ads.pipeline package

Subpackages

Submodules

ads.pipeline.ads_pipeline module

class ads.pipeline.ads_pipeline.DataSciencePipeline(config: dict | None = None, signer: Signer | None = None, client_kwargs: dict | None = None, **kwargs)[source]

Bases: OCIDataScienceMixin, Pipeline

Initializes a service/resource with OCI client as a property. If config or signer is specified, it will be used to initialize the OCI client. If neither of them is specified, the client will be initialized with ads.common.auth.default_signer. If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

Parameters:
  • config (dict, optional) – OCI API key config dictionary, by default None.

  • signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

  • client_kwargs (dict, optional) – Additional keyword arguments for initializing the OCI client.

build_ads_pipeline() Pipeline[source]

Builds an ADS pipeline from OCI datascience pipeline.

Returns:

ADS Pipeline instance.

Return type:

Pipeline

build_ads_pipeline_step(step: Dict) PipelineStep[source]

Builds an ADS pipeline step from OCI pipeline response.

Parameters:

step (dict) – A dictionary that contains the information of a pipeline step.

Returns:

ADS PipelineStep instance.

Return type:

Pipeline

create(step_details: List, delete_if_fail: bool) str[source]

Creates an OCI pipeline.

Parameters:

step_details (list) – List of pipeline step details.

Returns:

The id of OCI pipeline.

Return type:

str

create_step_artifact(artifact_path: str, step_name: str) DataSciencePipeline[source]

Creates step artifact.

Parameters:
  • artifact_path (str) – Local path to artifact.

  • step_name (str) – Pipeline step name.

Returns:

DataSciencePipeline instance.

Return type:

DataSciencePipeline

delete(id: str, operation_kwargs: Dict = {'delete_related_job_runs': True, 'delete_related_pipeline_runs': True}, waiter_kwargs: Dict = {'max_wait_seconds': 1800}) DataSciencePipeline[source]

Deletes an OCI pipeline.

Parameters:
  • id (str) – The ocid of pipeline.

  • operation_kwargs (dict, optional) –

    The operational kwargs to be executed when deleting the pipeline. Defaults to: {“delete_related_pipeline_runs”: True, “delete_related_job_runs”: True}, which will delete the corresponding pipeline runs and job runs.

    The allowed keys are: * “delete_related_pipeline_runs”: bool, to specify whether to delete related PipelineRuns or not. * “delete_related_job_runs”: bool, to specify whether to delete related JobRuns or not. * “allow_control_chars”: bool, to indicate whether or not this request should allow control characters in the response object. By default, the response will not allow control characters in strings * “retry_strategy”: obj, to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the retry module. This operation will not retry by default, users can also use the convenient DEFAULT_RETRY_STRATEGY provided by the SDK to enable retries for it. The specifics of the default retry strategy are described here. To have this operation explicitly not perform any retries, pass an instance of NoneRetryStrategy. * “if_match”: str, for optimistic concurrency control. In the PUT or DELETE call for a resource, set the if-match parameter to the value of the etag from a previous GET or POST response for that resource. The resource is updated or deleted only if the etag you provide matches the resource’s current etag value. * “opc_request_id”: str, unique Oracle assigned identifier for the request. If you need to contact Oracle about a particular request, then provide the request ID.

  • waiter_kwargs (dict, optional) – The waiter kwargs to be passed when deleting the pipeline. Defaults to: {“max_wait_seconds”: 1800}, which will allow a maximum wait time to 1800 seconds to delete the pipeline. The allowed keys are: * “max_wait_seconds”: int, the maximum time to wait, in seconds. * “max_interval_seconds”: int, the maximum interval between queries, in seconds. * “succeed_on_not_found”: bool, to determine whether or not the waiter should return successfully if the data we’re waiting on is not found (e.g. a 404 is returned from the service). This defaults to False and so a 404 would cause an exception to be thrown by this function. Setting it to True may be useful in scenarios when waiting for a resource to be terminated/deleted since it is possible that the resource would not be returned by the a GET call anymore. * “wait_callback”: A function which will be called each time that we have to do an initial wait (i.e. because the property of the resource was not in the correct state, or the evaluate_response function returned False). This function should take two arguments - the first argument is the number of times we have checked the resource, and the second argument is the result of the most recent check. * “fetch_func”: A function to be called to fetch the updated state from the server. This can be used if the call to check for state needs to be more complex than a single GET request. For example, if the goal is to wait until an item appears in a list, fetch_func can be a function that paginates through a full list on the server.

Returns:

DataSciencePipeline instance.

Return type:

DataSciencePipeline

classmethod from_ocid(ocid: str) DataSciencePipeline[source]

Gets a datascience pipeline by OCID.

Parameters:

ocid (str) – The OCID of the datascience pipeline.

Returns:

An instance of DataSciencePipeline.

Return type:

DataSciencePipeline

run(pipeline_details: Dict, service_logging: OCILog | None = None) PipelineRun[source]

Runs an OCI pipeline.

Parameters:
  • pipeline_details (dict) – A dictionary that contains pipeline details.

  • service_logging (OCILog instance.) – The OCILog instance.

Returns:

PipelineRun instance.

Return type:

PipelineRun

upload_artifact(step_details: List) DataSciencePipeline[source]

Uploads artifacts to pipeline.

Parameters:

step_details (list) – List of pipeline step details.

Returns:

DataSciencePipeline instance.

Return type:

DataSciencePipeline

class ads.pipeline.ads_pipeline.Pipeline(name: str | None = None, spec: Dict | None = None, **kwargs)[source]

Bases: Builder

Represents a Data Science Machine Learning Pipeline.

Initialize a pipeline.

Parameters:
  • name (str) – The name of the pipeline, default to None. If a name is not provided, a randomly generated easy to remember name with timestamp will be generated, like ‘strange-spider-2022-08-17-23:55.02’.

  • spec (dict, optional) – Object specification, default to None

  • kwargs (dict) –

    Specification as keyword arguments. If spec contains the same key as the one in kwargs, the value from kwargs will be used.

