Data Flow instance itself

Return type
DataFlow

with_executor_shape(shape: str)→ DataFlow
Set executor shape for a Data Flow job.

Parameters
shape (str) – executor shape

Returns
the Data Flow instance itself

Return type
DataFlow

with_id(id: str)→ DataFlow
Set id for a Data Flow job.

Parameters
id (str) – id of a job

Returns
the Data Flow instance itself

Return type
DataFlow

with_language(lang: str)→ DataFlow
Set language for a Data Flow job.

Parameters
lang (str) – language for the job

Returns
the Data Flow instance itself
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Return type
DataFlow

with_logs_bucket_uri(uri: str)→ DataFlow
Set logs bucket uri for a Data Flow job.

Parameters
uri (str) – uri to logs bucket

Returns
the Data Flow instance itself

Return type
DataFlow

with_metastore_id(id: str)→ DataFlow
Set Hive metastore id for a Data Flow job.

Parameters
id (str) – metastore id

Returns
the Data Flow instance itself

Return type
DataFlow

with_num_executors(n: int)→ DataFlow
Set number of executors for a Data Flow job.

Parameters
n (int) – number of executors

Returns
the Data Flow instance itself

Return type
DataFlow

with_spark_version(ver: str)→ DataFlow
Set spark version for a Data Flow job. Currently supported versions are 2.4.4, 3.0.2 and 3.2.1 Documenta-
tion: https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_getting_started.htm#before_you_begin

Parameters
ver (str) – spark version

Returns
the Data Flow instance itself

Return type
DataFlow

with_warehouse_bucket_uri(uri: str)→ DataFlow
Set warehouse bucket uri for a Data Flow job.

Parameters
uri (str) – uri to warehouse bucket

Returns
the Data Flow instance itself

Return type
DataFlow
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class ads.jobs.builders.infrastructure.dataflow.DataFlowApp(config: Optional[dict] = None, signer:
Optional[Signer] = None,
client_kwargs: Optional[dict] =
None, **kwargs)

Bases: OCIModelMixin, Application

Initializes a service/resource with OCI client as a property. If config or signer is specified, it will be
used to initialize the OCI client. If neither of them is specified, the client will be initialized with
ads.common.auth.default_signer. If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

Parameters

• config (dict, optional) – OCI API key config dictionary, by default None.

• signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

• client_kwargs (dict, optional) – Additional keyword arguments for initializing the
OCI client.

property client: DataFlowClient

OCI client

create()→ DataFlowApp
Create a Data Flow application.

Returns
a DataFlowApp instance

Return type
DataFlowApp

delete()→ None
Delete a Data Flow application.

Return type
None

classmethod init_client(**kwargs)→ DataFlowClient
Initializes the OCI client specified in the “client” keyword argument Sub-class should override this method
and call cls._init_client(client=OCI_CLIENT)

Parameters
**kwargs – Additional keyword arguments for initalizing the OCI client.

Return type
An instance of OCI client.

to_yaml()→ str
Serializes the object into YAML string.

Returns
YAML stored in a string.

Return type
str

class ads.jobs.builders.infrastructure.dataflow.DataFlowLogs(run_id)
Bases: object
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property application

property driver

property executor

class ads.jobs.builders.infrastructure.dataflow.DataFlowRun(config: Optional[dict] = None, signer:
Optional[Signer] = None,
client_kwargs: Optional[dict] =
None, **kwargs)

Bases: OCIModelMixin, Run, RunInstance

Initializes a service/resource with OCI client as a property. If config or signer is specified, it will be
used to initialize the OCI client. If neither of them is specified, the client will be initialized with
ads.common.auth.default_signer. If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

Parameters

• config (dict, optional) – OCI API key config dictionary, by default None.

• signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

• client_kwargs (dict, optional) – Additional keyword arguments for initializing the
OCI client.

TERMINATED_STATES = ['CANCELED', 'FAILED', 'SUCCEEDED']

property client: DataFlowClient

OCI client

create()→ DataFlowRun
Create a Data Flow run.

Returns
a DataFlowRun instance

Return type
DataFlowRun

delete()→ None
Cancel a Data Flow run if it is not yet terminated.

Return type
None

classmethod init_client(**kwargs)→ DataFlowClient
Initializes the OCI client specified in the “client” keyword argument Sub-class should override this method
and call cls._init_client(client=OCI_CLIENT)

Parameters
**kwargs – Additional keyword arguments for initalizing the OCI client.

Return type
An instance of OCI client.

property logs: DataFlowLogs

Show logs from a run. There are three types of logs: application log, driver log and executor log,
each with stdout and stderr separately. To access each type of logs, >>> dfr.logs.application.stdout >>>
dfr.logs.driver.stderr

796 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

Returns
an instance of DataFlowLogs

Return type
DataFlowLogs

property run_details_link

Link to run details page in OCI console

Returns
html display

Return type
DisplayHandle

property status: str

Show status (lifecycle state) of a run.

Returns
status of the run

Return type
str

to_yaml()→ str
Serializes the object into YAML string.

Returns
YAML stored in a string.

Return type
str

wait(interval: int = 3)→ DataFlowRun
Wait for a run to terminate.

Parameters
interval (int, optional) – interval to wait before probing again

Returns
a DataFlowRun instance

Return type
DataFlowRun

watch(interval: int = 3)→ DataFlowRun
This is an alias of wait() method. It waits for a run to terminate.

Parameters
interval (int, optional) – interval to wait before probing again

Returns
a DataFlowRun instance

Return type
DataFlowRun
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23.1.1.13.5 ads.jobs.builders.infrastructure.dsc_job module

class ads.jobs.builders.infrastructure.dsc_job.DSCJob(artifact: Optional[Union[str, Artifact]] =
None, **kwargs)

Bases: OCIDataScienceMixin, Job

Represents an OCI Data Science Job This class contains all attributes of the oci.data_science.models.Job. The
main purpose of this class is to link the oci.data_science.models.Job model and the related client methods.
Mainly, linking the Job model (payload) to Create/Update/Get/List/Delete methods.

A DSCJob can be initialized by unpacking a the properties stored in a dictionary (payload):

job_properties = {
"display_name": "my_job",
"job_infrastructure_configuration_details": {"shape_name": "VM.MY_SHAPE"}

}
job = DSCJob(**job_properties)

The properties can also be OCI REST API payload, in which the keys are in camel format.

job_payload = {
"projectId": "<project_ocid>",
"compartmentId": "<compartment_ocid>",
"displayName": "<job_name>",
"jobConfigurationDetails": {

"jobType": "DEFAULT",
"commandLineArguments": "pos_arg1 pos_arg2 --key1 val1 --key2 val2",
"environmentVariables": {

"KEY1": "VALUE1",
"KEY2": "VALUE2",
# User specifies conda env via env var
"CONDA_ENV_TYPE" : "service",
"CONDA_ENV_SLUG" : "mlcpuv1"

}
},
"jobInfrastructureConfigurationDetails": {

"jobInfrastructureType": "STANDALONE",
"shapeName": "VM.Standard2.1",
"blockStorageSizeInGBs": "100",
"subnetId": "<subnet_ocid>"

}
}
job = DSCJob(**job_payload)

Initialize a DSCJob object.

Parameters

• artifact (str or Artifact) – Job artifact, which can be a path or an Artifact object.
Defaults to None.

• kwargs – Same as kwargs in oci.data_science.models.Job. Keyword arguments are passed
into OCI Job model to initialize the properties.

DEFAULT_INFRA_TYPE = 'ME_STANDALONE'
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property artifact: Union[str, Artifact]

Job artifact.

Returns
When creating a job, this be a path or an Artifact object. When loading the job from OCI,
this will be the filename of the job artifact.

Return type
str or Artifact

create()→ DSCJob
Create the job on OCI Data Science platform

Returns
The DSCJob instance (self), which allows chaining additional method.

Return type
DSCJob

delete()→ DSCJob
Deletes the job and the corresponding job runs.

Returns
The DSCJob instance (self), which allows chaining additional method.

Return type
DSCJob

download_artifact(artifact_path: str)→ DSCJob
Downloads the artifact from OCI

Parameters
artifact_path (str) – Local path to store the job artifact.

Returns
The DSCJob instance (self), which allows chaining additional method.

Return type
DSCJob

classmethod from_ocid(ocid)→ DSCJob
Gets a job by OCID

Parameters
ocid (str) – The OCID of the job.

Returns
An instance of DSCJob.

Return type
DSCJob

load_properties_from_env()→ None
Loads default properties from the environment

run(**kwargs)→ DataScienceJobRun
Runs the job

Parameters

• **kwargs – Keyword arguments for initializing a Data Science Job Run. The keys
can be any keys in supported by OCI JobConfigurationDetails and JobRun, including:
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* hyperparameter_values: dict(str, str) * environment_variables: dict(str, str) * com-
mand_line_arguments: str * maximum_runtime_in_minutes: int * display_name: str

• specified (If display_name is not) –

• "<JOB_NAME>-run-<TIMESTAMP>". (it will be generated as) –

Returns
An instance of DSCJobRun, which can be used to monitor the job run.

Return type
DSCJobRun

run_list(**kwargs)→ list[DataScienceJobRun]
Lists the runs of this job.

Parameters
**kwargs – Keyword arguments to te passed into the OCI list_job_runs() for filtering the job
runs.

Returns
A list of DSCJobRun objects

Return type
list

update()→ DSCJob
Updates the Data Science Job.

upload_artifact(artifact_path: Optional[str] = None)→ DSCJob
Uploads the job artifact to OCI

Parameters
artifact_path (str, optional) – Local path to the job artifact file to be uploaded, by
default None. If artifact_path is None, the path in self.artifact will be used.

Returns
The DSCJob instance (self), which allows chaining additional method.

Return type
DSCJob

ads.jobs.builders.infrastructure.dsc_job.DSCJobRun

alias of DataScienceJobRun

class ads.jobs.builders.infrastructure.dsc_job.DataScienceJob(spec: Optional[Dict] = None,
**kwargs)

Bases: Infrastructure

Represents the OCI Data Science Job infrastructure.

Initializes a data science job infrastructure

Parameters

• spec (dict, optional) – Object specification, by default None

• kwargs (dict) – Specification as keyword arguments. If spec contains the same key as the
one in kwargs, the value from kwargs will be used.

CONST_BLOCK_STORAGE = 'blockStorageSize'
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CONST_COMPARTMENT_ID = 'compartmentId'

CONST_DISPLAY_NAME = 'displayName'

CONST_JOB_INFRA = 'jobInfrastructureType'

CONST_JOB_TYPE = 'jobType'

CONST_LOG_GROUP_ID = 'logGroupId'

CONST_LOG_ID = 'logId'

CONST_PROJECT_ID = 'projectId'

CONST_SHAPE_NAME = 'shapeName'

CONST_SUBNET_ID = 'subnetId'

attribute_map = {'blockStorageSize': 'block_storage_size', 'compartmentId':
'compartment_id', 'displayName': 'display_name', 'jobInfrastructureType':
'job_infrastructure_type', 'jobType': 'job_type', 'logGroupId': 'log_group_id',
'logId': 'log_id', 'projectId': 'project_id', 'shapeName': 'shape_name', 'subnetId':
'subnet_id'}

property block_storage_size: int

Block storage size for the job

property compartment_id: Optional[str]

The compartment OCID

create(runtime, **kwargs)→ DataScienceJob
Creates a job with runtime.

Parameters
runtime (Runtime) – An ADS job runtime.

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

delete()→ None
Deletes a job

classmethod from_dsc_job(dsc_job: DSCJob)→ DataScienceJob
Initialize a DataScienceJob instance from a DSCJob

Parameters
dsc_job (DSCJob) – An instance of DSCJob

Returns
An instance of DataScienceJob

Return type
DataScienceJob

classmethod from_id(job_id: str)→ DataScienceJob
Gets an existing job using Job OCID
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Parameters
job_id (str) – Job OCID

Returns
An instance of DataScienceJob

Return type
DataScienceJob

classmethod instance_shapes(compartment_id: Optional[str] = None)→ list
Lists the supported shapes for running jobs in a compartment.

Parameters
compartment_id (str, optional) – The compartment ID for running the jobs, by default
None. This is optional in a OCI Data Science notebook session. If this is not specified, the
compartment ID of the notebook session will be used.

Returns
A list of dictionaries containing the information of the supported shapes.

Return type
list

property job_id: Optional[str]

The OCID of the job

property job_infrastructure_type: Optional[str]

Job infrastructure type

property job_type: Optional[str]

Job type

classmethod list_jobs(compartment_id: Optional[str] = None, **kwargs)→ List[DataScienceJob]
Lists all jobs in a compartment.

Parameters

• compartment_id (str, optional) – The compartment ID for running the jobs, by de-
fault None. This is optional in a OCI Data Science notebook session. If this is not specified,
the compartment ID of the notebook session will be used.

• **kwargs – Keyword arguments to be passed into OCI list_jobs API for filtering the jobs.

Returns
A list of DataScienceJob object.

Return type
List[DataScienceJob]

property log_group_id: str

Log group OCID of the data science job

Returns
Log group OCID

Return type
str

property log_id: str

Log OCID for the data science job.
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Returns
Log OCID

Return type
str

property name: str

Display name of the job

payload_attribute_map = {'blockStorageSize':
'job_infrastructure_configuration_details.block_storage_size_in_gbs',
'compartmentId': 'compartment_id', 'displayName': 'display_name',
'jobInfrastructureType':
'job_infrastructure_configuration_details.job_infrastructure_type', 'jobType':
'job_configuration_details.job_type', 'logGroupId':
'job_log_configuration_details.log_group_id', 'logId':
'job_log_configuration_details.log_id', 'projectId': 'project_id', 'shapeName':
'job_infrastructure_configuration_details.shape_name', 'subnetId':
'job_infrastructure_configuration_details.subnet_id'}

property project_id: Optional[str]

Project OCID

run(name=None, args=None, env_var=None, freeform_tags=None, wait=False)→ DataScienceJobRun
Runs a job on OCI Data Science job

Parameters

• name (str, optional) – The name of the job run, by default None.

• args (str, optional) – Command line arguments for the job run, by default None.

• env_var (dict, optional) – Environment variable for the job run, by default None

• freeform_tags (dict, optional) – Freeform tags for the job run, by default None

• wait (bool, optional) – Indicate if this method should wait for the run to finish before
it returns, by default False.

Returns
A Data Science Job Run instance.

Return type
DSCJobRun

run_list(**kwargs)→ List[DataScienceJobRun]
Gets a list of job runs.

Parameters
**kwargs – Keyword arguments for filtering the job runs. These arguments will be passed
to OCI API.

Returns
A list of job runs.

Return type
List[DSCJobRun]

property shape_name: Optional[str]

Shape name
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snake_to_camel_map = {'block_storage_size_in_gbs': 'blockStorageSize',
'compartment_id': 'compartmentId', 'display_name': 'displayName',
'job_infrastructure_type': 'jobInfrastructureType', 'job_type': 'jobType',
'log_group_id': 'logGroupId', 'log_id': 'logId', 'project_id': 'projectId',
'shape_name': 'shapeName', 'subnet_id': 'subnetId'}

static standardize_spec(spec)

property status: Optional[str]

Status of the job.

Returns
Status of the job.

Return type
str

property subnet_id: str

Subnet ID

with_block_storage_size(size_in_gb: int)→ DataScienceJob
Sets the block storage size in GB

Parameters
size_in_gb (int) – Block storage size in GB

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_compartment_id(compartment_id: str)→ DataScienceJob
Sets the compartment OCID

Parameters
compartment_id (str) – The compartment OCID

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_job_infrastructure_type(infrastructure_type: str)→ DataScienceJob
Sets the job infrastructure type

Parameters
infrastructure_type (str) – Job infrastructure type as string

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_job_type(job_type: str)→ DataScienceJob
Sets the job type

Parameters
job_type (str) – Job type as string
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Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_log_group_id(log_group_id: str)→ DataScienceJob
Sets the log group OCID for the data science job. If log group ID is specified but log ID is not, a new log
resource will be created automatically for each job run to store the logs.

Parameters
log_group_id (str) – Log Group OCID

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_log_id(log_id: str)→ DataScienceJob
Sets the log OCID for the data science job. If log ID is specified, setting the log group ID
(with_log_group_id()) is not strictly needed. ADS will look up the log group ID automatically. How-
ever, this may require additional permission, and the look up may not be available for newly created log
group. Specifying both log ID (with_log_id()) and log group ID (with_log_group_id()) can avoid such
lookup and speed up the job creation.

Parameters
log_id (str) – Log resource OCID.

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_project_id(project_id: str)→ DataScienceJob
Sets the project OCID

Parameters
project_id (str) – The project OCID

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_shape_name(shape_name: str)→ DataScienceJob
Sets the shape name for running the job

Parameters
shape_name (str) – Shape name

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

with_subnet_id(subnet_id: str)→ DataScienceJob
Sets the subnet ID
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Parameters
subnet_id (str) – Subnet ID

Returns
The DataScienceJob instance (self)

Return type
DataScienceJob

class ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun(config: Optional[dict] = None,
signer: Optional[Signer] =
None, client_kwargs:
Optional[dict] = None,
**kwargs)

Bases: OCIDataScienceMixin, JobRun, RunInstance

Represents a Data Science Job run

Initializes a service/resource with OCI client as a property. If config or signer is specified, it will be
used to initialize the OCI client. If neither of them is specified, the client will be initialized with
ads.common.auth.default_signer. If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

Parameters

• config (dict, optional) – OCI API key config dictionary, by default None.

• signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

• client_kwargs (dict, optional) – Additional keyword arguments for initializing the
OCI client.

TERMINAL_STATES = ['SUCCEEDED', 'FAILED', 'CANCELED', 'DELETED']

cancel()→ DataScienceJobRun
Cancels a job run This method will wait for the job run to be canceled before returning.

Returns
The job run instance.

Return type
self

create()→ DataScienceJobRun
Creates a job run

download(to_dir)
Downloads files from job run output URI to local.

Parameters
to_dir (str) – Local directory to which the files will be downloaded to.

Returns
The job run instance (self)

Return type
DataScienceJobRun
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property job

The job instance of this run.

Returns
An ADS Job instance

Return type
Job

property log_group_id: str

The log group ID from OCI logging service containing the logs from the job run.

property log_id: str

The log ID from OCI logging service containing the logs from the job run.

property logging: OCILog

The OCILog object containing the logs from the job run

logs(limit: Optional[int] = None)→ list
Gets the logs of the job run.

Parameters
limit (int, optional) – Limit the number of logs to be returned. Defaults to None. All
logs will be returned.

Returns
A list of log records. Each log record is a dictionary with the following keys: id, time, mes-
sage.

Return type
list

property status: str

Lifecycle status

Returns
Status in a string.

Return type
str

to_yaml()→ str
Serializes the object into YAML string.

Returns
YAML stored in a string.

Return type
str

watch(interval: float = 3)→ DataScienceJobRun
Watches the job run until it finishes. Before the job start running, this method will output the job run status.
Once the job start running, the logs will be streamed until the job is success, failed or cancelled.

Parameters
interval (int) – Time interval in seconds between each request to update the logs. Defaults
to 3 (seconds).
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23.1.1.13.6 Module contents

23.1.1.14 ads.model.framework other package

23.1.1.14.1 Submodules

23.1.1.14.2 ads.model.artifact module

exception ads.model.artifact.AritfactFolderStructureError(required_files: Tuple[str])
Bases: Exception

exception ads.model.artifact.ArtifactNestedFolderError(folder: str)
Bases: Exception

exception ads.model.artifact.ArtifactRequiredFilesError(required_files: Tuple[str])
Bases: Exception

class ads.model.artifact.ModelArtifact(artifact_dir: str, model_file_name: str, reload: Optional[bool] =
False)

Bases: object

The class that represents model artifacts. It is designed to help to generate and manage model artifacts.

Initializes a ModelArtifact instance.

Parameters

• artifact_dir (str) – The local artifact folder to store the files needed for deployment.

• model_file_name (str) – The file name of the serialized model.

• reload ((bool, optional). Defaults to False.) – Determine whether will reload
the Model into the env.

Returns
A ModelArtifact instance.

Return type
ModelArtifact

Raises
ValueError – If artifact_dir not provided. If model_file_name not provided.

classmethod from_uri(uri: str, artifact_dir: str, model_file_name: str, force_overwrite: Optional[bool] =
False, auth: Optional[Dict] = None)

Constructs a ModelArtifact object from the existing model artifacts.

Parameters

• uri (str) – The URI of source artifact folder or achive. Can be local path or OCI object
storage URI.

• artifact_dir (str) – The local artifact folder to store the files needed for deployment.

• model_file_name ((str)) – The file name of the serialized model.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files or not.
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• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
A ModelArtifact instance

Return type
ModelArtifact

Raises
ValueError – If uri is equal to artifact_dir, and it not exists.

prepare_runtime_yaml(inference_conda_env: str, inference_python_version: Optional[str] = None,
training_conda_env: Optional[str] = None, training_python_version:
Optional[str] = None, force_overwrite: bool = False, namespace: str =
'id19sfcrra6z', bucketname: str = 'service-conda-packs')→ None

Generate a runtime yaml file and save it to the artifact directory.

Parameters

• inference_conda_env ((str, optional). Defaults to None.) – The object stor-
age path of conda pack which will be used in deployment. Can be either slug or object
storage path of the conda pack. You can only pass in slugs if the conda pack is a service
pack.

• inference_python_version ((str, optional). Defaults to None.) – The
python version which will be used in deployment.

• training_conda_env ((str, optional). Defaults to None.) – The object stor-
age path of conda pack used during training. Can be either slug or object storage path of
the conda pack. You can only pass in slugs if the conda pack is a service pack.

• training_python_version ((str, optional). Defaults to None.) – The
python version used during training.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files.

• namespace ((str, optional)) – The namespace of region.

• bucketname ((str, optional)) – The bucketname of service pack.

Raises
ValueError – If neither slug or conda_env_uri is provided.

Returns
A RuntimeInfo instance.

Return type
RuntimeInfo

prepare_score_py(jinja_template_filename: str)
write score.py file.

Parameters
jinja_template_filename (str.) – The jinja template file name.

Returns
Nothing
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Return type
None

reload()

Syncs the score.py to reload the model and predict function.

Returns
Nothing

Return type
None

23.1.1.14.3 ads.model.generic_model module

class ads.model.generic_model.GenericModel(estimator: Callable, artifact_dir: Optional[str] = None,
properties: Optional[ModelProperties] = None, auth:
Optional[Dict] = None, serialize: bool = True, **kwargs:
dict)

Bases: MetadataMixin, Introspectable

Generic Model class which is the base class for all the frameworks including the unsupported frameworks.

algorithm

The algorithm of the model.

Type
str

artifact_dir

Artifact directory to store the files needed for deployment.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient

estimator

Any model object generated by sklearn framework

Type
Callable

framework

The framework of the model.

Type
str
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hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata

metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model.

Type
str

model_id

The model ID.

Type
str

properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo
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schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema

serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

from_model_deployment(model_deployment_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model deployment.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

prepare_save_deploy(..., \*\*kwargs)
Shortcut for prepare, save and deploy steps.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.

save(..., \*\*kwargs)
Saves model artifacts to the model catalog.
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summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.

Examples

>>> import tempfile
>>> from ads.model.generic_model import GenericModel

>>> class Toy:
... def predict(self, x):
... return x ** 2
>>> estimator = Toy()

>>> model = GenericModel(estimator=estimator, artifact_dir=tempfile.mkdtemp())
>>> model.summary_status()
>>> model.prepare(inference_conda_env="oci://service-conda-packs@id19sfcrra6z/
→˓service_pack/cpu/Data_Exploration_and_Manipulation_for_CPU_Python_3.7/3.0/
→˓dataexpl_p37_cpu_v3",
... inference_python_version="3.7",
... model_file_name="toy_model.pkl",
... training_id=None,
... force_overwrite=True
... )
>>> model.verify(2)
>>> model.save()
>>> model.deploy()
>>> model.predict(2)
>>> model.delete_deployment()

GenericModel Constructor.

Parameters

• estimator ((Callable).) – Trained model.

• artifact_dir ((str, optional). Defaults to None.) – Artifact directory to store
the files needed for deployment.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• serialize ((bool, optional). Defaults to True.) – Whether to serialize the
model to pkl file by default. If False, you need to serialize the model manually, save it under
artifact_dir and update the score.py manually.

classmethod delete(model_id: Optional[str] = None, delete_associated_model_deployment:
Optional[bool] = False, delete_model_artifact: Optional[bool] = False, artifact_dir:
Optional[str] = None, **kwargs: Dict)→ None
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Deletes a model from Model Catalog.

Parameters

• model_id ((str, optional). Defaults to None.) – The model OCID to be
deleted. If the method called on instance level, then self.model_id will be used.

• delete_associated_model_deployment ((bool, optional). Defaults to False.) –
Whether associated model deployments need to be deleted or not.

• delete_model_artifact ((bool, optional). Defaults to False.) – Whether associated
model artifacts need to be deleted or not.

• artifact_dir ((str, optional). Defaults to None) – The local path to the model artifacts
folder. If the method called on instance level, the self.artifact_dir will be used by default.

• kwargs –

auth: (Dict, optional). Defaults to None.
The default authetication is set using ads.set_auth API. If you need to override the de-
fault, use the ads.common.auth.api_keys or ads.common.auth.resource_principal to cre-
ate appropriate authentication signer and kwargs required to instantiate IdentityClient
object.

compartment_id: (str, optional). Defaults to None.
Compartment OCID. If not specified, the value will be taken from the environment vari-
ables.

timeout: (int, optional). Defaults to 10 seconds.
The connection timeout in seconds for the client.

Return type
None

Raises
ValueError – If model_id not provided.

delete_deployment(wait_for_completion: bool = False)
Deletes the current deployment.

Parameters
wait_for_completion ((bool, optional). Defaults to False.) – Whether to
wait till completion.

Raises
ValueError – if there is not deployment attached yet.:

deploy(wait_for_completion: Optional[bool] = True, display_name: Optional[str] = None, description:
Optional[str] = None, deployment_instance_shape: Optional[str] = None,
deployment_instance_count: Optional[int] = None, deployment_bandwidth_mbps: Optional[int] =
None, deployment_log_group_id: Optional[str] = None, deployment_access_log_id: Optional[str] =
None, deployment_predict_log_id: Optional[str] = None, **kwargs: Dict)→ ModelDeployment

Deploys a model. The model needs to be saved to the model catalog at first.

Parameters

• wait_for_completion ((bool, optional). Defaults to True.) – Flag set for
whether to wait for deployment to complete before proceeding.
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• display_name ((str, optional). Defaults to None.) – The name of the model.
If a display_name is not provided in kwargs, a randomly generated easy to remember name
with timestamp will be generated, like ‘strange-spider-2022-08-17-23:55.02’.

• description ((str, optional). Defaults to None.) – The description of the
model.

• deployment_instance_shape ((str, optional). Default to VM.Standard2.1.) – The shape
of the instance used for deployment.

• deployment_instance_count ((int, optional). Defaults to 1.) – The num-
ber of instance used for deployment.

• deployment_bandwidth_mbps ((int, optional). Defaults to 10.) – The band-
width limit on the load balancer in Mbps.

• deployment_log_group_id ((str, optional). Defaults to None.) – The oci
logging group id. The access log and predict log share the same log group.

• deployment_access_log_id ((str, optional). Defaults to None.) – The ac-
cess log OCID for the access logs. https://docs.oracle.com/en-us/iaas/data-science/using/
model_dep_using_logging.htm

• deployment_predict_log_id ((str, optional). Defaults to None.) – The
predict log OCID for the predict logs. https://docs.oracle.com/en-us/iaas/data-science/
using/model_dep_using_logging.htm

• kwargs –

project_id: (str, optional).
Project OCID. If not specified, the value will be taken from the environment variables.

compartment_id
[(str, optional).] Compartment OCID. If not specified, the value will be taken from the
environment variables.

max_wait_time
[(int, optional). Defaults to 1200 seconds.] Maximum amount of time to wait in seconds.
Negative implies infinite wait time.

poll_interval
[(int, optional). Defaults to 60 seconds.] Poll interval in seconds.

Returns
The ModelDeployment instance.

Return type
ModelDeployment

Raises
ValueError – If model_id is not specified.

classmethod from_model_artifact(uri: str, model_file_name: str, artifact_dir: str, auth: Optional[Dict]
= None, force_overwrite: Optional[bool] = False, properties:
Optional[ModelProperties] = None, **kwargs: dict)→
GenericModel

Loads model from a folder, or zip/tar archive.

Parameters

• uri (str) – The folder path, ZIP file path, or TAR file path. It could contain a seriliazed
model(required) as well as any files needed for deployment including: serialized model,
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runtime.yaml, score.py and etc. The content of the folder will be copied to the artifact_dir
folder.

• model_file_name (str) – The serialized model file name.

• artifact_dir (str) – The artifact directory to store the files needed for deployment.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files or not.

• properties ((ModelProperties, optional). Defaults to None.) – Model-
Properties object required to save and deploy model.

Returns
An instance of GenericModel class.

Return type
GenericModel

Raises
ValueError – If model_file_name not provided.

classmethod from_model_catalog(model_id: str, model_file_name: str, artifact_dir: str, auth:
Optional[Dict] = None, force_overwrite: Optional[bool] = False,
properties: Optional[Union[ModelProperties, Dict]] = None,
bucket_uri: Optional[str] = None, remove_existing_artifact:
Optional[bool] = True, **kwargs)→ GenericModel

Loads model from model catalog.

Parameters

• model_id (str) – The model OCID.

• model_file_name ((str)) – The name of the serialized model.

• artifact_dir (str) – The artifact directory to store the files needed for deployment. Will
be created if not exists.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files or not.

• properties ((ModelProperties, optional). Defaults to None.) – Model-
Properties object required to save and deploy model.

• bucket_uri ((str, optional). Defaults to None.) – The OCI Object Stor-
age URI where model artifacts will be copied to. The bucket_uri is only nec-
essary for downloading large artifacts with size is greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• remove_existing_artifact ((bool, optional). Defaults to True.) – Wether artifacts
uploaded to object storage bucket need to be removed or not.

• kwargs –
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compartment_id
[(str, optional)] Compartment OCID. If not specified, the value will be taken from the
environment variables.

timeout
[(int, optional). Defaults to 10 seconds.] The connection timeout in seconds for the
client.

Returns
An instance of GenericModel class.

Return type
GenericModel

classmethod from_model_deployment(model_deployment_id: str, model_file_name: str, artifact_dir: str,
auth: Optional[Dict] = None, force_overwrite: Optional[bool] =
False, properties: Optional[Union[ModelProperties, Dict]] =
None, bucket_uri: Optional[str] = None,
remove_existing_artifact: Optional[bool] = True, **kwargs)→
GenericModel

Loads model from model deployment.

Parameters

• model_deployment_id (str) – The model deployment OCID.

• model_file_name ((str)) – The name of the serialized model.

• artifact_dir (str) – The artifact directory to store the files needed for deployment. Will
be created if not exists.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files or not.

• properties ((ModelProperties, optional). Defaults to None.) – Model-
Properties object required to save and deploy model.

• bucket_uri ((str, optional). Defaults to None.) – The OCI Object Stor-
age URI where model artifacts will be copied to. The bucket_uri is only nec-
essary for downloading large artifacts with size is greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• remove_existing_artifact ((bool, optional). Defaults to True.) – Wether artifacts
uploaded to object storage bucket need to be removed or not.

• kwargs –

compartment_id
[(str, optional)] Compartment OCID. If not specified, the value will be taken from the
environment variables.

timeout
[(int, optional). Defaults to 10 seconds.] The connection timeout in seconds for the
client.

Returns
An instance of GenericModel class.
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Return type
GenericModel

introspect()→ DataFrame
Conducts instrospection.

Returns
A pandas DataFrame which contains the instrospection results.

Return type
pandas.DataFrame

predict(data: Any, **kwargs)→ Dict[str, Any]
Returns prediction of input data run against the model deployment endpoint.

Parameters

• data (Any) – Data for the prediction for onnx models, for local serialization method, data
can be the data types that each framework support.

• kwargs –

content_type: str
Used to indicate the media type of the resource. By default, it will be application/octet-
stream for bytes input and application/json for other cases. The content-type will be
added into headers and passed in the call of model deployment endpoint.

Returns
Dictionary with the predicted values.

Return type
Dict[str, Any]

Raises

• NotActiveDeploymentError – If model deployment process was not started or not fin-
ished yet.

• ValueError – If data is empty or not JSON serializable.

prepare(inference_conda_env: Optional[str] = None, inference_python_version: Optional[str] = None,
training_conda_env: Optional[str] = None, training_python_version: Optional[str] = None,
model_file_name: Optional[str] = None, as_onnx: bool = False, initial_types:
Optional[List[Tuple]] = None, force_overwrite: bool = False, namespace: str = 'id19sfcrra6z',
use_case_type: Optional[str] = None, X_sample: Optional[Union[list, tuple, DataFrame, Series,
ndarray]] = None, y_sample: Optional[Union[list, tuple, DataFrame, Series, ndarray]] = None,
training_script_path: Optional[str] = None, training_id: Optional[str] = None,
ignore_pending_changes: bool = True, max_col_num: int = 2000, **kwargs: Dict)→ None

Prepare and save the score.py, serialized model and runtime.yaml file.

Parameters

• inference_conda_env ((str, optional). Defaults to None.) – Can be either
slug or object storage path of the conda pack. You can only pass in slugs if the conda
pack is a service pack.

• inference_python_version ((str, optional). Defaults to None.) – Python
version which will be used in deployment.

• training_conda_env ((str, optional). Defaults to None.) – Can be either
slug or object storage path of the conda pack. You can only pass in slugs if the conda
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pack is a service pack. If training_conda_env is not provided, training_conda_env will
use the same value of training_conda_env.

• training_python_version ((str, optional). Defaults to None.) – Python
version used during training.

• model_file_name ((str).) – Name of the serialized model.

• as_onnx ((bool, optional). Defaults to False.) – Whether to serialize as onnx
model.

• initial_types ((list[Tuple], optional).) – Defaults to None. Only used for
SklearnModel, LightGBMModel and XGBoostModel. Each element is a tuple of a vari-
able name and a type. Check this link http://onnx.ai/sklearn-onnx/api_summary.html#id2
for more explanation and examples for initial_types.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files.

• namespace ((str, optional).) – Namespace of region. This is used for identifying
which region the service pack is from when you pass a slug to inference_conda_env and
training_conda_env.

• use_case_type (str) – The use case type of the model. Use it
through UserCaseType class or string provided in UseCaseType. For
example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type=”binary_classification”. Check with UseCaseType class to see all
supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input
schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of output data that will be used to generate output
schema.

• training_script_path (str. Defaults to None.) – Training script path.

• training_id ((str, optional). Defaults to value from environment
variables.) – The training OCID for model. Can be notebook session or job OCID.

• ignore_pending_changes (bool. Defaults to False.) – whether to ignore the
pending changes in the git.

• max_col_num ((int, optional). Defaults to utils.
DATA_SCHEMA_MAX_COL_NUM.) – Do not generate the input schema if the input has
more than this number of features(columns).

• kwargs –

impute_values: (dict, optional).
The dictionary where the key is the column index(or names is accepted for pandas
dataframe) and the value is the impute value for the corresponding column.

Raises

• FileExistsError – when files already exist but force_overwrite is False.:

• ValueError – when inference_python_version is not provided, but also cannot be found
through manifest file.:
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Returns
Nothing

Return type
None

prepare_save_deploy(inference_conda_env: Optional[str] = None, inference_python_version:
Optional[str] = None, training_conda_env: Optional[str] = None,
training_python_version: Optional[str] = None, model_file_name: Optional[str] =
None, as_onnx: bool = False, initial_types: Optional[List[Tuple]] = None,
force_overwrite: bool = False, namespace: str = 'id19sfcrra6z', use_case_type:
Optional[str] = None, X_sample: Optional[Union[list, tuple, DataFrame, Series,
ndarray]] = None, y_sample: Optional[Union[list, tuple, DataFrame, Series,
ndarray]] = None, training_script_path: Optional[str] = None, training_id:
Optional[str] = None, ignore_pending_changes: bool = True, max_col_num: int =
2000, model_display_name: Optional[str] = None, model_description:
Optional[str] = None, model_freeform_tags: Optional[dict] = None,
model_defined_tags: Optional[dict] = None, ignore_introspection: Optional[bool]
= False, wait_for_completion: Optional[bool] = True, deployment_display_name:
Optional[str] = None, deployment_description: Optional[str] = None,
deployment_instance_shape: Optional[str] = None, deployment_instance_count:
Optional[int] = None, deployment_bandwidth_mbps: Optional[int] = None,
deployment_log_group_id: Optional[str] = None, deployment_access_log_id:
Optional[str] = None, deployment_predict_log_id: Optional[str] = None,
bucket_uri: Optional[str] = None, overwrite_existing_artifact: Optional[bool] =
True, remove_existing_artifact: Optional[bool] = True, **kwargs: Dict)→
ModelDeployment

Shortcut for prepare, save and deploy steps.

