Contents Menu Expand Light mode Dark mode Auto light/dark mode
ADS v2.8.9
Light Logo Dark Logo
ADS v2.8.9

Getting Started:

  • Release Notes
  • Quick Start

Installation and Configuration:

  • Installation and Setup
  • Authentication
  • CLI Configuration
  • Local Development Environment Setup
    • Build Development Container Image
    • Setting up Visual Studio Code
    • Working with Conda packs
    • Build Your Own Container (BYOC)
    • Local Job Execution
    • Local Pipeline Execution
    • Local Model Deployment Execution

Tasks:

  • Load Data
    • Connect with ADSDataset and ADSDatasetWithTarget
  • Label Data
    • Overview
    • Quick Start
    • Export Metadata
    • List
    • Load
    • Visualize
    • Examples
  • Transform Data
    • TextStrings
      • Overview
      • Quick Start
      • NLP Parse
      • Plugin
      • RegEx Match
      • Still a String
    • Text Extraction
  • Visualize Data
  • Train Models
    • ADSTuner
    • Training with OCI
    • Training Large Language Model
    • Distributed Training
      • Getting Started
      • Configurations
      • Developer Guide
      • Dask
        • Creating Workloads
        • Writing Dask Code
        • Distributed XGBoost & LightGBM
        • Securing with TLS
        • Dask Cluster Tuning
        • Dask dashboard
      • Horovod
        • Creating Horovod Workloads
        • Writing Distributed code with Horovod Framework
        • Monitoring Training
      • PyTorch Distributed
        • Creating PyTorch Distributed Workloads
      • Tensorflow
        • Creating Tensorflow Workloads
      • Run Source Code from Git or Object Storage
      • YAML Schema
      • Troubleshooting
    • TensorBoard
    • Model Evaluation
      • Quick Start
      • Binary Classification
      • Multinomial Classification
      • Regression
    • Oracle AutoMLx
      • Quick Start
  • Register, Manage, and Deploy Models
    • Quick Start
    • Model Registration
    • Model Schema
    • Model Metadata
    • Customizing the Model
    • Model Version Set
    • Deploy Model with Conda Runtime
    • Deploy Model with Container Runtime
    • Load Registered Model
    • Load Deployed Model
    • Load Model From Object Storage
    • Large Model Artifacts
    • SklearnModel
    • PyTorchModel
    • TensorFlowModel
    • SparkPipelineModel
    • LightGBMModel
    • XGBoostModel
    • HuggingFacePipelineModel
    • AutoMLModel
    • Other Frameworks

Integrations:

  • Apache Spark
    • Quick Start
    • Setup and Installation
    • Running your Spark Application on OCI Data Flow
    • spark-defaults.conf
    • Data Catalog Metastore
      • Prerequisite
      • Quick Start
      • Data Flow
      • Interactive Spark
    • OCI Data Flow Studio
    • [Legacy]
  • Big Data Service
    • Quick Start
    • Conda Environment
    • Connect
    • File Management
    • SQL Data Management
  • Data Science Jobs
    • Quick Start
    • IAM Policies
    • Infrastructure and Runtime
    • Run a Python Workload
    • Run a Notebook
    • Run a Script
    • Run a Container
    • Run Code from Git Repo
    • Train PyTorch Models
    • Working with the CLI
    • Monitoring With CLI
    • Local Job Execution
    • YAML Schema
  • Data Science Pipelines
    • Overview
    • Quick Start
    • Pipeline
    • Pipeline Step
    • Pipeline Run
    • Examples
    • Local Pipeline Execution
  • Store Credentials
    • Quick Start
    • Auth Token
    • Autonomous Database
    • Big Data Service
    • MySQL
    • Oracle Database

Classes:

  • Class Documentation
    • ads package
      • ads.bds package
      • ads.catalog package
      • ads.common package
        • ads.common.artifact package
        • ads.common.decorator package
        • ads.common.function package
      • ads.data_labeling package
        • ads.data_labeling.interface package
        • ads.data_labeling.loader package
        • ads.data_labeling.mixin package
        • ads.data_labeling.parser package
        • ads.data_labeling.reader package
        • ads.data_labeling.visualizer package
      • ads.database package
      • ads.dataflow package
      • ads.dataset package
      • ads.dbmixin package
      • ads.environment package
      • ads.evaluations package
      • ads.experiments package
      • ads.explanations package
      • ads.feature_engineering package
        • ads.feature_engineering.accessor package
          • ads.feature_engineering.accessor.mixin package
        • ads.feature_engineering.adsimage package
          • ads.feature_engineering.adsimage.interface package
        • ads.feature_engineering.adsstring package
          • ads.feature_engineering.adsstring.oci_language package
          • ads.feature_engineering.adsstring.parsers package
          • ads.feature_engineering.adsstring.string package
        • ads.feature_engineering.dataset package
        • ads.feature_engineering.feature_type package
          • ads.feature_engineering.feature_type.adsstring package
            • ads.feature_engineering.feature_type.adsstring.parsers package
          • ads.feature_engineering.feature_type.handler package
      • ads.hpo package
        • ads.hpo.visualization package
      • ads.jobs package
        • ads.jobs.builders package
          • ads.jobs.builders.infrastructure package
          • ads.jobs.builders.runtimes package
        • ads.jobs.schema package
        • ads.jobs.templates package
      • ads.model package
        • ads.model.common package
        • ads.model.deployment package
          • ads.model.deployment.common package
        • ads.model.extractor package
        • ads.model.framework package
        • ads.model.model_artifact_boilerplate package
          • ads.model.model_artifact_boilerplate.artifact_introspection_test package
        • ads.model.runtime package
        • ads.model.service package
        • ads.model.transformer package
      • ads.model_artifact_boilerplate package
        • ads.model_artifact_boilerplate.artifact_introspection_test package
      • ads.mysqldb package
      • ads.opctl package
        • ads.opctl.backend package
        • ads.opctl.conda package
        • ads.opctl.config package
          • ads.opctl.config.diagnostics package
          • ads.opctl.config.yaml_parsers package
            • ads.opctl.config.yaml_parsers.distributed package
        • ads.opctl.diagnostics package
        • ads.opctl.distributed package
          • ads.opctl.distributed.common package
        • ads.opctl.spark package
      • ads.oracledb package
      • ads.pipeline package
        • ads.pipeline.builders package
          • ads.pipeline.builders.infrastructure package
        • ads.pipeline.schema package
        • ads.pipeline.visualizer package
      • ads.secrets package
      • ads.telemetry package
      • ads.text_dataset package
      • ads.type_discovery package
      • ads.vault package
  v: latest
Versions
latest
stable
v2.8.9
v2.8.8
v2.8.7
v2.8.6
v2.8.5
v2.8.4
v2.8.3
v2.8.2
v2.8.1
v2.8.0
v2.7.2
v2.7.1
v2.7.0
v2.6.9
v2.6.8
v2.6.7
v2.6.6
v2.6.5
v2.6.4
v2.6.3
v2.6.2
v2.6.1
v2.5.10
v2.5.9
v1.0.0
v.2.7.3
v1.hotfix
v1.0.3.fs.ext
v1.0.3.fs
v1.0.2.fs.ext
v1.0.2.fs
release-2.8.x
la_forecasting
Downloads
On Read the Docs
Project Home
Builds
Back to top
Edit this page

Model Evaluation#

  • Overview
  • Binary Classification
  • Multinomial Classification
Copyright © 2020, 2023 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
Made with Sphinx and @pradyunsg's Furo