    • project_id: str

    • compartment_id: str

    • display_name: str

    • description: str

    • maximum_runtime_in_minutes: int

    • environment_variables: dict(str, str)

    • command_line_arguments: str

    • log_id: str

    • log_group_id: str

    • enable_service_log: bool

    • shape_name: str

    • block_storage_size_in_gbs: int

    • shape_config_details: dict

    • step_details: list[PipelineStep]

    • dag: list[str]

    • defined_tags: dict(str, dict(str, object))

    • freeform_tags: dict[str, str]

kind

The kind of the object as showing in YAML.

Type:

str

name

The name of pipeline.

Type:

str

id

The id of pipeline.

Type:

str

step_details

The step details of pipeline.

Type:

List[PipelineStep]

dag_details

The dag details of pipeline.

Type:

List[str]

log_group_id

The log group id of pipeline.

Type:

str

log_id

The log id of pipeline.

Type:

str

project_id

The project id of pipeline.

Type:

str

compartment_id

The compartment id of pipeline.

Type:

str

created_by

The created by of pipeline.

Type:

str

description

The description of pipeline.

Type:

str

environment_variable

The environment variables of pipeline.

Type:

dict

argument

The command line argument of pipeline.

Type:

str

maximum_runtime_in_minutes

The maximum runtime in minutes of pipeline.

Type:

int

shape_name

The shape name of pipeline infrastructure.

Type:

str

block_storage_size_in_gbs

The block storage of pipeline infrastructure.

Type:

int

shape_config_details

The shape config details of pipeline infrastructure.

Type:

dict

enable_service_log

The value to enable service log or not.

Type:

bool

service_log_id

The service log id of pipeline.

Type:

str

status

The status of the pipeline.

Type:

str

with_name(self, name: str) Pipeline[source]

Sets the name of pipeline.

with_id(self, id: str) Pipeline[source]

Sets the ocid of pipeline.

with_step_details(self, step_details: List[PipelineStep]) Pipeline[source]

Sets the step details of pipeline.

with_dag_details(self, dag_details: List[str]) Pipeline

Sets the dag details of pipeline.

with_log_group_id(self, log_group_id: str) Pipeline[source]

Sets the log group id of pipeline.

with_log_id(self, log_id: str) Pipeline[source]

Sets the log id of pipeline.

with_project_id(self, project_id: str) Pipeline[source]

Sets the project id of pipeline.

with_compartment_id(self, compartment_id: str) Pipeline[source]

Sets the compartment id of pipeline.

with_created_by(self, created_by: str) Pipeline[source]

Sets the created by of pipeline.

with_description(self, description: str) Pipeline[source]

Sets the description of pipeline.

with_environment_variable(self, \*\*kwargs) Pipeline[source]

Sets the environment variables of pipeline.

with_argument(self, \*args, \*\*kwargs) Pipeline[source]

Sets the command line arguments of pipeline.

with_maximum_runtime_in_minutes(self, maximum_runtime_in_minutes: int) Pipeline[source]

Sets the maximum runtime in minutes of pipeline.

with_freeform_tags(self, freeform_tags: Dict) Pipeline[source]

Sets the freeform tags of pipeline.

with_defined_tags(self, defined_tags: Dict) Pipeline[source]

Sets the defined tags of pipeline.

with_shape_name(self, shape_name: str) Pipeline[source]

Sets the shape name of pipeline infrastructure.

with_block_storage_size_in_gbs(self, block_storage_size_in_gbs: int) Pipeline[source]

Sets the block storage size of pipeline infrastructure.

with_shape_config_details(self, shape_config_details: Dict) Pipeline[source]

Sets the shape config details of pipeline infrastructure.

with_enable_service_log(self, enable_service_log: bool) Pipeline[source]

Sets the value to enable the service log of pipeline.

to_dict(self) dict:[source]

Serializes the pipeline specifications to a dictionary.

from_dict(cls, obj_dict: dict):

Initializes the object from a dictionary.

create(self, delete_if_fail: bool = True) Pipeline[source]

Creates an ADS pipeline.

show(self, rankdir: str = GraphOrientation.TOP_BOTTOM)[source]

Render pipeline with step information in a graph.

to_svg(self, uri: str = None, rankdir: str = GraphOrientation.TOP_BOTTOM, \*\*kwargs) str:[source]

Renders pipeline as graph into SVG.

run(self, display_name: str | None = None, project_id: str | None = None, compartment_id: str | None = None, configuration_override_details: dict | None = None, log_configuration_override_details: dict | None = None, step_override_details: list | None = None, free_form_tags: dict | None = None, defined_tags: dict | None = None, system_tags: dict | None = None) PipelineRun[source]

Creates and/or overrides an ADS pipeline run.

delete(self, delete_related_pipeline_runs: Optional[bool] = True, delete_related_job_runs: Optional[bool] = True, max_wait_seconds: Optional[int] = MAXIMUM_TIMEOUT, \*\*kwargs) Pipeline[source]

Deletes an ADS pipeline run.

from_ocid(cls, ocid: str) Pipeline[source]

Creates an ADS pipeline from ocid.

from_id(cls, id: str) Pipeline[source]

Creates an ADS pipeline from ocid.

to_yaml(self, uri=None, \*\*kwargs)

Returns Pipeline serialized as a YAML string

from_yaml(cls, yaml_string=None, uri=None, \*\*kwargs)

Creates an Pipeline from YAML string provided or from URI location containing YAML string

list(cls, compartment_id: Optional[str] = None, \*\*kwargs) List[Pipeline][source]

List pipelines in a given compartment.

run_list(self, \*\*kwargs) List[PipelineRun][source]

Gets a list of runs of the pipeline.