Parameters

• inference_conda_env ((str, optional). Defaults to None.) – Can be either
slug or object storage path of the conda pack. You can only pass in slugs if the conda
pack is a service pack.

• inference_python_version ((str, optional). Defaults to None.) – Python
version which will be used in deployment.

• training_conda_env ((str, optional). Defaults to None.) – Can be either
slug or object storage path of the conda pack. You can only pass in slugs if the conda
pack is a service pack. If training_conda_env is not provided, training_conda_env will
use the same value of training_conda_env.

• training_python_version ((str, optional). Defaults to None.) – Python
version used during training.

• model_file_name ((str).) – Name of the serialized model.

• as_onnx ((bool, optional). Defaults to False.) – Whether to serialize as onnx
model.

• initial_types ((list[Tuple], optional).) – Defaults to None. Only used for
SklearnModel, LightGBMModel and XGBoostModel. Each element is a tuple of a vari-
able name and a type. Check this link http://onnx.ai/sklearn-onnx/api_summary.html#id2
for more explanation and examples for initial_types.

• force_overwrite ((bool, optional). Defaults to False.) – Whether to over-
write existing files.
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• namespace ((str, optional).) – Namespace of region. This is used for identifying
which region the service pack is from when you pass a slug to inference_conda_env and
training_conda_env.

• use_case_type (str) – The use case type of the model. Use it
through UserCaseType class or string provided in UseCaseType. For
example, use_case_type=UseCaseType.BINARY_CLASSIFICATION or
use_case_type=”binary_classification”. Check with UseCaseType class to see all
supported types.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input
schema.

• y_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of output data that will be used to generate output
schema.

• training_script_path (str. Defaults to None.) – Training script path.

• training_id ((str, optional). Defaults to value from environment
variables.) – The training OCID for model. Can be notebook session or job OCID.

• ignore_pending_changes (bool. Defaults to False.) – whether to ignore the
pending changes in the git.

• max_col_num ((int, optional). Defaults to utils.
DATA_SCHEMA_MAX_COL_NUM.) – Do not generate the input schema if the input has
more than this number of features(columns).

• model_display_name ((str, optional). Defaults to None.) – The name of the
model. If a model_display_name is not provided in kwargs, a randomly generated easy
to remember name with timestamp will be generated, like ‘strange-spider-2022-08-17-
23:55.02’.

• model_description ((str, optional). Defaults to None.) – The description of
the model.

• model_freeform_tags (Dict(str, str), Defaults to None.) – Freeform tags
for the model.

• model_defined_tags ((Dict(str, dict(str, object)), optional).
Defaults to None.) – Defined tags for the model.

• ignore_introspection ((bool, optional). Defaults to None.) – Determine
whether to ignore the result of model introspection or not. If set to True, the save will
ignore all model introspection errors.

• wait_for_completion ((bool, optional). Defaults to True.) – Flag set for
whether to wait for deployment to complete before proceeding.

• deployment_display_name ((str, optional). Defaults to None.) – The name
of the model deployment. If a deployment_display_name is not provided in kwargs, a ran-
domly generated easy to remember name with timestamp will be generated, like ‘strange-
spider-2022-08-17-23:55.02’.

• description ((str, optional). Defaults to None.) – The description of the
model.

• deployment_instance_shape ((str, optional). Default to VM.Standard2.1.) – The shape
of the instance used for deployment.
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• deployment_instance_count ((int, optional). Defaults to 1.) – The num-
ber of instance used for deployment.

• deployment_bandwidth_mbps ((int, optional). Defaults to 10.) – The band-
width limit on the load balancer in Mbps.

• deployment_log_group_id ((str, optional). Defaults to None.) – The oci
logging group id. The access log and predict log share the same log group.

• deployment_access_log_id ((str, optional). Defaults to None.) – The ac-
cess log OCID for the access logs. https://docs.oracle.com/en-us/iaas/data-science/using/
model_dep_using_logging.htm

• deployment_predict_log_id ((str, optional). Defaults to None.) – The
predict log OCID for the predict logs. https://docs.oracle.com/en-us/iaas/data-science/
using/model_dep_using_logging.htm

• bucket_uri ((str, optional). Defaults to None.) – The OCI Object Stor-
age URI where model artifacts will be copied to. The bucket_uri is only nec-
essary for downloading large artifacts with size is greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• overwrite_existing_artifact ((bool, optional). Defaults to True.) – Overwrite target
bucket artifact if exists.

• remove_existing_artifact ((bool, optional). Defaults to True.) – Wether artifacts
uploaded to object storage bucket need to be removed or not.

• kwargs –

impute_values: (dict, optional).
The dictionary where the key is the column index(or names is accepted for pandas
dataframe) and the value is the impute value for the corresponding column.

project_id: (str, optional).
Project OCID. If not specified, the value will be taken either from the environment vari-
ables or model properties.

compartment_id
[(str, optional).] Compartment OCID. If not specified, the value will be taken either from
the environment variables or model properties.

timeout: (int, optional). Defaults to 10 seconds.
The connection timeout in seconds for the client.

max_wait_time
[(int, optional). Defaults to 1200 seconds.] Maximum amount of time to wait in seconds.
Negative implies infinite wait time.

poll_interval
[(int, optional). Defaults to 60 seconds.] Poll interval in seconds.

Returns
The ModelDeployment instance.

Return type
ModelDeployment

Raises

• FileExistsError – when files already exist but force_overwrite is False.:
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• ValueError – when inference_python_version is not provided, but also cannot be found
through manifest file.:

reload()→ None
Reloads the model artifact files: score.py and the runtime.yaml.

Returns
Nothing.

Return type
None

reload_runtime_info()→ None
Reloads the model artifact file: runtime.yaml.

Returns
Nothing.

Return type
None

save(display_name: Optional[str] = None, description: Optional[str] = None, freeform_tags: Optional[dict]
= None, defined_tags: Optional[dict] = None, ignore_introspection: Optional[bool] = False,
bucket_uri: Optional[str] = None, overwrite_existing_artifact: Optional[bool] = True,
remove_existing_artifact: Optional[bool] = True, **kwargs)→ str

Saves model artifacts to the model catalog.

Parameters

• display_name ((str, optional). Defaults to None.) – The name of the model.
If a display_name is not provided in kwargs, randomly generated easy to remember name
with timestamp will be generated, like ‘strange-spider-2022-08-17-23:55.02’.

• description ((str, optional). Defaults to None.) – The description of the
model.

• freeform_tags (Dict(str, str), Defaults to None.) – Freeform tags for the
model.

• defined_tags ((Dict(str, dict(str, object)), optional). Defaults to
None.) – Defined tags for the model.

• ignore_introspection ((bool, optional). Defaults to None.) – Determine
whether to ignore the result of model introspection or not. If set to True, the save will
ignore all model introspection errors.

• bucket_uri ((str, optional). Defaults to None.) – The OCI Object Stor-
age URI where model artifacts will be copied to. The bucket_uri is only nec-
essary for uploading large artifacts which size is greater than 2GB. Example:
oci://<bucket_name>@<namespace>/prefix/.

• overwrite_existing_artifact ((bool, optional). Defaults to True.) – Overwrite target
bucket artifact if exists.

• remove_existing_artifact ((bool, optional). Defaults to True.) – Wether artifacts
uploaded to object storage bucket need to be removed or not.

• kwargs –

project_id: (str, optional).
Project OCID. If not specified, the value will be taken either from the environment vari-
ables or model properties.
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compartment_id
[(str, optional).] Compartment OCID. If not specified, the value will be taken either from
the environment variables or model properties.

timeout: (int, optional). Defaults to 10 seconds.
The connection timeout in seconds for the client.

Raises
RuntimeInfoInconsistencyError – When .runtime_info is not synched with run-
time.yaml file.

Returns
model id.

Return type
str

serialize_model(as_onnx: bool = False, initial_types: Optional[List[Tuple]] = None, force_overwrite:
bool = False, X_sample: Optional[any] = None)

Serialize and save model using ONNX or model specific method.

Parameters

• as_onnx ((boolean, optional)) – If set as True, convert into ONNX model.

• initial_types ((List[Tuple], optional)) – a python list. Each element is a tuple
of a variable name and a data type.

• force_overwrite ((boolean, optional)) – If set as True, overwrite serialized model
if exists.

• X_sample ((any, optional). Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model, used to valid model input type.

Returns
Nothing

Return type
None

summary_status()→ DataFrame
A summary table of the current status.

Returns
The summary stable of the current status.

Return type
pd.DataFrame

verify(data: Any, **kwargs)→ Dict[str, Any]
test if deployment works in local environment.

Parameters

• data (Any.) – Data used to test if deployment works in local environment.

• kwargs – content_type: str, used to indicate the media type of the resource.

Returns
A dictionary which contains prediction results.

Return type
Dict
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class ads.model.generic_model.ModelState(value)
Bases: Enum

An enumeration.

AVAILABLE = 'Available'

DONE = 'Done'

NEEDSACTION = 'Needs Action'

NOTAVAILABLE = 'Not Available'

exception ads.model.generic_model.NotActiveDeploymentError(state: str)
Bases: Exception

exception ads.model.generic_model.RuntimeInfoInconsistencyError

Bases: Exception

exception ads.model.generic_model.SerializeInputNotImplementedError

Bases: NotImplementedError

exception ads.model.generic_model.SerializeModelNotImplementedError

Bases: NotImplementedError

class ads.model.generic_model.SummaryStatus

Bases: object

SummaryStatus class which track the status of the Model frameworks.

update_action(detail: str, action: str)→ None
Updates the action of the summary status table of the corresponding detail.

Parameters

• detail ((str)) – Value of the detail in the Details column. Used to locate which row to
update.

• status ((str)) – New status to be updated for the row specified by detail.

Returns
Nothing.

Return type
None

update_status(detail: str, status: str)→ None
Updates the status of the summary status table of the corresponding detail.

Parameters

• detail ((str)) – value of the detail in the Details column. Used to locate which row to
update.

• status ((str)) – new status to be updated for the row specified by detail.

Returns
Nothing.

Return type
None
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23.1.1.14.4 ads.model.model_properties module

class ads.model.model_properties.ModelProperties(inference_conda_env: Optional[str] = None,
inference_python_version: Optional[str] = None,
training_conda_env: Optional[str] = None,
training_python_version: Optional[str] = None,
training_resource_id: Optional[str] = None,
training_script_path: Optional[str] = None,
training_id: Optional[str] = None, compartment_id:
Optional[str] = None, project_id: Optional[str] =
None, bucket_uri: Optional[str] = None,
remove_existing_artifact: Optional[bool] = None,
overwrite_existing_artifact: Optional[bool] = None,
deployment_instance_shape: Optional[str] = None,
deployment_instance_count: Optional[int] = None,
deployment_bandwidth_mbps: Optional[int] =
None, deployment_log_group_id: Optional[str] =
None, deployment_access_log_id: Optional[str] =
None, deployment_predict_log_id: Optional[str] =
None)

Bases: BaseProperties

Represents properties required to save and deploy model.

bucket_uri: str = None

compartment_id: str = None

deployment_access_log_id: str = None

deployment_bandwidth_mbps: int = None

deployment_instance_count: int = None

deployment_instance_shape: str = None

deployment_log_group_id: str = None

deployment_predict_log_id: str = None

inference_conda_env: str = None

inference_python_version: str = None

overwrite_existing_artifact: bool = None

project_id: str = None

remove_existing_artifact: bool = None

training_conda_env: str = None

training_id: str = None

training_python_version: str = None

training_resource_id: str = None

training_script_path: str = None
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23.1.1.14.5 ads.model.runtime.runtime_info module

class ads.model.runtime.runtime_info.RuntimeInfo(model_artifact_version: str = '', model_deployment:
~ads.model.runtime.model_deployment_details.ModelDeploymentDetails
= <factory>, model_provenance:
~ads.model.runtime.model_provenance_details.ModelProvenanceDetails
= <factory>)

Bases: DataClassSerializable

RuntimeInfo class which is the data class represenation of the runtime yaml file.

classmethod from_env()→ RuntimeInfo
Popolate the RuntimeInfo from environment variables.

Returns
A RuntimeInfo instance.

Return type
RuntimeInfo

model_artifact_version: str = ''

model_deployment: ModelDeploymentDetails

model_provenance: ModelProvenanceDetails

save()

Save the RuntimeInfo object into runtime.yaml file under the artifact directory.

Returns
Nothing.

Return type
None

23.1.1.14.6 ads.model.extractor.model_info_extractor_factory module

class ads.model.extractor.model_info_extractor_factory.ModelInfoExtractorFactory

Bases: object

Class that extract Model Taxonomy Metadata for all supported frameworks.

static extract_info(model)
Extracts model taxonomy metadata.

Parameters
model ([ADS model, sklearn, xgboost, lightgbm, keras, oracle_automl]) –
The model object

Returns
A dictionary with keys of Framework, FrameworkVersion, Algorithm, Hyperparameters of
the model

Return type
ModelTaxonomyMetadata
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Examples

>>> from ads.common.model_info_extractor_factory import␣
→˓ModelInfoExtractorFactory
>>> metadata_taxonomy = ModelInfoExtractorFactory.extract_info(model)

23.1.1.14.7 ads.model.extractor.model_artifact module

23.1.1.14.8 ads.model.extractor.automl_extractor module

class ads.model.extractor.automl_extractor.AutoMLExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from automl models.

model

The model to extract metadata from.

Type
object

estimator

The estimator to extract metadata from.

Type
object

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str

property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.

Return type
dict

property version

Extracts the framework version of the model.
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Returns
The framework version of the model.

Return type
str

23.1.1.14.9 ads.model.extractor.xgboost_extractor module

class ads.model.extractor.xgboost_extractor.XgboostExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from xgboost models.

model

The model to extract metadata from.

Type
object

estimator

The estimator to extract metadata from.

Type
object

framework(self )→ str
Returns the framework of the model.

algorithm(self )→ object
Returns the algorithm of the model.

version(self )→ str
Returns the version of framework of the model.

hyperparameter(self )→ dict
Returns the hyperparameter of the model.

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str

property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.
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Return type
dict

property version

Extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

23.1.1.14.10 ads.model.extractor.lightgbm_extractor module

class ads.model.extractor.lightgbm_extractor.LightgbmExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from lightgbm models.

model

The model to extract metadata from.

Type
object

estimator

The estimator to extract metadata from.

Type
object

framework(self )→ str
Returns the framework of the model.

algorithm(self )→ object
Returns the algorithm of the model.

version(self )→ str
Returns the version of framework of the model.

hyperparameter(self )→ dict
Returns the hyperparameter of the model.

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str
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property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.

Return type
dict

property version

Extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

23.1.1.14.11 ads.model.extractor.model_info_extractor module

class ads.model.extractor.model_info_extractor.ModelInfoExtractor

Bases: ABC

The base abstract class to extract model metadata.

framework(self )→ str
Returns the framework of the model.

algorithm(self )→ object
Returns the algorithm of the model.

version(self )→ str
Returns the version of framework of the model.

hyperparameter(self )→ dict
Returns the hyperparameter of the model.

info(self )→ dict
Returns the model taxonomy metadata information.

abstract algorithm()

The abstract method to extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

abstract framework()

The abstract method to extracts the framework of the model.

Returns
The framework of the model.

Return type
str
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abstract hyperparameter()

The abstract method to extracts the hyperparameters of the model.

Returns
The hyperparameter of the model.

Return type
dict

info()

Extracts the taxonomy metadata of the model.

Returns
The taxonomy metadata of the model.

Return type
dict

abstract version()

The abstract method to extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

ads.model.extractor.model_info_extractor.normalize_hyperparameter(data: Dict)→ dict
Converts all the fields to string to make sure it’s json serializable.

Parameters
data (([Dict])) – The hyperparameter returned by the model.

Returns
Normalized (json serializable) dictionary.

Return type
Dict

23.1.1.14.12 ads.model.extractor.sklearn_extractor module

class ads.model.extractor.sklearn_extractor.SklearnExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from sklearn models.

model

The model to extract metadata from.

Type
object

estimator

The estimator to extract metadata from.

Type
object

framework(self )→ str
Returns the framework of the model.
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algorithm(self )→ object
Returns the algorithm of the model.

version(self )→ str
Returns the version of framework of the model.

hyperparameter(self )→ dict
Returns the hyperparameter of the model.

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str

property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.

Return type
dict

property version

Extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

23.1.1.14.13 ads.model.extractor.keras_extractor module

class ads.model.extractor.keras_extractor.KerasExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from keras models.

model

The model to extract metadata from.

Type
object
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estimator

The estimator to extract metadata from.

Type
object

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str

property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.

Return type
dict

property version

Extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

23.1.1.14.14 ads.model.extractor.tensorflow_extractor module

class ads.model.extractor.tensorflow_extractor.TensorflowExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from tensorflow models.

model

The model to extract metadata from.

Type
object

estimator

The estimator to extract metadata from.

Type
object
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framework(self )→ str
Returns the framework of the model.

algorithm(self )→ object
Returns the algorithm of the model.

version(self )→ str
Returns the version of framework of the model.

hyperparameter(self )→ dict
Returns the hyperparameter of the model.

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str

property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.

Return type
dict

property version

Extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

23.1.1.14.15 ads.model.extractor.pytorch_extractor module

class ads.model.extractor.pytorch_extractor.PytorchExtractor(model)
Bases: ModelInfoExtractor

Class that extract model metadata from pytorch models.

model

The model to extract metadata from.

Type
object
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estimator

The estimator to extract metadata from.

Type
object

framework(self )→ str
Returns the framework of the model.

algorithm(self )→ object
Returns the algorithm of the model.

version(self )→ str
Returns the version of framework of the model.

hyperparameter(self )→ dict
Returns the hyperparameter of the model.

property algorithm

Extracts the algorithm of the model.

Returns
The algorithm of the model.

Return type
object

property framework

Extracts the framework of the model.

Returns
The framework of the model.

Return type
str

property hyperparameter

Extracts the hyperparameters of the model.

Returns
The hyperparameters of the model.

Return type
dict

property version

Extracts the framework version of the model.

Returns
The framework version of the model.

Return type
str

836 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

23.1.1.14.16 Module contents

23.1.1.15 ads.model.deployment package

23.1.1.15.1 Submodules

23.1.1.15.2 ads.model.deployment.model_deployer module

APIs to interact with Oracle’s Model Deployment service.

There are three main classes: ModelDeployment, ModelDeploymentDetails, ModelDeployer.

One creates a ModelDeployment and deploys it under the umbrella of the ModelDeployer class. This way multiple
ModelDeployments can be unified with one ModelDeployer. The ModelDeployer class also serves as the interface to all
the deployments. ModelDeploymentDetails holds information about the particular details of a particular deployment,
such as how many instances, etc. In this way multiple, independent ModelDeployments with the same details can be
created using the ModelDeployer class.

Examples

>>> from model_deploy.model_deployer import ModelDeployer, ModelDeploymentDetails
>>> deployer = ModelDeployer("model_dep_conf.yaml")
>>> deployment_properties = ModelDeploymentProperties(
... 'ocid1.datasciencemodel.ocn.reg.xxxxxxxxxxxxxxxxxxxxxxxxx')
... .with_prop('display_name', "My model display name")
... .with_prop("project_id", project_id)
... .with_prop("compartment_id", compartment_id)
... .with_instance_configuration(
... config={"INSTANCE_SHAPE":"VM.Standard2.1",
... "INSTANCE_COUNT":"1",
... 'bandwidth_mbps':10})
... .build()
>>> deployment_info = deployer.deploy(deployment_properties,
... max_wait_time=600, poll_interval=15)
>>> print(deployment_info.model_deployment_id)
>>> print(deployment_info.workflow_req_id)
>>> print(deployment_info.url)
>>> deployer.list_deployments() # Optionally pass in a status

class ads.model.deployment.model_deployer.ModelDeployer(config: Optional[dict] = None)
Bases: object

ModelDeployer is the class responsible for deploying the ModelDeployment

config

ADS auth dictionary for OCI authentication.

Type
dict

ds_client

data science client

Type
DataScienceClient
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ds_composite_client

composite data science client

Type
DataScienceCompositeClient

deploy(model_deployment_details, \*\*kwargs)
Deploy the model specified by model_deployment_details.

get_model_deployment(model_deployment_id: str)
Get the ModelDeployment specified by model_deployment_id.

get_model_deployment_state(model_deployment_id)
Get the state of the current deployment specified by id.

delete(model_deployment_id, \*\*kwargs)
Remove the model deployment specified by the id or Model Deployment Object

list_deployments(status)
lists the model deployments associated with current compartment and data science client

show_deployments(status)
shows the deployments filtered by status in a Dataframe

Initializes model deployer.

Parameters
config (dict, optional) – ADS auth dictionary for OCI authentication. This can be gener-
ated by calling ads.common.auth.api_keys() or ads.common.auth.resource_principal(). If this is
None, ads.common.default_signer(client_kwargs) will be used.

delete(model_deployment_id, wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval:
int = 30)→ ModelDeployment

Deletes the model deployment specified by OCID.

Parameters

• model_deployment_id (str) – Model deployment OCID.

• wait_for_completion (bool) – Wait for deletion to complete. Defaults to True.

• max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 600).
Negative implies infinite wait time.

• poll_interval (int) – Poll interval in seconds (Defaults to 60).

Return type
A ModelDeployment instance that was deleted

deploy(properties: Optional[Union[ModelDeploymentProperties, Dict]] = None, wait_for_completion: bool
= True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs)→ ModelDeployment

Deploys a model.

Parameters

• properties (ModelDeploymentProperties or dict) – Properties to deploy the
model. Properties can be None when kwargs are used for specifying properties.

• wait_for_completion (bool) – Flag set for whether to wait for deployment to complete
before proceeding. Optional, defaults to True.

838 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

• max_wait_time (int) – Maximum amount of time to wait in seconds. Optional, defaults
to 1200. Negative value implies infinite wait time.

• poll_interval (int) – Poll interval in seconds. Optional, defaults to 30.

• kwargs – Keyword arguments for initializing ModelDeploymentProperties. See ModelDe-
ploymentProperties() for details.

Returns
A ModelDeployment instance.

Return type
ModelDeployment

deploy_from_model_uri(model_uri: str, properties: Optional[Union[ModelDeploymentProperties, Dict]]
= None, wait_for_completion: bool = True, max_wait_time: int = 1200,
poll_interval: int = 30, **kwargs)→ ModelDeployment

Deploys a model.

Parameters

• model_uri (str) – uri to model files, can be local or in cloud storage

• properties (ModelDeploymentProperties or dict) – Properties to deploy the
model. Properties can be None when kwargs are used for specifying properties.

• wait_for_completion (bool) – Flag set for whether to wait for deployment to complete
before proceeding. Defaults to True

• max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 1200).
Negative implies infinite wait time.

• poll_interval (int) – Poll interval in seconds (Defaults to 30).

• kwargs – Keyword arguments for initializing ModelDeploymentProperties

Returns
A ModelDeployment instance

Return type
ModelDeployment

get_model_deployment(model_deployment_id: str)→ ModelDeployment
Gets a ModelDeployment by OCID.

Parameters
model_deployment_id (str) – Model deployment OCID

Returns
A ModelDeployment instance

Return type
ModelDeployment

get_model_deployment_state(model_deployment_id: str)→ State
Gets the state of a deployment specified by OCID

Parameters
model_deployment_id (str) – Model deployment OCID

Returns
The state of the deployment
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Return type
str

list_deployments(status=None, compartment_id=None, **kwargs)→ list
Lists the model deployments associated with current compartment and data science client

Parameters

• status (str) – Status of deployment. Defaults to None.

• compartment_id (str) – Target compartment to list deployments from. Defaults to the
compartment set in the environment variable “NB_SESSION_COMPARTMENT_OCID”.
If “NB_SESSION_COMPARTMENT_OCID” is not set, the root compartment ID will be
used. An ValueError will be raised if root compartment ID cannot be determined.

• kwargs – The values are passed to oci.data_science.DataScienceClient.list_model_deployments.

Returns
A list of ModelDeployment objects.

Return type
list

Raises
ValueError – If compartment_id is not specified and cannot be determined from the envi-
ronment.

show_deployments(status=None, compartment_id=None)→ DataFrame

Returns the model deployments associated with current compartment and data science client
as a Dataframe that can be easily visualized

Parameters

• status (str) – Status of deployment. Defaults to None.

• compartment_id (str) – Target compartment to list deployments from. Defaults to the
compartment set in the environment variable “NB_SESSION_COMPARTMENT_OCID”.
If “NB_SESSION_COMPARTMENT_OCID” is not set, the root compartment ID will be
used. An ValueError will be raised if root compartment ID cannot be determined.

Returns
pandas Dataframe containing information about the ModelDeployments

Return type
DataFrame

Raises
ValueError – If compartment_id is not specified and cannot be determined from the envi-
ronment.

update(model_deployment_id: str, properties: Optional[ModelDeploymentProperties] = None,
wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs)→
ModelDeployment

Updates an existing model deployment.

Parameters

• model_deployment_id (str) – Model deployment OCID.

• properties (ModelDeploymentProperties) – An instance of ModelDeploymentProp-
erties or dict to initialize the ModelDeploymentProperties. Defaults to None.
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• wait_for_completion (bool) – Flag set for whether to wait for deployment to complete
before proceeding. Defaults to True.

• max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 1200).

• poll_interval (int) – Poll interval in seconds (Defaults to 30).

• kwargs – Keyword arguments for initializing ModelDeploymentProperties.

Returns
A ModelDeployment instance

Return type
ModelDeployment

23.1.1.15.3 ads.model.deployment.model_deployment module

class ads.model.deployment.model_deployment.ModelDeployment(properties=None, config=None,
workflow_req_id=None,
model_deployment_id=None,
model_deployment_url='', **kwargs)

Bases: object

A class used to represent a Model Deployment.

config

Deployment configuration parameters

Type
(dict)

deployment_properties

ModelDeploymentProperties object

Type
(ModelDeploymentProperties)

workflow_state_progress

Workflow request id

Type
(str)

workflow_steps

The number of steps in the workflow

Type
(int)

url

The model deployment url endpoint

Type
(str)

ds_client

The data science client used by model deployment

Type
(DataScienceClient)
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ds_composite_client

The composite data science client used by the model deployment

Type
(DataScienceCompositeClient)

workflow_req_id

Workflow request id

Type
(str)

model_deployment_id

model deployment id

Type
(str)

state

Returns the deployment state of the current Model Deployment object

Type
(State)

deploy(wait_for_completion, \*\*kwargs)
Deploy the current Model Deployment object

delete(wait_for_completion, \*\*kwargs)
Deletes the current Model Deployment object

update(wait_for_completion, \*\*kwargs)
Updates a model deployment

list_workflow_logs()

Returns a list of the steps involved in deploying a model

Initializes a ModelDeployment

Parameters

• properties (ModelDeploymentProperties or dict) – Object containing deployment
properties. properties can be None when kwargs are used for specifying properties.

• config (dict) – ADS auth dictionary for OCI authentication. This can be generated by call-
ing ads.common.auth.api_keys() or ads.common.auth.resource_principal(). If this is None,
ads.common.default_signer(client_kwargs) will be used.

• workflow_req_id (str) – Workflow request id. Defaults to “”

• model_deployment_id (str) – Model deployment OCID. Defaults to “”

• model_deployment_url (str) – Model deployment url. Defaults to “”

• kwargs – Keyword arguments for initializing ModelDeploymentProperties

property access_log: ModelDeploymentLog

Gets the model deployment predict logs object.

Returns
The ModelDeploymentLog object containing the predict logs.

Return type
ModelDeploymentLog
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delete(wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30)
Deletes the ModelDeployment

Parameters

• wait_for_completion (bool) – Flag set for whether to wait for deployment to complete
before proceeding. Defaults to True.

• max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 600).
Negative implies infinite wait time.

• poll_interval (int) – Poll interval in seconds (Defaults to 60).

Returns
The instance of ModelDeployment.

Return type
ModelDeployment

deploy(wait_for_completion: bool = True, max_wait_time: int = 1200, poll_interval: int = 30)
deploy deploys the current ModelDeployment object

Parameters

• wait_for_completion (bool) – Flag set for whether to wait for deployment to complete
before proceeding. Defaults to True.

• max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 600).
Negative implies infinite wait time.

• poll_interval (int) – Poll interval in seconds (Defaults to 60).

Returns
The instance of ModelDeployment.

Return type
ModelDeployment

list_workflow_logs()→ list
Returns a list of the steps involved in deploying a model

Returns
List of dictionaries detailing the status of each step in the deployment process.

Return type
list

logs(log_type: str = 'access', **kwargs)
Gets the access or predict logs.

Parameters

• log_type ((str, optional). Defaults to "access".) – The log type. Can be
“access” or “predict”.

• kwargs (dict) – Back compatability arguments.

Returns
The ModelDeploymentLog object containing the logs.

Return type
ModelDeploymentLog
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predict(json_input: Optional[dict] = None, data: Optional[Union[bytes, dict]] = None, **kwargs)→ dict
Returns prediction of input data run against the model deployment endpoint

Parameters

• json_input (dict) – Json payload for the prediction.

• data (Union[bytes, dict]) – Payload for the prediction.

• kwargs –

content_type: str
Used to indicate the media type of the resource. By default, it will be application/octet-
stream for bytes input and application/json otherwise. The content-type header will be
set to this value when calling the model deployment endpoint.

Returns
Prediction results.

Return type
dict

property predict_log: ModelDeploymentLog

Gets the model deployment predict logs object.

Returns
The ModelDeploymentLog object containing the predict logs.

Return type
ModelDeploymentLog

show_logs(time_start: Optional[datetime] = None, time_end: Optional[datetime] = None, limit=100,
log_type='access')

Shows deployment logs as a pandas dataframe.

Parameters

• time_start ((datetime.datetime, optional). Defaults to None.) – Starting
date and time in RFC3339 format for retrieving logs. Defaults to None. Logs will be
retrieved 14 days from now.

• time_end ((datetime.datetime, optional). Defaults to None.) – Ending
date and time in RFC3339 format for retrieving logs. Defaults to None. Logs will be
retrieved until now.

• limit ((int, optional). Defaults to 100.) – The maximum number of items to
return.

• log_type ((str, optional). Defaults to "access".) – The log type. Can be
“access” or “predict”.

Return type
A pandas DataFrame containing logs.

property state: State

Returns the deployment state of the current Model Deployment object

property status: State

Returns the deployment state of the current Model Deployment object
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update(properties: Optional[Union[ModelDeploymentProperties, dict]] = None, wait_for_completion: bool
= True, max_wait_time: int = 1200, poll_interval: int = 30, **kwargs)

Updates a model deployment

You can update model_deployment_configuration_details and change instance_shape and model_id when
the model deployment is in the ACTIVE lifecycle state. The bandwidth_mbps or instance_count can only
be updated while the model deployment is in the INACTIVE state. Changes to the bandwidth_mbps or
instance_count will take effect the next time the ActivateModelDeployment action is invoked on the model
deployment resource.

Parameters

• properties (ModelDeploymentProperties or dict) – The properties for updating
the deployment.

• wait_for_completion (bool) – Flag set for whether to wait for deployment to complete
before proceeding. Defaults to True.

• max_wait_time (int) – Maximum amount of time to wait in seconds (Defaults to 1200).
Negative implies infinite wait time.

• poll_interval (int) – Poll interval in seconds (Defaults to 60).

• kwargs – dict

Returns
The instance of ModelDeployment.

Return type
ModelDeployment

class ads.model.deployment.model_deployment.ModelDeploymentLog(model_deployment_id: str,
**kwargs)

Bases: OCILog

The class representing model deployment logs.

Initializes an OCI log model for the model deployment.

Parameters

• model_deployment_id (str) – The OCID of the model deployment. This parameter will
be used as a source field to filter the log records.

• kwargs (dict) – Keyword arguments for initializing ModelDeploymentLog.

head(limit=100, time_start: Optional[datetime] = None)→ None
Prints the preceding log records.

Parameters

• limit ((int, optional). Defaults to 100.) – Maximum number of records to be
returned.

• time_start ((datetime.datetime, optional)) – Starting time for the log query.
Defaults to None. Logs up to 14 days from now will be returned.

Returns
Nothing

Return type
None
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stream(interval: int = 3, stop_condition: Optional[callable] = None, time_start: Optional[datetime] =
None)→ None

Streams logs to console/terminal until stop_condition() returns true.

Parameters

• interval ((int, optional). Defaults to 3 seconds.) – The time interval be-
tween sending each request to pull logs from OCI.

• stop_condition ((callable, optional). Defaults to None.) – A function to
determine if the streaming should stop. The log streaming will stop if the function returns
true.

• time_start (datetime.datetime) – Starting time for the log query. Defaults to None.
Logs up to 14 days from now will be returned.

Returns
Nothing

Return type
None

tail(limit=100, time_start: Optional[datetime] = None)→ None
Prints the most recent log records.

Parameters

• limit ((int, optional). Defaults to 100.) – Maximum number of records to be
returned.

• time_start ((datetime.datetime, optional)) – Starting time for the log query.
Defaults to None. Logs up to 14 days from now will be returned.

Returns
Nothing

Return type
None

class ads.model.deployment.model_deployment.ModelDeploymentLogType

Bases: object

ACCESS = 'access'

PREDICT = 'predict'

23.1.1.15.4 ads.model.deployment.model_deployment_properties module
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class ads.model.deployment.model_deployment_properties.ModelDeploymentProperties(model_id:
Op-
tional[str]
= None,
model_uri:
Op-
tional[str]
= None,
oci_model_deployment:
Op-
tional[Union[ModelDeployment,
Create-
ModelDe-
ployment-
Details,
Update-
ModelDe-
ployment-
Details,
dict]] =
None,
config:
Op-
tional[dict]
= None,
**kwargs)

Bases: OCIDataScienceMixin, ModelDeployment

Represents the details for a model deployment

swagger_types

The property names and the corresponding types of OCI ModelDeployment model.

Type
dict

model_id

The model artifact OCID in model catalog.

Type
str

model_uri

uri to model files, can be local or in cloud storage.

Type
str

with_prop(property_name, value)
Set the model deployment details property_name attribute to value

with_instance_configuration(config)
Set the configuration of VM instance.

with_access_log(log_group_id, log_id)
Config the access log with OCI logging service
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with_predict_log(log_group_id, log_id)
Config the predict log with OCI logging service

build()

Return an instance of CreateModelDeploymentDetails for creating the deployment.

Initialize a ModelDeploymentProperties object by specifying one of the followings:

Parameters

• model_id (str) – Model Artifact OCID. The model_id must be specified either explicitly
or as an attribute of the OCI object.

• model_uri (str) – uri to model files, can be local or in cloud storage.

• oci_model_deployment (ModelDeployment or CreateModelDeploymentDetails
or UpdateModelDeploymentDetails or dict) – An OCI model or dict containing
model deployment details. The OCI model can be an instance of either ModelDeployment,
CreateModelDeploymentDetails or UpdateModelConfigurationDetails.

• config (dict) – ADS auth dictionary for OCI authentication. This can be generated by call-
ing ads.common.auth.api_keys() or ads.common.auth.resource_principal(). If this is None,
ads.common.default_signer(client_kwargs) will be used.

• kwargs – Users can also initialize the object by using keyword arguments. The following
keyword arguments are supported by OCI models:

– display_name,

– description,

– project_id,

– compartment_id,

– model_deployment_configuration_details,

– category_log_details,

– freeform_tags,

– defined_tags.

If display_name is not specified, a randomly generated easy to remember name will be gen-
erated, like ‘strange-spider-2022-08-17-23:55.02’.

ModelDeploymentProperties also supports the following additional keyward arguments:

– instance_shape,

– instance_count,

– bandwidth_mbps,

– access_log_group_id,

– access_log_id,

– predict_log_group_id,

– predict_log_id.

These additional arguments will be saved into appropriate properties in the OCI model.

