Quick Start =========== Comparing Binary Classification Models -------------------------------------- .. code-block:: python3 from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from ads.common.model import ADSModel from ads.common.data import ADSData from ads.evaluations.evaluator import ADSEvaluator seed = 42 X, y = make_classification(n_samples=10000, n_features=25, n_classes=2, flip_y=0.1) trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.30, random_state=seed) lr_clf = LogisticRegression( random_state=0, solver="lbfgs", multi_class="multinomial" ).fit(trainx, trainy) rf_clf = RandomForestClassifier(n_estimators=50).fit(trainx, trainy) bin_lr_model = ADSModel.from_estimator(lr_clf, classes=[0, 1]) bin_rf_model = ADSModel.from_estimator(rf_clf, classes=[0, 1]) evaluator = ADSEvaluator( ADSData(testx, testy), models=[bin_lr_model, bin_rf_model], training_data=ADSData(trainx, trainy), ) print(evaluator.metrics) Comparing Multi Classification Models ------------------------------------- .. code-block:: python3 from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from ads.common.model import ADSModel from ads.common.data import ADSData from ads.evaluations.evaluator import ADSEvaluator seed = 42 X, y = make_classification( n_samples=10000, n_features=25, n_classes=3, flip_y=0.1, n_clusters_per_class=1 ) trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.30, random_state=seed) lr_multi_clf = LogisticRegression( random_state=0, solver="lbfgs", multi_class="multinomial" ).fit(trainx, trainy) rf_multi_clf = RandomForestClassifier(n_estimators=10).fit(trainx, trainy) multi_lr_model = ADSModel.from_estimator(lr_multi_clf) multi_rf_model = ADSModel.from_estimator(rf_multi_clf) evaluator = ADSEvaluator( ADSData(testx, testy), models=[multi_lr_model, multi_rf_model], ) print(evaluator.metrics) Comparing Regression Models --------------------------- .. code-block:: python3 from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso from sklearn.ensemble import RandomForestClassifier from ads.common.model import ADSModel from ads.common.data import ADSData from ads.evaluations.evaluator import ADSEvaluator seed = 42 X, y = make_regression(n_samples=10000, n_features=10, n_informative=2, random_state=42) trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.3, random_state=seed) lin_reg = LinearRegression().fit(trainx, trainy) lasso_reg = Lasso(alpha=0.1).fit(trainx, trainy) lin_reg_model = ADSModel.from_estimator(lin_reg) lasso_reg_model = ADSModel.from_estimator(lasso_reg) reg_evaluator = ADSEvaluator( ADSData(testx, testy), models=[lin_reg_model, lasso_reg_model] ) print(reg_evaluator.metrics)