Example

Here is an example for creating and running a pipeline using builder:

from ads.pipeline import Pipeline, CustomScriptStep, ScriptRuntime
# Define an OCI Data Science pipeline
pipeline = (
    Pipeline(name="<pipeline_name>")
    .with_compartment_id("<compartment_id>")
    .with_project_id("<project_id>")
    .with_log_group_id("<log_group_id>")
    .with_log_id("<log_id>")
    .with_description("<description>")
    .with_maximum_runtime_in_minutes(200)
    .with_argument("argument", key="value")
    .with_environment_variable(env="value")
    .with_freeform_tags({"key": "value"})
    .with_step_details([
        (
            PipelineStep(name="PipelineStepOne")
            .with_job_id("<job_id>")
            .with_description("<description>")
        ),
        (
            PipelineStep(name="PipelineStepTwo")
            .with_infrastructure(
                CustomScriptStep()
                .with_shape_name("VM.Standard2.1")
                .with_block_storage_size(50)
            )
            .with_runtime(
                ScriptRuntime()
                .with_source("oci://bucket_name@namespace/path/to/script.py")
                .with_service_conda("tensorflow26_p37_cpu_v2")
                .with_environment_variable(ENV="value")
                .with_argument("argument", key="value")
                .with_maximum_runtime_in_minutes(200)
            )
        )
    ])
    .with_dag_details(["PipelineStepOne >> PipelineStepTwo"])
)
# Create and Run the pipeline
run = pipeline.create().run()
# Stream the pipeline run outputs
run.watch()

See also

https

//docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/pipeline/index.html

CONST_BLOCK_STORAGE_SIZE = 'blockStorageSizeInGBs'
CONST_COMMAND_LINE_ARGUMENTS = 'commandLineArguments'
CONST_COMPARTMENT_ID = 'compartmentId'
CONST_CONFIGURATION_DETAILS = 'configurationDetails'
CONST_CONFIGURATION_OVERRIDE_DETAILS = 'configurationOverrideDetails'
CONST_CREATED_BY = 'createdBy'
CONST_DAG = 'dag'
CONST_DEFINED_TAGS = 'definedTags'
CONST_DESCRIPTION = 'description'
CONST_DISPLAY_NAME = 'displayName'
CONST_ENABLE_AUTO_LOG_CREATION = 'enableAutoLogCreation'
CONST_ENABLE_LOGGING = 'enableLogging'
CONST_ENABLE_SERVICE_LOG = 'enableServiceLog'
CONST_ENVIRONMENT_VARIABLES = 'environmentVariables'
CONST_FREEFROM_TAGS = 'freeformTags'
CONST_ID = 'id'
CONST_INFRA_CONFIG_DETAILS = 'infrastructureConfigurationDetails'
CONST_LOG_CONFIGURATION_DETAILS = 'logConfigurationDetails'
CONST_LOG_CONFIGURATION_OVERRIDE_DETAILS = 'logConfigurationOverrideDetails'
CONST_LOG_GROUP_ID = 'logGroupId'
CONST_LOG_ID = 'logId'
CONST_MAXIMUM_RUNTIME_IN_MINUTES = 'maximumRuntimeInMinutes'
CONST_MEMORY_IN_GBS = 'memoryInGBs'
CONST_OCPUS = 'ocpus'
CONST_PIPELINE_ID = 'pipelineId'
CONST_PROJECT_ID = 'projectId'
CONST_SERVICE = 'datascience'
CONST_SERVICE_LOG_CATEGORY = 'pipelinerunlog'
CONST_SERVICE_LOG_ID = 'serviceLogId'
CONST_SHAPE_CONFIG_DETAILS = 'shapeConfigDetails'
CONST_SHAPE_NAME = 'shapeName'
CONST_STEP_DETAILS = 'stepDetails'
CONST_STEP_OVERRIDE_DETAILS = 'stepOverrideDetails'
CONST_SYSTEM_TAGS = 'systemTags'
CONST_TYPE = 'type'
LIFECYCLE_STATE_ACTIVE = 'ACTIVE'
LIFECYCLE_STATE_CREATING = 'CREATING'
LIFECYCLE_STATE_DELETED = 'DELETED'
LIFECYCLE_STATE_DELETING = 'DELETING'
LIFECYCLE_STATE_FAILED = 'FAILED'
property argument: str

The command line arguments of the pipeline.

Returns:

The command line arguments of the pipeline.

Return type:

str

property block_storage_size_in_gbs: int

The block storage size of pipeline infrastructure.

Returns:

The block storage size of the pipeline infrastructure.

Return type:

int

property compartment_id: str

The compartment id of the pipeline.

Returns:

The compartment id of the pipeline.

Return type:

str

create(delete_if_fail: bool = True) Pipeline[source]

Creates an ADS pipeline.

Returns:

The ADS Pipeline instance.

Return type:

Pipeline

property created_by: str

The id that creates the pipeline.

Returns:

The id that creates the pipeline.

Return type:

str

property dag: List[str]

The dag details of the pipeline.

Returns:

The dag details of the pipeline.

Return type:

list

delete(delete_related_pipeline_runs: bool | None = True, delete_related_job_runs: bool | None = True, max_wait_seconds: int | None = 1800, **kwargs) Pipeline[source]

Deteles an ADS pipeline.

Parameters:
  • delete_related_pipeline_runs (bool, optional) – Specify whether to delete related PipelineRuns or not. Defaults to True.

  • delete_related_job_runs (bool, optional) – Specify whether to delete related JobRuns or not. Defaults to True.

  • max_wait_seconds (int, optional) – The maximum time to wait, in seconds. Defaults to 1800.

  • kwargs (optional)

  • pipeline. (The kwargs to be executed when deleting the)

  • are (The allowed keys)

  • "allow_control_chars" (*)

  • default (allow control characters in the response object. By)

  • will (the response)

  • strings. (not allow control characters in)

  • "retry_strategy" (*)

  • the (override any retry strategy set at the client-level. This should be one of)