Raises
ValueError – model_id is None AND not specified in
oci_model_deployment.model_deployment_configuration_details.model_configuration_details.
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build()→ CreateModelDeploymentDetails
Converts the deployment properties to OCI CreateModelDeploymentDetails object. Converts a model URI
into a model OCID if user passed in a URI.

Returns
A CreateModelDeploymentDetails instance ready for OCI API.

Return type
CreateModelDeploymentDetails

sub_properties = ['instance_shape', 'instance_count', 'bandwidth_mbps',
'access_log_group_id', 'access_log_id', 'predict_log_group_id', 'predict_log_id']

to_oci_model(oci_model)
Convert properties into an OCI data model

Parameters
oci_model (class) – The class of OCI data model, e.g.,
oci.data_science_models.CreateModelDeploymentDetails

to_update_deployment()→ UpdateModelDeploymentDetails
Converts the deployment properties to OCI UpdateModelDeploymentDetails object.

Returns
An UpdateModelDeploymentDetails instance ready for OCI API.

Return type
CreateModelDeploymentDetails

with_access_log(log_group_id: str, log_id: str)
Adds access log config

Parameters

• group_id (str) – Log group ID of OCI logging service

• log_id (str) – Log ID of OCI logging service

Returns
self

Return type
ModelDeploymentProperties

with_category_log(log_type: str, group_id: str, log_id: str)
Adds category log configuration

Parameters

• log_type (str) – The type of logging to be configured. Must be “access” or “predict”

• group_id (str) – Log group ID of OCI logging service

• log_id (str) – Log ID of OCI logging service

Returns
self

Return type
ModelDeploymentProperties

Raises
ValueError – When log_type is invalid
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with_instance_configuration(config)
with_instance_configuration creates a ModelDeploymentDetails object with a specific config

Parameters
config (dict) – dictionary containing instance configuration about the deployment. The
following keys are supported:

• instance_shape,

• instance_count,

• bandwidth_mbps.

The instance_shape and instance_count are required when creating a new deployment. They
are optional when updating an existing deployment.

Returns
self

Return type
ModelDeploymentProperties

with_logging_configuration(access_log_group_id: str, access_log_id: str, predict_log_group_id:
Optional[str] = None, predict_log_id: Optional[str] = None)

Adds OCI logging configurations for OCI logging service

Parameters

• access_log_group_id (str) – Log group ID of OCI logging service for access log

• access_log_id (str) – Log ID of OCI logging service for access log

• predict_log_group_id (str) – Log group ID of OCI logging service for predict log

• predict_log_id (str) – Log ID of OCI logging service for predict log

Returns
self

Return type
ModelDeploymentProperties

with_predict_log(log_group_id: str, log_id: str)
Adds predict log config

Parameters

• group_id (str) – Log group ID of OCI logging service

• log_id (str) – Log ID of OCI logging service

Returns
self

Return type
ModelDeploymentProperties

with_prop(property_name: str, value: Any)
Sets model deployment’s property_name attribute to value

Parameters

• property_name (str) – Name of a model deployment property.

• value – New value for property attribute.
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Returns
self

Return type
ModelDeploymentProperties

23.1.1.15.5 Module contents

23.1.1.16 ads.model.framework package

23.1.1.16.1 Submodules

23.1.1.16.2 ads.model.framework.automl_model module

class ads.model.framework.automl_model.AutoMLModel(estimator: Callable, artifact_dir: str, properties:
Optional[ModelProperties] = None, auth:
Optional[Dict] = None, **kwargs)

Bases: GenericModel

AutoMLModel class for estimators from AutoML framework.

algorithm

“ensemble”, the algorithm name of the model.

Type
str

artifact_dir

Artifact directory to store the files needed for deployment.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient

estimator

A trained automl estimator/model using oracle automl.

Type
Callable

framework

“oracle_automl”, the framework name of the estimator.

Type
str
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hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata

metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model. Default to “model.pkl”.

Type
str

model_id

The model ID.

Type
str

properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo
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schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema

serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.

save(..., \*\*kwargs)
Saves model artifacts to the model catalog.

summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.
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Examples

>>> import tempfile
>>> import logging
>>> import warnings
>>> from ads.automl.driver import AutoML
>>> from ads.automl.provider import OracleAutoMLProvider
>>> from ads.dataset.dataset_browser import DatasetBrowser
>>> from ads.model.framework.automl_model import AutoMLModel
>>> from ads.common.model_metadata import UseCaseType
>>> ds = DatasetBrowser.sklearn().open("wine").set_target("target")
>>> train, test = ds.train_test_split(test_size=0.1, random_state = 42)

>>> ml_engine = OracleAutoMLProvider(n_jobs=-1, loglevel=logging.ERROR)
>>> oracle_automl = AutoML(train, provider=ml_engine)
>>> model, baseline = oracle_automl.train(
... model_list=['LogisticRegression', 'DecisionTreeClassifier'],
... random_state = 42,
... time_budget = 500
... )

>>> automl_model.prepare(inference_conda_env=inference_conda_env, force_
→˓overwrite=True)
>>> automl_model.verify(...)
>>> automl_model.save()
>>> model_deployment = automl_model.deploy(wait_for_completion=False)

Initiates a AutoMLModel instance.

Parameters

• estimator (Callable) – Any model object generated by automl framework.

• artifact_dir (str) – Directory for generate artifact.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
AutoMLModel instance.

Return type
AutoMLModel

Raises
TypeError – If the input model is not an AutoML model.

serialize_model(force_overwrite: Optional[bool] = False, X_sample: Optional[Union[Dict, str, List,
Tuple, ndarray, Series, DataFrame]] = None, **kwargs: Dict)

Serialize and save AutoML model using pkl.

Parameters
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• force_overwrite ((bool, optional). Defaults to False.) – If set as True,
overwrite serialized model if exists.

• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate input schema.

Returns
Nothing.

Return type
None

23.1.1.16.3 ads.model.framework.lightgbm_model module

class ads.model.framework.lightgbm_model.LightGBMModel(estimator: Callable, artifact_dir: str,
properties: Optional[ModelProperties] =
None, auth: Optional[Dict] = None,
**kwargs)

Bases: GenericModel

LightGBMModel class for estimators from Lightgbm framework.

algorithm

The algorithm of the model.

Type
str

artifact_dir

Artifact directory to store the files needed for deployment.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient

estimator

A trained lightgbm estimator/model using Lightgbm.

Type
Callable

framework

“lightgbm”, the framework name of the model.
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Type
str

hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata

metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model.

Type
str

model_id

The model ID.

Type
str

properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo
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schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema

serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.

save(..., \*\*kwargs)
Saves model artifacts to the model catalog.

summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.
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Examples

>>> import lightgbm as lgb
>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.lightgbm_model import LightGBMModel

>>> iris = load_iris()
>>> X, y = iris.data, iris.target

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> train = lgb.Dataset(X_train, label=y_train)
>>> param = {
... 'objective': 'multiclass', 'num_class': 3,
... }
>>> lightgbm_estimator = lgb.train(param, train)

>>> lightgbm_model = LightGBMModel(estimator=lightgbm_estimator,
... artifact_dir=tempfile.mkdtemp())

>>> lightgbm_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_
→˓overwrite=True)
>>> lightgbm_model.reload()
>>> lightgbm_model.verify(X_test)
>>> lightgbm_model.save()
>>> model_deployment = lightgbm_model.deploy(wait_for_completion=False)
>>> lightgbm_model.predict(X_test)

Initiates a LightGBMModel instance. This class wraps the Lightgbm model as estimator. It’s primary purpose
is to hold the trained model and do serialization.

Parameters

• estimator – any model object generated by Lightgbm framework

• artifact_dir (str) – Directory for generate artifact.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
LightGBMModel instance.

Return type
LightGBMModel

Raises
TypeError – If the input model is not a Lightgbm model or not supported for serialization.:
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Examples

>>> import lightgbm as lgb
>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.lightgbm_model import LightGBMModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> train = lgb.Dataset(X_train, label=y_train)
>>> param = {
... 'objective': 'multiclass', 'num_class': 3,
... }
>>> lightgbm_estimator = lgb.train(param, train)
>>> lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_
→˓dir=tempfile.mkdtemp())
>>> lightgbm_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
>>> lightgbm_model.verify(X_test)
>>> lightgbm_model.save()
>>> model_deployment = lightgbm_model.deploy()
>>> lightgbm_model.predict(X_test)
>>> lightgbm_model.delete_deployment()

generate_initial_types(X_sample: Any)→ List
Auto generate intial types.

Parameters
X_sample ((Any)) – Train data.

Returns
Initial types.

Return type
List

serialize_model(as_onnx: bool = False, initial_types: Optional[List[Tuple]] = None, force_overwrite:
bool = False, X_sample: Optional[Union[Dict, str, List, Tuple, ndarray, Series,
DataFrame]] = None, **kwargs: Dict)

Serialize and save Lightgbm model using ONNX or model specific method.

Parameters

• artifact_dir (str) – Directory for generate artifact.

• as_onnx ((boolean, optional). Defaults to False.) – If set as True, provide
initial_types or X_sample to convert into ONNX.

• initial_types ((List[Tuple], optional). Defaults to None.) – Each ele-
ment is a tuple of a variable name and a type.

• force_overwrite ((boolean, optional). Defaults to False.) – If set as True,
overwrite serialized model if exists.

• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate initial_types.
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Returns
Nothing.

Return type
None

to_onnx(initial_types: List[Tuple] = None, X_sample: Optional[Union[Dict, str, List, Tuple, ndarray, Series,
DataFrame]] = None, **kwargs)

Produces an equivalent ONNX model of the given Lightgbm model.

Parameters

• initial_types ((List[Tuple], optional). Defaults to None.) – Each ele-
ment is a tuple of a variable name and a type.

• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate initial_types.

Returns
An ONNX model (type

Return type
ModelProto) which is equivalent to the input Lightgbm model.

23.1.1.16.4 ads.model.framework.pytorch_model module

class ads.model.framework.pytorch_model.PyTorchModel(estimator: callable, artifact_dir: str,
properties: Optional[ModelProperties] =
None, auth: Dict = None, **kwargs)

Bases: GenericModel

PyTorchModel class for estimators from Pytorch framework.

algorithm

The algorithm of the model.

Type
str

artifact_dir

Artifact directory to store the files needed for deployment.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient
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estimator

A trained pytorch estimator/model using Pytorch.

Type
Callable

framework

“pytorch”, the framework name of the model.

Type
str

hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata

metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model.

Type
str

model_id

The model ID.

Type
str
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properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo

schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema

serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.
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save(..., \*\*kwargs)
Saves model artifacts to the model catalog.

summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.

Examples

>>> torch_model = PyTorchModel(estimator=torch_estimator,
... artifact_dir=tmp_model_dir)
>>> inference_conda_env = "generalml_p37_cpu_v1"

>>> torch_model.prepare(inference_conda_env=inference_conda_env, force_
→˓overwrite=True)
>>> torch_model.reload()
>>> torch_model.verify(...)
>>> torch_model.save()
>>> model_deployment = torch_model.deploy(wait_for_completion=False)
>>> torch_model.predict(...)

Initiates a PyTorchModel instance.

Parameters

• estimator (callable) – Any model object generated by pytorch framework

• artifact_dir (str) – artifact directory to store the files needed for deployment.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
PyTorchModel instance.

Return type
PyTorchModel

serialize_model(as_onnx: bool = False, force_overwrite: bool = False, X_sample: Optional[Union[Dict,
str, List, Tuple, ndarray, Series, DataFrame]] = None, **kwargs)→ None

Serialize and save Pytorch model using ONNX or model specific method.

Parameters

• as_onnx ((bool, optional). Defaults to False.) – If set as True, convert into
ONNX model.

• force_overwrite ((bool, optional). Defaults to False.) – If set as True,
overwrite serialized model if exists.
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• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input schema
and detect onnx_args.

• **kwargs (optional params used to serialize pytorch model to onnx,) –

• following (including the) – onnx_args: (tuple or torch.Tensor), default to None Con-
tains model inputs such that model(onnx_args) is a valid invocation of the model. Can be
structured either as: 1) ONLY A TUPLE OF ARGUMENTS; 2) A TENSOR; 3) A TU-
PLE OF ARGUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS
input_names: (List[str], optional). Names to assign to the input nodes of the graph, in order.
output_names: (List[str], optional). Names to assign to the output nodes of the graph, in
order. dynamic_axes: (dict, optional), default to None. Specify axes of tensors as dynamic
(i.e. known only at run-time).

Returns
Nothing.

Return type
None

to_onnx(path: str = None, onnx_args=None, X_sample: Optional[Union[Dict, str, List, Tuple, ndarray,
Series, DataFrame]] = None, input_names: List[str] = ['input'], output_names: List[str] =
['output'], dynamic_axes=None)

Exports the given Pytorch model into ONNX format.

Parameters

• path (str, default to None) – Path to save the serialized model.

• onnx_args ((tuple or torch.Tensor), default to None) – Contains model in-
puts such that model(onnx_args) is a valid invocation of the model. Can be structured
either as: 1) ONLY A TUPLE OF ARGUMENTS; 2) A TENSOR; 3) A TUPLE OF AR-
GUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input schema
and detect onnx_args.

• input_names ((List[str], optional). Defaults to ["input"].) – Names to
assign to the input nodes of the graph, in order.

• output_names ((List[str], optional). Defaults to ["output"].) – Names
to assign to the output nodes of the graph, in order.

• dynamic_axes ((dict, optional). Defaults to None.) – Specify axes of tensors
as dynamic (i.e. known only at run-time).

Returns
Nothing

Return type
None

Raises

• AssertionError – if onnx module is not support by the current version of torch

• ValueError – if X_sample is not provided if path is not provided
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23.1.1.16.5 ads.model.framework.sklearn_model module

class ads.model.framework.sklearn_model.SklearnModel(estimator: Callable, artifact_dir: str,
properties: Optional[ModelProperties] =
None, auth: Optional[Dict] = None, **kwargs)

Bases: GenericModel

SklearnModel class for estimators from sklearn framework.

algorithm

The algorithm of the model.

Type
str

artifact_dir

Artifact directory to store the files needed for deployment.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient

estimator

A trained sklearn estimator/model using scikit-learn.

Type
Callable

framework

“scikit-learn”, the framework name of the model.

Type
str

hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata
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metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model.

Type
str

model_id

The model ID.

Type
str

properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo

schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema
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serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.

save(..., \*\*kwargs)
Saves model artifacts to the model catalog.

summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.

Examples

>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from ads.model.framework.sklearn_model import SklearnModel
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.datasets import load_iris
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>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> sklearn_estimator = LogisticRegression()
>>> sklearn_estimator.fit(X_train, y_train)

>>> sklearn_model = SklearnModel(estimator=sklearn_estimator,
... artifact_dir=tmp_model_dir)

>>> sklearn_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_
→˓overwrite=True)
>>> sklearn_model.reload()
>>> sklearn_model.verify(X_test)
>>> sklearn_model.save()
>>> model_deployment = sklearn_model.deploy(wait_for_completion=False)
>>> sklearn_model.predict(X_test)

Initiates a SklearnModel instance.

Parameters

• estimator (Callable) – Sklearn Model

• artifact_dir (str) – Directory for generate artifact.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
SklearnModel instance.

Return type
SklearnModel

Examples

>>> import tempfile
>>> from sklearn.model_selection import train_test_split
>>> from ads.model.framework.sklearn_model import SklearnModel
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.datasets import load_iris

>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> sklearn_estimator = LogisticRegression()
>>> sklearn_estimator.fit(X_train, y_train)
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>>> sklearn_model = SklearnModel(estimator=sklearn_estimator, artifact_dir=tempfile.
→˓mkdtemp())
>>> sklearn_model.prepare(inference_conda_env="dataexpl_p37_cpu_v3")
>>> sklearn_model.verify(X_test)
>>> sklearn_model.save()
>>> model_deployment = sklearn_model.deploy()
>>> sklearn_model.predict(X_test)
>>> sklearn_model.delete_deployment()

generate_initial_types(X_sample: Any)→ List
Auto generate intial types.

Parameters
X_sample ((Any)) – Train data.

Returns
Initial types.

Return type
List

static is_either_numerical_or_string_dataframe(data: DataFrame)→ bool
Check whether all the columns are either numerical or string for dataframe.

serialize_model(as_onnx: Optional[bool] = False, initial_types: Optional[List[Tuple]] = None,
force_overwrite: Optional[bool] = False, X_sample: Optional[Union[Dict, str, List,
Tuple, ndarray, Series, DataFrame]] = None, **kwargs: Dict)

Serialize and save scikit-learn model using ONNX or model specific method.

Parameters

• as_onnx ((bool, optional). Defaults to False.) – If set as True, provide ini-
tial_types or X_sample to convert into ONNX.

• initial_types ((List[Tuple], optional). Defaults to None.) – Each ele-
ment is a tuple of a variable name and a type.

• force_overwrite ((bool, optional). Defaults to False.) – If set as True,
overwrite serialized model if exists.

• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate initial_types.

Returns
Nothing.

Return type
None

to_onnx(initial_types: List[Tuple] = None, X_sample: Optional[Union[Dict, str, List, Tuple, ndarray, Series,
DataFrame]] = None, **kwargs)

Produces an equivalent ONNX model of the given scikit-learn model.

Parameters

• initial_types ((List[Tuple], optional). Defaults to None.) – Each ele-
ment is a tuple of a variable name and a type.
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• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate initial_types.

Returns
An ONNX model (type: ModelProto) which is equivalent to the input scikit-learn model.

Return type
onnx.onnx_ml_pb2.ModelProto

23.1.1.16.6 ads.model.framework.tensorflow_model module

class ads.model.framework.tensorflow_model.TensorFlowModel(estimator: callable, artifact_dir: str,
properties: Optional[ModelProperties]
= None, auth: Dict = None, **kwargs)

Bases: GenericModel

TensorFlowModel class for estimators from Tensorflow framework.

algorithm

The algorithm of the model.

Type
str

artifact_dir

Directory for generate artifact.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient

estimator

A trained tensorflow estimator/model using Tensorflow.

Type
Callable

framework

“tensorflow”, the framework name of the model.

Type
str
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hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata

metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model.

Type
str

model_id

The model ID.

Type
str

properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo
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schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema

serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.

save(..., \*\*kwargs)
Saves model artifacts to the model catalog.

summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.
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Examples

>>> from ads.model.framework.tensorflow_model import TensorFlowModel
>>> import tempfile
>>> import tensorflow as tf

>>> mnist = tf.keras.datasets.mnist
>>> (x_train, y_train), (x_test, y_test) = mnist.load_data()
>>> x_train, x_test = x_train / 255.0, x_test / 255.0

>>> tf_estimator = tf.keras.models.Sequential(
... [
... tf.keras.layers.Flatten(input_shape=(28, 28)),
... tf.keras.layers.Dense(128, activation="relu"),
... tf.keras.layers.Dropout(0.2),
... tf.keras.layers.Dense(10),
... ]
... )
>>> loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
>>> tf_estimator.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
>>> tf_estimator.fit(x_train, y_train, epochs=1)

>>> tf_model = TensorFlowModel(estimator=tf_estimator,
... artifact_dir=tempfile.mkdtemp())
>>> inference_conda_env = "generalml_p37_cpu_v1"

>>> tf_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_
→˓overwrite=True)
>>> tf_model.verify(x_test[:1])
>>> tf_model.save()
>>> model_deployment = tf_model.deploy(wait_for_completion=False)
>>> tf_model.predict(x_test[:1])

Initiates a TensorFlowModel instance.

Parameters

• estimator (callable) – Any model object generated by tensorflow framework

• artifact_dir (str) – Directory for generate artifact.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
TensorFlowModel instance.

Return type
TensorFlowModel

serialize_model(as_onnx: bool = False, X_sample: Optional[Union[Dict, str, List, Tuple, ndarray, Series,
DataFrame]] = None, force_overwrite: bool = False, **kwargs)→ None
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Serialize and save Tensorflow model using ONNX or model specific method.

Parameters

• as_onnx ((bool, optional). Defaults to False.) – If set as True, convert into
ONNX model.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input schema
and detect input_signature.

• force_overwrite ((bool, optional). Defaults to False.) – If set as True,
overwrite serialized model if exists.

• **kwargs (optional params used to serialize tensorflow model to onnx,
) –

• following (including the) – input_signature: a tuple or a list of tf.TensorSpec ob-
jects). default to None. Define the shape/dtype of the input so that model(input_signature)
is a valid invocation of the model. opset_version: int. Defaults to None. Used for the
ONNX model.

Returns
Nothing.

Return type
None

to_onnx(path: str = None, input_signature=None, X_sample: Optional[Union[Dict, str, List, Tuple, ndarray,
Series, DataFrame]] = None, opset_version=None)

Exports the given Tensorflow model into ONNX format.

Parameters

• path (str, default to None) – Path to save the serialized model.

• input_signature (a tuple or a list of tf.TensorSpec objects. default
to None.) – Define the shape/dtype of the input so that model(input_signature) is a valid
invocation of the model.

• X_sample (Union[list, tuple, pd.Series, np.ndarray, pd.DataFrame].
Defaults to None.) – A sample of input data that will be used to generate input schema
and detect input_signature.

• opset_version (int. Defaults to None.) – The opset to be used for the ONNX
model.

Returns
Nothing

Return type
None

Raises
ValueError – if path is not provided
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23.1.1.16.7 ads.model.framework.xgboost_model module

class ads.model.framework.xgboost_model.XGBoostModel(estimator: callable, artifact_dir: str,
properties: Optional[ModelProperties] =
None, auth: Dict = None, **kwargs)

Bases: GenericModel

XGBoostModel class for estimators from xgboost framework.

algorithm

The algorithm of the model.

Type
str

artifact_dir

Artifact directory to store the files needed for deployment.

Type
str

auth

Default authentication is set using the ads.set_auth API. To override the default, use the
ads.common.auth.api_keys or ads.common.auth.resource_principal to create an authentication signer to
instantiate an IdentityClient object.

Type
Dict

ds_client

The data science client used by model deployment.

Type
DataScienceClient

estimator

A trained xgboost estimator/model using Xgboost.

Type
Callable

framework

“xgboost”, the framework name of the model.

Type
str

hyperparameter

The hyperparameters of the estimator.

Type
dict

metadata_custom

The model custom metadata.

Type
ModelCustomMetadata
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metadata_provenance

The model provenance metadata.

Type
ModelProvenanceMetadata

metadata_taxonomy

The model taxonomy metadata.

Type
ModelTaxonomyMetadata

model_artifact

This is built by calling prepare.

Type
ModelArtifact

model_deployment

A ModelDeployment instance.

Type
ModelDeployment

model_file_name

Name of the serialized model.

Type
str

model_id

The model ID.

Type
str

properties

ModelProperties object required to save and deploy model.

Type
ModelProperties

runtime_info

A RuntimeInfo instance.

Type
RuntimeInfo

schema_input

Schema describes the structure of the input data.

Type
Schema

schema_output

Schema describes the structure of the output data.

Type
Schema
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serialize

Whether to serialize the model to pkl file by default. If False, you need to serialize the model manually,
save it under artifact_dir and update the score.py manually.

Type
bool

version

The framework version of the model.

Type
str

delete_deployment(...)
Deletes the current model deployment.

deploy(..., \*\*kwargs)
Deploys a model.

from_model_artifact(uri, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from the specified folder, or zip/tar archive.

from_model_catalog(model_id, model_file_name, artifact_dir, ..., \*\*kwargs)
Loads model from model catalog.

introspect(...)
Runs model introspection.

predict(data, ...)
Returns prediction of input data run against the model deployment endpoint.

prepare(..., \*\*kwargs)
Prepare and save the score.py, serialized model and runtime.yaml file.

reload(...)
Reloads the model artifact files: score.py and the runtime.yaml.

save(..., \*\*kwargs)
Saves model artifacts to the model catalog.

summary_status(...)
Gets a summary table of the current status.

verify(data, ...)
Tests if deployment works in local environment.

Examples

>>> import xgboost as xgb
>>> import tempfile
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.xgboost_model import XGBoostModel

23.1. ads package 877



ADS Documentation, Release 2.6.4

>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> xgboost_estimator = xgb.XGBClassifier()
>>> xgboost_estimator.fit(X_train, y_train)

>>> xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tmp_
→˓model_dir)
>>> xgboost_model.prepare(inference_conda_env="generalml_p37_cpu_v1", force_
→˓overwrite=True)
>>> xgboost_model.reload()
>>> xgboost_model.verify(X_test)
>>> xgboost_model.save()
>>> model_deployment = xgboost_model.deploy(wait_for_completion=False)
>>> xgboost_model.predict(X_test)

Initiates a XGBoostModel instance. This class wraps the XGBoost model as estimator. It’s primary purpose is
to hold the trained model and do serialization.

Parameters

• estimator – XGBoostModel

• artifact_dir (str) – artifact directory to store the files needed for deployment.

• properties ((ModelProperties, optional). Defaults to None.) – ModelProp-
erties object required to save and deploy model.

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Returns
XGBoostModel instance.

Return type
XGBoostModel

Examples

>>> import xgboost as xgb
>>> import tempfile
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.datasets import load_iris
>>> from ads.model.framework.xgboost_model import XGBoostModel

>>> iris = load_iris()
>>> X, y = iris.data, iris.target

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
>>> train = xgb.DMatrix(X_train, y_train)
>>> test = xgb.DMatrix(X_test, y_test)

(continues on next page)
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(continued from previous page)

>>> xgboost_estimator = XGBClassifier()
>>> xgboost_estimator.fit(X_train, y_train)
>>> xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tempfile.
→˓mkdtemp())
>>> xgboost_model.prepare(inference_conda_env="generalml_p37_cpu_v1")
>>> xgboost_model.verify(X_test)
>>> xgboost_model.save()
>>> model_deployment = xgboost_model.deploy()
>>> xgboost_model.predict(X_test)
>>> xgboost_model.delete_deployment()

generate_initial_types(X_sample: Any)→ List
Auto generate intial types.

Parameters
X_sample ((Any)) – Train data.

Returns
Initial types.

Return type
List

serialize_model(as_onnx: bool = False, initial_types: List[Tuple] = None, force_overwrite: bool = False,
X_sample: Optional[Union[Dict, str, List, Tuple, ndarray, Series, DataFrame]] = None,
**kwargs)

Serialize and save Xgboost model using ONNX or model specific method.

Parameters

• artifact_dir (str) – Directory for generate artifact.

• as_onnx ((boolean, optional). Defaults to False.) – If set as True, provide
initial_types or X_sample to convert into ONNX.

• initial_types ((List[Tuple], optional). Defaults to None.) – Each ele-
ment is a tuple of a variable name and a type.

• force_overwrite ((boolean, optional). Defaults to False.) – If set as True,
overwrite serialized model if exists.

• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate initial_types.

Returns
Nothing.

Return type
None

to_onnx(initial_types: List[Tuple] = None, X_sample: Union[list, tuple, DataFrame, Series, ndarray] =
None, **kwargs)

Produces an equivalent ONNX model of the given Xgboost model.

Parameters

• initial_types ((List[Tuple], optional). Defaults to None.) – Each ele-
ment is a tuple of a variable name and a type.
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• X_sample (Union[Dict, str, List, np.ndarray, pd.core.series.Series,
pd.core.frame.DataFrame,]. Defaults to None.) – Contains model inputs such
that model(X_sample) is a valid invocation of the model. Used to generate initial_types.

Returns
An ONNX model (type: ModelProto) which is equivalent to the input xgboost model.

Return type
onnx.onnx_ml_pb2.ModelProto

23.1.1.16.8 Module contents

23.1.1.17 ads.model.runtime package

23.1.1.17.1 Submodules

23.1.1.17.2 ads.model.runtime.env_info module

class ads.model.runtime.env_info.EnvInfo

Bases: ABC

Env Info Base class.

classmethod from_path(env_path: str)→ EnvInfo
Initiate an object from a conda pack path.

Parameters
env_path (str) – conda pack path.

Returns
An EnvInfo instance.

Return type
EnvInfo

classmethod from_slug(env_slug: str, namespace: str = 'id19sfcrra6z', bucketname: str =
'service-conda-packs')→ EnvInfo

Initiate an EnvInfo object from a slug. Only service pack is allowed to use this method.

Parameters

• env_slug (str) – service pack slug.

• namespace ((str, optional)) – namespace of region.

• bucketname ((str, optional)) – bucketname of service pack.

Returns
An EnvInfo instance.

Return type
EnvInfo

class ads.model.runtime.env_info.InferenceEnvInfo(inference_env_slug: str = '', inference_env_type:
str = '', inference_env_path: str = '',
inference_python_version: str = '')

Bases: EnvInfo, DataClassSerializable

Inference conda environment info.
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inference_env_path: str = ''

inference_env_slug: str = ''

inference_env_type: str = ''

inference_python_version: str = ''

class ads.model.runtime.env_info.PACK_TYPE(value)
Bases: Enum

Conda Pack Type

SERVICE_PACK = 'data_science'

USER_CUSTOM_PACK = 'published'

class ads.model.runtime.env_info.TrainingEnvInfo(training_env_slug: str = '', training_env_type: str =
'', training_env_path: str = '',
training_python_version: str = '')

Bases: EnvInfo, DataClassSerializable

Training conda environment info.

training_env_path: str = ''

training_env_slug: str = ''

training_env_type: str = ''

training_python_version: str = ''

23.1.1.17.3 ads.model.runtime.model_deployment_details module

class ads.model.runtime.model_deployment_details.ModelDeploymentDetails(inference_conda_env:
~ads.model.runtime.env_info.InferenceEnvInfo
= <factory>)

Bases: DataClassSerializable

ModelDeploymentDetails class.

inference_conda_env: InferenceEnvInfo

23.1.1.17.4 ads.model.runtime.model_provenance_details module
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class ads.model.runtime.model_provenance_details.ModelProvenanceDetails(project_ocid: str = '',
tenancy_ocid: str = '',
training_code:
~ads.model.runtime.model_provenance_details.TrainingCode
= <factory>, train-
ing_compartment_ocid:
str = '',
training_conda_env:
~ads.model.runtime.env_info.TrainingEnvInfo
= <factory>,
training_region: str =
'', train-
ing_resource_ocid: str
= '', user_ocid: str = '',
vm_image_internal_id:
str = '')

Bases: DataClassSerializable

ModelProvenanceDetails class.

project_ocid: str = ''

tenancy_ocid: str = ''

training_code: TrainingCode

training_compartment_ocid: str = ''

training_conda_env: TrainingEnvInfo

training_region: str = ''

training_resource_ocid: str = ''

user_ocid: str = ''

vm_image_internal_id: str = ''

class ads.model.runtime.model_provenance_details.TrainingCode(artifact_directory: str = '')
Bases: DataClassSerializable

TrainingCode class.

artifact_directory: str = ''

23.1.1.17.5 ads.model.runtime.runtime_info module

class ads.model.runtime.runtime_info.RuntimeInfo(model_artifact_version: str = '', model_deployment:
~ads.model.runtime.model_deployment_details.ModelDeploymentDetails
= <factory>, model_provenance:
~ads.model.runtime.model_provenance_details.ModelProvenanceDetails
= <factory>)

Bases: DataClassSerializable

RuntimeInfo class which is the data class represenation of the runtime yaml file.
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classmethod from_env()→ RuntimeInfo
Popolate the RuntimeInfo from environment variables.

Returns
A RuntimeInfo instance.

Return type
RuntimeInfo

model_artifact_version: str = ''

model_deployment: ModelDeploymentDetails

model_provenance: ModelProvenanceDetails

save()

Save the RuntimeInfo object into runtime.yaml file under the artifact directory.

Returns
Nothing.

Return type
None

23.1.1.17.6 ads.model.runtime.utils module

class ads.model.runtime.utils.SchemaValidator(schema_file_path: str)
Bases: object

Base Schema Validator which validate yaml file.

Initiate a SchemaValidator instance.

Parameters
schema_file_path ((str)) – schema file path. The schema is used to validate the yaml file.

Returns
A SchemaValidator instance.

Return type
SchemaValidator

validate(document: Dict)→ bool
Validate the schema.

Parameters
document ((Dict)) – yaml file content to validate.

Raises
DocumentError – Raised when the validation schema is missing, has the wrong format or
contains errors.:

Returns
validation result.

Return type
bool
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ads.model.runtime.utils.get_service_packs(namespace: str, bucketname: str)→ Tuple[Dict, Dict]
Get the service pack path mapping and service pack slug mapping. Note: deprecated packs are also included.

Parameters

• namespace (str) – namespace of the service pack.

• bucketname (str) – bucketname of the service pack.

Returns
Service pack path mapping(service pack path -> (slug, python version)) and the service pack slug
mapping(service pack slug -> (pack path, python version)).

Return type
(Dict, Dict)

23.1.1.17.7 Module contents

23.1.1.18 ads.oracledb package

23.1.1.18.1 Submodules

23.1.1.18.2 ads.oracledb.oracle_db module

23.1.1.19 ads.secrets package

23.1.1.19.1 Submodules

23.1.1.19.2 ads.secrets.secrets module

class ads.secrets.secrets.Secret

Bases: object

Base class

serialize(self )→ dict
Serializes attributes as dictionary. Returns dictionary with the keys that are serializable.

to_dict(self )→ dict
returns dictionarry with the keys that has repr set to True and the value is not None or empty

export_dict -> dict

returns dictionary with the keys that has repr set tp True

export_options -> dcit

returns list of attributes with the fields that has repr set to True

export_dict()→ dict
Serializes attributes as dictionary.

Returns
returns dictionary of key/value pair where the value of the attribute is not None and the field
does not have repr`=`False

Return type
dict
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export_options()→ list
Returns list of attributes that have repr=True.

Returns
returns list of fields that does not have repr=False

Return type
list

serialize()→ dict
Serializes attributes as dictionary. An attribute can be marked as not serializable by using metadata field
of the field constructor provided by the dataclasses module.

Returns
returns dictionay of key/value pair where the value of the attribute is not None and not empty
and the field does not have metadata = {“serializable”:False}. Refer dataclass python docu-
mentation for more details about metadata

Return type
dict

to_dict()→ dict
Serializes attributes as dictionary. Returns only non empty attributes.

Returns
returns dictionary of key/value pair where the value of the attribute is not None or empty

Return type
dict

class ads.secrets.secrets.SecretKeeper(content: Optional[bytes] = None, encoded: Optional[str] = None,
secret_id: Optional[str] = None, export_prefix: str = '',
export_env: bool = False, **kwargs)

Bases: Vault, ContextDecorator

SecretKeeper defines APIs required to serialize and deserialize secrets. Services such as Database, Streaming,
and Git require users to provide credentials. These credentials need to be safely accessed at runtime. OCI Vault
provides a mechanism for safe storage and access. SecretKeeper uses OCI Vault as a backend to store and retrieve
the credentials.

The exact data structure of the credentials varies from service to service.

Parameters

• vault_id ((str, optional). Default None) – ocid of the vault

• key_id ((str, optional). Default None) – ocid of the key that is used for encrypting
the content

• compartment_id ((str, optional). Default None) – ocid of the com-
partment_id where the vault resides. When available in environment variable -
NB_SESSION_COMPARTMENT_OCID, will defult to that.

• secret_client_auth ((dict, optional, deprecated since 2.5.1). Default
None.) – deprecated since 2.5.1. Use auth instead

• vault_client_auth ((dict, optional, deprecated since 2.5.1). Default
None.) – deprecated since 2.5.1. Use auth instead

• auth ((dict, optional)) – Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.
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decode()→ SecretKeeper
Decodes the content in self.encoded and sets the vaule in self.secret.

encode()

Stores the secret in self.secret by calling serialize method on self.data. Stores base64 encoded string of
self.secret in self.encoded.

export_vault_details(filepath: str, format: str = 'json', storage_options: Optional[dict] = None)
Save secret_id in a json file

Parameters

• filepath (str) – Filepath to save the file.

• format (str) – Default is json. Valid values:

– yaml or yml - to store vault details in a yaml file

– json - to store vault details in a json file

• storage_options (dict, optional.) – storage_options dict as required by fsspec li-
brary

Returns
Returns None

Return type
None

classmethod load_secret(source: str, format: str = 'ocid', export_env: bool = False, export_prefix: str =
'', auth=None, storage_options: Optional[dict] = None, **kwargs)→
Union[dict, SecretKeeper]

Loads secret from vault using secret_id.

Parameters

• source (str) – Source could be one of the following:

– OCID of the secret that has the secret content.

