================== Advanced Use Cases ================== The Science of Anomaly Detection -------------------------------- Anomaly Detection comes in many forms. We will go through some of these and give guidance as to whether this Operator is going to be helpful for each use case. * Constructive v Destructive v Pre-Processing: This Operator focuses on the Constructive and Pre-Processing use cases. Destructive can work, but more specific parameters may be required. * Supervised v Semi-Supervised v Unsupervised: All 3 of these approaches are supported by AutoMLX. AutoTS supports only Unsupervised at this time. * Time Series. This Operator requires time-series data. Data Parameterization --------------------- **Read Data from the Database** .. code-block:: yaml kind: operator type: anomaly version: v1 spec: input_data: connect_args: user: XXX password: YYY dsn: "localhost/orclpdb" sql: 'SELECT Store_ID, Sales, Date FROM live_data' datetime_column: name: ds target_column: y **Read Part of a Dataset** .. code-block:: yaml kind: operator type: anomaly version: v1 spec: input_data: url: oci://bucket@namespace/data format: hdf limit: 1000 # Only the first 1000 rows columns: ["y", "ds"] # Ignore other columns datetime_column: name: ds target_column: y Model Parameterization ---------------------- **Specify Model Type** Sometimes users will know which models they want to use. When users know this in advance, they can specify using the ``model_kwargs`` dictionary. In the following example, we will instruct the model to *only* use the ``IsolationForestOD`` model. .. code-block:: yaml kind: operator type: anomaly version: v1 spec: model: automlx model_kwargs: model_list: - IsolationForestOD search_space: IsolationForestOD: n_estimators: range': [10, 50] type': 'discrete' AutoTS offers the same extensibility: .. code-block:: yaml kind: operator type: anomaly version: v1 spec: model: autots model_kwargs: method: IQR