:param strategies available in the retry module. This operation will not: :param retry by default: :param users can also use the convenient DEFAULT_RETRY_STRATEGY: :param provided by the SDK to enable retries for it. The specifics of the default retry: :param strategy are described here.: :param To have this operation explicitly not perform any retries: :param pass an instance of NoneRetryStrategy.: :param * “if_match”: :type * “if_match”: str, for optimistic concurrency control. In the PUT or DELETE call :param for a resource: :param set the if-match parameter to the value of the etag from a: :param previous GET or POST response for that resource. The resource is updated or: :param deleted only if the etag you provide matches the resource’s current etag value.: :param * “opc_request_id”: :type * “opc_request_id”: str, unique Oracle assigned identifier for the request. :param If you need to contact Oracle about a particular request: :param then provide the request ID.: :param * “max_interval_seconds”: :type * “max_interval_seconds”: int, the maximum interval between queries, in seconds. :param * “succeed_on_not_found”: :type * “succeed_on_not_found”: bool, to determine whether or not the waiter should :param return successfully if the data we’re waiting on is not found: :param (e.g. a 404 is returned from the service). This defaults to False and so a 404 would: :param cause an exception to be thrown by this function. Setting it to True may be useful in: :param scenarios when waiting for a resource to be terminated/deleted since it is possible that: :param the resource would not be returned by the a GET call anymore.: :param * “wait_callback”: :type * “wait_callback”: A function which will be called each time that we have to do an initial :param wait (i.e. because the property of the resource was not in the correct state: :param : :param or the evaluate_response function returned False). This function should take two: :param arguments - the first argument is the number of times we have checked the resource: :param : :param and the second argument is the result of the most recent check.: :param * “fetch_func”: :type * “fetch_func”: A function to be called to fetch the updated state from the server. :param This can be used if the call to check for state needs to be more complex than a single: :param GET request. For example: :param if the goal is to wait until an item appears in a list: :param : :param fetch_func can be a function that paginates through a full list on the server.:

Returns:

The ADS Pipeline instance.

Return type:

Pipeline

property description: str

The description of pipeline.

Returns:

The description of pipeline.

Return type:

str

download(to_dir: str, override_if_exists: bool | None = False) Pipeline[source]

Downloads artifacts from pipeline.

Parameters:
  • to_dir (str) – Local directory to which the artifacts will be downloaded to.

  • override_if_exists (bool, optional) – Bool to decide whether to override existing folder/file or not. Defaults to False.

Returns:

The ADS Pipeline instance.

Return type:

Pipeline

property enable_service_log: bool

Enables service log of pipeline.

Returns:

The bool value to enable service log of pipeline.

Return type:

bool

property environment_variable: dict

The environment variables of the pipeline.

Returns:

The environment variables of the pipeline.

Return type:

dict

classmethod from_dict(obj_dict: dict)[source]

Initializes the object from a dictionary.

classmethod from_id(id: str) Pipeline[source]

Creates a pipeline by OCID.

Parameters:

id (str) – The OCID of pipeline.

Returns:

The Pipeline instance.

Return type:

Pipeline

classmethod from_ocid(ocid: str) Pipeline[source]

Creates a pipeline by OCID.

Parameters:

ocid (str) – The OCID of pipeline.

Returns:

The Pipeline instance.

Return type:

Pipeline

property id: str

The id of the pipeline.

Returns:

The id of the pipeline.

Return type:

str

init(**kwargs) Pipeline[source]

Initializes a starter specification for the Pipeline.

Returns:

The Pipeline instance (self)

Return type:

Pipeline

property kind: str

The kind of the object as showing in YAML.

Returns:

pipeline

Return type:

str

classmethod list(compartment_id: str | None = None, **kwargs) List[Pipeline][source]

List pipelines in a given compartment.

Parameters:
  • compartment_id ((str, optional). Defaults to None.) – The OCID of compartment. If None, the value will be taken from the environment variables.

  • kwargs – Additional keyword arguments for filtering pipelines. - project_id: str - lifecycle_state: str. Allowed values: “CREATING”, “ACTIVE”, “DELETING”, “FAILED”, “DELETED” - created_by: str - limit: int

Returns:

The list of pipelines.

Return type:

List[Pipeline]

property log_group_id: str

The log group id of the pipeline.

Returns:

The log group id of the pipeline.

Return type:

str

property log_id: str

The log id of the pipeline.

Returns:

The log id of the pipeline.

Return type:

str

property maximum_runtime_in_minutes: int

The maximum runtime in minutes of the pipeline.

Returns:

The maximum runtime minutes of the pipeline.

Return type:

int

property name: str

The name of the pipeline.

Returns:

The name of the pipeline.

Return type:

str

property project_id: str

The project id of the pipeline.

Returns:

The project id of the pipeline.

Return type:

str

run(display_name: str | None = None, project_id: str | None = None, compartment_id: str | None = None, configuration_override_details: dict | None = None, log_configuration_override_details: dict | None = None, step_override_details: list | None = None, free_form_tags: dict | None = None, defined_tags: dict | None = None, system_tags: dict | None = None) PipelineRun[source]

Creates an ADS pipeline run.

Parameters:
  • display_name (str, optional) – The display name to override the one defined previously. Defaults to None.

  • project_id (str, optional) – The project id to override the one defined previously. Defaults to None.

  • compartment_id (str, optional) – The compartment id to override the one defined previously. Defaults to None.

  • configuration_override_details (dict, optional) – The configuration details dictionary to override the one defined previously. Defaults to None. The configuration_override_details contains the following keys: * “type”: str, only “DEFAULT” is allowed. * “environment_variables”: dict, optional, the environment variables * “command_line_arguments”: str, optional, the command line arguments * “maximum_runtime_in_minutes”: int, optional, the maximum runtime allowed in minutes

  • log_configuration_override_details (dict(str, str), optional) – The log configuration details dictionary to override the one defined previously. Defaults to None. The log_configuration_override_details contains the following keys: * “log_group_id”: str, optional, the log group id * “log_id”: str, optional, the log id

  • step_override_details (list[PipelineStepOverrideDetails], optional) –

    The step details list to override the one defined previously. Defaults to None. The PipelineStepOverrideDetails is a dict which contains the following keys: * step_name: str, the name of step to override * step_configuration_details: dict, which contains:

    • ”maximum_runtime_in_minutes”: int, optional

    • ”environment_variables”: dict, optional

    • ”command_line_arguments”: str, optional

  • free_form_tags (dict(str, str), optional) – The free from tags dictionary to override the one defined previously. Defaults to None.

  • defined_tags (dict(str, dict(str, object)), optional) – The defined tags dictionary to override the one defined previously. Defaults to None.

  • system_tags (dict(str, dict(str, object)), optional) – The system tags dictionary to override the one defined previously. Defaults to None.