– file path that is json or yaml format with the key - secret_id:
ocid1.vaultsecret..<unique_ID>

• format (str) – Defult is ocid. When ocid, the source must be a secret id Value values:

– ocid - source is expected to be ocid of the secret

– yaml or yml - source is expected to be a path to a valid yaml file

– json - source is expected to be a path to a valid json file

• export_env (str, Default False) – When set to true, the credentails will be exported
to the environment variable. When load_secret is invoked using with statement, informa-
tion exported as environment variable is unset before leaving the with scope

• export_prefix (str, Default "") – Prefix to the environment variable that is ex-
ported.

• auth (dict, optional) – By default authentication will follow what is configured
using ads.set_auth API. Accepts dict returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal().

• storage_options (dict, optional) – storage_options dict as required by fsspec li-
brary
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• kwargs – key word arguments accepted by the constructor of the class from which this
method is invoked.

Returns

• dict – When called from within with block, Returns a dictionary containing the secret

• ads.secrets.SecretKeeper – When called without using with operator.

Examples

>>> from ads.secrets import APIKeySecretKeeper
>>> with APIKeySecretKeeper.load_secret(source="ocid1.vaultsecret.**<unique_ID>
→˓**",
... export_prefix="mykafka",
... export_env=True
... ) as apisecret:
... import os
... print("Credentials inside environment variable:",
... os.environ.get('mykafka.api_key'))
... print("Credentials inside `apisecret` object: ", apisecret)
Credentials inside environment variable: <your api key>
Credentials inside `apisecret` object: {'api_key': 'your api key'}

>>> from ads.secrets import ADBSecretKeeper
>>> with ADBSecretKeeper.load_secret("ocid1.vaultsecret.**<unique_ID>**") as␣
→˓adw_creds2:
... import pandas as pd
... df2 = pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA",
... connection_parameters=adw_creds2)
... print(df2.head(2))

JOBFUNCTION ATTRITION
0 Product Management No
1 Software Developer No

required_keys = ['secret_id']

save(name: str, description: str, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] =
None)→ SecretKeeper

Saves credentials to Vault and returns self.

Parameters

• name (str) – Name of the secret when saved in the Vault.

• description (str) – Description of the secret when saved in the Vault.

• freeform_tags (dict, optional) – freeform_tags to be used for saving the secret in
OCI console.

• defined_tags (dict, optional.) – Save the tags under predefined tags in OCI con-
sole.

Returns
Returns self object.

Return type
SecretKeeper
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to_dict()→ dict
Returns dict of credentials retrieved from the vault or set through constructor arguments.

Returns
dict of credentials retrieved from the vault or set through constructor.

Return type
dict

23.1.1.19.3 ads.secrets.adb module

class ads.secrets.adb.ADBSecret(user_name: str, password: str, service_name: str, wallet_location:
~typing.Optional[str] = None, wallet_file_name: ~typing.Optional[str] =
None, wallet_content: ~typing.Optional[dict] = None, wallet_secret_ids:
list = <factory>)

Bases: Secret

Dataclass representing the attributes managed and serialized by ADBSecretKeeper

password: str

service_name: str

user_name: str

wallet_content: dict = None

wallet_file_name: str = None

wallet_location: str = None

wallet_secret_ids: list

class ads.secrets.adb.ADBSecretKeeper(user_name: Optional[str] = None, password: Optional[str] =
None, service_name: Optional[str] = None, wallet_location:
Optional[str] = None, wallet_dir: Optional[str] = None,
repository_path: Optional[str] = None, repository_key:
Optional[str] = None, **kwargs)

Bases: SecretKeeper

ADBSecretKeeper provides an interface to save ADW/ATP database credentials. This interface does not store the
wallet file by default. For saving wallet file, set save_wallet=True while calling ADBSecretKeeper.save method.

Examples

>>> # Saving credentials without saving the wallet file
>>> from ads.secrets.adw import ADBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> connection_parameters={

(continues on next page)
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(continued from previous page)

... "user_name":"admin",

... "password":"<your password>",

... "service_name":"service_name_{high|low|med}",

... "wallet_location":"/home/datascience/Wallet_xxxx.zip"

... }
>>> adw_keeper = ADBSecretKeeper(vault_id=vault_id, key_id=key_id, **connection_
→˓parameters)
>>> adw_keeper.save("adw_employee", "My DB credentials", freeform_tags={"schema":
→˓"emp"}) # Does not save the wallet file
>>> print(adw_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> adw_keeper.export_vault_details("adw_employee_att.json", format="json") # Save␣
→˓the secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> from ads.secrets.adw import ADBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with ADBSecretKeeper.load_secret(source=secret_id,

wallet_location='/home/datascience/Wallet_xxxxxx.zip')␣
→˓as adw_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_
→˓parameters=adw_creds)

>>> myadw_creds = ADBSecretKeeper.load_secret(source='adw_employee_att.json',␣
→˓format="json"
... wallet_location='/home/datascience/Wallet_xxxxxx.zip')
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_
→˓parameters=myadw_creds.to_dict()).head(2)

>>> # Saving and loading credentials with wallet storage
>>> # Saving credentials
>>> from ads.secrets.adw import ADBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key.oc1..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> connection_parameters={
... "user_name":"admin",
... "password":"<your password>",
... "service_name":"service_name_{high|low|med}",
... "wallet_location":"/home/datascience/Wallet_xxxx.zip"
... }
>>> adw_keeper = ADBSecretKeeper(vault_id=vault_id, key_id=key_id, **connection_
→˓parameters)
>>> adw_keeper.save("adw_employee", "My DB credentials", freeform_tags={"schema":
→˓"emp"}, save_wallet=True)

(continues on next page)
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>>> print(adw_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> adw_keeper.export_vault_details("adw_employee_att.json") # Save the secret id␣
→˓and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> from ads.secrets.adw import ADBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with ADBSecretKeeper.load_secret(source=secret_id) as adw_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_
→˓parameters=adw_creds)

>>> myadw_creds = ADBSecretKeeper.load_secret(source='adw_employee_att.json',␣
→˓format='json')
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_
→˓parameters=myadw_creds.to_dict()).head(2)

Parameters

• user_name ((str, optioanl). Default None) – user_name of the databse

• password ((str, optional). Default None) – password for connecting to the
database

• service_name ((str, optional). Default None) – service name of the ADB in-
stance

• wallet_location ((str, optional). Default None) – full path to the wallet zip file
used for connecting to ADB instance.

• wallet_dir ((str, optional). Default None) – local directory where the extracted
wallet content is saved

• repository_path ((str, optional). Default None.) – Path to credentials reposi-
tory. For more details refer ads.database.connection

• repository_key ((str, optional). Default None.) – Configuration key for loading
the right configuration from repository. For more details refer ads.database.connection

• kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving
secret. key_id: str. OCID of the key used for encrypting the secret. Required for saving
secret. compartment_id: str. OCID of the compartment where the vault is located. Re-
quired for saving secret. auth: dict. Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.

decode()→ ADBSecretKeeper
Converts the content in self.secret to ADBSecret and stores in self.data

If the wallet_location is passed through the constructor, then retain it. We do not want to override what user
has passed in If the wallet_location was not passed, but the sercret has wallet_secret_ids, then we generate
the wallet zip file in the location specified by wallet_dir in the constructor
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Returns
Returns self object

Return type
ADBSecretKeeper

encode(serialize_wallet: bool = False)→ ADBSecretKeeper
Prepares content to save in vault. The user_name, password and service_name and the individual files
inside the wallet zip file are base64 encoded and stored in self.secret

Parameters
serialize_wallet (bool, optional) – When set to True, loads the wallet zip file and
encodes the content of each file in the zip file.

Returns
Returns self object

Return type
ADBSecretKeeper

save(name: str, description: str, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] = None,
save_wallet: bool = False)→ ADBSecretKeeper

Saves credentials to Vault and returns self.

Parameters

• name (str) – Name of the secret when saved in the Vault.

• description (str) – Description of the secret when saved in the Vault.

• freeform_tags ((dict, optional). Default is None) – freeform_tags to be used
for saving the secret in OCI console.

• defined_tags ((dict, optional). Default is None) – Save the tags under pre-
defined tags in OCI console.

• save_wallet ((bool, optional). Default is False) – If set to True, saves the
contents of the wallet file as separate secret.

Returns
Returns self object

Return type
ADBSecretKeeper

23.1.1.19.4 ads.secrets.mysqldb module

class ads.secrets.mysqldb.MySQLDBSecret(user_name: str, password: str, host: str, port: str, database:
Optional[str] = None)

Bases: Secret

Dataclass representing the attributes managed and serialized by MySQLDBSecretKeeper

database: str = None

host: str

password: str

port: str
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user_name: str

class ads.secrets.mysqldb.MySQLDBSecretKeeper(user_name: Optional[str] = None, password:
Optional[str] = None, host: Optional[str] = None, port:
str = '3306', database: Optional[str] = None,
repository_path: Optional[str] = None, repository_key:
Optional[str] = None, **kwargs)

Bases: SecretKeeper

MySQLDBSecretKeeper provides an interface to save MySQL database credentials. If you use Wallet file for
connnecting to the database, please use ADBSecretKeeper.

Examples

>>> from ads.secrets.mysqldb import MySQLDBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> connection_parameters={
... "user_name":"<your user name>",
... "password":"<your password>",
... "host":"<db host>",
... "port":"<db port>",
... "database":"<database>",
... }
>>> mysqldb_keeper = MySQLDBSecretKeeper(vault_id=vault_id, key_id=key_id,␣
→˓**connection_parameters)
>>> mysqldb_keeper.save("mysqldb_employee", "My DB credentials", freeform_tags={
→˓"schema":"emp"})
>>> print(mysqldb_keeper.secret_id) # Prints the secret_id of the stored credentials
>>> mysqldb_keeper.export_vault_details("mysqldb_employee_att.json") # Save the␣
→˓secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> from ads.secrets.mysqldb import MySQLDBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with MySQLDBSecretKeeper.load_secret(source=secret_id) as mysqldb_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_
→˓parameters=mysqldb_creds, engine="mysql")

>>> mymysqldb_creds = MySQLDBSecretKeeper.load_secret(source='mysqldb_employee_att.
→˓json', format="json")
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_
→˓parameters=mymysqldb_creds.to_dict(), engine="mysql").head(2)
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Parameters

• user_name ((str, optional). Default None) – user_name of the database

• password ((str, optional). Default None) – password for connecting to the
database

• host ((str, optional). Default None) – Database host name

• port ((str, optional). Default 1521) – Port number

• database ((str, optional). Default None) – database name

• repository_path ((str, optional). Default None.) – Path to credentials reposi-
tory. For more details refer ads.database.connection

• repository_key ((str, optional). Default None.) – Configuration key for loading
the right configuration from repository. For more details refer ads.database.connection

• kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving
secret. key_id: str. OCID of the key used for encrypting the secret. Required for saving
secret. compartment_id: str. OCID of the compartment where the vault is located. Re-
quired for saving secret. auth: dict. Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.

decode()→ MySQLDBSecretKeeper
Converts the content in self.encoded to MySQLDBSecret and stores in self.data

Returns
Returns self object

Return type
MySQLDBSecretKeeper

23.1.1.19.5 ads.secrets.oracledb module

class ads.secrets.oracledb.OracleDBSecret(user_name: str, password: str, host: str, port: str,
service_name: Optional[str] = None, sid: Optional[str] =
None, dsn: Optional[str] = None)

Bases: Secret

Dataclass representing the attributes managed and serialized by OracleDBSecretKeeper

dsn: str = None

host: str

password: str

port: str

service_name: str = None

sid: str = None

user_name: str
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class ads.secrets.oracledb.OracleDBSecretKeeper(user_name: Optional[str] = None, password:
Optional[str] = None, service_name: Optional[str] =
None, sid: Optional[str] = None, host: Optional[str]
= None, port: str = '1521', dsn: Optional[str] =
None, repository_path: Optional[str] = None,
repository_key: Optional[str] = None, **kwargs)

Bases: SecretKeeper

OracleDBSecretKeeper provides an interface to save Oracle database credentials. If you use Wallet file for
connnecting to the database, please use ADBSecretKeeper.

Examples

>>> from ads.secrets.oracledb import OracleDBSecretKeeper
>>> vault_id = "ocid1.vault.oc1..<unique_ID>"
>>> key_id = "ocid1.key..<unique_ID>"

>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> connection_parameters={
... "user_name":"<your user name>",
... "password":"<your password>",
... "service_name":"service_name",
... "host":"<db host>",
... "port":"<db port>",
... }
>>> oracledb_keeper = OracleDBSecretKeeper(vault_id=vault_id, key_id=key_id,␣
→˓**connection_parameters)
>>> oracledb_keeper.save("oracledb_employee", "My DB credentials", freeform_tags={
→˓"schema":"emp"})
>>> print(oracledb_keeper.secret_id) # Prints the secret_id of the stored␣
→˓credentials
>>> oracledb_keeper.export_vault_details("oracledb_employee_att.json") # Save the␣
→˓secret id and vault info to a json file

>>> # Loading credentails
>>> import ads
>>> ads.set_auth("resource_principal") # If using resource principal for␣
→˓authentication
>>> from ads.secrets.oracledb import OracleDBSecretKeeper
>>> secret_id = "ocid1.vaultsecret.oc1..<unique_ID>"
>>> with OracleDBSecretKeeper.load_secret(source=secret_id) as oracledb_creds:
... import pandas as pd
... df = pd.DataFrame.ads.read_sql("select * from EMPLOYEE", connection_
→˓parameters=oracledb_creds)

>>> myoracledb_creds = OracleDBSecretKeeper.load_secret(source='oracledb_employee_
→˓att.json', format="json")
>>> pd.DataFrame.ads.read_sql("select * from ATTRITION_DATA", connection_
→˓parameters=myoracledb_creds.to_dict()).head(2)
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Parameters

• user_name ((str, optional). Default None) – user_name of the database

• password ((str, optional). Default None) – password for connecting to the
database

• service_name ((str, optional). Default None) – service name of the Oracle DB
instance

• sid ((str, optional). Default None) – Provide sid if service name is not available.

• host ((str, optional). Default None) – Database host name

• port ((str, optional). Default 1521) – Port number

• dsn ((str, optional). Default None) – dsn string for connecting with oracledb. Re-
fer cx_Oracle documentation

• repository_path ((str, optional). Default None.) – Path to credentials reposi-
tory. For more details refer ads.database.connection

• repository_key ((str, optional). Default None.) – Configuration key for loading
the right configuration from repository. For more details refer ads.database.connection

• kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving
secret. key_id: str. OCID of the key used for encrypting the secret. Required for saving
secret. compartment_id: str. OCID of the compartment where the vault is located. Re-
quired for saving secret. auth: dict. Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.

decode()→ OracleDBSecretKeeper
Converts the content in self.encoded to OracleDBSecret and stores in self.data

Returns
Returns self object

Return type
OracleDBSecretKeeper

23.1.1.19.6 ads.secrets.big_data_service module

class ads.secrets.big_data_service.BDSSecret(principal: str, hdfs_host: str, hive_host: str, hdfs_port:
str, hive_port: str, kerb5_path: ~typing.Optional[str] =
None, kerb5_content: ~typing.Optional[dict] = None,
keytab_path: ~typing.Optional[str] = None,
keytab_content: ~typing.Optional[dict] = None,
secret_id: str = <factory>)

Bases: Secret

Dataclass representing the attributes managed and serialized by BDSSecretKeeper.

principal

The unique identity to which Kerberos can assign tickets.

Type
str
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hdfs_host

hdfs host name from the bds cluster.

Type
str

hive_host

hive host name from the bds cluster.

Type
str

hdfs_port

hdfs port from the bds cluster.

Type
str

hive_port

hive port from the bds cluster.

Type
str

kerb5_path

krb5.conf file path.

Type
str

kerb5_content

Content of the krb5.conf.

Type
dict

keytab_path

Path to the keytab file.

Type
str

keytab_content

Content of the keytab file.

Type
dict

secret_id

secret id where the BDSSecret is stored.

Type
str

hdfs_host: str

hdfs_port: str

hive_host: str

hive_port: str
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kerb5_content: dict = None

kerb5_path: str = None

keytab_content: dict = None

keytab_path: str = None

principal: str

secret_id: str

class ads.secrets.big_data_service.BDSSecretKeeper(principal: Optional[str] = None, hdfs_host:
Optional[str] = None, hive_host: Optional[str] =
None, hdfs_port: Optional[str] = None,
hive_port: Optional[str] = None, kerb5_path:
Optional[str] = None, kerb5_content:
Optional[str] = None, keytab_path: Optional[str]
= None, keytab_content: Optional[str] = None,
keytab_dir: Optional[str] = None, secret_id:
Optional[str] = None, **kwargs)

Bases: SecretKeeper

BDSSecretKeeper provides an interface to save BDS hdfs and hive credentials. This interface does not store
the wallet file by default. For saving keytab and krb5.cofig file, set save_files=True while calling BDSSecret-
Keeper.save method.

principal

The unique identity to which Kerberos can assign tickets.

Type
str

hdfs_host

hdfs host name from the bds cluster.

Type
str

hive_host

hive host name from the bds cluster.

Type
str

hdfs_port

hdfs port from the bds cluster.

Type
str

hive_port

hive port from the bds cluster.

Type
str

kerb5_path

krb5.conf file path.
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Type
str

kerb5_content

Content of the krb5.conf.

Type
dict

keytab_path

Path to the keytab file.

Type
str

keytab_content

Content of the keytab file.

Type
dict

secret_id

secret id where the BDSSecret is stored.

Type
str

kwargs

------

vault_id

Type
str. OCID of the vault where the secret is stored. Required for saving secret.

key_id

Type
str. OCID of the key used for encrypting the secret. Required for saving secret.

compartment_id

Type
str. OCID of the compartment where the vault is located. Required for saving secret.

auth

Type
dict. Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.

Parameters

• principal (str) – The unique identity to which Kerberos can assign tickets.

• hdfs_host (str) – hdfs host name from the bds cluster.

• hive_host (str) – hive host name from the bds cluster.

• hdfs_port (str) – hdfs port from the bds cluster.
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• hive_port (str) – hive port from the bds cluster.

• kerb5_path (str) – krb5.conf file path.

• kerb5_content (dict) – Content of the krb5.conf.

• keytab_path (str) – Path to the keytab file.

• keytab_content (dict) – Content of the keytab file.

• keytab_dir ((str, optional).) – Default None. Local directory where the extracted
keytab content is saved.

• secret_id (str) – secret id where the BDSSecret is stored.

vault_id: str. OCID of the vault where the secret is stored. Required for saving secret. key_id: str. OCID
of the key used for encrypting the secret. Required for saving secret. compartment_id: str. OCID of the
compartment where the vault is located. Required for saving secret. auth: dict. Dictionay returned from
ads.common.auth.api_keys() or ads.common.auth.resource_principal(). By default, will follow what is set in
ads.set_auth. Use this attribute to override the default.

decode(save_files: bool = True)→ ads.secrets.bds.BDSSecretKeeper
Converts the content in self.secret to BDSSecret and stores in self.data

If the keytab_path and kerb5_path are passed through the constructor, then retain it. We do not want to
override what user has passed in If the keytab_path and kerb5_path are not passed, but the sercret has
secret_id, then we generate the keytab file in the location specified by keytab_path in the constructor.

Returns
Returns self object

Return type
BDSSecretKeeper

encode(serialize: bool = True)→ ads.secrets.bds.BDSSecretKeeper
Prepares content to save in vault. The port, host name and the keytab and krb5.config files are base64
encoded and stored in self.secret

Parameters
serialize (bool, optional) – When set to True, loads the keytab and krb5.config file
and encodes the content of both files.

Returns
Returns self object

Return type
BDSSecretKeeper

save(name: str, description: str, freeform_tags: dict = None, defined_tags: dict = None, save_files: bool =
True)→ ads.secrets.bds.BDSSecretKeeper

Saves credentials to Vault and returns self.

Parameters

• name (str) – Name of the secret when saved in the Vault.

• description (str) – Description of the secret when saved in the Vault.

• freeform_tags ((dict, optional). Default is None) – freeform_tags to be used
for saving the secret in OCI console.

• defined_tags ((dict, optional). Default is None) – Save the tags under pre-
defined tags in OCI console.
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• save_files ((bool, optional). Default is False) – If set to True, saves the con-
tents of the keytab and krb5 file as separate secret.

Returns
Returns self object

Return type
BDSSecretKeeper

23.1.1.19.7 ads.secrets.auth_token module

class ads.secrets.auth_token.AuthToken(auth_token: str)
Bases: Secret

AuthToken dataclass holds auth_token attribute

auth_token: str

class ads.secrets.auth_token.AuthTokenSecretKeeper(auth_token=None, **kwargs)
Bases: SecretKeeper

AuthTokenSecretKeeper uses ads.secrets.auth_token.AuthToken class to manage Auth Token credentials. The
credentials are stored in Vault as a dictionary with the following format - {“auth_token”:”user provided value”}

Examples

>>> from ads.secrets.auth_token import AuthTokenSecretKeeper
>>> import ads
>>> ads.set_auth("resource_principal") #If using resource principal for␣
→˓authentication
>>> # Save Auth Tokens or Acess Keys to the vault
>>>
>>>
>>> authtoken2 = AuthTokenSecretKeeper(vault_id=vault_id,
... key_id=key_id,
... auth_token="<your auth token>").save("my_xyz_auth_token2",
... "This is my␣
→˓auth token for git repo xyz",
... freeform_tags={
→˓"gitrepo":"xyz"})
>>> authtoken2.export_vault_details("my_git_token_vault_info.yaml", format="yaml")
>>> # Loading credentials
>>> with AuthTokenSecretKeeper.load_secret(source="ocid1.vaultsecret.oc1..<unique_
→˓ID>",
... export_prefix="mygitrepo",
... export_env=True
... ) as authtoken:
... import os
... print("Credentials inside environment variable:", os.environ.get('mygitrepo.
→˓auth_token'))
... print("Credentials inside `authtoken` object: ", authtoken)
Credentials inside environment variable: <your auth token>
Credentials inside `authtoken` object: {'auth_token': '<your auth token>'}

(continues on next page)

900 Chapter 23. Class Documentation



ADS Documentation, Release 2.6.4

(continued from previous page)

>>> print("Credentials inside `authtoken` object: ", authtoken)
Credentials inside `authtoken` object: {'auth_token': None}
>>> print("Credentials inside environment variable:", os.environ.get('mygitrepo.
→˓auth_token'))
Credentials inside environment variable: None

Parameters

• auth_token ((str, optional). Default None) – auth token string that needs to be
stored in the vault

• kwargs – vault_id: str. OCID of the vault where the secret is stored. Required for saving
secret. key_id: str. OCID of the key used for encrypting the secret. Required for saving
secret. compartment_id: str. OCID of the compartment where the vault is located. Re-
quired for saving secret. auth: dict. Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.

decode()→ AuthTokenSecretKeeper
Converts the content in self.encoded to AuthToken and stores in self.data

Returns
Returns the self object after decoding self.encoded and updates self.data

Return type
AuthTokenSecretKeeper

23.1.1.19.8 Module contents

23.1.1.20 ads.text_dataset package

23.1.1.20.1 Submodules

23.1.1.20.2 ads.text_dataset.backends module

class ads.text_dataset.backends.Base

Bases: object

Base class for backends.

convert_to_text(fhandler: OpenFile, dst_path: str, fname: Optional[str] = None, storage_options:
Optional[Dict] = None)→ str

Convert input file to a text file

Parameters

• fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

• dst_path (str) – local folder or cloud storage prefix to save converted text files

• fname (str, optional) – filename for converted output, relative to dirname or prefix,
by default None

• storage_options (dict, optional) – storage options for cloud storage
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Returns
path to saved output

Return type
str

get_metadata(fhandler: OpenFile)→ Dict
Get metadata of a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Returns
dictionary of metadata

Return type
dict

read_line(fhandler: OpenFile)→ Generator[Union[str, List[str]], None, None]
Read lines from a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Yields
Generator – a generator that yields lines

read_text(fhandler: OpenFile)→ Generator[Union[str, List[str]], None, None]
Read entire file into a string.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Yields
Generator – a generator that yields text in the file

class ads.text_dataset.backends.PDFPlumber

Bases: Base

convert_to_text(fhandler, dst_path, fname=None, storage_options=None)
Convert input file to a text file

Parameters

• fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

• dst_path (str) – local folder or cloud storage prefix to save converted text files

• fname (str, optional) – filename for converted output, relative to dirname or prefix,
by default None

• storage_options (dict, optional) – storage options for cloud storage

Returns
path to saved output

Return type
str

get_metadata(fhandler)
Get metadata of a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec
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Returns
dictionary of metadata

Return type
dict

read_line(fhandler)
Read lines from a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Yields
Generator – a generator that yields lines

read_text(fhandler)
Read entire file into a string.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Yields
Generator – a generator that yields text in the file

class ads.text_dataset.backends.Tika

Bases: Base

convert_to_text(fhandler, dst_path, fname=None, storage_options=None)
Convert input file to a text file

Parameters

• fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

• dst_path (str) – local folder or cloud storage prefix to save converted text files

• fname (str, optional) – filename for converted output, relative to dirname or prefix,
by default None

• storage_options (dict, optional) – storage options for cloud storage

Returns
path to saved output

Return type
str

detect_encoding(fhandler: OpenFile)

get_metadata(fhandler)
Get metadata of a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Returns
dictionary of metadata

Return type
dict
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read_line(fhandler)
Read lines from a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Yields
Generator – a generator that yields lines

read_text(fhandler)
Read entire file into a string.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Yields
Generator – a generator that yields text in the file

23.1.1.20.3 ads.text_dataset.dataset module

class ads.text_dataset.dataset.DataLoader(engine: Optional[str] = None)
Bases: object

DataLoader binds engine, FileProcessor and File handler(in this case it is fsspec) together to produce a dataframe
of parsed text from files.

This class is expected to be used mainly from TextDatasetFactory class.

processor

processor that is used for loading data.

Type
ads.text_dataset.extractor.FileProcessor

Examples

>>> import oci
>>> from ads.text_dataset.dataset import TextDatasetFactory as textfactory
>>> from ads.text_dataset.options import Options
>>> df = textfactory.format('pdf').engine('pandas').read_line(
... 'oci://<bucket-name>@<namespace>/<path>/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))},
... )
>>> data_gen = textfactory.format('pdf').option(Options.FILE_NAME).backend(
→˓'pdfplumber').read_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))},
... )
>>> textfactory.format('docx').convert_to_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.docx',
... './extracted',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))},

(continues on next page)
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... )
>>> textfactory.format('docx').convert_to_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.docx',
... 'oci://<bucket-name>@<namespace>/<out_path>',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))},
... )
>>> meta_gen = textfactory.format('docx').metadata_schema(
... 'oci://<bucket-name>@<namespace>/papers/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))},
... )
>>> df = textfactory.format('pdf').engine('pandas').option(Options.FILE_METADATA, {
→˓'extract': ['Author']}).read_text(
... 'oci://<bucket-name>@<namespace>/<path>/*.pdf',
... storage_options={"config": oci.config.from_file(os.path.join("~/.oci",
→˓"config"))},
... total_files=10,
... )
>>> df = textfactory.format('txt').engine('cudf').read_line(
... 'oci://<bucket-name>@<namespace>/<path>/*.log',
... udf=r'^\[(\S+)\s(\S+)\s(\d+)\s(\d+\:\d+\:\d+)\s(\d+)]\s(\S+)\s(\S+)\s(\S+)\
→˓s(\S+)',
... df_args={"columns":["day", "month", "date", "time", "year", "type", "method
→˓", "status", "file"]},
... n_lines_per_file=10,
... )

Initialize a DataLoader object.

Parameters
engine (str, optional) – dataframe engine, by default None.

Return type
None

backend(backend: Union[str, Base])→ None
Set backend used for extracting text from files.

Parameters
backend ((str | ads.text_dataset.backends.Base)) – backend for extracting text from raw files.

Return type
None

convert_to_text(src_path: str, dst_path: str, encoding: str = 'utf-8', storage_options: Optional[Dict] =
None)→ None

Convert files to plain text files.

Parameters

• src_path (str) – path to source data file(s). can use glob pattern

• dst_path (str) – local folder or cloud storage (e.g., OCI object storage) prefix to save
converted text files

• encoding (str, optional) – encoding for files, by default utf-8
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• storage_options (Dict, optional) – storage options for cloud storage, by default
None

Return type
None

engine(eng: str)→ None
Set engine for dataloader. Can be pandas or cudf.

Parameters
eng (str) – name of engine

Return type
None

Raises
NotSupportedError – raises error if engine passed in is not supported.

metadata_all(path: str, storage_options: Optional[Dict] = None, encoding: str = 'utf-8')→
Generator[Dict[str, Any], None, None]

Get metadata of all files that matches the given path. Return a generator.

Parameters

• path (str) – path to data files. can use glob pattern.

• storage_options (Dict, optional) – storage options for cloud storage, by default
None

• encoding (str, optional) – encoding of files, by default ‘utf-8’

Returns
generator of extracted metedata from files.

Return type
Generator

metadata_schema(path: str, n_files: int = 1, storage_options: Optional[Dict] = None, encoding: str =
'utf-8')→ List[str]

Get available fields in metadata by looking at the first n_files that matches the given path.

Parameters

• path (str) – path to data files. can have glob pattern

• n_files (int, optional) – number of files to look up, default to be 1

• storage_options (dict, optional) – storage options for cloud storage, by default
None

• encoding (str, optional) – encoding of files, by default utf-8

Returns
list of available fields in metadata

Return type
List[str]

option(opt: Options, spec: Optional[Any] = None)→ None
Set extraction options.

Parameters
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• opt (ads.text_dataset.options.Options) – an option defined in
ads.text_dataset.options.Options

• spec (Any, optional) – specifications that will be passed to option handler, by default
None

Return type
None

read_line(path: str, udf: Union[str, Callable] = None, n_lines_per_file: int = None, total_lines: int = None,
df_args: Dict = None, storage_options: Dict = None, encoding: str = 'utf-8')→
Union[Generator[Union[str, List[str]], None, None], DataFrame]

Read each file into lines. If path matches multiple files, will combine lines from all files.

Parameters

• path (str) – path to data files. can have glob pattern.

• udf ((callable | str), optional) – user defined function for processing each line,
can be a callable or regex, by default None

• n_lines_per_file (int, optional) – max number of lines read from each file, by
default None

• total_lines (int, optional) – max number of lines read from all files, by default
None

• df_args (dict, optional) – arguments passed to dataframe engine (e.g. pandas), by
default None

• storage_options (dict, optional) – storage options for cloud storage, by default
None

• encoding (str, optional) – encoding of files, by default ‘utf-8’

Returns
returns either a data generator or a dataframe.

Return type
(Generator | DataFrame)

read_text(path: str, udf: Union[str, Callable] = None, total_files: int = None, storage_options: Dict =
None, df_args: Dict = None, encoding: str = 'utf-8')→ Union[Generator[Union[str, List[str]],
None, None], DataFrame]

Read each file into a text string. If path matches multiple files, each file corresponds to one record.

Parameters

• path (str) – path to data files. can have glob pattern.

• udf ((callable | str), optional) – user defined function for processing each line,
can be a callable or regex, by default None

• total_files (int, optional) – max number of files to read, by default None

• df_args (dict, optional) – arguments passed to dataframe engine (e.g. pandas), by
default None

• storage_options (dict, optional) – storage options for cloud storage, by default
None

• encoding (str, optional) – encoding of files, by default ‘utf-8’
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Returns
returns either a data generator or a dataframe.

Return type
(Generator | DataFrame)

with_processor(processor_type: str)→ None
Set file processor.

Parameters
processor_type (str) – type of processor, which corresponds to format of the file.

Return type
None

class ads.text_dataset.dataset.TextDatasetFactory

Bases: object

A class that generates a dataloader given a file format.

static format(format_name: str)→ DataLoader
Instantiates DataLoader class and seeds it with the right kind of FileProcessor. Eg. PDFProcessor for pdf.
The FileProcessorFactory returns the processor based on the format Type.

Parameters
format_name (str) – name of format

Returns
a DataLoader object.

Return type
ads.text_dataset.dataset.DataLoader

23.1.1.20.4 ads.text_dataset.extractor module

class ads.text_dataset.extractor.FileProcessor(backend: Union[str, Base] = 'default')
Bases: object

Base class for all the file processor. Files are opened using fsspec library. The default implementation in the base
class assumes text files.

This class is expected to be used inside ads.text_dataset.dataset.DataLoader.

backend(backend: Union[str, Base])→ None
Set backend for file processor.

Parameters
backend (ads.text_dataset.backends.Base) – a backend for file processor

Return type
None

Raises
NotSupportedError – when specified backend is not supported.

backend_map = {'default': <class 'ads.text_dataset.backends.Base'>, 'tika': <class
'ads.text_dataset.backends.Tika'>}
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convert_to_text(fhandler: OpenFile, dst_path: str, fname: Optional[str] = None, storage_options:
Optional[Dict] = None)→ str

Convert input file to a text file.

Parameters

• fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

• dst_path (str) – local folder or cloud storage (e.g. OCI object storage) prefix to save
converted text files

• fname (str, optional) – filename for converted output, relative to dirname or prefix,
by default None

• storage_options (dict, optional) – storage options for cloud storage, by default
None

Returns
path to saved output

Return type
str

get_metadata(fhandler: OpenFile)→ Dict
Get metadata of a file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Returns
dictionary of metadata

Return type
dict

read_line(fhandler: OpenFile, **format_reader_kwargs: Dict)→ Generator[Union[str, List[str]], None,
None]

Yields lines from a file.

Parameters
fhandler (fsspec.core.OpenFile) – file handler returned by fsspec

Returns
a generator that yields lines from a file

Return type
Generator

read_text(fhandler: OpenFile, **format_reader_kwargs: Dict)→ Generator[Union[str, List[str]], None,
None]

Yield contents from the entire file.

Parameters
fhandler (fsspec.core.OpenFile) – a file handler returned by fsspec

Returns
a generator that yield text from a file

Return type
Generator
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class ads.text_dataset.extractor.FileProcessorFactory

Bases: object

Factory that manages all file processors. Provides functionality to get a processor corresponding to a given file
type, or register custom processor for a specific file format.

Examples

>>> from ads.text_dataset.extractor import FileProcessor, FileProcessorFactory
>>> FileProcessorFactory.get_processor('pdf')
>>> class CustomProcessor(FileProcessor):
... # custom logic here
... pass
>>> FileProcessorFactory.register('new_format', CustomProcessor)

static get_processor(format)

processor_map = {'doc': <class 'ads.text_dataset.extractor.WordProcessor'>, 'docx':
<class 'ads.text_dataset.extractor.WordProcessor'>, 'pdf': <class
'ads.text_dataset.extractor.PDFProcessor'>, 'txt': <class
'ads.text_dataset.extractor.FileProcessor'>}

classmethod register(fmt: str, processor: FileProcessor)→ None
Register custom file processor for a file format.

Parameters

• fmt (str) – file format

• processor (FileProcessor) – custom processor

Raises
TypeError – raised when processor is not a subclass of FileProcessor.

class ads.text_dataset.extractor.PDFProcessor(backend: Union[str, Base] = 'default')
Bases: FileProcessor

Extracts text content from PDF

backend_map = {'default': <class 'ads.text_dataset.backends.Tika'>, 'pdfplumber':
<class 'ads.text_dataset.backends.PDFPlumber'>, 'tika': <class
'ads.text_dataset.backends.Tika'>}

class ads.text_dataset.extractor.WordProcessor(backend: Union[str, Base] = 'default')
Bases: FileProcessor

Extracts text content from doc or docx format.

backend_map = {'default': <class 'ads.text_dataset.backends.Tika'>, 'tika': <class
'ads.text_dataset.backends.Tika'>}
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23.1.1.20.5 ads.text_dataset.options module

class ads.text_dataset.options.FileOption(dataloader: ads.text_dataset.dataset.DataLoader)
Bases: OptionHandler

handle(fhandler: OpenFile, spec: Any)→ Any

class ads.text_dataset.options.MetadataOption(dataloader: ads.text_dataset.dataset.DataLoader)
Bases: OptionHandler

handle(fhandler: OpenFile, spec: Dict)→ List

class ads.text_dataset.options.OptionFactory

Bases: object

static option_handler(option: Options)→ OptionHandler

option_handlers = {<Options.FILE_NAME: 1>: <class
'ads.text_dataset.options.FileOption'>, <Options.FILE_METADATA: 2>: <class
'ads.text_dataset.options.MetadataOption'>}

classmethod register_option(option: Options, handler)→ None

class ads.text_dataset.options.OptionHandler(dataloader: ads.text_dataset.dataset.DataLoader)
Bases: object

handle(fhandler: OpenFile, spec: Any)→ Any

class ads.text_dataset.options.Options(value)
Bases: Enum

An enumeration.

