Source code for ads.feature_engineering.feature_type.ip_address
#!/usr/bin/env python# -*- coding: utf-8 -*--# Copyright (c) 2021 Oracle and/or its affiliates.# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/"""The module that represents an IpAddress feature type.Classes: IpAddress The IpAddress feature type."""importpandasaspdimportrefromads.feature_engineering.feature_type.baseimportFeatureTypefromads.feature_engineering.utilsimport_count_unique_missingfromads.feature_engineeringimportschemaPATTERNV4=re.compile(r"(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)",re.IGNORECASE,)PATTERNV6=re.compile(r"\s*(?!.*::.*::)(?:(?!:)|:(?=:))(?:[0-9a-f]{0,4}(?:(?<=::)|(?<!::):)){6}(?:[0-9a-f]{0,4}(?:(?<=::)|(?<!::):)[0-9a-f]{0,4}(?:(?<=::)|(?<!:)|(?<=:)(?<!::):)|(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)(?:\.(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)){3})\s*",re.VERBOSE|re.IGNORECASE|re.DOTALL,)
[docs]defdefault_handler(data:pd.Series,*args,**kwargs)->pd.Series:"""Processes given data and indicates if the data matches requirements. Parameters ---------- data: :class:`pandas.Series` The data to process. Returns ------- :class:`pandas.Series` The logical list indicating if the data matches requirements. """def_is_ip_address(x):returnnotpd.isnull(x)and(PATTERNV4.match(str(x))isnotNoneorPATTERNV6.match(str(x))isnotNone)returndata.apply(lambdax:Trueif_is_ip_address(x)elseFalse)
[docs]classIpAddress(FeatureType):""" Type representing IP Address. Attributes ---------- description: str The feature type description. name: str The feature type name. warning: FeatureWarning Provides functionality to register warnings and invoke them. validator Provides functionality to register validators and invoke them. Methods -------- feature_stat(x: pd.Series) -> pd.DataFrame Generates feature statistics. Example ------- >>> from ads.feature_engineering.feature_type.ip_address import IpAddress >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address') >>> s.ads.feature_type = ['ip_address'] >>> IpAddress.validator.is_ip_address(s) 0 True 1 True 2 False 3 False 4 False Name: ip_address, dtype: bool """description="Type representing IP Address."
[docs]@staticmethoddeffeature_stat(x:pd.Series)->pd.DataFrame:"""Generates feature statistics. Feature statistics include (total)count, unique(count) and missing(count). Examples -------- >>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address') >>> s.ads.feature_type = ['ip_address'] >>> s.ads.feature_stat() Metric Value 0 count 6 1 unique 2 2 missing 2 Returns ------- :class:`pandas.DataFrame` Summary statistics of the Series provided. """return_count_unique_missing(x)
[docs]@classmethoddeffeature_domain(cls,x:pd.Series)->schema.Domain:""" Generate the domain of the data of this feature type. Examples -------- >>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address') >>> s.ads.feature_type = ['ip_address'] >>> s.ads.feature_domain() constraints: [] stats: count: 6 missing: 2 unique: 3 values: IpAddress Returns ------- ads.feature_engineering.schema.Domain Domain based on the IpAddress feature type. """returnschema.Domain(cls.__name__,cls.feature_stat(x).to_dict()[x.name],[],)