Example

# Creates a pipeline run using pipeline configurations
pipeline.run()

# Creates a pipeline run by overriding pipeline configurations
pipeline.run(
    display_name="OverrideDisplayName",
    configuration_override_details={
        "maximum_runtime_in_minutes":30,
        "type":"DEFAULT",
        "environment_variables": {
            "key": "value"
        },
        "command_line_arguments": "ARGUMENT --KEY VALUE",
    },
    log_configuration_override_details={
        "log_group_id": "<log_group_id>"
    },
    step_override_details=[{
        "step_name" : "<step_name>",
        "step_configuration_details" : {
            "maximum_runtime_in_minutes": 200,
            "environment_variables": {
                "1":"2"
            },
            "command_line_arguments": "argument --key value",
        }
    }]
)
Returns:

The ADS PipelineRun instance.

Return type:

PipelineRun

run_list(**kwargs) List[PipelineRun][source]

Gets a list of runs of the pipeline.

Returns:

A list of pipeline run instances.

Return type:

List[PipelineRun]

property service_log_id: str

The service log id of pipeline.

Returns:

The service log id of pipeline.

Return type:

str

property shape_config_details: dict

The shape config details of pipeline infrastructure.

Returns:

The shape config details of the pipeline infrastructure.

Return type:

dict

property shape_name: str

The shape name of pipeline infrastructure.

Returns:

The shape name of the pipeline infrastructure.

Return type:

str

show(rankdir: str = 'TB') None[source]

Render pipeline with step information in a graph

Return type:

None

property status: str | None

Status of the pipeline.

Returns:

Status of the pipeline.

Return type:

str

property step_details: List[PipelineStep]

The step details of the pipeline.

Returns:

The step details of the pipeline.

Return type:

list

to_dict(**kwargs) dict[source]

Serializes the pipeline specifications to a dictionary.

Returns:

A dictionary containing pipeline specifications.

Return type:

dict

to_svg(uri: str | None = None, rankdir: str = 'TB', **kwargs) str[source]

Renders pipeline as graph in svg string.

Parameters:
  • uri ((string, optional). Defaults to None.) – URI location to save the SVG string.

  • rankdir (str, default to "TB".) – Direction of the rendered graph; allowed Values are {“TB”, “LR”}.

Returns:

Graph in svg format.

Return type:

str

with_argument(*args, **kwargs) Pipeline[source]

Adds command line arguments to the pipeline. Existing arguments will be preserved. This method can be called (chained) multiple times to add various arguments. For example, pipeline.with_argument(key=”val”).with_argument(“path/to/file”) will result in: “–key val path/to/file”

Parameters:
  • args – Positional arguments. In a single method call, positional arguments are always added before keyword arguments. You can call with_argument() to add positional arguments after keyword arguments.

  • kwargs – Keyword arguments. To add a keyword argument without value, set the value to None.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

Raises:

ValueError – Keyword arguments with space in a key.

with_block_storage_size_in_gbs(block_storage_size_in_gbs: int) Pipeline[source]

Sets the block storage size of pipeline infrastructure.

Parameters:

block_storage_size_in_gbs (int) – The block storage size of pipeline infrastructure.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_compartment_id(compartment_id: str) Pipeline[source]

Sets the compartment id of the pipeline.

Parameters:

compartment_id (str) – The compartment id of the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_created_by(created_by: str) Pipeline[source]

Sets the id that creates the pipeline.

Parameters:

created_by (str) – The id that creates the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_dag(dag: List[str]) Pipeline[source]

Sets the pipeline dag details for the pipeline.

Parameters:

dag (list) – A list of dag representing step dependencies in the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_defined_tags(defined_tags: Dict) Pipeline[source]

Sets defined tags of the pipeline.

Parameters:

defined_tags (dict) – The defined tags dictionary.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_description(description: str) Pipeline[source]

Sets the description of the pipeline.

Parameters:

description (str) – The description of the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_enable_service_log(enable_service_log: bool) Pipeline[source]

Sets the bool value to enable the service log of pipeline.

Parameters:

enable_service_log (bool) – The value to enable the service log of pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_environment_variable(**kwargs) Pipeline[source]

Sets environment variables of the pipeline.

Parameters:

kwargs – Keyword arguments. To add a keyword argument without value, set the value to None.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_freeform_tags(freeform_tags: Dict) Pipeline[source]

Sets freeform tags of the pipeline.

Parameters:

freeform_tags (dict) – The freeform tags dictionary.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_id(id: str) Pipeline[source]

Sets the id of pipeline.

Parameters:

id (str) – The id of pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_log_group_id(log_group_id: str) Pipeline[source]

Sets the log group id of the pipeline.

Parameters:

log_group_id (str) – The log group id of the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_log_id(log_id: str) Pipeline[source]

Sets the log id of the pipeline.

Parameters:

log_id (str) – The log id of the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_maximum_runtime_in_minutes(maximum_runtime_in_minutes: int) Pipeline[source]

Sets the maximum runtime in minutes of the pipeline.

Parameters:

maximum_runtime_in_minutes (int) – The maximum_runtime_in_minutes of the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_name(name: str) Pipeline[source]

Sets the name of pipeline.

Parameters:

name (str) – The name of pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_project_id(project_id: str) Pipeline[source]

Sets the project id of the pipeline.

Parameters:

project_id (str) – The project id of the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_shape_config_details(memory_in_gbs: float, ocpus: float, **kwargs: Dict[str, Any]) Pipeline[source]

Sets the shape config details of pipeline infrastructure. Specify only when a flex shape is selected. For example VM.Standard.E3.Flex allows the memory_in_gbs and cpu count to be specified.

Parameters:
  • memory_in_gbs (float) – The size of the memory in GBs.

  • ocpus (float) – The OCPUs count.

  • kwargs – Additional keyword arguments.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_shape_name(shape_name: str) Pipeline[source]

Sets the shape name of pipeline infrastructure.

Parameters:

shape_name (str) – The shape name of the pipeline infrastructure.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

with_step_details(step_details: List[PipelineStep]) Pipeline[source]

Sets the pipeline step details for the pipeline.

Parameters:

step_details (list) – A list of steps in the pipeline.

Returns:

The Pipeline instance (self).