FILE_METADATA = 2

FILE_NAME = 1

23.1.1.20.6 Module contents

23.1.1.21 ads.vault package

23.1.1.21.1 Submodules

23.1.1.21.2 ads.vault module

class ads.vault.vault.Vault(vault_id: Optional[str] = None, key_id: Optional[str] = None,
compartment_id=None, secret_client_auth=None, vault_client_auth=None,
auth=None)

Bases: object

Parameters

• vault_id ((str, optional). Default None) – ocid of the vault

• key_id ((str, optional). Default None) – ocid of the key that is used for encrypting
the content
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• compartment_id ((str, optional). Default None) – ocid of the com-
partment_id where the vault resides. When available in environment variable -
NB_SESSION_COMPARTMENT_OCID, will defult to that.

• secret_client_auth ((dict, optional, deprecated since 2.5.1). Default
None.) – deprecated since 2.5.1. Use auth instead

• vault_client_auth ((dict, optional, deprecated since 2.5.1). Default
None.) – deprecated since 2.5.1. Use auth instead

• auth ((dict, optional)) – Dictionay returned from ads.common.auth.api_keys() or
ads.common.auth.resource_principal(). By default, will follow what is set in ads.set_auth.
Use this attribute to override the default.

create_secret(value: dict, secret_name: Optional[str] = None, description: Optional[str] = None,
encode=True, freeform_tags: Optional[dict] = None, defined_tags: Optional[dict] = None)
→ str

Saves value into vault as a secret.

Parameters

• value (dict) – The value to store as a secret.

• secret_name (str, optional) – The name of the secret.

• description (str, optional) – The description of the secret.

• encode ((bool, optional). Default True) – Whether to encode using the default
encoding.

• freeform_tags ((dict, optional). Default None) – freeform_tags as defined by
the oci sdk

• defined_tags ((dict, optional). Default None) – defined_tags as defined by the
oci sdk

Return type
The secret ocid that correspond to the value saved as a secret into vault.

get_secret(secret_id: str, decoded=True)→ dict
Retrieve secret content based on the secret ocid provided

Parameters

• secret_id (str) – The secret ocid.

• decoded ((bool, optional). Default True) – Whether to decode the content that
is retrieved from vault service using the default decoder.

Return type
The secret content as a dictionary.

update_secret(secret_id: str, secret_content: dict, encode: bool = True)→ str
Updates content of a secret.

Parameters

• secret_id (str) – The secret id where the stored secret will be updated.

• secret_content (dict,) – The updated content.

• encode ((bool, optional). Default True) – Whether to encode the secret_content
using default encoding
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Return type
The secret ocid with updated content.

23.1.1.21.3 Module contents

23.1.2 Submodules

23.1.3 ads.config module

ads.config.open(uri: Optional[str] = '~/.ads/config', profile: Optional[str] = 'DEFAULT', mode: Optional[str] =
'r', auth: Dict = None)

Context manager helping to read and write config files.

Parameters

• uri ((str, optional). Defaults to ~/.ads/config.) – The path to the config file. Can be local or
Object Storage file.

• profile ((str, optional). Defaults to DEFAULT ) – The name of the profile to be loaded.

• mode ((str, optional). Defaults to r.) – The config mode. Supported values: [‘r’, ‘w’]

• auth ((Dict, optional). Defaults to None.) – The default authetication is set us-
ing ads.set_auth API. If you need to override the default, use the ads.common.auth.api_keys
or ads.common.auth.resource_principal to create appropriate authentication signer and
kwargs required to instantiate IdentityClient object.

Yields
ConfigSection – The config section object.

23.1.4 Module contents

ads.getLogger(name='ads')

ads.hello()

Imports Pandas, sets the documentation mode, and prints a fancy “Hello”.

ads.set_auth(auth='api_key', oci_config_location='~/.oci/config', profile='DEFAULT')
Enable/disable resource principal identity or keypair identity in a notebook session.

Parameters

• auth ({'api_key', 'resource_principal'}, default 'api_key') – Enable/disable re-
source principal identity or keypair identity in a notebook session

• oci_config_location (str, default oci.config.DEFAULT_LOCATION, which
is '~/.oci/config') – config file location

• profile (str, default 'DEFAULT') – profile name for api keys config file

ads.set_debug_mode(mode=True)
Enable/disable printing stack traces on notebook.

Parameters
mode (bool (default True)) – Enable/disable print stack traces on notebook
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ads.set_documentation_mode(mode=False)
This method is deprecated and will be removed in future releases. Enable/disable printing user tips on notebook.

Parameters
mode (bool (default False)) – Enable/disable print user tips on notebook

ads.set_expert_mode()

This method is deprecated and will be removed in future releases. Enables the debug and documentation mode
for expert users all in one method.

Oracle Accelerated Data Science (ADS) SDK

The Oracle Accelerated Data Science (ADS) SDK is a Python library that is included as part of the Oracle Cloud
Infrastructure Data Science service. ADS offers a friendly user interface, with objects and methods that cover all the
steps involved in the lifecycle of machine learning models, from data acquisition to model evaluation and interpretation.

Installation

python3 -m pip install oracle-ads

Source Code

https://github.com/oracle/accelerated-data-science

>>> import ads
>>> ads.hello()

O o-o o-o
/ \ | \ |
o---o| O o-o
| || / |
o oo-o o--o

ADS SDK version: X.Y.Z
Pandas version: x.y.z
Debug mode: False
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attribute), 787
attribute_map (ads.jobs.builders.runtimes.python_runtime.PythonRuntime

attribute), 788
attribute_map (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime

attribute), 788
auth (ads.model.framework.automl_model.AutoMLModel

attribute), 851
auth (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 855
auth (ads.model.framework.pytorch_model.PyTorchModel

attribute), 860
auth (ads.model.framework.sklearn_model.SklearnModel

attribute), 865
auth (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 870
auth (ads.model.framework.xgboost_model.XGBoostModel

attribute), 875
auth (ads.model.generic_model.GenericModel at-

tribute), 810
auth (ads.secrets.big_data_service.BDSSecretKeeper at-

tribute), 898
auth_token (ads.secrets.auth_token.AuthToken at-

tribute), 900
AuthToken (class in ads.secrets.auth_token), 900
AuthTokenSecretKeeper (class in

ads.secrets.auth_token), 900
auto_transform() (ads.dataset.classification_dataset.BinaryTextClassificationDataset

method), 624
auto_transform() (ads.dataset.classification_dataset.ClassificationDataset

method), 624
auto_transform() (ads.dataset.classification_dataset.MultiClassTextClassificationDataset

method), 626
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auto_transform() (ads.dataset.dataset_with_target.ADSDatasetWithTarget
method), 644

AutoML (class in ads.automl.driver), 515
AutoMLExtractor (class in

ads.model.extractor.automl_extractor), 828
AutoMLFeatureSelection (class in

ads.automl.provider), 516
AutoMLModel (class in

ads.model.framework.automl_model), 851
AutoMLPreprocessingTransformer (class in

ads.automl.provider), 517
AutoMLProvider (class in ads.automl.provider), 517
AVAILABLE (ads.model.generic_model.ModelState

attribute), 825

B
backend() (ads.text_dataset.dataset.DataLoader

method), 905
backend() (ads.text_dataset.extractor.FileProcessor

method), 908
backend_map (ads.text_dataset.extractor.FileProcessor

attribute), 908
backend_map (ads.text_dataset.extractor.PDFProcessor

attribute), 910
backend_map (ads.text_dataset.extractor.WordProcessor

attribute), 910
Base (class in ads.text_dataset.backends), 901
baseline (ads.evaluations.evaluation_plot.EvaluationPlot

attribute), 662
baseline_kwargs (ads.evaluations.evaluation_plot.EvaluationPlot

attribute), 662
BaselineAutoMLProvider (class in

ads.automl.provider), 518
BaselineModel (class in ads.automl.provider), 519
BDS (ads.common.decorator.runtime_dependency.OptionalDependency

attribute), 559
BDSSecret (class in ads.secrets.big_data_service), 895
BDSSecretKeeper (class in

ads.secrets.big_data_service), 897
BERT (ads.common.model_metadata.Framework at-

tribute), 542
best_index (ads.hpo.search_cv.ADSTuner property),

764
best_params (ads.hpo.search_cv.ADSTuner property),

764
best_score (ads.hpo.search_cv.ADSTuner property),

764
best_scores() (ads.hpo.search_cv.ADSTuner method),

764
BINARY_CLASSIFICATION

(ads.common.model_metadata.UseCaseType
attribute), 558

BINARY_CLASSIFICATION
(ads.common.utils.ml_task_types attribute),

574
BINARY_TEXT_CLASSIFICATION

(ads.common.utils.ml_task_types attribute),
574

BinaryClassificationDataset (class in
ads.dataset.classification_dataset), 623

BinaryTextClassificationDataset (class in
ads.dataset.classification_dataset), 624

block_storage_size (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 801

BokehHeatMap (class in ads.dataset.correlation_plot),
626

Boolean (class in ads.feature_engineering.feature_type.boolean),
703

BOOSTED (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 559

bottom_left (ads.data_labeling.boundingbox.BoundingBoxItem
attribute), 580, 581

bottom_right (ads.data_labeling.boundingbox.BoundingBoxItem
attribute), 580, 581

BOUNDING_BOX (ads.data_labeling.constants.AnnotationType
attribute), 583

BoundingBoxItem (class in
ads.data_labeling.boundingbox), 580

BoundingBoxItems (class in
ads.data_labeling.boundingbox), 582

BoundingBoxRecordParser (class in
ads.data_labeling.parser.export_record_parser),
592

boxes (ads.data_labeling.visualizer.image_visualizer.LabeledImageItem
attribute), 609

branch (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
property), 785

bucket_uri (ads.model.model_properties.ModelProperties
attribute), 826

build() (ads.common.data.ADSData static method),
538

build() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties
method), 848

C
calculate_cost() (ads.evaluations.evaluator.ADSEvaluator

method), 665, 667
calculate_sample_size() (in module

ads.dataset.helper), 655
call() (ads.dataset.dataset.ADSDataset method), 630
camel_to_snake() (in module ads.common.utils), 569
cancel() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

method), 806
capitalize() (ads.feature_engineering.adsstring.string.ADSString

method), 693
card_identify (class in ads.common.card_identifier),

535
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case (ads.common.model_introspect.PrintItem at-
tribute), 563

casefold() (ads.feature_engineering.adsstring.string.ADSString
method), 693

cat_vs_cat() (in module
ads.feature_engineering.accessor.mixin.correlation),
685

cat_vs_cont() (in module
ads.feature_engineering.accessor.mixin.correlation),
685

CategoricalDistribution (class in
ads.hpo.distributions), 760

CATEGORY (ads.common.model_metadata.MetadataCustomPrintColumns
attribute), 544

category (ads.common.model_metadata.ModelCustomMetadataItem
attribute), 548

category (ads.common.model_metadata.ModelCustomMetadataItem
property), 549

Category (class in ads.feature_engineering.feature_type.category),
705

center() (ads.feature_engineering.adsstring.string.ADSString
method), 693

CLASS (ads.common.decorator.deprecate.TARGET_TYPE
attribute), 561

classes (ads.evaluations.statistical_metrics.ModelEvaluator
attribute), 670

ClassificationDataset (class in
ads.dataset.classification_dataset), 624

clear() (ads.common.model_metadata.ModelCustomMetadata
method), 545, 547

client (ads.jobs.builders.infrastructure.dataflow.DataFlowApp
property), 795

client (ads.jobs.builders.infrastructure.dataflow.DataFlowRun
property), 796

CLIENT_LIBRARY (ads.common.model_metadata.MetadataCustomKeys
attribute), 543

CLUSTERING (ads.common.model_metadata.UseCaseType
attribute), 558

color_wheel (ads.evaluations.evaluation_plot.EvaluationPlot
attribute), 662

colors (ads.data_labeling.visualizer.image_visualizer.RenderOptions
attribute), 609, 610

colors (ads.data_labeling.visualizer.text_visualizer.RenderOptions
attribute), 612

columns (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
attribute), 677

commit (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
property), 785

commit() (ads.catalog.model.Model method), 522, 523
CommonRegexMixin (class in

ads.feature_engineering.adsstring.common_regex_mixin),
691

compartment_id (ads.data_labeling.metadata.Metadata
attribute), 585

compartment_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 801

compartment_id (ads.model.model_properties.ModelProperties
attribute), 826

compartment_id (ads.secrets.big_data_service.BDSSecretKeeper
attribute), 898

COMPLETED (ads.hpo.search_cv.State attribute), 774
compute() (ads.dataset.dataset.ADSDataset method),

631
concatenate() (in module ads.dataset.helper), 655
conda (ads.jobs.builders.runtimes.python_runtime.CondaRuntime

property), 781
CONDA_ENVIRONMENT (ads.common.model_metadata.MetadataCustomKeys

attribute), 543
CONDA_ENVIRONMENT_PATH

(ads.common.model_metadata.MetadataCustomKeys
attribute), 543

CondaRuntime (class in
ads.jobs.builders.runtimes.python_runtime),
781

config (ads.dataflow.dataflow.DataFlowApp property),
617

config (ads.dataflow.dataflow.DataFlowRun property),
620

config (ads.dataflow.dataflow.RunObserver property),
622

config (ads.model.deployment.model_deployer.ModelDeployer
attribute), 837

config (ads.model.deployment.model_deployment.ModelDeployment
attribute), 841

configuration (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
property), 783

connect() (ads.database.connection.Connector
method), 614

Connector (class in ads.database.connection), 613
CONST_ARCHIVE_BUCKET

(ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
attribute), 782

CONST_ARCHIVE_URI (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
attribute), 782

CONST_BLOCK_STORAGE
(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 800

CONST_BRANCH (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
attribute), 785

CONST_BUCKET_URI (ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_COMMIT (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
attribute), 785

CONST_COMPARTMENT_ID
(ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_COMPARTMENT_ID
(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
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attribute), 800
CONST_CONDA (ads.jobs.builders.runtimes.python_runtime.CondaRuntime

attribute), 781
CONST_CONDA_AUTH_TYPE

(ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
attribute), 782

CONST_CONDA_REGION (ads.jobs.builders.runtimes.python_runtime.CondaRuntime
attribute), 781

CONST_CONDA_SLUG (ads.jobs.builders.runtimes.python_runtime.CondaRuntime
attribute), 781

CONST_CONDA_TYPE (ads.jobs.builders.runtimes.python_runtime.CondaRuntime
attribute), 781

CONST_CONDA_TYPE_CUSTOM
(ads.jobs.builders.runtimes.python_runtime.CondaRuntime
attribute), 781

CONST_CONDA_TYPE_SERVICE
(ads.jobs.builders.runtimes.python_runtime.CondaRuntime
attribute), 781

CONST_CONDA_URI (ads.jobs.builders.runtimes.python_runtime.CondaRuntime
attribute), 781

CONST_CONFIG (ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_CONFIGURATION
(ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
attribute), 782

CONST_DISPLAY_NAME (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_DRIVER_SHAPE (ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_ENTRYPOINT (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime
attribute), 788

CONST_EXCLUDE_TAG (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime
attribute), 786

CONST_EXECUTE (ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_EXECUTOR_SHAPE
(ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_GIT_SSH_SECRET_ID
(ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
attribute), 785

CONST_GIT_URL (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
attribute), 785

CONST_ID (ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_JOB_INFRA (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_JOB_TYPE (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_LANGUAGE (ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_LOG_GROUP_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_LOG_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

attribute), 801
CONST_METASTORE_ID (ads.jobs.builders.infrastructure.dataflow.DataFlow

attribute), 790
CONST_NOTEBOOK_ENCODING

(ads.jobs.builders.runtimes.python_runtime.NotebookRuntime
attribute), 786

CONST_NOTEBOOK_PATH
(ads.jobs.builders.runtimes.python_runtime.NotebookRuntime
attribute), 786

CONST_NUM_EXECUTORS
(ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_OUTPUT_URI (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime
attribute), 787

CONST_PROJECT_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_SCRIPT_BUCKET
(ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
attribute), 782

CONST_SCRIPT_PATH (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
attribute), 782

CONST_SCRIPT_PATH (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime
attribute), 788

CONST_SHAPE_NAME (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_SKIP_METADATA
(ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
attribute), 785

CONST_SPARK_VERSION
(ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_SUBNET_ID (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 801

CONST_WAREHOUSE_BUCKET_URI
(ads.jobs.builders.infrastructure.dataflow.DataFlow
attribute), 790

CONST_WORKING_DIR (ads.jobs.builders.runtimes.python_runtime.PythonRuntime
attribute), 788

Constant (class in ads.feature_engineering.feature_type.constant),
708

cont_vs_cont() (in module
ads.feature_engineering.accessor.mixin.correlation),
685

content (ads.data_labeling.record.Record attribute),
588

Continuous (class in ads.feature_engineering.feature_type.continuous),
710

convert() (ads.jobs.builders.runtimes.python_runtime.DataFlowNotebookRuntime
method), 782

convert() (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime
method), 783

convert_columns() (in module ads.dataset.helper),
655

convert_dataframe_schema()
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(ads.common.model.ADSModel static method),
539

convert_to_html() (in module ads.dataset.helper),
655

convert_to_text() (ads.text_dataset.backends.Base
method), 901

convert_to_text() (ads.text_dataset.backends.PDFPlumber
method), 902

convert_to_text() (ads.text_dataset.backends.Tika
method), 903

convert_to_text() (ads.text_dataset.dataset.DataLoader
method), 905

convert_to_text() (ads.text_dataset.extractor.FileProcessor
method), 908

convert_to_text_classification()
(ads.dataset.classification_dataset.ClassificationDataset
method), 625

copy_file() (in module ads.common.utils), 569
copy_from_uri() (in module ads.common.utils), 570
corr() (ads.dataset.dataset.ADSDataset method), 631
correlation_ratio()

(ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin
method), 685

correlation_ratio_plot()
(ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin
method), 686

count() (ads.feature_engineering.adsstring.string.ADSString
method), 693

cramersv() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin
method), 686

cramersv_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin
method), 686

create() (ads.jobs.ads_job.Job method), 777
create() (ads.jobs.builders.infrastructure.dataflow.DataFlow

method), 790
create() (ads.jobs.builders.infrastructure.dataflow.DataFlowApp

method), 795
create() (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

method), 796
create() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

method), 801
create() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

method), 806
create() (ads.jobs.builders.infrastructure.dsc_job.DSCJob

method), 799
create_app() (ads.dataflow.dataflow.DataFlow

method), 615
create_notebook_session()

(ads.catalog.notebook.NotebookCatalog
method), 529

create_project() (ads.catalog.project.ProjectCatalog
method), 531

create_secret() (ads.vault.vault.Vault method), 912
credit_card (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 691
CreditCard (class in ads.feature_engineering.feature_type.creditcard),

712
CUML (ads.common.model_metadata.Framework at-

tribute), 542
CustomFormatReaders (class in ads.dataset.factory),

649

D
DATA (ads.common.decorator.runtime_dependency.OptionalDependency

attribute), 559
database (ads.secrets.mysqldb.MySQLDBSecret at-

tribute), 891
DataFlow (class in ads.dataflow.dataflow), 615
DataFlow (class in ads.jobs.builders.infrastructure.dataflow),

790
dataflow_job() (ads.jobs.ads_job.Job static method),

777
DataFlowApp (class in ads.dataflow.dataflow), 617
DataFlowApp (class in

ads.jobs.builders.infrastructure.dataflow),
794

DataFlowLog (class in ads.dataflow.dataflow), 619
DataFlowLogs (class in

ads.jobs.builders.infrastructure.dataflow),
795

DataFlowNotebookRuntime (class in
ads.jobs.builders.runtimes.python_runtime),
782

DataFlowRun (class in ads.dataflow.dataflow), 620
DataFlowRun (class in

ads.jobs.builders.infrastructure.dataflow),
796

DataFlowRuntime (class in
ads.jobs.builders.runtimes.python_runtime),
782

DataFrameLabelEncoder (class in
ads.dataset.label_encoder), 657

DataFrameTransformer (class in
ads.dataset.dataframe_transformer), 629

DataLabeling (class in
ads.data_labeling.data_labeling_service),
583

DataLabelingAccessMixin (class in
ads.data_labeling.mixin.data_labeling), 589

DataLoader (class in ads.text_dataset.dataset), 904
datascience_job() (ads.jobs.ads_job.Job static

method), 777
DataScienceJob (class in

ads.jobs.builders.infrastructure.dsc_job),
800

DataScienceJobRun (class in
ads.jobs.builders.infrastructure.dsc_job),
806
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dataset_id (ads.data_labeling.metadata.Metadata at-
tribute), 585, 586

dataset_name (ads.data_labeling.metadata.Metadata
attribute), 585, 586

dataset_type (ads.data_labeling.metadata.Metadata
attribute), 585, 586

DatasetBrowser (class in ads.dataset.dataset_browser),
641

DatasetDefaults (class in ads.dataset.helper), 655
DatasetError, 649
DatasetFactory (class in ads.dataset.factory), 650
DatasetLoadException, 655
DatasetNotFoundError, 603
DatasetType (class in ads.data_labeling.constants), 583
date (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 691
DateTime (class in ads.feature_engineering.feature_type.datetime),

716
datetime_format (ads.catalog.project.ProjectSummaryList

attribute), 533
ddf (ads.dataset.dataset.ADSDataset property), 631
deactivate() (ads.catalog.model.Model method), 522,

523
debug() (ads.dataset.correlation_plot.BokehHeatMap

method), 626
decide_estimator() (ads.automl.provider.BaselineAutoMLProvider

method), 518
decode() (ads.secrets.adb.ADBSecretKeeper method),

890
decode() (ads.secrets.auth_token.AuthTokenSecretKeeper

method), 901
decode() (ads.secrets.big_data_service.BDSSecretKeeper

method), 899
decode() (ads.secrets.mysqldb.MySQLDBSecretKeeper

method), 893
decode() (ads.secrets.oracledb.OracleDBSecretKeeper

method), 895
decode() (ads.secrets.secrets.SecretKeeper method),

885
decode() (in module ads.hpo.distributions), 762
default() (ads.common.utils.JsonConverter method),

569
default() (ads.hpo.distributions.DistributionEncode

method), 761
default_color (ads.data_labeling.visualizer.image_visualizer.RenderOptions

attribute), 609, 610
default_color (ads.data_labeling.visualizer.text_visualizer.RenderOptions

attribute), 612
default_handler() (in module

ads.feature_engineering.feature_type.address),
701

default_handler() (in module
ads.feature_engineering.feature_type.boolean),
705

default_handler() (in module
ads.feature_engineering.feature_type.creditcard),
716

default_handler() (in module
ads.feature_engineering.feature_type.datetime),
718

default_handler() (in module
ads.feature_engineering.feature_type.gis),
725

default_handler() (in module
ads.feature_engineering.feature_type.ip_address),
730

default_handler() (in module
ads.feature_engineering.feature_type.ip_address_v4),
732

default_handler() (in module
ads.feature_engineering.feature_type.ip_address_v6),
734

default_handler() (in module
ads.feature_engineering.feature_type.lat_long),
738

default_handler() (in module
ads.feature_engineering.feature_type.phone_number),
743

default_handler() (in module
ads.feature_engineering.feature_type.string),
746

default_handler() (in module
ads.feature_engineering.feature_type.zip_code),
751

DEFAULT_INFRA_TYPE (ads.jobs.builders.infrastructure.dsc_job.DSCJob
attribute), 798

DEFAULT_LABELS_MAP (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics
attribute), 666

default_signer() (in module ads.common.auth), 536
DEFAULT_SQL_ARRAYSIZE

(ads.dataset.factory.CustomFormatReaders
attribute), 649

DEFAULT_SQL_CHUNKSIZE
(ads.dataset.factory.CustomFormatReaders
attribute), 649

DEFAULT_SQL_CTU (ads.dataset.factory.CustomFormatReaders
attribute), 649

DEFAULT_SQL_MIL (ads.dataset.factory.CustomFormatReaders
attribute), 649

default_type (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
attribute), 678

default_type (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
property), 679

default_type (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor
attribute), 683

default_type (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor
property), 683

del_metrics() (ads.evaluations.evaluator.ADSEvaluator
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method), 664, 668
del_models() (ads.evaluations.evaluator.ADSEvaluator

method), 665, 668
delete() (ads.jobs.ads_job.Job method), 777
delete() (ads.jobs.builders.infrastructure.dataflow.DataFlow

method), 790
delete() (ads.jobs.builders.infrastructure.dataflow.DataFlowApp

method), 795
delete() (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

method), 796
delete() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

method), 801
delete() (ads.jobs.builders.infrastructure.dsc_job.DSCJob

method), 799
delete() (ads.model.deployment.model_deployer.ModelDeployer

method), 838
delete() (ads.model.deployment.model_deployment.ModelDeployment

method), 842
delete() (ads.model.generic_model.GenericModel

class method), 813
delete_deployment()

(ads.model.framework.automl_model.AutoMLModel
method), 853

delete_deployment()
(ads.model.framework.lightgbm_model.LightGBMModel
method), 857

delete_deployment()
(ads.model.framework.pytorch_model.PyTorchModel
method), 862

delete_deployment()
(ads.model.framework.sklearn_model.SklearnModel
method), 867

delete_deployment()
(ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

delete_deployment()
(ads.model.framework.xgboost_model.XGBoostModel
method), 877

delete_deployment()
(ads.model.generic_model.GenericModel
method), 812, 814

delete_model() (ads.catalog.model.ModelCatalog
method), 524, 525

delete_notebook_session()
(ads.catalog.notebook.NotebookCatalog
method), 530

delete_project() (ads.catalog.project.ProjectCatalog
method), 532

deploy() (ads.model.deployment.model_deployer.ModelDeployer
method), 838

deploy() (ads.model.deployment.model_deployment.ModelDeployment
method), 842, 843

deploy() (ads.model.framework.automl_model.AutoMLModel
method), 853

deploy() (ads.model.framework.lightgbm_model.LightGBMModel
method), 857

deploy() (ads.model.framework.pytorch_model.PyTorchModel
method), 862

deploy() (ads.model.framework.sklearn_model.SklearnModel
method), 867

deploy() (ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

deploy() (ads.model.framework.xgboost_model.XGBoostModel
method), 877

deploy() (ads.model.generic_model.GenericModel
method), 812, 814

deploy_from_model_uri()
(ads.model.deployment.model_deployer.ModelDeployer
method), 839

deployment_access_log_id
(ads.model.model_properties.ModelProperties
attribute), 826

deployment_bandwidth_mbps
(ads.model.model_properties.ModelProperties
attribute), 826

deployment_instance_count
(ads.model.model_properties.ModelProperties
attribute), 826

deployment_instance_shape
(ads.model.model_properties.ModelProperties
attribute), 826

deployment_log_group_id
(ads.model.model_properties.ModelProperties
attribute), 826

deployment_predict_log_id
(ads.model.model_properties.ModelProperties
attribute), 826

deployment_properties
(ads.model.deployment.model_deployment.ModelDeployment
attribute), 841

deprecate_default_value() (in module
ads.dataset.helper), 655

deprecate_variable() (in module
ads.dataset.helper), 656

deprecated() (in module
ads.common.decorator.deprecate), 561

DESCRIPTION (ads.common.model_metadata.MetadataCustomPrintColumns
attribute), 544

description (ads.common.model_metadata.ModelCustomMetadataItem
attribute), 548

description (ads.common.model_metadata.ModelCustomMetadataItem
property), 549

description (ads.feature_engineering.feature_type.address.Address
attribute), 699, 700

description (ads.feature_engineering.feature_type.base.FeatureType
attribute), 702

description (ads.feature_engineering.feature_type.boolean.Boolean
attribute), 703, 704
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description (ads.feature_engineering.feature_type.category.Category
attribute), 705, 706

description (ads.feature_engineering.feature_type.constant.Constant
attribute), 708

description (ads.feature_engineering.feature_type.continuous.Continuous
attribute), 710

description (ads.feature_engineering.feature_type.creditcard.CreditCard
attribute), 712, 713

description (ads.feature_engineering.feature_type.datetime.DateTime
attribute), 716, 717

description (ads.feature_engineering.feature_type.discrete.Discrete
attribute), 719

description (ads.feature_engineering.feature_type.document.Document
attribute), 721

description (ads.feature_engineering.feature_type.gis.GIS
attribute), 722, 723

description (ads.feature_engineering.feature_type.integer.Integer
attribute), 726

description (ads.feature_engineering.feature_type.ip_address.IpAddress
attribute), 728, 729

description (ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4
attribute), 730, 731

description (ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6
attribute), 732, 733

description (ads.feature_engineering.feature_type.lat_long.LatLong
attribute), 735, 736

description (ads.feature_engineering.feature_type.object.Object
attribute), 738, 739

description (ads.feature_engineering.feature_type.ordinal.Ordinal
attribute), 739, 740

description (ads.feature_engineering.feature_type.phone_number.PhoneNumber
attribute), 742

description (ads.feature_engineering.feature_type.string.String
attribute), 744

description (ads.feature_engineering.feature_type.text.Text
attribute), 746, 747

description (ads.feature_engineering.feature_type.unknown.Unknown
attribute), 748

description (ads.feature_engineering.feature_type.zip_code.ZipCode
attribute), 749

detect_encoding() (ads.text_dataset.backends.Tika
method), 903

df (ads.catalog.project.ProjectSummaryList attribute),
533

df_read_functions (ads.dataset.dataset.ADSDataset
attribute), 631

DIMENSIONALITY_REDUCTION
(ads.common.model_metadata.UseCaseType
attribute), 558

Discrete (class in ads.feature_engineering.feature_type.discrete),
719

DiscreteUniformDistribution (class in
ads.hpo.distributions), 760

Distribution (class in ads.hpo.distributions), 760

DistributionEncode (class in ads.hpo.distributions),
760

DLSDatasetReader (class in
ads.data_labeling.reader.dataset_reader),
597

DLSMetadataReader (class in
ads.data_labeling.reader.metadata_reader),
603

DOCUMENT (ads.data_labeling.constants.DatasetType at-
tribute), 583

Document (class in ads.feature_engineering.feature_type.document),
721

DONE (ads.model.generic_model.ModelState attribute),
825

double_overlay_plots
(ads.evaluations.evaluation_plot.EvaluationPlot
attribute), 662

down_sample() (ads.dataset.classification_dataset.ClassificationDataset
method), 625

down_sample() (in module ads.dataset.helper), 656
download() (ads.dataset.factory.DatasetFactory static

method), 650
download() (ads.jobs.ads_job.Job method), 777
download() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

method), 806
download_artifact()

(ads.jobs.builders.infrastructure.dsc_job.DSCJob
method), 799

download_from_web() (in module ads.common.utils),
570

download_model() (ads.catalog.model.ModelCatalog
method), 524, 525

driver (ads.jobs.builders.infrastructure.dataflow.DataFlowLogs
property), 796

drop_columns() (ads.dataset.dataset.ADSDataset
method), 631

ds_client (ads.model.deployment.model_deployer.ModelDeployer
attribute), 837

ds_client (ads.model.deployment.model_deployment.ModelDeployment
attribute), 841

ds_client (ads.model.framework.automl_model.AutoMLModel
attribute), 851

ds_client (ads.model.framework.lightgbm_model.LightGBMModel
attribute), 855

ds_client (ads.model.framework.pytorch_model.PyTorchModel
attribute), 860

ds_client (ads.model.framework.sklearn_model.SklearnModel
attribute), 865

ds_client (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 870

ds_client (ads.model.framework.xgboost_model.XGBoostModel
attribute), 875

ds_client (ads.model.generic_model.GenericModel at-
tribute), 810
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ds_composite_client
(ads.model.deployment.model_deployer.ModelDeployer
attribute), 837

ds_composite_client
(ads.model.deployment.model_deployment.ModelDeployment
attribute), 841

DSCJob (class in ads.jobs.builders.infrastructure.dsc_job),
798

DSCJobRun (in module
ads.jobs.builders.infrastructure.dsc_job),
800

dsn (ads.secrets.oracledb.OracleDBSecret attribute), 893
DummyProgressBar (class in ads.dataset.progress), 658
DuplicatedStudyError, 773

E
EDAMixin (class in ads.feature_engineering.accessor.mixin.eda_mixin),

685
EDAMixinSeries (class in

ads.feature_engineering.accessor.mixin.eda_mixin_series),
688

ElaboratedPath (class in ads.dataset.helper), 655
ellipsis_strings() (in module ads.common.utils),

571
email (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 691
EMCEE (ads.common.model_metadata.Framework at-

tribute), 542
EmptyMetadata, 603
encode() (ads.feature_engineering.adsstring.string.ADSString

method), 693
encode() (ads.secrets.adb.ADBSecretKeeper method),

891
encode() (ads.secrets.big_data_service.BDSSecretKeeper

method), 899
encode() (ads.secrets.secrets.SecretKeeper method),

886
encode() (in module ads.hpo.distributions), 762
endswith() (ads.feature_engineering.adsstring.string.ADSString

method), 694
engine() (ads.text_dataset.dataset.DataLoader

method), 906
ENSEMBLE (ads.common.model_metadata.Framework at-

tribute), 542
ENTITY_EXTRACTION (ads.data_labeling.constants.AnnotationType

attribute), 583
EntityType (class in ads.data_labeling.parser.export_record_parser),

592
entrypoint (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime

property), 789
ents (ads.data_labeling.visualizer.text_visualizer.LabeledTextItem

attribute), 611
EnvInfo (class in ads.model.runtime.env_info), 880

ENVIRONMENT_TYPE (ads.common.model_metadata.MetadataCustomKeys
attribute), 543

est (ads.automl.provider.AutoMLProvider property), 517
estimator (ads.model.extractor.automl_extractor.AutoMLExtractor

attribute), 828
estimator (ads.model.extractor.keras_extractor.KerasExtractor

attribute), 833
estimator (ads.model.extractor.lightgbm_extractor.LightgbmExtractor

attribute), 830
estimator (ads.model.extractor.pytorch_extractor.PytorchExtractor

attribute), 836
estimator (ads.model.extractor.sklearn_extractor.SklearnExtractor

attribute), 832
estimator (ads.model.extractor.tensorflow_extractor.TensorflowExtractor

attribute), 834
estimator (ads.model.extractor.xgboost_extractor.XgboostExtractor

attribute), 829
estimator (ads.model.framework.automl_model.AutoMLModel

attribute), 851
estimator (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 855
estimator (ads.model.framework.pytorch_model.PyTorchModel

attribute), 860
estimator (ads.model.framework.sklearn_model.SklearnModel

attribute), 865
estimator (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 870
estimator (ads.model.framework.xgboost_model.XGBoostModel

attribute), 875
estimator (ads.model.generic_model.GenericModel at-

tribute), 810
ev_test (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics

attribute), 665
ev_train (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics

attribute), 665
EvaluationPlot (class in

ads.evaluations.evaluation_plot), 661
evaluations (ads.evaluations.evaluator.ADSEvaluator

attribute), 663
exclude_tag (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime

property), 787
executor (ads.jobs.builders.infrastructure.dataflow.DataFlowLogs

property), 796
ExitCriterionError, 773
expand_lambda_function() (in module

ads.dataset.dataframe_transformer), 629
expandtabs() (ads.feature_engineering.adsstring.string.ADSString

method), 694
EXPECTED_KEYS (ads.data_labeling.parser.export_metadata_parser.MetadataParser

attribute), 591
export() (ads.data_labeling.data_labeling_service.DataLabeling

method), 584
export_dict() (ads.secrets.secrets.Secret method), 884
export_options() (ads.secrets.secrets.Secret method),
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884
export_vault_details()

(ads.secrets.secrets.SecretKeeper method),
886

ExportMetadataReader (class in
ads.data_labeling.reader.metadata_reader),
603

ExportReader (class in
ads.data_labeling.reader.dataset_reader),
598

ExtendedEnumMeta (class in
ads.common.model_metadata), 542

extract_info() (ads.model.extractor.model_info_extractor_factory.ModelInfoExtractorFactory
static method), 827

extract_lib_dependencies_from_model() (in mod-
ule ads.common.utils), 571

F
failures (ads.common.model_introspect.ModelIntrospect

property), 563
feature_count() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin

method), 686
feature_domain() (ads.feature_engineering.feature_type.address.Address

class method), 700
feature_domain() (ads.feature_engineering.feature_type.boolean.Boolean

class method), 704
feature_domain() (ads.feature_engineering.feature_type.category.Category

class method), 706
feature_domain() (ads.feature_engineering.feature_type.constant.Constant

class method), 708
feature_domain() (ads.feature_engineering.feature_type.continuous.Continuous

class method), 710
feature_domain() (ads.feature_engineering.feature_type.creditcard.CreditCard

class method), 713
feature_domain() (ads.feature_engineering.feature_type.datetime.DateTime

class method), 717
feature_domain() (ads.feature_engineering.feature_type.discrete.Discrete

class method), 719
feature_domain() (ads.feature_engineering.feature_type.document.Document

class method), 721
feature_domain() (ads.feature_engineering.feature_type.gis.GIS

class method), 723
feature_domain() (ads.feature_engineering.feature_type.integer.Integer

class method), 726
feature_domain() (ads.feature_engineering.feature_type.ip_address.IpAddress

class method), 729
feature_domain() (ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4

class method), 731
feature_domain() (ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6

class method), 733
feature_domain() (ads.feature_engineering.feature_type.lat_long.LatLong

class method), 736
feature_domain() (ads.feature_engineering.feature_type.object.Object

class method), 739

feature_domain() (ads.feature_engineering.feature_type.ordinal.Ordinal
class method), 740

feature_domain() (ads.feature_engineering.feature_type.phone_number.PhoneNumber
class method), 742

feature_domain() (ads.feature_engineering.feature_type.string.String
class method), 744

feature_domain() (ads.feature_engineering.feature_type.text.Text
class method), 747

feature_domain() (ads.feature_engineering.feature_type.unknown.Unknown
class method), 748

feature_domain() (ads.feature_engineering.feature_type.zip_code.ZipCode
class method), 750

feature_names() (ads.common.model.ADSModel
method), 539

feature_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin
method), 687

feature_plot() (ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries
method), 688

feature_plot() (ads.feature_engineering.feature_type.address.Address
method), 699

feature_plot() (ads.feature_engineering.feature_type.address.Address
static method), 700

feature_plot() (ads.feature_engineering.feature_type.boolean.Boolean
method), 703

feature_plot() (ads.feature_engineering.feature_type.boolean.Boolean
static method), 704

feature_plot() (ads.feature_engineering.feature_type.category.Category
method), 706

feature_plot() (ads.feature_engineering.feature_type.category.Category
static method), 706

feature_plot() (ads.feature_engineering.feature_type.constant.Constant
method), 708

feature_plot() (ads.feature_engineering.feature_type.constant.Constant
static method), 709

feature_plot() (ads.feature_engineering.feature_type.continuous.Continuous
method), 710

feature_plot() (ads.feature_engineering.feature_type.continuous.Continuous
static method), 711

feature_plot() (ads.feature_engineering.feature_type.creditcard.CreditCard
method), 713

feature_plot() (ads.feature_engineering.feature_type.creditcard.CreditCard
static method), 714

feature_plot() (ads.feature_engineering.feature_type.datetime.DateTime
method), 717

feature_plot() (ads.feature_engineering.feature_type.datetime.DateTime
static method), 717

feature_plot() (ads.feature_engineering.feature_type.discrete.Discrete
method), 719

feature_plot() (ads.feature_engineering.feature_type.discrete.Discrete
static method), 720

feature_plot() (ads.feature_engineering.feature_type.gis.GIS
method), 722

feature_plot() (ads.feature_engineering.feature_type.gis.GIS
static method), 724
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feature_plot() (ads.feature_engineering.feature_type.integer.Integer
method), 726

feature_plot() (ads.feature_engineering.feature_type.integer.Integer
static method), 727

feature_plot() (ads.feature_engineering.feature_type.lat_long.LatLong
method), 735

feature_plot() (ads.feature_engineering.feature_type.lat_long.LatLong
static method), 737

feature_plot() (ads.feature_engineering.feature_type.ordinal.Ordinal
method), 740

feature_plot() (ads.feature_engineering.feature_type.ordinal.Ordinal
static method), 740

feature_plot() (ads.feature_engineering.feature_type.string.String
method), 744

feature_plot() (ads.feature_engineering.feature_type.string.String
static method), 745

feature_plot() (ads.feature_engineering.feature_type.text.Text
method), 747

feature_plot() (ads.feature_engineering.feature_type.text.Text
static method), 747

feature_plot() (ads.feature_engineering.feature_type.zip_code.ZipCode
method), 749

feature_plot() (ads.feature_engineering.feature_type.zip_code.ZipCode
static method), 750

feature_select() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
method), 678, 679

feature_stat() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin
method), 687

feature_stat() (ads.feature_engineering.accessor.mixin.eda_mixin_series.EDAMixinSeries
method), 689

feature_stat() (ads.feature_engineering.feature_type.address.Address
method), 699

feature_stat() (ads.feature_engineering.feature_type.address.Address
static method), 701

feature_stat() (ads.feature_engineering.feature_type.boolean.Boolean
method), 703

feature_stat() (ads.feature_engineering.feature_type.boolean.Boolean
static method), 704

feature_stat() (ads.feature_engineering.feature_type.category.Category
method), 706

feature_stat() (ads.feature_engineering.feature_type.category.Category
static method), 707

feature_stat() (ads.feature_engineering.feature_type.constant.Constant
method), 708

feature_stat() (ads.feature_engineering.feature_type.constant.Constant
static method), 709

feature_stat() (ads.feature_engineering.feature_type.continuous.Continuous
method), 710

feature_stat() (ads.feature_engineering.feature_type.continuous.Continuous
static method), 711

feature_stat() (ads.feature_engineering.feature_type.creditcard.CreditCard
method), 713

feature_stat() (ads.feature_engineering.feature_type.creditcard.CreditCard
static method), 715

feature_stat() (ads.feature_engineering.feature_type.datetime.DateTime
method), 717

feature_stat() (ads.feature_engineering.feature_type.datetime.DateTime
static method), 718

feature_stat() (ads.feature_engineering.feature_type.discrete.Discrete
method), 719

feature_stat() (ads.feature_engineering.feature_type.discrete.Discrete
static method), 720

feature_stat() (ads.feature_engineering.feature_type.gis.GIS
method), 722

feature_stat() (ads.feature_engineering.feature_type.gis.GIS
static method), 724

feature_stat() (ads.feature_engineering.feature_type.integer.Integer
method), 726

feature_stat() (ads.feature_engineering.feature_type.integer.Integer
static method), 727

feature_stat() (ads.feature_engineering.feature_type.ip_address.IpAddress
method), 728

feature_stat() (ads.feature_engineering.feature_type.ip_address.IpAddress
static method), 729

feature_stat() (ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4
method), 730

feature_stat() (ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4
static method), 731

feature_stat() (ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6
method), 733

feature_stat() (ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6
static method), 734

feature_stat() (ads.feature_engineering.feature_type.lat_long.LatLong
method), 735

feature_stat() (ads.feature_engineering.feature_type.lat_long.LatLong
static method), 737

feature_stat() (ads.feature_engineering.feature_type.ordinal.Ordinal
method), 740

feature_stat() (ads.feature_engineering.feature_type.ordinal.Ordinal
static method), 741

feature_stat() (ads.feature_engineering.feature_type.phone_number.PhoneNumber
method), 742

feature_stat() (ads.feature_engineering.feature_type.phone_number.PhoneNumber
static method), 743

feature_stat() (ads.feature_engineering.feature_type.string.String
method), 744

feature_stat() (ads.feature_engineering.feature_type.string.String
static method), 745

feature_stat() (ads.feature_engineering.feature_type.zip_code.ZipCode
method), 749

feature_stat() (ads.feature_engineering.feature_type.zip_code.ZipCode
static method), 750

feature_type (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
attribute), 678

feature_type (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
property), 679

feature_type (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor
attribute), 683
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feature_type (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor
property), 683

feature_type_description
(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
attribute), 678

feature_type_description
(ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
property), 679

feature_type_description
(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor
attribute), 683

feature_type_description
(ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor
property), 684

feature_type_object()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
class method), 675

feature_type_object()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
method), 674

feature_type_register()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
class method), 675

feature_type_register()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
method), 674

feature_type_registered()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
class method), 675

feature_type_registered()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
method), 674

feature_type_reset()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
class method), 675

feature_type_reset()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
method), 674

feature_type_unregister()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
class method), 676

feature_type_unregister()
(ads.feature_engineering.feature_type_manager.FeatureTypeManager
method), 674

FeatureBaseType (class in
ads.feature_engineering.feature_type.base),
702

FeatureBaseTypeMeta (class in
ads.feature_engineering.feature_type.base),
702

FeatureEngineeringTransformer (class in
ads.dataset.feature_engineering_transformer),
654

FeatureImportance (class in

ads.dataset.feature_selection), 654
FeatureType (class in

ads.feature_engineering.feature_type.base),
702

FeatureTypeManager (class in
ads.feature_engineering.feature_type_manager),
673

FeatureValidator (class in
ads.feature_engineering.feature_type.handler.feature_validator),
751

FeatureValidatorMethod (class in
ads.feature_engineering.feature_type.handler.feature_validator),
754

FeatureWarning (class in
ads.feature_engineering.feature_type.handler.feature_warning),
757

fetch_log() (ads.dataflow.dataflow.DataFlowRun
method), 620

fetch_training_code_details()
(ads.common.model_metadata.ModelProvenanceMetadata
class method), 555

FILE_METADATA (ads.text_dataset.options.Options
attribute), 911

FILE_NAME (ads.text_dataset.options.Options attribute),
911

FileOption (class in ads.text_dataset.options), 911
FileOverwriteError, 568
FileProcessor (class in ads.text_dataset.extractor),

908
FileProcessorFactory (class in

ads.text_dataset.extractor), 909
filesystem() (ads.dataset.dataset_browser.DatasetBrowser

static method), 641
filter() (ads.catalog.model.ModelSummaryList

method), 528
filter() (ads.catalog.notebook.NotebookSummaryList

method), 531
filter() (ads.catalog.project.ProjectSummaryList

method), 534
filter() (ads.catalog.summary.SummaryList method),

534
filter() (ads.dataflow.dataflowsummary.SummaryList

method), 623
filter_list() (ads.dataset.dataset_browser.DatasetBrowser

method), 641
find() (ads.feature_engineering.adsstring.string.ADSString

method), 694
first_not_none() (in module ads.common.utils), 571
fit() (ads.automl.provider.AutoMLFeatureSelection

method), 516
fit() (ads.automl.provider.AutoMLPreprocessingTransformer

method), 517
fit() (ads.automl.provider.BaselineModel method), 519
fit() (ads.common.model_export_util.ONNXTransformer
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method), 564
fit() (ads.dataset.dataframe_transformer.DataFrameTransformer

method), 629
fit() (ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer

method), 654
fit() (ads.dataset.label_encoder.DataFrameLabelEncoder

method), 657
fit() (ads.dataset.recommendation_transformer.RecommendationTransformer

method), 659
fit_transform() (ads.common.model_export_util.ONNXTransformer

method), 564
fit_transform() (ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer

method), 654
fit_transform() (ads.dataset.recommendation_transformer.RecommendationTransformer

method), 659
fix_column_names() (in module ads.dataset.helper),

656
FLAIR (ads.common.model_metadata.Framework at-

tribute), 542
flatten() (in module ads.common.utils), 571
flatten_corr_matrix()

(ads.dataset.correlation_plot.BokehHeatMap
method), 626

folder_size() (in module ads.common.utils), 571
font_sz (ads.evaluations.evaluation_plot.EvaluationPlot

attribute), 662
ForecastingDataset (class in

ads.dataset.forecasting_dataset), 654
format (ads.dataset.helper.ElaboratedPath property),

655
format() (ads.feature_engineering.adsstring.string.ADSString

method), 694
format() (ads.text_dataset.dataset.TextDatasetFactory

static method), 908
format_map() (ads.feature_engineering.adsstring.string.ADSString

method), 694
Formats (class in ads.data_labeling.constants), 583
FRAMEWORK (ads.common.model_metadata.MetadataTaxonomyKeys

attribute), 544
framework (ads.model.extractor.automl_extractor.AutoMLExtractor

property), 828
framework (ads.model.extractor.keras_extractor.KerasExtractor

property), 834
framework (ads.model.extractor.lightgbm_extractor.LightgbmExtractor

property), 830
framework (ads.model.extractor.pytorch_extractor.PytorchExtractor

property), 836
framework (ads.model.extractor.sklearn_extractor.SklearnExtractor

property), 833
framework (ads.model.extractor.tensorflow_extractor.TensorflowExtractor

property), 835
framework (ads.model.extractor.xgboost_extractor.XgboostExtractor

property), 829
framework (ads.model.framework.automl_model.AutoMLModel

attribute), 851
framework (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 855
framework (ads.model.framework.pytorch_model.PyTorchModel

attribute), 861
framework (ads.model.framework.sklearn_model.SklearnModel

attribute), 865
framework (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 870
framework (ads.model.framework.xgboost_model.XGBoostModel

attribute), 875
framework (ads.model.generic_model.GenericModel at-

tribute), 810
Framework (class in ads.common.model_metadata), 542
framework() (ads.model.extractor.lightgbm_extractor.LightgbmExtractor

method), 830
framework() (ads.model.extractor.model_info_extractor.ModelInfoExtractor

method), 831
framework() (ads.model.extractor.pytorch_extractor.PytorchExtractor

method), 836
framework() (ads.model.extractor.sklearn_extractor.SklearnExtractor

method), 832
framework() (ads.model.extractor.tensorflow_extractor.TensorflowExtractor

method), 834
framework() (ads.model.extractor.xgboost_extractor.XgboostExtractor

method), 829
FRAMEWORK_VERSION (ads.common.model_metadata.MetadataTaxonomyKeys

attribute), 544
from_dataflow_job() (ads.jobs.ads_job.Job static

method), 778
from_dataframe() (ads.dataset.factory.DatasetFactory

static method), 651
from_datascience_job() (ads.jobs.ads_job.Job static

method), 778
from_dict() (ads.data_labeling.visualizer.image_visualizer.RenderOptions

class method), 610
from_dict() (ads.data_labeling.visualizer.text_visualizer.RenderOptions

class method), 612
from_dict() (ads.jobs.ads_job.Job class method), 778
from_dict() (ads.jobs.builders.infrastructure.dataflow.DataFlow

class method), 791
from_DLS() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader

class method), 600
from_DLS() (ads.data_labeling.reader.metadata_reader.MetadataReader

class method), 604
from_DLS() (ads.data_labeling.reader.record_reader.RecordReader

class method), 606
from_dls_dataset() (ads.data_labeling.metadata.Metadata

class method), 586
from_dsc_job() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

class method), 801
from_env() (ads.model.runtime.runtime_info.RuntimeInfo

class method), 827, 882
from_estimator() (ads.common.model.ADSModel
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static method), 539
from_export() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader

class method), 601
from_export() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader

method), 599
from_export_file() (ads.data_labeling.reader.metadata_reader.MetadataReader

class method), 605
from_export_file() (ads.data_labeling.reader.record_reader.RecordReader

class method), 607
from_id() (ads.jobs.builders.infrastructure.dataflow.DataFlow

class method), 791
from_id() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

class method), 801
from_json() (ads.hpo.distributions.DistributionEncode

static method), 761
from_model_artifact()

(ads.model.framework.automl_model.AutoMLModel
method), 853

from_model_artifact()
(ads.model.framework.lightgbm_model.LightGBMModel
method), 857

from_model_artifact()
(ads.model.framework.pytorch_model.PyTorchModel
method), 862

from_model_artifact()
(ads.model.framework.sklearn_model.SklearnModel
method), 867

from_model_artifact()
(ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

from_model_artifact()
(ads.model.framework.xgboost_model.XGBoostModel
method), 877

from_model_artifact()
(ads.model.generic_model.GenericModel
class method), 815

from_model_artifact()
(ads.model.generic_model.GenericModel
method), 812

from_model_catalog()
(ads.model.framework.automl_model.AutoMLModel
method), 853

from_model_catalog()
(ads.model.framework.lightgbm_model.LightGBMModel
method), 857

from_model_catalog()
(ads.model.framework.pytorch_model.PyTorchModel
method), 862

from_model_catalog()
(ads.model.framework.sklearn_model.SklearnModel
method), 867

from_model_catalog()
(ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

from_model_catalog()
(ads.model.framework.xgboost_model.XGBoostModel
method), 877

from_model_catalog()
(ads.model.generic_model.GenericModel
class method), 816

from_model_catalog()
(ads.model.generic_model.GenericModel
method), 812

from_model_deployment()
(ads.model.generic_model.GenericModel
class method), 817

from_model_deployment()
(ads.model.generic_model.GenericModel
method), 812

from_ocid() (ads.jobs.builders.infrastructure.dsc_job.DSCJob
class method), 799

from_path() (ads.model.runtime.env_info.EnvInfo class
method), 880

from_slug() (ads.model.runtime.env_info.EnvInfo class
method), 880

from_spacy() (ads.data_labeling.ner.NERItem class
method), 587

from_uri() (ads.model.artifact.ModelArtifact class
method), 808

from_yolo() (ads.data_labeling.boundingbox.BoundingBoxItem
class method), 581

G
generate_fn_artifacts() (in module

ads.common.function.fn_util), 568
generate_heatmap() (ads.dataset.correlation_plot.BokehHeatMap

method), 627
generate_initial_types()

(ads.model.framework.lightgbm_model.LightGBMModel
method), 859

generate_initial_types()
(ads.model.framework.sklearn_model.SklearnModel
method), 869

generate_initial_types()
(ads.model.framework.xgboost_model.XGBoostModel
method), 879

generate_requirement_file() (in module
ads.common.utils), 571

generate_sample() (in module ads.dataset.helper),
656

generate_target_heatmap()
(ads.dataset.correlation_plot.BokehHeatMap
method), 627

GENERIC (ads.data_labeling.parser.export_record_parser.EntityType
attribute), 592

GenericModel (class in ads.model.generic_model), 810
GENSIM (ads.common.model_metadata.Framework

attribute), 542
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GEO (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 559

get() (ads.common.model_metadata.ModelCustomMetadata
method), 545

get() (ads.common.model_metadata.ModelMetadata
method), 550

get() (ads.common.model_metadata.ModelTaxonomyMetadata
method), 556

get_app() (ads.dataflow.dataflow.DataFlow method),
615

get_base_modules() (in module ads.common.utils),
571

get_bootstrap_styles() (in module
ads.common.utils), 572

get_compute_accelerator_ncores() (in module
ads.common.utils), 572

get_cpu_count() (in module ads.common.utils), 572
get_dataframe_styles() (in module

ads.common.utils), 572
get_distribution() (ads.hpo.distributions.Distribution

method), 760
get_dtype() (in module ads.dataset.helper), 656
get_feature_type() (in module ads.dataset.helper),

656
get_files() (in module ads.common.utils), 572
get_fill_val() (in module ads.dataset.helper), 656
get_format_reader() (in module ads.dataset.factory),

654
get_function_config() (in module

ads.common.function.fn_util), 568
get_init_types() (ads.common.model.ADSModel

static method), 540
get_legend_labels()

(ads.evaluations.evaluation_plot.EvaluationPlot
class method), 662

get_legend_labels()
(ads.evaluations.evaluation_plot.EvaluationPlot
method), 662

get_metadata() (ads.text_dataset.backends.Base
method), 902

get_metadata() (ads.text_dataset.backends.PDFPlumber
method), 902

get_metadata() (ads.text_dataset.backends.Tika
method), 903

get_metadata() (ads.text_dataset.extractor.FileProcessor
method), 909

get_metrics() (ads.evaluations.statistical_metrics.ModelEvaluator
method), 670, 671

get_ml_task_type() (in module ads.automl.driver),
516

get_model() (ads.catalog.model.ModelCatalog
method), 524, 526

get_model_deployment()
(ads.model.deployment.model_deployer.ModelDeployer

method), 838, 839
get_model_deployment_state()

(ads.model.deployment.model_deployer.ModelDeployer
method), 838, 839

get_notebook_session()
(ads.catalog.notebook.NotebookCatalog
method), 530

get_oci_config() (in module ads.common.utils), 572
get_processor() (ads.text_dataset.extractor.FileProcessorFactory

static method), 910
get_progress_bar() (in module ads.common.utils),

572
get_project() (ads.catalog.project.ProjectCatalog

method), 532
get_random_name_for_resource() (in module

ads.common.utils), 572
get_recommendations()

(ads.dataset.dataset_with_target.ADSDatasetWithTarget
method), 645

get_repository() (in module
ads.database.connection), 614

get_run() (ads.dataflow.dataflow.DataFlowApp
method), 617

get_secret() (ads.vault.vault.Vault method), 912
get_service_packs() (in module

ads.model.runtime.utils), 883
get_signer() (in module ads.common.auth), 536
get_sqlalchemy_engine() (in module

ads.common.utils), 572
get_status() (ads.hpo.search_cv.ADSTuner method),

764
get_transformed_dataset()

(ads.dataset.dataset_with_target.ADSDatasetWithTarget
method), 646

get_transformer_pipeline()
(ads.automl.provider.AutoMLProvider
method), 517

get_transformer_pipeline()
(ads.automl.provider.BaselineAutoMLProvider
method), 518

get_transformer_pipeline()
(ads.automl.provider.OracleAutoMLProvider
method), 520

get_value() (in module ads.common.utils), 573
getLogger() (in module ads), 913
GIS (class in ads.feature_engineering.feature_type.gis),

722
git_branch (ads.common.model_metadata.ModelProvenanceMetadata

attribute), 555
git_commit (ads.common.model_metadata.ModelProvenanceMetadata

attribute), 555
GitHub() (ads.dataset.dataset_browser.DatasetBrowser

static method), 641
GitHubDatasets (class in ads.dataset.dataset_browser),
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642
GitPythonRuntime (class in

ads.jobs.builders.runtimes.python_runtime),
785

H
H20 (ads.common.model_metadata.Framework attribute),

542
halt() (ads.hpo.search_cv.ADSTuner method), 765
HALTED (ads.hpo.search_cv.State attribute), 774
handle() (ads.text_dataset.options.FileOption method),

911
handle() (ads.text_dataset.options.MetadataOption

method), 911
handle() (ads.text_dataset.options.OptionHandler

method), 911
has_kerberos_ticket() (in module ads.bds.auth), 578
hdfs_host (ads.secrets.big_data_service.BDSSecret at-

tribute), 895, 896
hdfs_host (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 897
hdfs_port (ads.secrets.big_data_service.BDSSecret at-

tribute), 896
hdfs_port (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 897
head() (ads.dataflow.dataflow.DataFlowLog method),

619
head() (ads.model.deployment.model_deployment.ModelDeploymentLog

method), 845
hello() (in module ads), 913
help() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor

method), 678
help() (ads.feature_engineering.accessor.mixin.feature_types_mixin.ADSFeatureTypesMixin

method), 690
help() (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor

method), 682
help() (ads.feature_engineering.adsstring.string.ADSString

method), 694
high_cardinality_handler() (in module

ads.feature_engineering.feature_type.handler.warnings),
759

highlight_text() (in module ads.common.utils), 573
hive_host (ads.secrets.big_data_service.BDSSecret at-

tribute), 896
hive_host (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 897
hive_port (ads.secrets.big_data_service.BDSSecret at-

tribute), 896
hive_port (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 897
horizontal_scrollable_div() (in module

ads.common.utils), 573
host (ads.secrets.mysqldb.MySQLDBSecret attribute),

891

host (ads.secrets.oracledb.OracleDBSecret attribute),
893

human_size() (in module ads.common.utils), 573
hyperparameter (ads.model.extractor.automl_extractor.AutoMLExtractor

property), 828
hyperparameter (ads.model.extractor.keras_extractor.KerasExtractor

property), 834
hyperparameter (ads.model.extractor.lightgbm_extractor.LightgbmExtractor

property), 830
hyperparameter (ads.model.extractor.pytorch_extractor.PytorchExtractor

property), 836
hyperparameter (ads.model.extractor.sklearn_extractor.SklearnExtractor

property), 833
hyperparameter (ads.model.extractor.tensorflow_extractor.TensorflowExtractor

property), 835
hyperparameter (ads.model.extractor.xgboost_extractor.XgboostExtractor

property), 829
hyperparameter (ads.model.framework.automl_model.AutoMLModel

attribute), 851
hyperparameter (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 856
hyperparameter (ads.model.framework.pytorch_model.PyTorchModel

attribute), 861
hyperparameter (ads.model.framework.sklearn_model.SklearnModel

attribute), 865
hyperparameter (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 870
hyperparameter (ads.model.framework.xgboost_model.XGBoostModel

attribute), 875
hyperparameter (ads.model.generic_model.GenericModel

attribute), 810
hyperparameter() (ads.model.extractor.lightgbm_extractor.LightgbmExtractor

method), 830
hyperparameter() (ads.model.extractor.model_info_extractor.ModelInfoExtractor

method), 831
hyperparameter() (ads.model.extractor.pytorch_extractor.PytorchExtractor

method), 836
hyperparameter() (ads.model.extractor.sklearn_extractor.SklearnExtractor

method), 833
hyperparameter() (ads.model.extractor.tensorflow_extractor.TensorflowExtractor

method), 835
hyperparameter() (ads.model.extractor.xgboost_extractor.XgboostExtractor

method), 829
HYPERPARAMETERS (ads.common.model_metadata.MetadataTaxonomyKeys

attribute), 544

I
id (ads.jobs.ads_job.Job property), 778
identify_issue_network()

(ads.common.card_identifier.card_identify
method), 535

IMAGE (ads.data_labeling.constants.DatasetType at-
tribute), 583
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IMAGE_CLASSIFICATION
(ads.common.model_metadata.UseCaseType
attribute), 558

ImageLabeledDataFormatter (class in
ads.data_labeling.visualizer.image_visualizer),
608

IMAGEOBJECTSELECTION
(ads.data_labeling.parser.export_record_parser.EntityType
attribute), 592

img (ads.data_labeling.visualizer.image_visualizer.LabeledImageItem
attribute), 609

import_wallet() (in module ads.database.connection),
614

index() (ads.feature_engineering.adsstring.string.ADSString
method), 694

infer_target_type()
(ads.dataset.factory.DatasetFactory class
method), 651

inference_conda_env
(ads.model.model_properties.ModelProperties
attribute), 826

inference_conda_env
(ads.model.runtime.model_deployment_details.ModelDeploymentDetails
attribute), 881

inference_env_path (ads.model.runtime.env_info.InferenceEnvInfo
attribute), 880

inference_env_slug (ads.model.runtime.env_info.InferenceEnvInfo
attribute), 881

inference_env_type (ads.model.runtime.env_info.InferenceEnvInfo
attribute), 881

inference_python_version
(ads.model.model_properties.ModelProperties
attribute), 826

inference_python_version
(ads.model.runtime.env_info.InferenceEnvInfo
attribute), 881

InferenceEnvInfo (class in
ads.model.runtime.env_info), 880

info() (ads.data_labeling.interface.reader.Reader
method), 580

info() (ads.data_labeling.reader.dataset_reader.DLSDatasetReader
method), 597, 598

info() (ads.data_labeling.reader.dataset_reader.ExportReader
method), 598, 599

info() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader
method), 599, 601

info() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
method), 680

info() (ads.model.extractor.model_info_extractor.ModelInfoExtractor
method), 831, 832

infrastructure (ads.jobs.ads_job.Job property), 778
init_ccache_with_keytab() (in module

ads.bds.auth), 578
init_client() (ads.jobs.builders.infrastructure.dataflow.DataFlowApp

class method), 795
init_client() (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

class method), 796
INITIATED (ads.hpo.search_cv.State attribute), 774
inject_and_copy_kwargs() (in module

ads.common.utils), 573
instance_shapes() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

class method), 802
Integer (class in ads.feature_engineering.feature_type.integer),

726
IntLogUniformDistribution (class in

ads.hpo.distributions), 761
introspect() (ads.model.framework.automl_model.AutoMLModel

method), 853
introspect() (ads.model.framework.lightgbm_model.LightGBMModel

method), 857
introspect() (ads.model.framework.pytorch_model.PyTorchModel

method), 862
introspect() (ads.model.framework.sklearn_model.SklearnModel

method), 867
introspect() (ads.model.framework.tensorflow_model.TensorFlowModel

method), 872
introspect() (ads.model.framework.xgboost_model.XGBoostModel

method), 877
introspect() (ads.model.generic_model.GenericModel

method), 812, 818
Introspectable (class in

ads.common.model_introspect), 562
IntrospectionNotPassed, 562
IntUniformDistribution (class in

ads.hpo.distributions), 762
InvalidFeatureType, 672
InvalidStateTransition, 774
ip (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 691
IpAddress (class in ads.feature_engineering.feature_type.ip_address),

728
IpAddressV4 (class in

ads.feature_engineering.feature_type.ip_address_v4),
730

IpAddressV6 (class in
ads.feature_engineering.feature_type.ip_address_v6),
732

IpythonProgressBar (class in ads.dataset.progress),
658

is_balanced() (ads.dataset.target.TargetVariable
method), 661

is_classifier (ads.evaluations.evaluator.ADSEvaluator
attribute), 663

is_classifier() (ads.common.model.ADSModel
method), 540

is_completed() (ads.hpo.search_cv.ADSTuner
method), 765

is_data_too_wide() (in module ads.common.utils),
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574
is_debug_mode() (in module ads.common.utils), 574
is_documentation_mode() (in module

ads.common.utils), 574
is_either_numerical_or_string_dataframe()

(ads.model.framework.sklearn_model.SklearnModel
static method), 869

is_halted() (ads.hpo.search_cv.ADSTuner method),
765

is_notebook() (in module ads.common.utils), 574
is_resource_principal_mode() (in module

ads.common.utils), 574
is_running() (ads.hpo.search_cv.ADSTuner method),

766
is_same_class() (in module ads.common.utils), 574
is_terminated() (ads.hpo.search_cv.ADSTuner

method), 766
is_test() (in module ads.common.utils), 574
is_text_data() (in module ads.dataset.helper), 656
is_type_registered()

(ads.feature_engineering.feature_type_manager.FeatureTypeManager
class method), 676

isalnum() (ads.feature_engineering.adsstring.string.ADSString
method), 694

isalpha() (ads.feature_engineering.adsstring.string.ADSString
method), 694

isascii() (ads.feature_engineering.adsstring.string.ADSString
method), 694

isdecimal() (ads.feature_engineering.adsstring.string.ADSString
method), 694

isdigit() (ads.feature_engineering.adsstring.string.ADSString
method), 694

isempty() (ads.common.model_metadata.ModelCustomMetadata
method), 545, 547

isidentifier() (ads.feature_engineering.adsstring.string.ADSString
method), 695

islower() (ads.feature_engineering.adsstring.string.ADSString
method), 695

isnumeric() (ads.feature_engineering.adsstring.string.ADSString
method), 695

isprintable() (ads.feature_engineering.adsstring.string.ADSString
method), 695

isspace() (ads.feature_engineering.adsstring.string.ADSString
method), 695

istitle() (ads.feature_engineering.adsstring.string.ADSString
method), 695

isupper() (ads.feature_engineering.adsstring.string.ADSString
method), 695

items (ads.data_labeling.boundingbox.BoundingBoxItems
attribute), 582

items (ads.data_labeling.ner.NERItems attribute), 587

J
job (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

property), 806
Job (class in ads.jobs.ads_job), 775
job_id (ads.jobs.builders.infrastructure.dataflow.DataFlow

property), 791
job_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

property), 802
job_infrastructure_type

(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 802

job_type (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 802

join() (ads.feature_engineering.adsstring.string.ADSString
method), 695

JsonConverter (class in ads.common.utils), 568
JsonlReader (class in

ads.data_labeling.reader.jsonl_reader), 602

K
KERAS (ads.common.model_metadata.Framework at-

tribute), 542
KerasExtractor (class in

ads.model.extractor.keras_extractor), 833
kerb5_content (ads.secrets.big_data_service.BDSSecret

attribute), 896
kerb5_content (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 898
kerb5_path (ads.secrets.big_data_service.BDSSecret

attribute), 896, 897
kerb5_path (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 897
key (ads.common.model_introspect.PrintItem attribute),

563
KEY (ads.common.model_metadata.MetadataCustomPrintColumns

attribute), 544
KEY (ads.common.model_metadata.MetadataTaxonomyPrintColumns

attribute), 544
key (ads.common.model_metadata.ModelCustomMetadataItem

attribute), 548
key (ads.common.model_metadata.ModelTaxonomyMetadataItem

attribute), 557
key (ads.common.model_metadata.ModelTaxonomyMetadataItem

property), 557
key_id (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 898
key_phrase (ads.feature_engineering.adsstring.oci_language.OCILanguage

property), 692
keys (ads.common.model_metadata.ModelMetadata

property), 550
keytab_content (ads.secrets.big_data_service.BDSSecret

attribute), 896, 897
keytab_content (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 898
keytab_path (ads.secrets.big_data_service.BDSSecret

attribute), 896, 897
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keytab_path (ads.secrets.big_data_service.BDSSecretKeeper
attribute), 898

kind (ads.jobs.ads_job.Job property), 779
KRB5KinitError, 578
krbcontext() (in module ads.bds.auth), 578
kwargs (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 898

L
label (ads.data_labeling.ner.NERItem attribute), 586,

587
LabeledDatasetReader (class in

ads.data_labeling.reader.dataset_reader),
599

LabeledImageItem (class in
ads.data_labeling.visualizer.image_visualizer),
609

LabeledTextItem (class in
ads.data_labeling.visualizer.text_visualizer),
611

labels (ads.data_labeling.boundingbox.BoundingBoxItem
attribute), 580, 581

labels (ads.data_labeling.metadata.Metadata at-
tribute), 585, 586

LABS (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 559

language_dominant (ads.feature_engineering.adsstring.oci_language.OCILanguage
property), 692

language_model_cache
(ads.feature_engineering.adsstring.string.ADSString
attribute), 695

LatLong (class in ads.feature_engineering.feature_type.lat_long),
735

legend_labels (ads.evaluations.evaluator.ADSEvaluator
attribute), 664

length (ads.data_labeling.ner.NERItem attribute), 587
less_is_more (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics

attribute), 666
LIGHT_GBM (ads.common.model_metadata.Framework

attribute), 542
LightgbmExtractor (class in

ads.model.extractor.lightgbm_extractor),
830

LightGBMModel (class in
ads.model.framework.lightgbm_model), 855

link (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin
property), 691

list() (ads.dataset.dataset_browser.DatasetBrowser
static method), 641

list() (ads.dataset.dataset_browser.GitHubDatasets
method), 642

list() (ads.dataset.dataset_browser.LocalFilesystemDatasets
method), 642

list() (ads.dataset.dataset_browser.SeabornDatasets
method), 643

list() (ads.dataset.dataset_browser.SklearnDatasets
method), 643

list() (ads.dataset.dataset_browser.WebDatasets
method), 643

list_apps() (ads.dataflow.dataflow.DataFlow method),
615

list_dataset() (ads.data_labeling.data_labeling_service.DataLabeling
method), 584

list_deployments() (ads.model.deployment.model_deployer.ModelDeployer
method), 838, 840

list_jobs() (ads.jobs.builders.infrastructure.dataflow.DataFlow
class method), 791

list_jobs() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
class method), 802

list_model_deployment()
(ads.catalog.model.ModelCatalog method),
524, 526

list_models() (ads.catalog.model.ModelCatalog
method), 524, 527

list_notebook_session()
(ads.catalog.notebook.NotebookCatalog
method), 530

list_projects() (ads.catalog.project.ProjectCatalog
method), 532

list_runs() (ads.dataflow.dataflow.DataFlowApp
method), 617

list_snapshots() (ads.dataset.factory.DatasetFactory
static method), 651

list_workflow_logs()
(ads.model.deployment.model_deployment.ModelDeployment
method), 842, 843

ljust() (ads.feature_engineering.adsstring.string.ADSString
method), 695

load() (ads.common.model_export_util.ONNXTransformer
static method), 564

load() (ads.data_labeling.interface.loader.Loader
method), 579

load_app() (ads.dataflow.dataflow.DataFlow method),
616

load_dataset() (in module ads.dataset.factory), 654
load_model() (ads.catalog.model.Model class method),

523
load_model() (ads.catalog.model.Model method), 522
load_properties_from_env()