Return type:

Pipeline

ads.pipeline.ads_pipeline_run module

exception ads.pipeline.ads_pipeline_run.LogNotConfiguredError[source]

Bases: Exception

class ads.pipeline.ads_pipeline_run.LogType[source]

Bases: str

CUSTOM_LOG = 'custom_log'
SERVICE_LOG = 'service_log'
class ads.pipeline.ads_pipeline_run.PipelineRun(config: dict | None = None, signer: Signer | None = None, client_kwargs: dict | None = None, **kwargs)[source]

Bases: OCIDataScienceMixin, PipelineRun, RunInstance

pipeline

Returns the ADS pipeline object for run instance.

Type:

Pipeline

status

Returns Lifecycle status.

Type:

str

custom_logging

Returns the OCILog object containing the custom logs from the pipeline.

Type:

OCILog

create(self) PipelineRun[source]

Creates an OCI pipeline run.

delete(self, delete_related_job_runs: Optional[bool] = True, max_wait_seconds: Optional[int] = MAXIMUM_TIMEOUT, \*\*kwargs) PipelineRun[source]

Deletes an OCI pipeline run.

cancel(self, maximum_timeout: int = MAXIMUM_TIMEOUT) PipelineRun[source]

Cancels an OCI pipeline run.

watch(self, steps: List[str] = None, interval: float = LOG_INTERVAL, log_type: str = LogType.CUSTOM_LOG, \*args) PipelineRun[source]

Watches the pipeline run until it finishes.

list(cls, pipeline_id: str, compartment_id: Optional[str] = None, \*\*kwargs) List[PipelineRun]:[source]

Lists pipeline runs for a given pipeline.

to_yaml(self) str[source]

Serializes the object into YAML string.

show(self, mode: str = ShowMode.GRAPH, wait: bool = False, rankdir: str = GraphOrientation.TOP_BOTTOM) None[source]

Renders pipeline run. Can be text or graph representation.

to_svg(self, uri: str = None, rankdir: str = GraphOrientation.TOP_BOTTOM, \*\*kwargs)[source]

Renders pipeline run graph to SVG.

sync(self) None[source]

Syncs status of Pipeline run.

Initializes a service/resource with OCI client as a property. If config or signer is specified, it will be used to initialize the OCI client. If neither of them is specified, the client will be initialized with ads.common.auth.default_signer. If both of them are specified, both of them will be passed into the OCI client,

and the authentication will be determined by OCI Python SDK.

Parameters:
  • config (dict, optional) – OCI API key config dictionary, by default None.

  • signer (oci.signer.Signer, optional) – OCI authentication signer, by default None.

  • client_kwargs (dict, optional) – Additional keyword arguments for initializing the OCI client.

cancel(maximum_timeout: int = 1800) PipelineRun[source]

Cancels an OCI pipeline run.

Parameters:

maximum_timeout (int, optional) – The maximum timeout to cancel the pipeline run. Defaults to 1800 seconds.

Returns:

Pipeline run instance (self).

Return type:

PipelineRun

create() PipelineRun[source]

Creates an OCI pipeline run.

Returns:

Pipeline run instance (self).

Return type:

PipelineRun

property custom_logging: OCILog

The OCILog object containing the custom logs from the pipeline run.

delete(delete_related_job_runs: bool | None = True, max_wait_seconds: int | None = 1800, **kwargs) PipelineRun[source]

Deletes an OCI pipeline run.

Parameters:
  • delete_related_job_runs (bool, optional) – Specify whether to delete related JobRuns or not. Defaults to True.

  • max_wait_seconds (int, optional) – The maximum time to wait, in seconds. Defaults to 1800.

  • kwargs (optional)

  • pipeline. (The kwargs to be executed when deleting the)

  • are (The allowed keys)

  • "allow_control_chars" (*)

  • default (allow control characters in the response object. By)

  • will (the response)

  • strings. (not allow control characters in)

  • "retry_strategy" (*)

  • the (override any retry strategy set at the client-level. This should be one of)

:param strategies available in the retry module. This operation will not: :param retry by default: :param users can also use the convenient DEFAULT_RETRY_STRATEGY: :param provided by the SDK to enable retries for it. The specifics of the default retry: :param strategy are described here.: :param To have this operation explicitly not perform any retries: :param pass an instance of NoneRetryStrategy.: :param * “if_match”: :type * “if_match”: str, for optimistic concurrency control. In the PUT or DELETE call :param for a resource: :param set the if-match parameter to the value of the etag from a: :param previous GET or POST response for that resource. The resource is updated or: :param deleted only if the etag you provide matches the resource’s current etag value.: :param * “opc_request_id”: :type * “opc_request_id”: str, unique Oracle assigned identifier for the request. :param If you need to contact Oracle about a particular request: :param then provide the request ID.: :param * “max_interval_seconds”: :type * “max_interval_seconds”: int, the maximum interval between queries, in seconds. :param * “wait_callback”: :type * “wait_callback”: A function which will be called each time that we have to do an initial :param wait (i.e. because the property of the resource was not in the correct state: :param : :param or the evaluate_response function returned False). This function should take two: :param arguments - the first argument is the number of times we have checked the resource: :param : :param and the second argument is the result of the most recent check.: :param * “fetch_func”: :type * “fetch_func”: A function to be called to fetch the updated state from the server. :param This can be used if the call to check for state needs to be more complex than a single: :param GET request. For example: :param if the goal is to wait until an item appears in a list: :param : :param fetch_func can be a function that paginates through a full list on the server.:

Returns:

Pipeline run instance (self).

Return type:

PipelineRun

classmethod list(pipeline_id: str, compartment_id: str | None = None, **kwargs) List[PipelineRun][source]

List pipeline runs for a given pipeline.

Parameters:
  • pipeline_id (str.) – The OCID of pipeline.

  • compartment_id ((str, optional). Defaults to None.) – The OCID of compartment. If None, the value will be taken from the environment variables.

  • kwargs – Additional keyword arguments for filtering pipelines. - lifecycle_state: str. Allowed values: “CREATING”, “ACTIVE”, “DELETING”, “FAILED”, “DELETED” - created_by: str - limit: int

Returns:

The list of pipeline runs.

Return type:

List[PipelineRun]

logs(log_type: str | None = None) ConsolidatedLog[source]

Builds the consolidated log for pipeline run.

Parameters:

log_type (str) – The log type of the pipeline run. Defaults to None. Can be custom_log, service_log or None.