(ads.jobs.builders.infrastructure.dsc_job.DSCJob
method), 799

load_secret() (ads.secrets.secrets.SecretKeeper class
method), 886

Loader (class in ads.data_labeling.interface.loader), 579
local_dir (ads.dataflow.dataflow.DataFlowLog prop-

erty), 619
local_dir (ads.dataflow.dataflow.DataFlowRun prop-
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erty), 621
local_dir (ads.dataflow.dataflow.RunObserver prop-

erty), 622
local_path (ads.dataflow.dataflow.DataFlowLog prop-

erty), 619
LocalFilesystemDatasets (class in

ads.dataset.dataset_browser), 642
log_group_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

property), 802
log_group_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

property), 807
log_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

property), 802
log_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

property), 807
LOG_OUTPUTS (ads.dataflow.dataflow.DataFlowRun at-

tribute), 620
log_stderr (ads.dataflow.dataflow.DataFlowRun prop-

erty), 621
log_stdout (ads.dataflow.dataflow.DataFlowRun prop-

erty), 621
logging (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

property), 807
logs (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

property), 796
logs() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

method), 807
logs() (ads.model.deployment.model_deployment.ModelDeployment

method), 843
LogUniformDistribution (class in

ads.hpo.distributions), 762
lower() (ads.feature_engineering.adsstring.string.ADSString

method), 695
lstrip() (ads.feature_engineering.adsstring.string.ADSString

method), 695

M
maketrans() (ads.feature_engineering.adsstring.string.ADSString

method), 696
map_types() (in module ads.dataset.helper), 656
merge() (ads.dataset.dataset.ADSDataset method), 632
message (ads.common.model_introspect.PrintItem

attribute), 563
Metadata (class in ads.data_labeling.metadata), 585
metadata_all() (ads.text_dataset.dataset.DataLoader

method), 906
metadata_custom (ads.model.framework.automl_model.AutoMLModel

attribute), 852
metadata_custom (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 856
metadata_custom (ads.model.framework.pytorch_model.PyTorchModel

attribute), 861
metadata_custom (ads.model.framework.sklearn_model.SklearnModel

attribute), 865

metadata_custom (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 871

metadata_custom (ads.model.framework.xgboost_model.XGBoostModel
attribute), 875

metadata_custom (ads.model.generic_model.GenericModel
attribute), 811

metadata_provenance
(ads.model.framework.automl_model.AutoMLModel
attribute), 852

metadata_provenance
(ads.model.framework.lightgbm_model.LightGBMModel
attribute), 856

metadata_provenance
(ads.model.framework.pytorch_model.PyTorchModel
attribute), 861

metadata_provenance
(ads.model.framework.sklearn_model.SklearnModel
attribute), 865

metadata_provenance
(ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 871

metadata_provenance
(ads.model.framework.xgboost_model.XGBoostModel
attribute), 875

metadata_provenance
(ads.model.generic_model.GenericModel
attribute), 811

metadata_schema() (ads.text_dataset.dataset.DataLoader
method), 906

metadata_taxonomy (ads.model.framework.automl_model.AutoMLModel
attribute), 852

metadata_taxonomy (ads.model.framework.lightgbm_model.LightGBMModel
attribute), 856

metadata_taxonomy (ads.model.framework.pytorch_model.PyTorchModel
attribute), 861

metadata_taxonomy (ads.model.framework.sklearn_model.SklearnModel
attribute), 866

metadata_taxonomy (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 871

metadata_taxonomy (ads.model.framework.xgboost_model.XGBoostModel
attribute), 876

metadata_taxonomy (ads.model.generic_model.GenericModel
attribute), 811

MetadataCustomCategory (class in
ads.common.model_metadata), 543

MetadataCustomKeys (class in
ads.common.model_metadata), 543

MetadataCustomPrintColumns (class in
ads.common.model_metadata), 544

MetadataDescriptionTooLong, 544
MetadataMixin (class in

ads.common.model_metadata_mixin), 577
MetadataOption (class in ads.text_dataset.options), 911
MetadataParser (class in
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ads.data_labeling.parser.export_metadata_parser),
591

MetadataReader (class in
ads.data_labeling.reader.metadata_reader),
604

MetadataSizeTooLarge, 544
MetadataTaxonomyKeys (class in

ads.common.model_metadata), 544
MetadataTaxonomyPrintColumns (class in

ads.common.model_metadata), 544
MetadataValueTooLong, 545
METHOD (ads.common.decorator.deprecate.TARGET_TYPE

attribute), 561
metrics (ads.evaluations.evaluator.ADSEvaluator prop-

erty), 668
metrics (ads.evaluations.statistical_metrics.ModelEvaluator

attribute), 670
metrics_to_show (ads.evaluations.evaluator.ADSEvaluator

attribute), 664
missing_values_handler() (in module

ads.feature_engineering.feature_type.handler.warnings),
759

ml_task_types (class in ads.common.utils), 574
model (ads.model.extractor.automl_extractor.AutoMLExtractor

attribute), 828
model (ads.model.extractor.keras_extractor.KerasExtractor

attribute), 833
model (ads.model.extractor.lightgbm_extractor.LightgbmExtractor

attribute), 830
model (ads.model.extractor.pytorch_extractor.PytorchExtractor

attribute), 835
model (ads.model.extractor.sklearn_extractor.SklearnExtractor

attribute), 832
model (ads.model.extractor.tensorflow_extractor.TensorflowExtractor

attribute), 834
model (ads.model.extractor.xgboost_extractor.XgboostExtractor

attribute), 829
Model (class in ads.catalog.model), 522
model_artifact (ads.model.framework.automl_model.AutoMLModel

attribute), 852
model_artifact (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 856
model_artifact (ads.model.framework.pytorch_model.PyTorchModel

attribute), 861
model_artifact (ads.model.framework.sklearn_model.SklearnModel

attribute), 866
model_artifact (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 871
model_artifact (ads.model.framework.xgboost_model.XGBoostModel

attribute), 876
model_artifact (ads.model.generic_model.GenericModel

attribute), 811
model_artifact_version

(ads.model.runtime.runtime_info.RuntimeInfo

attribute), 827, 883
MODEL_ARTIFACTS (ads.common.model_metadata.MetadataCustomKeys

attribute), 543
model_deployment (ads.model.framework.automl_model.AutoMLModel

attribute), 852
model_deployment (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 856
model_deployment (ads.model.framework.pytorch_model.PyTorchModel

attribute), 861
model_deployment (ads.model.framework.sklearn_model.SklearnModel

attribute), 866
model_deployment (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 871
model_deployment (ads.model.framework.xgboost_model.XGBoostModel

attribute), 876
model_deployment (ads.model.generic_model.GenericModel

attribute), 811
model_deployment (ads.model.runtime.runtime_info.RuntimeInfo

attribute), 827, 883
model_deployment_id

(ads.model.deployment.model_deployment.ModelDeployment
attribute), 842

model_file_name (ads.model.framework.automl_model.AutoMLModel
attribute), 852

model_file_name (ads.model.framework.lightgbm_model.LightGBMModel
attribute), 856

model_file_name (ads.model.framework.pytorch_model.PyTorchModel
attribute), 861

model_file_name (ads.model.framework.sklearn_model.SklearnModel
attribute), 866

model_file_name (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 871

model_file_name (ads.model.framework.xgboost_model.XGBoostModel
attribute), 876

model_file_name (ads.model.generic_model.GenericModel
attribute), 811

model_id (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties
attribute), 847

model_id (ads.model.framework.automl_model.AutoMLModel
attribute), 852

model_id (ads.model.framework.lightgbm_model.LightGBMModel
attribute), 856

model_id (ads.model.framework.pytorch_model.PyTorchModel
attribute), 861

model_id (ads.model.framework.sklearn_model.SklearnModel
attribute), 866

model_id (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 871

model_id (ads.model.framework.xgboost_model.XGBoostModel
attribute), 876

model_id (ads.model.generic_model.GenericModel at-
tribute), 811

model_name (ads.evaluations.statistical_metrics.ModelEvaluator
attribute), 670
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model_provenance (ads.model.runtime.runtime_info.RuntimeInfo
attribute), 827, 883

model_schema() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor
method), 680

MODEL_SERIALIZATION_FORMAT
(ads.common.model_metadata.MetadataCustomKeys
attribute), 543

model_uri (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties
attribute), 847

ModelArtifact (class in ads.model.artifact), 808
ModelArtifactSizeError, 524
ModelCatalog (class in ads.catalog.model), 524
ModelCustomMetadata (class in

ads.common.model_metadata), 545
ModelCustomMetadataItem (class in

ads.common.model_metadata), 548
ModelDeployer (class in

ads.model.deployment.model_deployer),
837

ModelDeployment (class in
ads.model.deployment.model_deployment),
841

ModelDeploymentDetails (class in
ads.model.runtime.model_deployment_details),
881

ModelDeploymentLog (class in
ads.model.deployment.model_deployment),
845

ModelDeploymentLogType (class in
ads.model.deployment.model_deployment),
846

ModelDeploymentProperties (class in
ads.model.deployment.model_deployment_properties),
846

ModelEvaluator (class in
ads.evaluations.statistical_metrics), 670

ModelInfoExtractor (class in
ads.model.extractor.model_info_extractor),
831

ModelInfoExtractorFactory (class in
ads.model.extractor.model_info_extractor_factory),
827

ModelIntrospect (class in
ads.common.model_introspect), 562

ModelMetadata (class in ads.common.model_metadata),
550

ModelMetadataItem (class in
ads.common.model_metadata), 552

ModelProperties (class in
ads.model.model_properties), 826

ModelProvenanceDetails (class in
ads.model.runtime.model_provenance_details),
881

ModelProvenanceMetadata (class in

ads.common.model_metadata), 554
models (ads.evaluations.evaluator.ADSEvaluator at-

tribute), 664
ModelState (class in ads.model.generic_model), 824
ModelSummaryList (class in ads.catalog.model), 528
ModelTaxonomyMetadata (class in

ads.common.model_metadata), 555
ModelTaxonomyMetadataItem (class in

ads.common.model_metadata), 557
ModelWithActiveDeploymentError, 529
module

ads, 913
ads.automl, 522
ads.automl.driver, 515
ads.automl.provider, 516
ads.bds, 579
ads.bds.auth, 578
ads.catalog, 535
ads.catalog.model, 522
ads.catalog.notebook, 529
ads.catalog.project, 531
ads.catalog.summary, 534
ads.common, 577
ads.common.auth, 535
ads.common.card_identifier, 535
ads.common.data, 537
ads.common.decorator.deprecate, 561
ads.common.decorator.runtime_dependency,

559
ads.common.function.fn_util, 568
ads.common.model, 539
ads.common.model_export_util, 564
ads.common.model_introspect, 561
ads.common.model_metadata, 542
ads.common.model_metadata_mixin, 577
ads.common.utils, 568
ads.config, 913
ads.data_labeling, 613
ads.data_labeling.boundingbox, 580
ads.data_labeling.constants, 583
ads.data_labeling.data_labeling_service,

583
ads.data_labeling.interface.loader, 579
ads.data_labeling.interface.parser, 580
ads.data_labeling.interface.reader, 580
ads.data_labeling.metadata, 585
ads.data_labeling.mixin.data_labeling,

589
ads.data_labeling.ner, 586
ads.data_labeling.parser.export_metadata_parser,

591
ads.data_labeling.parser.export_record_parser,

592
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ads.data_labeling.reader.dataset_reader,
596

ads.data_labeling.reader.jsonl_reader,
602

ads.data_labeling.reader.metadata_reader,
603

ads.data_labeling.reader.record_reader,
605

ads.data_labeling.record, 588
ads.data_labeling.visualizer.image_visualizer,

608
ads.data_labeling.visualizer.text_visualizer,

611
ads.database, 615
ads.database.connection, 613
ads.dataflow, 623
ads.dataflow.dataflow, 615
ads.dataflow.dataflowsummary, 623
ads.dataset, 661
ads.dataset.classification_dataset, 623
ads.dataset.correlation, 626
ads.dataset.correlation_plot, 626
ads.dataset.dataframe_transformer, 629
ads.dataset.dataset, 629
ads.dataset.dataset_browser, 641
ads.dataset.dataset_with_target, 644
ads.dataset.exception, 649
ads.dataset.factory, 649
ads.dataset.feature_engineering_transformer,

654
ads.dataset.feature_selection, 654
ads.dataset.forecasting_dataset, 654
ads.dataset.helper, 655
ads.dataset.label_encoder, 657
ads.dataset.pipeline, 657
ads.dataset.plot, 658
ads.dataset.progress, 658
ads.dataset.recommendation, 659
ads.dataset.recommendation_transformer,

659
ads.dataset.regression_dataset, 660
ads.dataset.sampled_dataset, 660
ads.dataset.target, 661
ads.dataset.timeseries, 661
ads.evaluations, 672
ads.evaluations.evaluation_plot, 661
ads.evaluations.evaluator, 663
ads.evaluations.statistical_metrics, 670
ads.feature_engineering, 760
ads.feature_engineering.accessor.dataframe_accessor,

677
ads.feature_engineering.accessor.mixin.correlation,

685

ads.feature_engineering.accessor.mixin.eda_mixin,
685

ads.feature_engineering.accessor.mixin.eda_mixin_series,
688

ads.feature_engineering.accessor.mixin.feature_types_mixin,
689

ads.feature_engineering.accessor.series_accessor,
682

ads.feature_engineering.adsstring.common_regex_mixin,
691

ads.feature_engineering.adsstring.oci_language,
692

ads.feature_engineering.adsstring.string,
692

ads.feature_engineering.exceptions, 672
ads.feature_engineering.feature_type.address,

699
ads.feature_engineering.feature_type.base,

702
ads.feature_engineering.feature_type.boolean,

703
ads.feature_engineering.feature_type.category,

705
ads.feature_engineering.feature_type.constant,

708
ads.feature_engineering.feature_type.continuous,

710
ads.feature_engineering.feature_type.creditcard,

712
ads.feature_engineering.feature_type.datetime,

716
ads.feature_engineering.feature_type.discrete,

719
ads.feature_engineering.feature_type.document,

721
ads.feature_engineering.feature_type.gis,

722
ads.feature_engineering.feature_type.handler.feature_validator,

751
ads.feature_engineering.feature_type.handler.feature_warning,

756
ads.feature_engineering.feature_type.handler.warnings,

759
ads.feature_engineering.feature_type.integer,

726
ads.feature_engineering.feature_type.ip_address,

728
ads.feature_engineering.feature_type.ip_address_v4,

730
ads.feature_engineering.feature_type.ip_address_v6,

732
ads.feature_engineering.feature_type.lat_long,

735
ads.feature_engineering.feature_type.object,
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738
ads.feature_engineering.feature_type.ordinal,

739
ads.feature_engineering.feature_type.phone_number,

741
ads.feature_engineering.feature_type.string,

744
ads.feature_engineering.feature_type.text,

746
ads.feature_engineering.feature_type.unknown,

748
ads.feature_engineering.feature_type.zip_code,

749
ads.feature_engineering.feature_type_manager,

673
ads.hpo, 775
ads.hpo.distributions, 760
ads.hpo.search_cv, 763
ads.hpo.stopping_criterion, 774
ads.jobs, 808
ads.jobs.ads_job, 775
ads.jobs.builders.infrastructure.dataflow,

790
ads.jobs.builders.infrastructure.dsc_job,

798
ads.jobs.builders.runtimes.python_runtime,

781
ads.model, 837
ads.model.artifact, 808
ads.model.deployment, 851
ads.model.deployment.model_deployer, 837
ads.model.deployment.model_deployment,

841
ads.model.deployment.model_deployment_properties,

846
ads.model.extractor.automl_extractor, 828
ads.model.extractor.keras_extractor, 833
ads.model.extractor.lightgbm_extractor,

830
ads.model.extractor.model_info_extractor,

831
ads.model.extractor.model_info_extractor_factory,

827
ads.model.extractor.pytorch_extractor,

835
ads.model.extractor.sklearn_extractor,

832
ads.model.extractor.tensorflow_extractor,

834
ads.model.extractor.xgboost_extractor,

829
ads.model.framework, 880
ads.model.framework.automl_model, 851
ads.model.framework.lightgbm_model, 855

ads.model.framework.pytorch_model, 860
ads.model.framework.sklearn_model, 865
ads.model.framework.tensorflow_model, 870
ads.model.framework.xgboost_model, 875
ads.model.generic_model, 810
ads.model.model_properties, 826
ads.model.runtime, 884
ads.model.runtime.env_info, 880
ads.model.runtime.model_deployment_details,

881
ads.model.runtime.model_provenance_details,

881
ads.model.runtime.runtime_info, 827, 882
ads.model.runtime.utils, 883
ads.secrets, 901
ads.secrets.adb, 888
ads.secrets.auth_token, 900
ads.secrets.big_data_service, 895
ads.secrets.mysqldb, 891
ads.secrets.oracledb, 893
ads.secrets.secrets, 884
ads.text_dataset, 911
ads.text_dataset.backends, 901
ads.text_dataset.dataset, 904
ads.text_dataset.extractor, 908
ads.text_dataset.options, 911
ads.vault, 913
ads.vault.vault, 911

MULTI_CLASS_CLASSIFICATION
(ads.common.utils.ml_task_types attribute),
574

MULTI_CLASS_TEXT_CLASSIFICATION
(ads.common.utils.ml_task_types attribute),
575

MULTI_LABEL (ads.data_labeling.constants.AnnotationType
attribute), 583

MultiClassClassificationDataset (class in
ads.dataset.classification_dataset), 626

MultiClassTextClassificationDataset (class in
ads.dataset.classification_dataset), 626

MultiLabelRecordParser (class in
ads.data_labeling.parser.export_record_parser),
592

MULTINOMIAL_CLASSIFICATION
(ads.common.model_metadata.UseCaseType
attribute), 558

MXNET (ads.common.model_metadata.Framework at-
tribute), 543

MYSQL (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 559

MySQLDBSecret (class in ads.secrets.mysqldb), 891
MySQLDBSecretKeeper (class in ads.secrets.mysqldb),

892
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N
n_trials (ads.hpo.search_cv.ADSTuner property), 766
name (ads.dataset.helper.ElaboratedPath property), 655
name (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor

attribute), 682
name (ads.feature_engineering.feature_type.address.Address

attribute), 699
name (ads.feature_engineering.feature_type.base.FeatureType

attribute), 702
name (ads.feature_engineering.feature_type.boolean.Boolean

attribute), 703
name (ads.feature_engineering.feature_type.category.Category

attribute), 706
name (ads.feature_engineering.feature_type.constant.Constant

attribute), 708
name (ads.feature_engineering.feature_type.continuous.Continuous

attribute), 710
name (ads.feature_engineering.feature_type.creditcard.CreditCard

attribute), 712
name (ads.feature_engineering.feature_type.datetime.DateTime

attribute), 716
name (ads.feature_engineering.feature_type.discrete.Discrete

attribute), 719
name (ads.feature_engineering.feature_type.document.Document

attribute), 721
name (ads.feature_engineering.feature_type.gis.GIS at-

tribute), 722
name (ads.feature_engineering.feature_type.integer.Integer

attribute), 726
name (ads.feature_engineering.feature_type.ip_address.IpAddress

attribute), 728
name (ads.feature_engineering.feature_type.ip_address_v4.IpAddressV4

attribute), 730
name (ads.feature_engineering.feature_type.ip_address_v6.IpAddressV6

attribute), 732
name (ads.feature_engineering.feature_type.lat_long.LatLong

attribute), 735
name (ads.feature_engineering.feature_type.object.Object

attribute), 739
name (ads.feature_engineering.feature_type.ordinal.Ordinal

attribute), 739
name (ads.feature_engineering.feature_type.phone_number.PhoneNumber

attribute), 742
name (ads.feature_engineering.feature_type.string.String

attribute), 744
name (ads.feature_engineering.feature_type.text.Text at-

tribute), 746
name (ads.feature_engineering.feature_type.unknown.Unknown

attribute), 748
name (ads.feature_engineering.feature_type.zip_code.ZipCode

attribute), 749
name (ads.jobs.ads_job.Job property), 779
name (ads.jobs.builders.infrastructure.dataflow.DataFlow

property), 791

name (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 803

Name (class in ads.feature_engineering.feature_type.base),
702

NameAlreadyRegistered, 672
NEEDSACTION (ads.model.generic_model.ModelState at-

tribute), 825
NER (ads.common.model_metadata.UseCaseType at-

tribute), 558
ner (ads.feature_engineering.adsstring.oci_language.OCILanguage

property), 692
NERItem (class in ads.data_labeling.ner), 586
NERItems (class in ads.data_labeling.ner), 587
NERRecordParser (class in

ads.data_labeling.parser.export_record_parser),
593

nlp_backend() (ads.feature_engineering.adsstring.string.ADSString
method), 696

NLTK (ads.common.model_metadata.Framework at-
tribute), 543

NoRestartError, 774
normalize_hyperparameter() (in module

ads.model.extractor.model_info_extractor),
832

NOT_PASSED (ads.common.model_introspect.TEST_STATUS
attribute), 563

NOT_TESTED (ads.common.model_introspect.TEST_STATUS
attribute), 563

NotActiveDeploymentError, 825
NOTAVAILABLE (ads.model.generic_model.ModelState

attribute), 825
NOTEBOOK (ads.common.decorator.runtime_dependency.OptionalDependency

attribute), 559
notebook_encoding (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime

property), 787
notebook_uri (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime

property), 787
NotebookCatalog (class in ads.catalog.notebook), 529
NotebookRuntime (class in

ads.jobs.builders.runtimes.python_runtime),
786

NotebookSummaryList (class in ads.catalog.notebook),
531

NTrials (class in ads.hpo.stopping_criterion), 774
num_paths (ads.dataset.helper.ElaboratedPath prop-

erty), 655
numeric_pandas_dtypes() (in module

ads.common.utils), 575

O
Object (class in ads.feature_engineering.feature_type.object),

738
OBJECT_LOCALIZATION

(ads.common.model_metadata.UseCaseType
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attribute), 558
oci_config_file() (in module ads.common.utils), 575
oci_config_location() (in module

ads.common.utils), 575
oci_config_profile() (in module ads.common.utils),

575
oci_key_location() (in module ads.common.utils),

575
oci_key_profile() (in module ads.common.utils), 575
oci_link (ads.dataflow.dataflow.DataFlowApp prop-

erty), 618
oci_link (ads.dataflow.dataflow.DataFlowRun prop-

erty), 621
oci_link (ads.dataflow.dataflow.RunObserver prop-

erty), 622
oci_path (ads.dataflow.dataflow.DataFlowLog prop-

erty), 619
OCILanguage (class in

ads.feature_engineering.adsstring.oci_language),
692

offset (ads.data_labeling.ner.NERItem attribute), 586,
587

ONNX (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 560

ONNXTransformer (class in
ads.common.model_export_util), 564

OPCTL (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 560

open() (ads.dataset.dataset_browser.DatasetBrowser
method), 641

open() (ads.dataset.dataset_browser.GitHubDatasets
method), 642

open() (ads.dataset.dataset_browser.LocalFilesystemDatasets
method), 642

open() (ads.dataset.dataset_browser.SeabornDatasets
method), 643

open() (ads.dataset.dataset_browser.SklearnDatasets
method), 643

open() (ads.dataset.dataset_browser.WebDatasets
method), 644

open() (ads.dataset.factory.DatasetFactory static
method), 651

open() (in module ads.config), 913
open_to_pandas() (ads.dataset.factory.DatasetFactory

static method), 653
optimizer() (ads.hpo.search_cv.ADSTuner static

method), 766
option() (ads.text_dataset.dataset.DataLoader

method), 906
option_handler() (ads.text_dataset.options.OptionFactory

static method), 911
option_handlers (ads.text_dataset.options.OptionFactory

attribute), 911
OptionalDependency (class in

ads.common.decorator.runtime_dependency),
559

OptionFactory (class in ads.text_dataset.options), 911
OptionHandler (class in ads.text_dataset.options), 911
Options (class in ads.text_dataset.options), 911
OPTUNA (ads.common.decorator.runtime_dependency.OptionalDependency

attribute), 560
ORACLE_AUTOML (ads.common.model_metadata.Framework

attribute), 543
OracleAutoMLProvider (class in ads.automl.provider),

520
OracleConnector (class in ads.database.connection),

614
OracleDBSecret (class in ads.secrets.oracledb), 893
OracleDBSecretKeeper (class in ads.secrets.oracledb),

893
Ordinal (class in ads.feature_engineering.feature_type.ordinal),

739
OTHER (ads.common.model_metadata.Framework at-

tribute), 543
OTHER (ads.common.model_metadata.MetadataCustomCategory

attribute), 543
OTHER (ads.common.model_metadata.UseCaseType at-

tribute), 558
output_uri (ads.jobs.builders.runtimes.python_runtime.NotebookRuntime

property), 787
overwrite_existing_artifact

(ads.model.model_properties.ModelProperties
attribute), 826

P
PACK_TYPE (class in ads.model.runtime.env_info), 881
PandasDataset (class in ads.dataset.sampled_dataset),

660
parse() (ads.data_labeling.interface.parser.Parser

method), 580
parse() (ads.data_labeling.parser.export_metadata_parser.MetadataParser

static method), 591
parse() (ads.data_labeling.parser.export_record_parser.RecordParser

method), 594
parse_apache_log_datetime() (in module

ads.dataset.helper), 656
parse_apache_log_str() (in module

ads.dataset.helper), 656
Parser (class in ads.data_labeling.interface.parser), 580
parser() (ads.data_labeling.parser.export_record_parser.RecordParserFactory

static method), 595
partition() (ads.feature_engineering.adsstring.string.ADSString

method), 696
PASSED (ads.common.model_introspect.TEST_STATUS

attribute), 564
password (ads.secrets.adb.ADBSecret attribute), 888
password (ads.secrets.mysqldb.MySQLDBSecret at-

tribute), 891
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password (ads.secrets.oracledb.OracleDBSecret at-
tribute), 893

path (ads.data_labeling.record.Record attribute), 588
paths (ads.dataset.helper.ElaboratedPath property), 655
payload_attribute_map

(ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
attribute), 803

PDFPlumber (class in ads.text_dataset.backends), 902
PDFProcessor (class in ads.text_dataset.extractor), 910
pearson() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin

method), 687
pearson_plot() (ads.feature_engineering.accessor.mixin.eda_mixin.EDAMixin

method), 688
perfect (ads.evaluations.evaluation_plot.EvaluationPlot

attribute), 662, 663
perfect_kwargs (ads.evaluations.evaluation_plot.EvaluationPlot

attribute), 662, 663
PERFORMANCE (ads.common.model_metadata.MetadataCustomCategory

attribute), 543
phone_number_US (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 691
PhoneNumber (class in

ads.feature_engineering.feature_type.phone_number),
741

plot() (ads.dataset.sampled_dataset.PandasDataset
method), 660

plot() (ads.dataset.timeseries.Timeseries method), 661
plot() (ads.evaluations.evaluation_plot.EvaluationPlot

class method), 663
plot() (ads.evaluations.evaluation_plot.EvaluationPlot

method), 662
plot_best_scores() (ads.hpo.search_cv.ADSTuner

method), 766
plot_contour_scores()

(ads.hpo.search_cv.ADSTuner method), 767
plot_correlation_heatmap()

(ads.dataset.correlation_plot.BokehHeatMap
method), 627

plot_correlation_heatmap() (in module
ads.dataset.correlation_plot), 628

plot_edf_scores() (ads.hpo.search_cv.ADSTuner
method), 767

plot_gis_scatter() (ads.dataset.sampled_dataset.PandasDataset
method), 660

plot_hbar() (ads.dataset.correlation_plot.BokehHeatMap
method), 628

plot_heat_map() (ads.dataset.correlation_plot.BokehHeatMap
method), 628

plot_intermediate_scores()
(ads.hpo.search_cv.ADSTuner method), 767

plot_parallel_coordinate_scores()
(ads.hpo.search_cv.ADSTuner method), 767

plot_param_importance()
(ads.hpo.search_cv.ADSTuner method), 768

Plotting (class in ads.dataset.plot), 658
plugin_clear() (ads.feature_engineering.adsstring.string.ADSString

method), 696
plugin_list() (ads.feature_engineering.adsstring.string.ADSString

method), 696
plugin_register() (ads.feature_engineering.adsstring.string.ADSString

method), 696
plugins (ads.feature_engineering.adsstring.string.ADSString

attribute), 692, 696
populate_metadata()

(ads.common.model_metadata_mixin.MetadataMixin
method), 577

port (ads.secrets.mysqldb.MySQLDBSecret attribute),
891

port (ads.secrets.oracledb.OracleDBSecret attribute),
893

positive_class (ads.evaluations.evaluator.ADSEvaluator
attribute), 664

positive_class (ads.evaluations.statistical_metrics.ModelEvaluator
attribute), 670

Positive_Class_Names
(ads.evaluations.evaluator.ADSEvaluator
attribute), 666

Positive_Class_names
(ads.evaluations.evaluator.ADSEvaluator
attribute), 664

precision (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics
property), 666

PREDICT (ads.model.deployment.model_deployment.ModelDeploymentLogType
attribute), 846

predict() (ads.automl.provider.BaselineModel
method), 519

predict() (ads.common.model.ADSModel method),
540

predict() (ads.model.deployment.model_deployment.ModelDeployment
method), 843

predict() (ads.model.framework.automl_model.AutoMLModel
method), 853

predict() (ads.model.framework.lightgbm_model.LightGBMModel
method), 857

predict() (ads.model.framework.pytorch_model.PyTorchModel
method), 862

predict() (ads.model.framework.sklearn_model.SklearnModel
method), 867

predict() (ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

predict() (ads.model.framework.xgboost_model.XGBoostModel
method), 877

predict() (ads.model.generic_model.GenericModel
method), 812, 818

predict_log (ads.model.deployment.model_deployment.ModelDeployment
property), 844

predict_proba() (ads.automl.provider.BaselineModel
method), 519
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predict_proba() (ads.common.model.ADSModel
method), 540

prepare() (ads.common.model.ADSModel method),
540

prepare() (ads.model.framework.automl_model.AutoMLModel
method), 853

prepare() (ads.model.framework.lightgbm_model.LightGBMModel
method), 857

prepare() (ads.model.framework.pytorch_model.PyTorchModel
method), 862

prepare() (ads.model.framework.sklearn_model.SklearnModel
method), 867

prepare() (ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

prepare() (ads.model.framework.xgboost_model.XGBoostModel
method), 877

prepare() (ads.model.generic_model.GenericModel
method), 812, 818

prepare_app() (ads.dataflow.dataflow.DataFlow
method), 616

prepare_fn_attributes() (in module
ads.common.function.fn_util), 568

prepare_generic_model() (in module
ads.common.model_export_util), 565

prepare_run() (ads.dataflow.dataflow.DataFlowApp
method), 618

prepare_runtime_yaml()
(ads.model.artifact.ModelArtifact method),
809

prepare_save_deploy()
(ads.model.generic_model.GenericModel
method), 812, 820

prepare_score_py() (ads.model.artifact.ModelArtifact
method), 809

price (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin
property), 691

principal (ads.secrets.big_data_service.BDSSecret at-
tribute), 895, 897

principal (ads.secrets.big_data_service.BDSSecretKeeper
attribute), 897

print_summary() (ads.automl.provider.OracleAutoMLProvider
method), 520

print_trials() (ads.automl.provider.OracleAutoMLProvider
method), 520

print_user_message() (in module ads.common.utils),
575

PrintItem (class in ads.common.model_introspect), 563
prob_type (ads.evaluations.evaluation_plot.EvaluationPlot

attribute), 662, 663
processor (ads.text_dataset.dataset.DataLoader at-

tribute), 904
processor_map (ads.text_dataset.extractor.FileProcessorFactory

attribute), 910
ProgressBar (class in ads.dataset.progress), 658

project_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 803

project_id (ads.model.model_properties.ModelProperties
attribute), 826

project_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails
attribute), 882

ProjectCatalog (class in ads.catalog.project), 531
ProjectSummaryList (class in ads.catalog.project),

533
properties (ads.model.framework.automl_model.AutoMLModel

attribute), 852
properties (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 856
properties (ads.model.framework.pytorch_model.PyTorchModel

attribute), 861
properties (ads.model.framework.sklearn_model.SklearnModel

attribute), 866
properties (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 871
properties (ads.model.framework.xgboost_model.XGBoostModel

attribute), 876
properties (ads.model.generic_model.GenericModel

attribute), 811
PROPHET (ads.common.model_metadata.Framework at-

tribute), 543
PYMC3 (ads.common.model_metadata.Framework at-

tribute), 543
PYOD (ads.common.model_metadata.Framework at-

tribute), 543
PYSTAN (ads.common.model_metadata.Framework

attribute), 543
PythonRuntime (class in

ads.jobs.builders.runtimes.python_runtime),
787

PYTORCH (ads.common.decorator.runtime_dependency.OptionalDependency
attribute), 560

PYTORCH (ads.common.model_metadata.Framework at-
tribute), 543

PytorchExtractor (class in
ads.model.extractor.pytorch_extractor), 835

PyTorchModel (class in
ads.model.framework.pytorch_model), 860

R
random_valid_ocid() (in module ads.common.utils),

575
raw_metrics (ads.evaluations.evaluator.ADSEvaluator

property), 669
read() (ads.data_labeling.interface.reader.Reader

method), 580
read() (ads.data_labeling.reader.dataset_reader.DLSDatasetReader

method), 597, 598
read() (ads.data_labeling.reader.dataset_reader.ExportReader

method), 598, 599
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read() (ads.data_labeling.reader.dataset_reader.LabeledDatasetReader
method), 599, 601

read() (ads.data_labeling.reader.jsonl_reader.JsonlReader
method), 602

read() (ads.data_labeling.reader.metadata_reader.DLSMetadataReader
method), 603

read() (ads.data_labeling.reader.metadata_reader.ExportMetadataReader
method), 604

read() (ads.data_labeling.reader.metadata_reader.MetadataReader
method), 605

read() (ads.data_labeling.reader.record_reader.RecordReader
method), 608

read_arff() (ads.dataset.factory.CustomFormatReaders
static method), 649

read_avro() (ads.dataset.factory.CustomFormatReaders
static method), 649

read_html() (ads.dataset.factory.CustomFormatReaders
static method), 649

read_json() (ads.dataset.factory.CustomFormatReaders
static method), 649

read_labeled_data()
(ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin
static method), 589

read_libsvm() (ads.dataset.factory.CustomFormatReaders
static method), 650

read_line() (ads.text_dataset.backends.Base method),
902

read_line() (ads.text_dataset.backends.PDFPlumber
method), 903

read_line() (ads.text_dataset.backends.Tika method),
903

read_line() (ads.text_dataset.dataset.DataLoader
method), 907

read_line() (ads.text_dataset.extractor.FileProcessor
method), 909

read_log() (ads.dataset.factory.CustomFormatReaders
static method), 650

read_sql() (ads.dataset.factory.CustomFormatReaders
class method), 650

read_text() (ads.text_dataset.backends.Base method),
902

read_text() (ads.text_dataset.backends.PDFPlumber
method), 903

read_text() (ads.text_dataset.backends.Tika method),
904

read_text() (ads.text_dataset.dataset.DataLoader
method), 907

read_text() (ads.text_dataset.extractor.FileProcessor
method), 909

read_tsv() (ads.dataset.factory.CustomFormatReaders
static method), 650

read_xml() (ads.dataset.factory.CustomFormatReaders
static method), 650

ReadDatasetError, 605

Reader (class in ads.data_labeling.interface.reader), 580
Recommendation (class in

ads.dataset.recommendation), 659
recommendation_type_labels

(ads.dataset.recommendation.Recommendation
attribute), 659

recommendation_types
(ads.dataset.recommendation.Recommendation
attribute), 659

RecommendationTransformer (class in
ads.dataset.recommendation_transformer),
659

RECOMMENDER (ads.common.model_metadata.UseCaseType
attribute), 558

Record (class in ads.data_labeling.record), 588
RecordParser (class in

ads.data_labeling.parser.export_record_parser),
593

RecordParserFactory (class in
ads.data_labeling.parser.export_record_parser),
594