Returns:

The ConsolidatedLog instance.

Return type:

ConsolidatedLog

property pipeline

Returns the ADS Pipeline instance. Step details will be synched with the Pipeline Run.

Parameters:

None

Returns:

The ADS Pipeline instance, where Step details will be synched with the Pipeline Run.

Return type:

Pipeline

property service_logging: OCILog

The OCILog object containing the service logs from the pipeline run.

show(mode: str = 'graph', wait: bool = False, rankdir: str = 'TB') None[source]

Renders pipeline run. Can be text or graph representation.

Parameters:
  • mode ((str, optional). Defaults to graph.) – Pipeline run display mode. Allowed values: graph or text.

  • wait ((bool, optional). Default to False.) – Whether to wait until the completion of the pipeline run.

  • rankdir ((str, optional). Default to TB.) – Direction of the rendered graph. Allowed Values: TB or LR. Applicable only for graph mode.

Return type:

None

property status: str

Lifecycle status.

Returns:

Status in a string.

Return type:

str

sync(**kwargs) None[source]

Syncs status of the Pipeline Run.

Return type:

None

to_svg(uri: str | None = None, rankdir: str = 'TB', **kwargs) str[source]

Renders pipeline run graph to SVG.

Parameters:
  • uri ((string, optional). Defaults to None.) – URI location to save the SVG string.

  • rankdir ((str, optional). Default to TB.) – Direction of the rendered graph. Allowed Values: TB or LR. Applicable only for graph mode.

Returns:

Pipeline run graph in svg format.

Return type:

str

to_yaml() str[source]

Serializes the object into YAML string.

Returns:

YAML stored in a string.

Return type:

str

watch(steps: List[str] | None = None, interval: float = 3, log_type: str | None = None, *args) PipelineRun[source]

Watches the pipeline run until it finishes. This method will keep streamming the service log of the pipeline run until it’s succeeded, failed or cancelled.

Parameters:
  • steps ((List[str], optional). Defaults to None.) – Pipeline steps passed in to filter the logs.

  • interval ((float, optional). Defaults to 3 seconds.) – Time interval in seconds between each request to update the logs.

  • log_type ((str, optional). Defaults to None.) – The log type. Can be custom_log, service_log or None.

  • *args – Pipeline steps passed in to filter the logs. Example: .watch(“step1”, “step2”)

Examples

>>> .watch()
>>> .watch(log_type="service_log")
>>> .watch("step1", "step2", log_type="custom_log", interval=3)
>>> .watch(steps=["step1", "step2"], log_type="custom_log", interval=3)
Returns:

Pipeline run instance (self).

Return type:

PipelineRun

class ads.pipeline.ads_pipeline_run.ShowMode[source]

Bases: str

GRAPH = 'graph'
TEXT = 'text'
class ads.pipeline.ads_pipeline_run.StepType[source]

Bases: str

CUSTOM_SCRIPT = 'CUSTOM_SCRIPT'
ML_JOB = 'ML_JOB'

ads.pipeline.ads_pipeline_step module

class ads.pipeline.ads_pipeline_step.PipelineStep(name: str | None = None, job_id: str | None = None, infrastructure=None, runtime=None, description=None, maximum_runtime_in_minutes=None, environment_variable=None, command_line_argument=None, kind=None)[source]

Bases: Job

Represents the Data Science Machine Learning Pipeline Step.

Initialize a pipeline step.

Parameters:
  • name (str, required) – The name of the pipeline step.

  • job_id (str, optional) – The job id of the pipeline step, by default None.

  • infrastructure (Infrastructure, optional) – Pipeline step infrastructure, by default None.

  • runtime (Runtime, optional) – Pipeline step runtime, by default None.

  • description (str, optional) – The description for pipeline step, by default None.

  • maximum_runtime_in_minutes (int, optional) – The maximum runtime in minutes for pipeline step, by default None.

  • environment_variable (dict, optional) – The environment variable for pipeline step, by default None.

  • command_line_argument (str, optional) – The command line argument for pipeline step, by default None.

  • kind (str, optional) – The kind of pipeline step.

kind

The kind of the object as showing in YAML.

Type:

str

name

The name of pipeline step.

Type:

str

job_id

The job id of pipeline step.

Type:

str

infrastructure

The infrastructure of pipeline step.

Type:

DataScienceJob

runtime

The runtime of pipeline step.

Type:

Runtime

description

The description of pipeline step.

Type:

str

maximum_runtime_in_minutes

The maximum runtime in minutes of pipeline step.

Type:

int

environment_variable

The environment variables of pipeline step.

Type:

dict

argument

The argument of pipeline step.

Type:

str

depends_on

The depends on of pipeline step.

Type:

list

with_job_id(self, job_id: str) PipelineStep[source]

Sets the job id for pipeline step.

with_infrastructure(self, infrastructure) PipelineStep[source]

Sets the infrastructure for pipeline step.

with_runtime(self, runtime) PipelineStep[source]

Sets the runtime for pipeline step.

with_description(self, description: str) PipelineStep[source]

Sets the description for pipeline step.

with_maximum_runtime_in_minutes(self, maximum_runtime_in_minutes: int) PipelineStep[source]

Sets the maximum runtime in minutes for pipeline step.

with_environment_variable(self, \*\*kwargs) PipelineStep[source]

Sets the environment variables for pipeline step.

with_argument(self, \*args, \*\*kwargs) PipelineStep[source]

Sets the command line arguments for pipeline step.

with_kind(self, kind: str) PipelineStep[source]

Sets the kind for pipeline step.

to_dict(self) dict[source]

Serializes the pipeline step specification dictionary.

from_dict(cls, config: dict) PipelineStep[source]

Initializes a PipelineStep from a dictionary containing the configurations.

to_yaml(self, uri=None, \*\*kwargs)

Returns PipelineStep serialized as a YAML string

from_yaml(cls, yaml_string=None, uri=None, \*\*kwargs)

Creates an PipelineStep from YAML string provided or from URI location containing YAML string

Example

Here is an example for defining a pipeline step using builder:

from ads.pipeline import PipelineStep, CustomScriptStep, ScriptRuntime
# Define an OCI Data Science pipeline step to run a python script
pipeline_step = (
    PipelineStep(name="<pipeline_step_name>")
    .with_infrastructure(
        CustomScriptStep()
        .with_shape_name("VM.Standard2.1")
        .with_block_storage_size(50)
    )
    .with_runtime(
        ScriptRuntime()
        .with_source("oci://bucket_name@namespace/path/to/script.py")
        .with_service_conda("tensorflow26_p37_cpu_v2")
        .with_environment_variable(ENV="value")
        .with_argument("argument", key="value")
        .with_maximum_runtime_in_minutes(200)
    )
)

# Another way to define an OCI Data Science pipeline step from existing job
pipeline_step = (
    PipelineStep(name="<pipeline_step_name>")
    .with_job_id("<job_id>")
    .with_description("<description>")
)

See also

https

//docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/pipeline/index.html

CONST_COMMAND_LINE_ARGUMENTS = 'commandLineArguments'
CONST_DEPENDS_ON = 'dependsOn'
CONST_DESCRIPTION = 'description'
CONST_ENVIRONMENT_VARIABLES = 'environmentVariables'
CONST_INFRASTRUCTURE = 'infrastructure'
CONST_JOB_ID = 'jobId'
CONST_KIND = 'stepType'
CONST_MAXIMUM_RUNTIME_IN_MINUTES = 'maximumRuntimeInMinutes'
CONST_NAME = 'name'
CONST_RUNTIME = 'runtime'
CONST_STEP_CONFIG_DETAILS = 'stepConfigurationDetails'
CONST_STEP_INFRA_CONFIG_DETAILS = 'stepInfrastructureConfigurationDetails'
property argument: str

The command line arguments of the pipeline step.

Returns:

The command line arguments of the pipeline step.

Return type:

str

property depends_on: list

The list of upstream pipeline steps for (self).

Returns:

The list of upstream pipeline steps for (self).

Return type:

list

property description: str

The description of the pipeline step.

Returns:

The description of the pipeline step.

Return type:

str

property environment_variable: dict

The environment variables of the pipeline step.

Returns:

The environment variables of the pipeline step.

Return type:

dict

classmethod from_dict(config: dict) PipelineStep[source]

Initializes a PipelineStep from a dictionary containing the configurations.

Parameters:

config (dict) – A dictionary containing the infrastructure and runtime specifications.

Returns:

A PipelineStep instance

Return type:

PipelineStep

Raises:

NotImplementedError – If the type of the intrastructure or runtime is not supported.

property infrastructure: DataScienceJob

The infrastructure of the pipeline step.

Returns:

Data science pipeline step instance.

Return type:

DataScienceJob

property job_id: str

The job id of the pipeline step.

Returns:

The job id of the pipeline step.

Return type:

str

property kind: str

The kind of the object as showing in YAML.

Returns:

The kind of the object as showing in YAML.

Return type:

str

property maximum_runtime_in_minutes: int

The maximum runtime in minutes of pipeline step.

Returns:

The maximum runtime in minutes of the pipeline step.

Return type:

int

property name: str

The name of pipeline step.

Returns:

The name of the pipeline step.

Return type:

str

property runtime: Runtime

The runtime of the pipeline step.

Returns:

Runtime instance.

Return type:

Runtime

to_dict() dict[source]

Serializes the pipeline step specification dictionary.

Returns:

A dictionary containing pipeline step specification.

Return type:

dict

with_argument(*args, **kwargs) PipelineStep[source]

Adds command line arguments to the pipeline step. Existing arguments will be preserved. This method can be called (chained) multiple times to add various arguments. For example, pipeline.with_argument(key=”val”).with_argument(“path/to/file”) will result in: “–key val path/to/file”

Parameters:
  • args – Positional arguments. In a single method call, positional arguments are always added before keyword arguments. You can call with_argument() to add positional arguments after keyword arguments.

  • kwargs – Keyword arguments. To add a keyword argument without value, set the value to None.

Returns:

The Pipeline step instance (self).

Return type:

Pipeline

Raises:

ValueError – Keyword arguments with space in a key.

with_description(description: str) PipelineStep[source]

Sets the description for pipeline step.

Parameters:

description (str) – The description of pipeline step.

Return type:

Pipeline step instance (self).

with_environment_variable(**kwargs) PipelineStep[source]

Sets environment variables of the pipeline step.

Parameters:

kwargs – Keyword arguments. To add a keyword argument without value, set the value to None.

Returns:

The Pipeline step instance (self).

Return type:

Pipeline

with_infrastructure(infrastructure) PipelineStep[source]

Sets the infrastructure for pipeline step.

Parameters:

infrastructure – The infrastructure of pipeline step.

Return type:

Pipeline step instance (self).

with_job_id(job_id: str) PipelineStep[source]

Sets the job id for pipeline step.

Parameters:

job_id (str) – The job id of pipeline step.

Return type:

Pipeline step instance (self).

with_kind(kind: str) PipelineStep[source]

Sets the kind of pipeline step.

Parameters:

kind (str) – The kind of pipeline step.

Return type:

Pipeline step instance (self).

with_maximum_runtime_in_minutes(maximum_runtime_in_minutes: int) PipelineStep[source]

Sets the maximum runtime in minutes of pipeline step.

Parameters:

maximum_runtime_in_minutes (int) – The maximum runtime in minutes of pipeline step.

Return type:

Pipeline step instance (self).

with_runtime(runtime) PipelineStep[source]

Sets the runtime for pipeline step.

Parameters:

runtime – The runtime of pipeline step.

Return type:

Pipeline step instance (self).

ads.pipeline.cli module

ads.pipeline.extension module

ads.pipeline.extension.load_ipython_extension(ipython)[source]
ads.pipeline.extension.pipeline(line, cell=None)[source]
ads.pipeline.extension.pipeline_cancel(options, args)[source]
ads.pipeline.extension.pipeline_delete(options, args)[source]
ads.pipeline.extension.pipeline_log(options, args)[source]
ads.pipeline.extension.pipeline_run(options, args)[source]
ads.pipeline.extension.pipeline_show(options, args)[source]
ads.pipeline.extension.pipeline_status(options, args)[source]

Module contents