RecordReader (class in
ads.data_labeling.reader.record_reader),
605

records_path (ads.data_labeling.metadata.Metadata
attribute), 585, 586

redact() (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin
method), 691

redact() (ads.feature_engineering.adsstring.string.ADSString
method), 696

redact_map (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin
attribute), 692

refresh_ticket() (in module ads.bds.auth), 579
register() (ads.data_labeling.parser.export_record_parser.RecordParserFactory

class method), 595
register() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator

method), 751, 753
register() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod

method), 754
register() (ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning

method), 757, 758
register() (ads.text_dataset.extractor.FileProcessorFactory

class method), 910
register_option() (ads.text_dataset.options.OptionFactory

class method), 911
registered() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator

method), 752, 753
registered() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod

method), 754, 755
registered() (ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning

method), 757, 758
REGRESSION (ads.common.model_metadata.UseCaseType

attribute), 558
REGRESSION (ads.common.utils.ml_task_types attribute),
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575
RegressionDataset (class in

ads.dataset.regression_dataset), 660
reload() (ads.model.artifact.ModelArtifact method),

810
reload() (ads.model.framework.automl_model.AutoMLModel

method), 853
reload() (ads.model.framework.lightgbm_model.LightGBMModel

method), 857
reload() (ads.model.framework.pytorch_model.PyTorchModel

method), 862
reload() (ads.model.framework.sklearn_model.SklearnModel

method), 867
reload() (ads.model.framework.tensorflow_model.TensorFlowModel

method), 872
reload() (ads.model.framework.xgboost_model.XGBoostModel

method), 877
reload() (ads.model.generic_model.GenericModel

method), 812, 823
reload_runtime_info()

(ads.model.generic_model.GenericModel
method), 823

remove() (ads.common.model_metadata.ModelCustomMetadata
method), 545, 547

remove_existing_artifact
(ads.model.model_properties.ModelProperties
attribute), 826

remove_file() (in module ads.common.utils), 575
rename() (ads.common.model.ADSModel method), 541
rename_columns() (ads.dataset.dataset.ADSDataset

method), 632
rename_columns() (ads.dataset.dataset_with_target.ADSDatasetWithTarget

method), 646
rename_duplicate_cols() (in module

ads.dataset.helper), 656
render() (ads.data_labeling.visualizer.text_visualizer.TextLabeledDataFormatter

static method), 612
render() (in module ads.data_labeling.visualizer.image_visualizer),

608, 610
render() (in module ads.data_labeling.visualizer.text_visualizer),

611, 613
render_bounding_box()

(ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin
method), 590

render_item() (ads.data_labeling.visualizer.image_visualizer.ImageLabeledDataFormatter
static method), 609

render_ner() (ads.data_labeling.mixin.data_labeling.DataLabelingAccessMixin
method), 591

RenderOptions (class in
ads.data_labeling.visualizer.image_visualizer),
609

RenderOptions (class in
ads.data_labeling.visualizer.text_visualizer),
611

replace() (ads.feature_engineering.adsstring.string.ADSString
method), 697

replace_spaces() (in module ads.common.utils), 576
repo (ads.common.model_metadata.ModelProvenanceMetadata

attribute), 555
repository_url (ads.common.model_metadata.ModelProvenanceMetadata

attribute), 555
required_keys (ads.secrets.secrets.SecretKeeper

attribute), 887
reset() (ads.common.model_metadata.ModelCustomMetadata

method), 545
reset() (ads.common.model_metadata.ModelCustomMetadataItem

method), 548, 549
reset() (ads.common.model_metadata.ModelMetadata

method), 550, 551
reset() (ads.common.model_metadata.ModelTaxonomyMetadata

method), 556
reset() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557, 558
resource_principal() (in module ads.common.auth),

536
response (ads.catalog.project.ProjectSummaryList at-

tribute), 533
result (ads.common.model_introspect.PrintItem at-

tribute), 563
resume() (ads.hpo.search_cv.ADSTuner method), 768
rfind() (ads.feature_engineering.adsstring.string.ADSString

method), 697
rindex() (ads.feature_engineering.adsstring.string.ADSString

method), 697
rjust() (ads.feature_engineering.adsstring.string.ADSString

method), 697
rollback() (ads.catalog.model.Model method), 522,

524
rpartition() (ads.feature_engineering.adsstring.string.ADSString

method), 697
rsplit() (ads.feature_engineering.adsstring.string.ADSString

method), 697
rstrip() (ads.feature_engineering.adsstring.string.ADSString

method), 697
run() (ads.common.model_introspect.ModelIntrospect

method), 562, 563
run() (ads.dataflow.dataflow.DataFlowApp method),

618
run() (ads.jobs.ads_job.Job method), 779
run() (ads.jobs.builders.infrastructure.dataflow.DataFlow

method), 791
run() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

method), 803
run() (ads.jobs.builders.infrastructure.dsc_job.DSCJob

method), 799
run_details_link (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

property), 797
run_list() (ads.jobs.ads_job.Job method), 779
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run_list() (ads.jobs.builders.infrastructure.dataflow.DataFlow
method), 792

run_list() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
method), 803

run_list() (ads.jobs.builders.infrastructure.dsc_job.DSCJob
method), 800

RUNNING (ads.hpo.search_cv.State attribute), 774
RunObserver (class in ads.dataflow.dataflow), 621
runtime (ads.jobs.ads_job.Job property), 779
runtime_dependency() (in module

ads.common.decorator.runtime_dependency),
560

runtime_info (ads.model.framework.automl_model.AutoMLModel
attribute), 852

runtime_info (ads.model.framework.lightgbm_model.LightGBMModel
attribute), 856

runtime_info (ads.model.framework.pytorch_model.PyTorchModel
attribute), 862

runtime_info (ads.model.framework.sklearn_model.SklearnModel
attribute), 866

runtime_info (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 871

runtime_info (ads.model.framework.xgboost_model.XGBoostModel
attribute), 876

runtime_info (ads.model.generic_model.GenericModel
attribute), 811

RuntimeInfo (class in ads.model.runtime.runtime_info),
827, 882

RuntimeInfoInconsistencyError, 825

S
safe_metrics_call()

(ads.evaluations.statistical_metrics.ModelEvaluator
method), 670, 671

sample() (ads.dataset.dataset.ADSDataset method), 633
sampling_confidence_interval

(ads.dataset.helper.DatasetDefaults attribute),
655

sampling_confidence_level
(ads.dataset.helper.DatasetDefaults attribute),
655

save() (ads.common.model_export_util.ONNXTransformer
method), 564

save() (ads.dataflow.dataflow.DataFlowLog method),
620

save() (ads.model.framework.automl_model.AutoMLModel
method), 853

save() (ads.model.framework.lightgbm_model.LightGBMModel
method), 857

save() (ads.model.framework.pytorch_model.PyTorchModel
method), 862

save() (ads.model.framework.sklearn_model.SklearnModel
method), 867

save() (ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

save() (ads.model.framework.xgboost_model.XGBoostModel
method), 877

save() (ads.model.generic_model.GenericModel
method), 812, 823

save() (ads.model.runtime.runtime_info.RuntimeInfo
method), 827, 883

save() (ads.secrets.adb.ADBSecretKeeper method), 891
save() (ads.secrets.big_data_service.BDSSecretKeeper

method), 899
save() (ads.secrets.secrets.SecretKeeper method), 887
schema_input (ads.model.framework.automl_model.AutoMLModel

attribute), 852
schema_input (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 857
schema_input (ads.model.framework.pytorch_model.PyTorchModel

attribute), 862
schema_input (ads.model.framework.sklearn_model.SklearnModel

attribute), 866
schema_input (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 871
schema_input (ads.model.framework.xgboost_model.XGBoostModel

attribute), 876
schema_input (ads.model.generic_model.GenericModel

attribute), 811
schema_output (ads.model.framework.automl_model.AutoMLModel

attribute), 853
schema_output (ads.model.framework.lightgbm_model.LightGBMModel

attribute), 857
schema_output (ads.model.framework.pytorch_model.PyTorchModel

attribute), 862
schema_output (ads.model.framework.sklearn_model.SklearnModel

attribute), 866
schema_output (ads.model.framework.tensorflow_model.TensorFlowModel

attribute), 872
schema_output (ads.model.framework.xgboost_model.XGBoostModel

attribute), 876
schema_output (ads.model.generic_model.GenericModel

attribute), 812
SchemaValidator (class in ads.model.runtime.utils),

883
SCIKIT_LEARN (ads.common.model_metadata.Framework

attribute), 543
score() (ads.common.model.ADSModel method), 541
score_remaining (ads.hpo.search_cv.ADSTuner prop-

erty), 768
ScoreValue (class in ads.hpo.stopping_criterion), 774
scoring_name (ads.hpo.search_cv.ADSTuner property),

769
script_bucket (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime

property), 783
script_uri (ads.jobs.builders.runtimes.python_runtime.DataFlowRuntime

property), 783
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script_uri (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime
property), 789

ScriptRuntime (class in
ads.jobs.builders.runtimes.python_runtime),
788

seaborn() (ads.dataset.dataset_browser.DatasetBrowser
static method), 642

SeabornDatasets (class in
ads.dataset.dataset_browser), 643

search_space() (ads.hpo.search_cv.ADSTuner
method), 769

Secret (class in ads.secrets.secrets), 884
secret_id (ads.secrets.big_data_service.BDSSecret at-

tribute), 896, 897
secret_id (ads.secrets.big_data_service.BDSSecretKeeper

attribute), 898
SecretKeeper (class in ads.secrets.secrets), 885
select_best_features()

(ads.dataset.classification_dataset.BinaryTextClassificationDataset
method), 624

select_best_features()
(ads.dataset.classification_dataset.MultiClassTextClassificationDataset
method), 626

select_best_features()
(ads.dataset.dataset_with_target.ADSDatasetWithTarget
method), 646

select_best_features()
(ads.dataset.forecasting_dataset.ForecastingDataset
method), 654

select_best_plot() (ads.dataset.plot.Plotting
method), 658

selected_model_name()
(ads.automl.provider.OracleAutoMLProvider
method), 521

selected_score_label()
(ads.automl.provider.OracleAutoMLProvider
method), 521

SENTIMENT_ANALYSIS (ads.common.model_metadata.UseCaseType
attribute), 559

serialize (ads.model.framework.automl_model.AutoMLModel
attribute), 853

serialize (ads.model.framework.lightgbm_model.LightGBMModel
attribute), 857

serialize (ads.model.framework.pytorch_model.PyTorchModel
attribute), 862

serialize (ads.model.framework.sklearn_model.SklearnModel
attribute), 866

serialize (ads.model.framework.tensorflow_model.TensorFlowModel
attribute), 872

serialize (ads.model.framework.xgboost_model.XGBoostModel
attribute), 876

serialize (ads.model.generic_model.GenericModel at-
tribute), 812

serialize() (ads.secrets.secrets.Secret method), 884,

885
serialize_model() (ads.model.framework.automl_model.AutoMLModel

method), 854
serialize_model() (ads.model.framework.lightgbm_model.LightGBMModel

method), 859
serialize_model() (ads.model.framework.pytorch_model.PyTorchModel

method), 863
serialize_model() (ads.model.framework.sklearn_model.SklearnModel

method), 869
serialize_model() (ads.model.framework.tensorflow_model.TensorFlowModel

method), 873
serialize_model() (ads.model.framework.xgboost_model.XGBoostModel

method), 879
serialize_model() (ads.model.generic_model.GenericModel

method), 824
serialize_model() (in module

ads.common.model_export_util), 567
SerializeInputNotImplementedError, 825
SerializeModelNotImplementedError, 825
service_name (ads.secrets.adb.ADBSecret attribute),

888
service_name (ads.secrets.oracledb.OracleDBSecret

attribute), 893
SERVICE_PACK (ads.model.runtime.env_info.PACK_TYPE

attribute), 881
set_auth() (in module ads), 913
set_debug_mode() (in module ads), 913
set_default_storage()

(ads.dataset.factory.DatasetFactory static
method), 653

set_description() (ads.dataset.dataset.ADSDataset
method), 633

set_documentation_mode() (in module ads), 913
set_expert_mode() (in module ads), 914
set_name() (ads.dataset.dataset.ADSDataset method),

633
set_oci_config() (in module ads.common.utils), 576
set_positive_class()

(ads.dataset.classification_dataset.BinaryClassificationDataset
method), 623

set_target() (ads.dataset.dataset.ADSDataset
method), 634

set_training_data()
(ads.common.model_metadata.ModelCustomMetadata
method), 547

set_validation_data()
(ads.common.model_metadata.ModelCustomMetadata
method), 548

setup() (ads.automl.provider.AutoMLProvider method),
518

shape_name (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob
property), 803

short_id_index (ads.catalog.project.ProjectSummaryList
attribute), 533
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show_all() (ads.dataflow.dataflow.DataFlowLog
method), 620

show_corr() (ads.dataset.dataset.ADSDataset method),
634

show_deployments() (ads.model.deployment.model_deployer.ModelDeployer
method), 838, 840

show_full_name (ads.evaluations.evaluator.ADSEvaluator
attribute), 664

show_in_notebook() (ads.catalog.model.Model
method), 522, 524

show_in_notebook() (ads.catalog.summary.SummaryList
method), 534

show_in_notebook() (ads.common.model.ADSModel
method), 542

show_in_notebook() (ads.dataset.dataset.ADSDataset
method), 635

show_in_notebook() (ads.dataset.feature_selection.FeatureImportance
method), 654

show_in_notebook() (ads.dataset.plot.Plotting
method), 658

show_in_notebook() (ads.dataset.recommendation.Recommendation
method), 659

show_in_notebook() (ads.dataset.target.TargetVariable
method), 661

show_in_notebook() (ads.evaluations.evaluator.ADSEvaluator
method), 665, 669

show_in_notebook() (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics
method), 666

show_logs() (ads.model.deployment.model_deployment.ModelDeployment
method), 844

sid (ads.secrets.oracledb.OracleDBSecret attribute), 893
SINGLE_LABEL (ads.data_labeling.constants.AnnotationType

attribute), 583
single_overlay_plots

(ads.evaluations.evaluation_plot.EvaluationPlot
attribute), 663

SingleLabelRecordParser (class in
ads.data_labeling.parser.export_record_parser),
595

size() (ads.common.model_metadata.ModelCustomMetadata
method), 545

size() (ads.common.model_metadata.ModelCustomMetadataItem
method), 549

size() (ads.common.model_metadata.ModelMetadata
method), 550, 551

size() (ads.common.model_metadata.ModelMetadataItem
method), 553

size() (ads.common.model_metadata.ModelTaxonomyMetadata
method), 556

size() (ads.common.model_metadata.ModelTaxonomyMetadataItem
method), 557

skew_handler() (in module
ads.feature_engineering.feature_type.handler.warnings),
759

skip_metadata_update
(ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime
property), 785

sklearn() (ads.dataset.dataset_browser.DatasetBrowser
static method), 642

sklearn_datasets (ads.dataset.dataset_browser.SklearnDatasets
attribute), 643

sklearn_steps (ads.hpo.search_cv.ADSTuner prop-
erty), 769

SklearnDatasets (class in
ads.dataset.dataset_browser), 643

SklearnExtractor (class in
ads.model.extractor.sklearn_extractor), 832

SklearnModel (class in
ads.model.framework.sklearn_model), 865

SKTIME (ads.common.model_metadata.Framework
attribute), 543

SLUG_NAME (ads.common.model_metadata.MetadataCustomKeys
attribute), 544

snake_to_camel() (in module ads.common.utils), 576
snake_to_camel_map (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

attribute), 803
snapshot() (ads.dataset.dataset.ADSDataset method),

636
sort_by() (ads.catalog.model.ModelSummaryList

method), 528, 529
sort_by() (ads.catalog.notebook.NotebookSummaryList

method), 531
sort_by() (ads.catalog.project.ProjectSummaryList

method), 534
sort_by() (ads.catalog.summary.SummaryList

method), 534
sort_by() (ads.dataflow.dataflowsummary.SummaryList

method), 623
source_path (ads.data_labeling.metadata.Metadata at-

tribute), 585, 586
source_uri (ads.jobs.builders.runtimes.python_runtime.ScriptRuntime

property), 789
SPACY (ads.common.model_metadata.Framework at-

tribute), 543
SPACY (ads.data_labeling.constants.Formats attribute),

583
SPARK_VERSION (class in ads.dataflow.dataflow), 622
split() (ads.feature_engineering.adsstring.string.ADSString

method), 697
split_data() (in module ads.common.utils), 576
splitlines() (ads.feature_engineering.adsstring.string.ADSString

method), 698
ssh_secret_ocid (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime

property), 785
ssn (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 692
standardize_spec() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

static method), 804
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startswith() (ads.feature_engineering.adsstring.string.ADSString
method), 698

state (ads.model.deployment.model_deployment.ModelDeployment
attribute), 842

state (ads.model.deployment.model_deployment.ModelDeployment
property), 844

State (class in ads.hpo.search_cv), 774
STATSMODELS (ads.common.model_metadata.Framework

attribute), 543
status (ads.common.model_introspect.ModelIntrospect

property), 563
status (ads.dataflow.dataflow.DataFlowRun property),

621
status (ads.dataflow.dataflow.RunObserver property),

622
status (ads.hpo.search_cv.ADSTuner property), 769
status (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

property), 797
status (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

property), 804
status (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

property), 807
status (ads.model.deployment.model_deployment.ModelDeployment

property), 844
status() (ads.jobs.ads_job.Job method), 780
steps (ads.dataset.pipeline.TransformerPipeline at-

tribute), 658
stream() (ads.model.deployment.model_deployment.ModelDeploymentLog

method), 845
string (ads.feature_engineering.adsstring.string.ADSString

attribute), 692
string (ads.feature_engineering.adsstring.string.ADSString

property), 698
String (class in ads.feature_engineering.feature_type.string),

744
strip() (ads.feature_engineering.adsstring.string.ADSString

method), 698
sub_properties (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties

attribute), 849
subnet_id (ads.jobs.builders.infrastructure.dsc_job.DataScienceJob

property), 804
suggest_recommendations()

(ads.dataset.dataset_with_target.ADSDatasetWithTarget
method), 646

summary() (ads.common.model.ADSModel method),
542

summary() (ads.dataset.sampled_dataset.PandasDataset
method), 660

summary_status() (ads.model.framework.automl_model.AutoMLModel
method), 853

summary_status() (ads.model.framework.lightgbm_model.LightGBMModel
method), 857

summary_status() (ads.model.framework.pytorch_model.PyTorchModel
method), 863

summary_status() (ads.model.framework.sklearn_model.SklearnModel
method), 867

summary_status() (ads.model.framework.tensorflow_model.TensorFlowModel
method), 872

summary_status() (ads.model.framework.xgboost_model.XGBoostModel
method), 877

summary_status() (ads.model.generic_model.GenericModel
method), 812, 824

SummaryList (class in ads.catalog.summary), 534
SummaryList (class in ads.dataflow.dataflowsummary),

623
SummaryStatus (class in ads.model.generic_model), 825
swagger_types (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties

attribute), 847
swapcase() (ads.feature_engineering.adsstring.string.ADSString

method), 698
sync() (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor

method), 678, 681
sync() (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor

method), 683, 684

T
Tag (class in ads.feature_engineering.feature_type.base),

702
tags (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor

attribute), 678
tags (ads.feature_engineering.accessor.dataframe_accessor.ADSDataFrameAccessor

property), 681
tags (ads.feature_engineering.accessor.series_accessor.ADSSeriesAccessor

attribute), 682
tail() (ads.dataflow.dataflow.DataFlowLog method),

620
tail() (ads.model.deployment.model_deployment.ModelDeploymentLog

method), 846
TARGET_TYPE (class in

ads.common.decorator.deprecate), 561
TargetVariable (class in ads.dataset.target), 661
template() (ads.dataflow.dataflow.DataFlow method),

617
tenancy_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails

attribute), 882
TENSORFLOW (ads.common.decorator.runtime_dependency.OptionalDependency

attribute), 560
TENSORFLOW (ads.common.model_metadata.Framework

attribute), 543
TensorflowExtractor (class in

ads.model.extractor.tensorflow_extractor),
834

TensorFlowModel (class in
ads.model.framework.tensorflow_model),
870

TERMINAL_STATES (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun
attribute), 806
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terminate() (ads.hpo.search_cv.ADSTuner method),
769

TERMINATED (ads.hpo.search_cv.State attribute), 774
TERMINATED_STATES (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

attribute), 796
test_data (ads.evaluations.evaluator.ADSEvaluator at-

tribute), 664
TEST_STATUS (class in ads.common.model_introspect),

563
TEXT (ads.common.decorator.runtime_dependency.OptionalDependency

attribute), 560
TEXT (ads.data_labeling.constants.DatasetType at-

tribute), 583
Text (class in ads.feature_engineering.feature_type.text),

746
text_classification

(ads.feature_engineering.adsstring.oci_language.OCILanguage
property), 692

TextDatasetFactory (class in
ads.text_dataset.dataset), 908

TextLabeledDataFormatter (class in
ads.data_labeling.visualizer.text_visualizer),
612

TEXTSELECTION (ads.data_labeling.parser.export_record_parser.EntityType
attribute), 592

Tika (class in ads.text_dataset.backends), 903
time (ads.feature_engineering.adsstring.common_regex_mixin.CommonRegexMixin

property), 692
time_elapsed (ads.hpo.search_cv.ADSTuner property),

770
time_remaining (ads.hpo.search_cv.ADSTuner prop-

erty), 770
TIME_SERIES_FORECASTING

(ads.common.model_metadata.UseCaseType
attribute), 559

time_since_resume (ads.hpo.search_cv.ADSTuner
property), 770

TimeBudget (class in ads.hpo.stopping_criterion), 775
Timeseries (class in ads.dataset.timeseries), 661
timeseries() (ads.dataset.sampled_dataset.PandasDataset

method), 661
title() (ads.feature_engineering.adsstring.string.ADSString

method), 698
to_adsstring() (in module

ads.feature_engineering.adsstring.string),
698

to_avro() (ads.dataset.dataset.ADSDataset method),
636

to_csv() (ads.dataset.dataset.ADSDataset method), 637
to_dask() (ads.dataset.dataset.ADSDataset method),

637
to_dask_dataframe()

(ads.dataset.dataset.ADSDataset method),
638

to_dataframe() (ads.catalog.model.Model method),
522, 524

to_dataframe() (ads.catalog.summary.SummaryList
method), 534

to_dataframe() (ads.common.model_introspect.ModelIntrospect
method), 562, 563

to_dataframe() (ads.common.model_metadata.ModelCustomMetadata
method), 545, 548

to_dataframe() (ads.common.model_metadata.ModelMetadata
method), 550, 551

to_dataframe() (ads.common.model_metadata.ModelTaxonomyMetadata
method), 556, 557

to_dataframe() (ads.data_labeling.metadata.Metadata
method), 586

to_dataframe() (ads.dataflow.dataflowsummary.SummaryList
method), 623

to_dataframe() (in module ads.common.utils), 576
to_dict() (ads.common.model_metadata.ModelCustomMetadata

method), 545
to_dict() (ads.common.model_metadata.ModelCustomMetadataItem

method), 549
to_dict() (ads.common.model_metadata.ModelMetadata

method), 550, 551
to_dict() (ads.common.model_metadata.ModelMetadataItem

method), 553
to_dict() (ads.common.model_metadata.ModelTaxonomyMetadata

method), 556
to_dict() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557
to_dict() (ads.data_labeling.metadata.Metadata

method), 586
to_dict() (ads.data_labeling.record.Record method),

588
to_dict() (ads.data_labeling.visualizer.image_visualizer.RenderOptions

method), 610
to_dict() (ads.data_labeling.visualizer.text_visualizer.RenderOptions

method), 612
to_dict() (ads.jobs.ads_job.Job method), 780
to_dict() (ads.jobs.builders.infrastructure.dataflow.DataFlow

method), 792
to_dict() (ads.secrets.secrets.Secret method), 884, 885
to_dict() (ads.secrets.secrets.SecretKeeper method),

888
to_h2o() (ads.dataset.dataset.ADSDataset method), 638
to_h2o_dataframe() (ads.dataset.dataset.ADSDataset

method), 639
to_hdf() (ads.dataset.dataset.ADSDataset method), 639
to_json() (ads.common.model_metadata.ModelCustomMetadata

method), 545
to_json() (ads.common.model_metadata.ModelCustomMetadataItem

method), 549
to_json() (ads.common.model_metadata.ModelMetadata

method), 550, 551
to_json() (ads.common.model_metadata.ModelMetadataItem
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method), 553
to_json() (ads.common.model_metadata.ModelTaxonomyMetadata

method), 556
to_json() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557
to_json() (ads.dataset.dataset.ADSDataset method),

639
to_json_file() (ads.common.model_metadata.ModelCustomMetadata

method), 545
to_json_file() (ads.common.model_metadata.ModelCustomMetadataItem

method), 549
to_json_file() (ads.common.model_metadata.ModelMetadata

method), 550, 551
to_json_file() (ads.common.model_metadata.ModelMetadataItem

method), 553
to_json_file() (ads.common.model_metadata.ModelTaxonomyMetadata

method), 556
to_json_file() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557
to_list() (ads.common.model_introspect.PrintItem

method), 563
to_oci_model() (ads.model.deployment.model_deployment_properties.ModelDeploymentProperties

method), 849
to_onnx() (ads.model.framework.lightgbm_model.LightGBMModel

method), 860
to_onnx() (ads.model.framework.pytorch_model.PyTorchModel

method), 864
to_onnx() (ads.model.framework.sklearn_model.SklearnModel

method), 869
to_onnx() (ads.model.framework.tensorflow_model.TensorFlowModel

method), 874
to_onnx() (ads.model.framework.xgboost_model.XGBoostModel

method), 879
to_onnxrt() (ads.common.data.ADSData method), 538
to_pandas() (ads.dataset.dataset.ADSDataset method),

639
to_pandas_dataframe()

(ads.dataset.dataset.ADSDataset method),
640

to_parquet() (ads.dataset.dataset.ADSDataset
method), 640

to_spacy() (ads.data_labeling.ner.NERItem method),
587

to_spacy() (ads.data_labeling.ner.NERItems method),
587

to_tuple() (ads.data_labeling.record.Record method),
588

to_update_deployment()
(ads.model.deployment.model_deployment_properties.ModelDeploymentProperties
method), 849

to_xgb() (ads.dataset.dataset.ADSDataset method), 640
to_xgb_dmatrix() (ads.dataset.dataset.ADSDataset

method), 641
to_yaml() (ads.common.model_metadata.ModelCustomMetadata

method), 545
to_yaml() (ads.common.model_metadata.ModelCustomMetadataItem

method), 549
to_yaml() (ads.common.model_metadata.ModelMetadata

method), 550, 552
to_yaml() (ads.common.model_metadata.ModelMetadataItem

method), 553, 554
to_yaml() (ads.common.model_metadata.ModelTaxonomyMetadata

method), 556
to_yaml() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557
to_yaml() (ads.jobs.builders.infrastructure.dataflow.DataFlow

method), 792
to_yaml() (ads.jobs.builders.infrastructure.dataflow.DataFlowApp

method), 795
to_yaml() (ads.jobs.builders.infrastructure.dataflow.DataFlowRun

method), 797
to_yaml() (ads.jobs.builders.infrastructure.dsc_job.DataScienceJobRun

method), 807
to_yolo() (ads.data_labeling.boundingbox.BoundingBoxItem

method), 581
to_yolo() (ads.data_labeling.boundingbox.BoundingBoxItems

method), 582
top_left (ads.data_labeling.boundingbox.BoundingBoxItem

attribute), 580, 582
top_right (ads.data_labeling.boundingbox.BoundingBoxItem

attribute), 580, 582
TOPIC_MODELING (ads.common.model_metadata.UseCaseType

attribute), 559
TqdmProgressBar (class in ads.dataset.progress), 658
train() (ads.automl.driver.AutoML method), 516
train() (ads.automl.provider.AutoMLProvider method),

518
train() (ads.automl.provider.BaselineAutoMLProvider

method), 519
train() (ads.automl.provider.OracleAutoMLProvider

method), 521
train_test_split() (ads.dataset.dataset_with_target.ADSDatasetWithTarget

method), 648
train_validation_test_split()

(ads.dataset.dataset_with_target.ADSDatasetWithTarget
method), 648

TRAINING_AND_VALIDATION_DATASETS
(ads.common.model_metadata.MetadataCustomCategory
attribute), 543

training_code (ads.model.runtime.model_provenance_details.ModelProvenanceDetails
attribute), 882

training_compartment_ocid
(ads.model.runtime.model_provenance_details.ModelProvenanceDetails
attribute), 882

training_conda_env (ads.model.model_properties.ModelProperties
attribute), 826

training_conda_env (ads.model.runtime.model_provenance_details.ModelProvenanceDetails
attribute), 882

958 Index



ADS Documentation, Release 2.6.4

training_data (ads.evaluations.evaluator.ADSEvaluator
attribute), 664

TRAINING_DATASET (ads.common.model_metadata.MetadataCustomKeys
attribute), 544

TRAINING_DATASET_NUMBER_OF_COLS
(ads.common.model_metadata.MetadataCustomKeys
attribute), 544

TRAINING_DATASET_NUMBER_OF_ROWS
(ads.common.model_metadata.MetadataCustomKeys
attribute), 544

TRAINING_DATASET_SIZE
(ads.common.model_metadata.MetadataCustomKeys
attribute), 544

TRAINING_ENV (ads.common.model_metadata.MetadataCustomCategory
attribute), 543

training_env_path (ads.model.runtime.env_info.TrainingEnvInfo
attribute), 881

training_env_slug (ads.model.runtime.env_info.TrainingEnvInfo
attribute), 881

training_env_type (ads.model.runtime.env_info.TrainingEnvInfo
attribute), 881

training_id (ads.common.model_metadata.ModelProvenanceMetadata
attribute), 555

training_id (ads.model.model_properties.ModelProperties
attribute), 826

TRAINING_PROFILE (ads.common.model_metadata.MetadataCustomCategory
attribute), 543

training_python_version
(ads.model.model_properties.ModelProperties
attribute), 826

training_python_version
(ads.model.runtime.env_info.TrainingEnvInfo
attribute), 881

training_region (ads.model.runtime.model_provenance_details.ModelProvenanceDetails
attribute), 882

training_resource_id
(ads.model.model_properties.ModelProperties
attribute), 826

training_resource_ocid
(ads.model.runtime.model_provenance_details.ModelProvenanceDetails
attribute), 882

training_script_path
(ads.common.model_metadata.ModelProvenanceMetadata
attribute), 555

training_script_path
(ads.model.model_properties.ModelProperties
attribute), 826

TrainingCode (class in
ads.model.runtime.model_provenance_details),
882

TrainingEnvInfo (class in
ads.model.runtime.env_info), 881

transform() (ads.automl.provider.AutoMLFeatureSelection
method), 516

transform() (ads.automl.provider.AutoMLPreprocessingTransformer
method), 517

transform() (ads.automl.provider.BaselineModel
method), 520

transform() (ads.common.model.ADSModel method),
542

transform() (ads.common.model_export_util.ONNXTransformer
method), 565

transform() (ads.dataset.dataframe_transformer.DataFrameTransformer
method), 629

transform() (ads.dataset.feature_engineering_transformer.FeatureEngineeringTransformer
method), 654

transform() (ads.dataset.label_encoder.DataFrameLabelEncoder
method), 657

transform() (ads.dataset.recommendation_transformer.RecommendationTransformer
method), 659

transformer_log() (ads.dataset.recommendation_transformer.RecommendationTransformer
method), 659

TransformerPipeline (class in ads.dataset.pipeline),
657

TRANSFORMERS (ads.common.model_metadata.Framework
attribute), 543

translate() (ads.feature_engineering.adsstring.string.ADSString
method), 698

trial_count (ads.hpo.search_cv.ADSTuner property),
770

trials (ads.hpo.search_cv.ADSTuner property), 770
trials_export() (ads.hpo.search_cv.ADSTuner

method), 771
trials_import() (ads.hpo.search_cv.ADSTuner class

method), 771
trials_remaining (ads.hpo.search_cv.ADSTuner

property), 772
truncate_series_top_n() (in module

ads.common.utils), 577
tune() (ads.hpo.search_cv.ADSTuner method), 772
txt (ads.data_labeling.visualizer.text_visualizer.LabeledTextItem

attribute), 611
type_of_target() (ads.dataset.dataset_with_target.ADSDatasetWithTarget

method), 649
TypeAlreadyAdded, 672
TypeAlreadyRegistered, 672
TypeNotFound, 672

U
UniformDistribution (class in ads.hpo.distributions),

762
Unknown (class in ads.feature_engineering.feature_type.unknown),

748
unregister() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidator

method), 752, 754
unregister() (ads.feature_engineering.feature_type.handler.feature_validator.FeatureValidatorMethod

method), 754, 755
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unregister() (ads.feature_engineering.feature_type.handler.feature_warning.FeatureWarning
method), 757, 758

UNSUPPORTED (ads.common.utils.ml_task_types at-
tribute), 575

up_sample() (ads.dataset.classification_dataset.ClassificationDataset
method), 625

up_sample() (in module ads.dataset.helper), 656
update() (ads.common.model_metadata.ModelCustomMetadataItem

method), 549
update() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557, 558
update() (ads.dataset.progress.DummyProgressBar

method), 658
update() (ads.dataset.progress.IpythonProgressBar

method), 658
update() (ads.dataset.progress.ProgressBar method),

658
update() (ads.dataset.progress.TqdmProgressBar

method), 658
update() (ads.jobs.builders.infrastructure.dsc_job.DSCJob

method), 800
update() (ads.model.deployment.model_deployer.ModelDeployer

method), 840
update() (ads.model.deployment.model_deployment.ModelDeployment

method), 842, 844
update_action() (ads.model.generic_model.SummaryStatus

method), 825
update_config() (ads.dataflow.dataflow.DataFlowRun

method), 621
update_config() (ads.dataflow.dataflow.RunObserver

method), 622
update_model() (ads.catalog.model.ModelCatalog

method), 524, 527
update_notebook_session()

(ads.catalog.notebook.NotebookCatalog
method), 530

update_project() (ads.catalog.project.ProjectCatalog
method), 532

update_repository() (in module
ads.database.connection), 614

update_secret() (ads.vault.vault.Vault method), 912
update_status() (ads.model.generic_model.SummaryStatus

method), 825
upload() (ads.dataset.factory.DatasetFactory static

method), 653
upload_artifact() (ads.jobs.builders.infrastructure.dsc_job.DSCJob

method), 800
upload_model() (ads.catalog.model.ModelCatalog

method), 525, 527
upper() (ads.feature_engineering.adsstring.string.ADSString

method), 698
url (ads.jobs.builders.runtimes.python_runtime.GitPythonRuntime

property), 785
url (ads.model.deployment.model_deployment.ModelDeployment

attribute), 841
USE_CASE_TYPE (ads.common.model_metadata.MetadataTaxonomyKeys

attribute), 544
use_training (ads.evaluations.evaluator.ADSEvaluator.EvaluationMetrics

attribute), 666
UseCaseType (class in ads.common.model_metadata),

558
USER_CUSTOM_PACK (ads.model.runtime.env_info.PACK_TYPE

attribute), 881
user_name (ads.secrets.adb.ADBSecret attribute), 888
user_name (ads.secrets.mysqldb.MySQLDBSecret

attribute), 891
user_name (ads.secrets.oracledb.OracleDBSecret

attribute), 893
user_ocid (ads.model.runtime.model_provenance_details.ModelProvenanceDetails

attribute), 882

V
v2_4_4 (ads.dataflow.dataflow.SPARK_VERSION

attribute), 622
v3_0_2 (ads.dataflow.dataflow.SPARK_VERSION

attribute), 622
validate() (ads.common.model_metadata.ModelCustomMetadata

method), 545
validate() (ads.common.model_metadata.ModelCustomMetadataItem

method), 549
validate() (ads.common.model_metadata.ModelMetadata

method), 550, 552
validate() (ads.common.model_metadata.ModelMetadataItem

method), 553, 554
validate() (ads.common.model_metadata.ModelTaxonomyMetadata

method), 556
validate() (ads.common.model_metadata.ModelTaxonomyMetadataItem

method), 557, 558
validate() (ads.model.runtime.utils.SchemaValidator

method), 883
validate_size() (ads.common.model_metadata.ModelMetadata

method), 552
VALIDATION_DATASET (ads.common.model_metadata.MetadataCustomKeys

attribute), 544
VALIDATION_DATASET_NUMBER_OF_COLS

(ads.common.model_metadata.MetadataCustomKeys
attribute), 544

VALIDATION_DATASET_NUMBER_OF_ROWS
(ads.common.model_metadata.MetadataCustomKeys
attribute), 544

VALIDATION_DATASET_SIZE
(ads.common.model_metadata.MetadataCustomKeys
attribute), 544

ValidationError, 649
validator (ads.feature_engineering.feature_type.address.Address

attribute), 699, 701
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